
Electronic Journal of Qualitative Theory of Differential Equations
2014, No. 7, 1–9; http://www.math.u-szeged.hu/ejqtde/

Bistable traveling wave solutions in a competitive
recursion system with Ricker nonlinearity

Shuxia PanB and Jie Liu

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050,
People’s Republic of China

Received 28 November 2013, appeared 17 March 2014

Communicated by Alberto Cabada
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1 Introduction

Bistable traveling wave solutions of evolutionary systems are useful for modeling biology in-
vasion with Allee effect and phase transition with multi steady states [22]. In the past decades,
the existence of bistable traveling wave solutions of scalar equations has been widely studied,
we refer to [1–5, 8, 9, 12, 17, 22, 25] and the references cited therein. Very recently, Fang and
Zhao [7] established an abstract scheme to prove the existence of bistable traveling wave so-
lutions of evolutionary systems generating monotone semiflows. By the theory in [7], Zhang
and Zhao [26, 27] obtained the existence of bistable traveling wave solutions in some coupled
systems.

In this paper, we shall investigate the bistable traveling wave solutions of the following
recursion system 

Un+1(x) =
∫

R
Un(y)er1(1−Un(y)−a1Vn(y))l1(x− y)dy,

Vn+1(x) =
∫

R
Vn(y)er2(1−Vn(y)−a2Un(y))l2(x− y)dy,

(1.1)

where r1 > 0, r2 > 0, a1 ≥ 0, a2 ≥ 0 are constants, Un(x) and Vn(x) denote the densities of
two competitors at time n ∈ N

⋃{0} at location x ∈ R in population dynamics, l1 and l2 are
probability functions describing the dispersal of individuals. When a1 < 1 < a2 in (1.1), Wang
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and Castillo-Chávez [23] considered its monostable traveling wave solutions and spreading
speeds, and Li and Li [14] further studied the properties of its monostable traveling wave so-
lutions. Recently, Pan and Lin [18] answered the existence and nonexistence of traveling wave
solutions of (1.1) if a1, a2 ∈ (0, 1), see also Li and Li [15].

If a1, a2 > 1 in (1.1), then the corresponding difference system{
un+1 = uner1(1−un−a1vn),

vn+1 = vner2(1−vn−a2un),
(1.2)

has four equilibria:

E0 = (0, 0), E1 = (1, 0), E2 = (0, 1), E3 =

(
1− a1

1− a1a2
,

1− a2

1− a1a2

)
=: (k1, k2).

In particular, if r1, r2 ∈ (0, 1], then both E1 and E2 are stable while E0, E3 are unstable. In
population dynamics, (1.2) is the Ricker competitive system [19], see [6, 11, 13, 20, 21] for its
dynamics.

When E1, E2 are stable in (1.2), then a traveling wave solution connecting E1 with E2 is a
bistable traveling wave solution of (1.1), and a traveling wave solution connecting E0 (or E3)
with E1 (or E2) is a monostable traveling wave solution of (1.1), see [14, 23]. In this paper, we
shall prove the existence of bistable traveling wave solutions of (1.1) by the theory in Fang and
Zhao [7]. In particular, to verify the counter-propagation in what follows, the spreading speeds
of several monostable subsystems of (1.1) are established by the results in Hsu and Zhao [10],
Liang and Zhao [16] and Weinberger et al. [24].

2 Preliminaries

In this paper, we shall use the standard partial ordering and ordering interval in R or R2. Let
C := C(R, R2) be

C(R, R2) = {U | U : R→ R2 is a uniformly continuous and bounded function }

equipped with the standard compact open topology, namely, Un → U in C if and only if the
sequence of Un(x) ∈ C converges to U(x) ∈ C uniformly in any compact subset of x ∈ R. If
U = (u1(x), u2(x)), V = (v1(x), v2(x)) ∈ C, then

U ≥ (≤)V ⇔ ui(x) ≥ (≤)vi(x), i = 1, 2, x ∈ R;

U � (�)V ⇔ U ≥ (≤)V and ui(x) > (<)vi(x), i = 1, 2, x ∈ R.

