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Abstract

We use Krasnoselskii’s fixed point theorem to show that the nonlinear neu-
tral differential equation with delay

d

dt
[x(t) − ax(t − τ)] = r(t)x(t) − f(t, x(t − τ))

has a positive periodic solution. An example will be provided as an appli-
cation to our theorems.
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1 Introduction

Motivated by the papers [19], [21], [22], [23], and the references therein, we consider
the nonlinear neutral differential equation with constant delay

d

dt
[x(t) − ax(t− τ)] = r(t)x(t) − f(t, x(t− τ)), τ ∈ R (1.1)

which arises in a food-limited population models (see [3], [4]- [7], [9], [10], [11]), [17]
and blood cell models, (see [2], [26], [28] ). For system (1.1), there may be a stable
equilibrium point of the population. In the case the equilibrium point becomes
unstable, there may exist a nontrivial periodic solution. Then the oscillation of
solutions occurs. The existence of such stable periodic solution is of quite funda-
mental importance biologically since it concerns the long time survival of species.
The study of such phenomena has become an essential part of qualitative theory of
differential equations. For historical background, basic theory of periodicity, and
discussions of applications of (1.1) to a variety of dynamical models we refer the
interested reader to [8], [13], [14], [15], [16], [18], [20], [24], [25] and [27].
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One of the most used models, a prototype of (1.1), is the system of Volterra inte-
grodifferential equations (see [27])

Ṅ(t) = −γ(t)N(t) + α(t)

∫ ∞

0

B(s)e−β(t)N(t−s)ds

where N(t) is the number of red blood cell at time t, and α, β, γ ∈ C(R,R) are
T−periodic, and B ∈ L1(R+) and piecewise continuous. This is a generalized
model of the red cell system introduced by Wazewska-Czyzewska and Lasota [26]

ṅ(t) = −γn(t) + αe−βn(t−r)

where α, β, γ, r are constants with r > 0. In [21] the authors established criteria for
the existence of positive periodic solutions for the periodic neutral logistic equation,
with distributed delays,

x′(t) = x(t)
[

a(t) −
n

∑

i=1

ai(t)

∫ 0

−Ti

x(t+ θ) dµi(θ) −
m

∑

j=1

bj(t)

∫ 0

−T̂j

x′(t+ θ) dνj(θ)
]

,

where the coefficients a, ai, bj are continuous and periodic functions, with the same

period. The values Ti, T̂j are positive, and the functions µi, νj are nondecreasing

with
∫ 0

−Ti
dµi = 1 and

∫ 0

−T̂j
dνj = 1. The above equation is of Logistic form

and hence the method that were used to obtain the existence of positive periodic
solutions will not work for our model (1.1). The same is true for the paper of
[17]. In [22] the author used Krasnoselskii’s fixed point theorem to show that the
nonlinear neutral differential equation with functional delay

x′(t) = −a(t)x(t) + c(t)x′(t− g(t)) + q
(

t, x(t), x(t− g(t)
)

has a periodic solution. Also, by transforming the problem to an integral equation
the author was able, using the contraction mapping principle, to show that the
periodic solution is unique. Finally, in [21] the authors considered the neutral
differential equation with periodic coefficients

d

dt
(x(t) − cx(t− τ(t))) = −a(t)x(t) + g(t, x(t− τ(t))), (1.2)

and attempted to show that (1.2) has a positive periodic solution by appealing to
cone theory. We point out that the results in [21] are not correct since the two
sets Ω1 and Ω2 that was constructed by the authors are not open in the Banach
space. For the same reason, an addendum has been added to the paper listed in
reference [21].
The main aim of this research is to give a correct proof for the existence of a
positive periodic solution by using a different fixed point theorem from the one
used in [21].
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2 Preliminaries

Krasnosel’skĭı fixed point theorem has been extensively used in differential and
functional differential equations, by Burton in proving the existence of periodic
solutions. Also, Burton was the first to use the theorem to obtain stability results
regarding solutions of integral equations and functional differential equations. For
a collection of different type of results concerning stability, the existence of periodic
solutions and boundedness of solutions, using fixed point theory, we refer the reader
to the new published book [1] and the references therein. The author is unaware of
any results regarding the use of Krasnosel’skĭı to prove the existence of a positive
periodic solution.

Theorem 2.1 (Krasnosel’skĭı) Let M be a closed convex nonempty subset of a
Banach space

(

B, ‖ · ‖
)

. Suppose that A and B map M into B such that

(i) A is compact and continuous,

(ii) B is a contraction mapping.