Moreover, if A, B ∈ R2 with A ≤ B, then C[A,B] = {U : U ∈ C, A ≤ U(x) ≤ B, x ∈ R }.
To study the bistable traveling wave solutions of (1.1), we shall impose the following as-

sumptions in this paper:

(H1) r1, r2 ∈ (0, 1] and a1, a2 ∈ (1, ∞);

(H2) li is Lebesgue measurable and integrable such that
∫

R
li(y)dy = 1 and

∫
R

li(y)eλydy < ∞
for all λ ∈ R, i = 1, 2;

(H3) li(y) = li(−y) ≥ 0, y ∈ R, i = 1, 2.
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To apply the theory of monotone semiflows, we make a change of variables Un(x) = 1−
U∗n(x), Vn(x) = V∗n (x) and drop the star for the sake of simplicity, then (1.1) becomes

Un+1(x) = 1−
∫

R
(1−Un(y))er1(Un(y)−a1Vn(y))l1(x− y)dy,

Vn+1(x) =
∫

R
Vn(y)er2(1−a2−Vn(y)+a2Un(y))l2(x− y)dy,

(2.1)

and the corresponding difference system of (2.1) is{
un+1 = 1− (1− un)er1(un−a1vn),

vn+1 = vner2(1−a2−vn+a2un).
(2.2)

Evidently, (2.2) has four equilibria

F0 = (0, 0), F1 = (1, 0), F2 = (1− k1, k2), F3 = (1, 1),

and F0, F3 are stable while F1, F2 are unstable. Then it suffices to study the bistable traveling
wave solutions of (2.1) connecting F0 with F3. We now give the definition of traveling wave
solutions as follows.

Definition 2.1. A traveling wave solution of (2.1) is a special solution of the form Un(x) = φ(t),
Vn(x) = ψ(t), t = x + cn with the wave speed c ∈ R and the wave profile (φ, ψ) ∈ C. Then
(φ, ψ) and c must satisfy

φ(t + c) = 1−
∫

R
(1− φ(y))er1(φ(y)−a1ψ(y))l1(t− y)dy,

ψ(t + c) =
∫

R
ψ(y)er2(1−a2−ψ(y)+a2φ(y))l2(t− y)dy, t ∈ R.

(2.3)

For a bistable traveling wave solution (φ, ψ), it also satisfies

lim
t→−∞

(φ(t), ψ(t)) = (0, 0) =: θ, lim
t→∞

(φ(t), ψ(t)) = (1, 1) =: 1. (2.4)

In what follows, we shall investigate the existence of (2.3)–(2.4) by Fang and Zhao [7]. Let
θ � M ∈ R2 and Q be a map from C[θ,M] to C[θ,M] with Q(θ) = θ, Q(M) = M. Also let F
be the set of all spatially homogeneous steady states of Q restricted on [θ, M]. We now list the
conditions of [7, Theorem 3.1] as follows.

(A1) (Transition invariance) Ty ◦ Q[Φ] = Q ◦ Ty[Φ] for any Φ ∈ C[θ,M] and y ∈ R, where
Ty[Φ](x) = Φ(x− y);

(A2) (Continuity) Q : C[θ,M] → C[θ,M] is continuous with respect to the compact open topology;

(A3) (Monotonicity) Q is order preserving in the sense that Q[Φ] ≥ Q[Ψ] if Φ ≥ Ψ with
Φ, Ψ ∈ C[θ,M];

(A4) (Compactness) Q : C[θ,M] → C[θ,M] is compact with respect to the compact open topology;

(A5) (Bistability) Two fixed points θ and M are strongly stable from above and below, respec-
tively, for the map Q : C[θ,M] → C[θ,M], that is, there exist a number δ > 0 and unit vectors
E4, E5 with θ � E4, E5 � 1 such that

Q[ηE4]� ηE4, Q[M− ηE5]� M− ηE5, η ∈ (0, δ],

and the set F\{θ, M} is totally unordered;
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(A6) (Counter-propagation) For each I ∈ F\{θ, M}, c∗−(I, M) + c∗+(θ, I) > 0, where c∗−(I, M)

and c∗+(θ, I) represent the leftward and rightward spreading speeds of the monostable
subsystem {Qn}n≥0 restricted on C[I,M] and C[θ,I], respectively.

In Fang and Zhao [7], under the assumptions (A1)–(A6), the existence of bistable traveling
wave solutions of {Qn}n≥0 connecting θ with M has been proved, which is monotone increas-
ing. That is, there exist a monotone decreasing function Ψ ∈ C and a constant c ∈ R such
that

Qn[Ψ](x) = Ψ(x + cn), x ∈ R, n ≥ 0

and
lim

ξ→−∞
Ψ(ξ) = θ, lim

ξ→∞
Ψ(ξ) = M.

3 Existence of bistable traveling wave solutions

We first present the main conclusion of this paper as follows.

Theorem 3.1. Assume that (H1)–(H3) hold. Then there exist c ∈ R and (φ, ψ) ∈ C[θ,1] satisfying
(2.3)–(2.4), which is monotone increasing and is a bistable traveling wave solution of (2.1).

For Φ = (φ, ψ) ∈ C[θ,1], we define Q = (Q1, Q2) by
Q1(φ, ψ)(t) = 1−

∫
R
(1− φ(y))er1(φ(y)−a1Yn(y))l1(t− y)dy,

Q2(φ, ψ)(t) =
∫

R
ψ(y)er2(1−a2−ψ(y)+a2φ(y))l2(t− y)dy.

(3.1)

To prove Theorem 3.1, we now take M = (1, 1), F = {F0, F1, F2, F3} and check (A1)–(A6) by
several lemmas, throughout which (H1)–(H3) hold.

Lemma 3.2. If Q is defined by (3.1), then it satisfies (A1).

Proof. For any y ∈ R and (φ, ψ) ∈ C[θ,1], we have

Ty[Q2(φ, ψ)(t)] = Ty

[∫
R

ψ(t− s)er2(1−a2−ψ(t−s)+a2φ(t−s))l2(s)ds
]

=
∫

R
ψ(t− y− s)er2(1−a2−ψ(t−y−s)+a2φ(t−y−s))l2(s)ds

= Q2(Ty[φ], Ty[ψ])(t).

Similarly, we obtain Ty[Q1(φ, ψ)(t)] = Q1(Ty[φ], Ty[ψ])(t). The proof is complete.

Lemma 3.3. If Q is defined by (3.1), then Q : C[θ,1] → C[θ,1] and satisfies (A2)–(A4).

Proof. For any t, δ and (φ, ψ) ∈ C[θ,1], we have

|Q2(φ, ψ)(t + δ)−Q2(φ, ψ)(t)|

=

∣∣∣∣∫
R

ψ(s)er2(1−a2−ψ(s)+a2φ(s)) [l2(t + δ− s)− l2(t− s)] ds
∣∣∣∣

≤
∫

R
ψ(s)er2(1−a2−ψ(s)+a2φ(s)) |l2(t + δ− s)− l2(t− s)| ds

≤
∫

R
|l2(t + δ− s)− l2(t− s)| ds, (3.2)
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which implies the equicontinuity of Q2(φ, ψ)(t) by (H2). A similar result holds for Q1(φ, ψ)(t).
Since r2 ∈ (0, 1], we know that uer2(1−a2−u+a2v) is monotone increasing in u, v ∈ [0, 1] such

that
0 ≤ uer2(1−a2−u+a2v) ≤ 1, u ∈ [0, 1], v ∈ [0, 1],

which further implies that

0 =
∫

R
0 · l2(t− s)ds ≤

∫
R

ψ(s)er2(1−a2−ψ(s)+a2φ(s))l2(t− s)ds ≤
∫

R
1 · l2(t− s)ds = 1

for any (φ, ψ) ∈ C[θ,1]. By a similar analysis of Q1, we can prove that Q : C[θ,1] → C[θ,1].
Due to the continuity and the monotonicity of

uer2(1−a2−u+a2v), 1− (1− u)er1(u−a1v), u, v ∈ [0, 1],

and the verification of (3.2), then (A2)–(A4) are clear and we omit the details here. The proof is
complete.

Lemma 3.4. (A5) is true.

Proof. Let

δ = min
{

a2 − 1
4a1a2 + 4

,
a1 − 1

4a1a2 + 4

}
> 0, E4 =

 2a1√
1 + 4a2

1

,
1√

1 + 4a2
1

 .

It is clear that η ∈ (0, δ] leads to r1ηa1√
1+4a2

1

> 0, then1− 2ηa1√
1 + 4a2

1

 e
r1ηa1√

1+4a2
1 > 1− 2ηa1√

1 + 4a2
1

,

and

1−

1− 2ηa1√
1 + 4a2

1

 e
r1ηa1√

1+4a2
1 <

2ηa1√
1 + 4a2

1

= η
2a1√

1 + 4a2
1

.

On the other hand, the definition of δ implies that 2ηa1a2√
1+4a2

1

< a2 − 1, then

1− a2 −
η√

1 + 4a2
1

+
2ηa1a2√
1 + 4a2

1

< 0,

and

η√
1 + 4a2

1

e
r2

(
1−a2− η√

1+4a2
1

+
2ηa1a2√

1+4a2
1

)
<

η√
1 + 4a2

1

.

By what we have done, we obtain Q[ηE4]� ηE4, η ∈ (0, δ].
Furthermore, Q[M− ηE5]� M− ηE5, η ∈ (0, δ] can be similarly verified by letting

E5 =

 1√
1 + 4a2

2

,
2a2√

1 + 4a2
2

 .

Moreover, F1 and F2 are unordered. The proof is complete.
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Lemma 3.5. c∗−(F1, F3) + c∗+(F0, F1) > 0.

Proof. To compute c∗−(F1, F3), we consider the spreading speed of the following integrodiffer-
ence equation

pn+1(x) =
∫

R
pn(y)er2(1−pn(y))l2(x− y)dy.

By (H1)–(H3) and Hsu and Zhao [10, Theorem 2.1], then

c∗−(F1, F3) = inf
µ>0

ln(er2
∫

R
eµyl2(y)dy)
µ

,

which implies that c∗−(F1, F3) > 0 by (H2) and Liang and Zhao [16, Lemma 3.8].
To establish c∗+(F0, F1), define an integrodifference equation as follows

qn+1(x) = 1−
∫

R
(1− qn(y))er1qn(y)l1(x− y)dy. (3.3)

Let wn(x) = 1− qn(x), then (3.3) becomes wn+1(x) =
∫

R
wn(y)er1(1−wn(y))l1(x− y)dy and

c∗+(F0, F1) = inf
µ>0

ln(er1
∫

R
eµyl1(y)dy)
µ

> 0.

The proof is complete.

Lemma 3.6. c∗−(F2, F3) + c∗+(F0, F2) > 0.

Proof. We first consider c∗−(F2, F3). Letting pn(x) = Un(x)− (1− k1), qn(x) = Vn(x)− k2, then
(2.1) leads to 

pn+1(x) = k1 +
∫

R
(pn(y)− k1)er1(pn(y)−a1qn(y))l1(x− y)dy,

qn+1(x) = −k2 +
∫

R
(qn(y) + k2)er2(a2 pn(y)−qn(y))l2(x− y)dy.

(3.4)

Consider the corresponding initial value problem of (3.4) with 0 ≤ p0(x) ≤ k1, 0 ≤ q0(x) ≤
1− k2, x ∈ R, in which p0(x), q0(x) are uniformly continuous and admit nonempty compact
supports. If 0 ≤ u ≤ k1, 0 ≤ v ≤ 1− k2, then

0 ≤ k1 + (u− k1)er1(u−a1v) ≤ k1,

0 ≤ −k2 + (v + k2)er2(a2u−v) ≤ 1− k2

and both of them are monotone increasing in u ∈ [0, k1], v ∈ [0, 1− k2]. Using the comparison
principle, we obtain (pn(x), qn(x)) ∈ C, n ∈N with 0 ≤ pn(x) ≤ k1, 0 ≤ qn(x) ≤ 1− k2, x ∈ R,
n ∈ N. Let K∗ = [k1, 1− k2], then C[θ,K∗] is an invariant region of (3.4) and it is reasonable to
restrict Q on C[F2,F3].

For µ ≥ 0, define

Bµ =

[
(1− r1k1)

∫
R

eµyl1(y)dy a1r1k1
∫

R
eµyl2(y)dy

a2r2k2
∫

R
eµyl1(y)dy (1− r2k2)

∫
R

eµyl2(y)dy

]
.

We now consider the principle eigenvalue of Bµ, denoted by λ
(

Bµ

)
. If∫

R
eµyl1(y)dy ≤

∫
R

eµyl2(y)dy
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holds, then∣∣∣∣ ∫R
eµyl1(y)dy− (1− r1k1)

∫
R

eµyl1(y)dy −a1r1k1
∫

R
eµyl2(y)dy

−a2r2k2
∫

R
eµyl1(y)dy

∫
R

eµyl1(y)dy− (1− r2k2)
∫

R
eµyl2(y)dy

∣∣∣∣
= r1k1

∫
R

eµyl1(y)dy
∣∣∣∣ 1 −a1

∫
R

eµyl2(y)dy
−a2r2k2

∫
R

eµyl1(y)dy− (1− r2k2)
∫

R
eµyl2(y)dy

∣∣∣∣
= r1k1

∫
R

eµyl1(y)dy
[∫

R
eµyl1(y)dy−

∫
R

eµyl2(y)dy + (1− a1a2)r2k2

∫
R

eµyl2(y)dy
]

≤ (1− a1a2)r2k2r1k1

∫
R

eµyl1(y)dy
∫

R
eµyl2(y)dy

< 0,

which implies that

λ
(

Bµ

)
>
∫

R
eµyl1(y)dy > 1, λ (B0) > 1.

By what we have done, we obtain that

inf
µ>0

ln(λ(Bµ))

µ
> 0,

and so c∗−(F2, F3) > 0 by Weinberger et al. [24, Lemma 3.1].
If
∫

R
eµyl1(y)dy >

∫
R

eµyl2(y)dy, we also have c∗−(F2, F3) > 0 by a similar discussion.
As F0, F2 are steady states of (2.1) and (2.1) is cooperative, thus C[F0,F2] is an invariant region

of (2.1). Let Un(x) = 1− k1 − tn(x), Vn(x) = k2 − sn(x), then
tn+1(x) =

∫
R
(k1 + tn(y))er1(−tn(y)+a1sn(y))l1(x− y)dy,

sn+1(x) = k2 −
∫

R
(k2 − sn(y))er2(−a2tn(y)+sn(y))l2(x− y)dy.

(3.5)

Evidently, (3.5) defines a cooperative system and C[F0,F2] is an invariant region of (3.5). For
µ ≥ 0, define

Dµ =

[
(1− r1k1)

∫
R

eµyl1(y)dy r1a1k1
∫

R
eµyl2(y)dy

r1a1k1
∫

R
eµyl1(y)dy (1− r2k2)

∫
R

eµyl2(y)dy

]
Similar to the analysis of Bµ, we have

inf
µ>0

ln(λ(Dµ))

µ
> 0,

and c∗+(F0, F2) > 0. The proof is complete.

Applying Fang and Zhao [7, Theorem 3.1], we finish the proof of Theorem 3.1.
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