(iii) x, y ∈ M, implies Ax+By ∈ M,

Then there exists z ∈ M with z = Az +Bz.
For T > 0 define PT = {φ ∈ C(R,R), φ(t+ T ) = φ(t)}, t ∈ R where C(R,R) is

the space of all real valued continuous functions. Then PT is a Banach space when
it is endowed with the supremum norm

‖x‖ = max
t∈[0,T ]

|x(t)| = max
t∈R

|x(t)|.

We assume that all functions are continuous with respect to their arguments and
for all t ∈ R,

r(t+ T ) = r(t), f(t+ T, ·) = f(t, ·). (2.1)

In addition to (2.1), we ask that r(t) satisfies the average condition

∫ T

0

r(s) ds > 0. (2.2)

We begin with the following lemma.

Lemma 2.2. Suppose (2.1) and (2.2) hold. If x(t) ∈ PT , then x(t) is a solution
of equation (1.1) if and only if

x(t) = ax(t− τ) +

∫ t+T

t

G(t, u)[f(u, x(u− τ)) − ar(u)x(u− τ)] du (2.3)
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where

G(t, u) =
e

∫ t

u
r(s)ds

1 − e−
∫ T

0
r(s)ds

. (2.4)

Proof. Let x(t) ∈ PT be a solution of (1.1). To be able to invert (1.1), we put it
in the form

d

dt
[x(t) − ax(t− τ)] = r(t)

(

x(t) − ax(t− τ)
)

−
(

f(t, x(t− τ)) − ar(t)x(t− τ)
)

.

Next we multiply both sides of the resulting equation with e−
∫ t

0
r(s)ds and then

integrate from t to t+ T to obtain

(

x(t+ T ) − ax(t+ T − τ)
)

e−
∫ t+T

0
r(s)ds −

(

x(t) − ax(t− τ)
)

e−
∫ t

0
r(s)ds

= −

∫ t+T

t

(

f(u, x(u− τ)) − ar(u)x(u− τ)
)

e−
∫ u

0
r(s)dsdu.

Using the fact that x(t+ T ) = x(t), the above expression can be put in the form

x(t) = ax(t− τ)

+

∫ t+T

t

e
∫ t

u
r(s)ds

1 − e−
∫ T

0
r(s)ds

(

f(u, x(u− τ)) − ar(u)x(u− τ)
)

du. (2.5)

This completes the proof.
To simplify notation, we let

M =
e

∫

2T

0
|r(s)|ds

1 − e−
∫ T

0
r(s)ds

, (2.6)

and

m =
e−

∫

2T

0
|r(s)|ds

1 − e−
∫ T

0
r(s)ds

. (2.7)

It is easy to see that for all (t, s) ∈ [0, 2T ] × [0, 2T ],

m ≤ G(t, s) ≤M

and for all t, s ∈ R we have ,

G(t+ T, s+ T ) = G(t, s).
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3 Main Results

In this section we obtain the existence of a positive periodic solution by considering
the two case; 0 ≤ a < 1, −1 < a ≤ 0. For some non-negative constant L and a
positive constant K we define the set

M = {φ ∈ PT : L ≤ ||φ|| ≤ K},

which is a closed convex and bounded subset of the Banach space PT . In addition
we assume that

0 ≤ a < 1, (3.1)

and for all u ∈ R, ρ ∈ M

(1 − a)L

mT
≤ f(u, ρ) − ar(u)ρ ≤

(1 − a)K

MT
, (3.2)

where M and m are defined by (2.6) and (2.7), respectively. To apply Theorem
2.1, we will need to construct two mappings; one is contraction and the other is
compact. Thus, we set the map A : M → PT

(Aϕ)(t) =

∫ t+T

t

G(t, u)[f(u, ϕ(u− τ)) − ar(u)ϕ(u− τ)] du, t ∈ R. (3.3)

In a similar way we set the map B : M → PT

(Bϕ)(t) = aϕ(t− τ), t ∈ R. (3.4)

It is clear from condition (3.1) that B defines a contraction mapping under the
supremum norm.

Lemma 3.1. If (2.1), (2.2), (3.1) and (3.2) hold, then the operator A is completely
continuous on M.

Proof. For t ∈ [0, T ] which implies that u ∈ [t, t+ T ] ⊆ [0, 2T ] and for ϕ ∈ M

we have by (3.3) that

|(Aϕ)(t)| ≤ |

∫ t+T

t

G(t, u)[f(u, ϕ(u− τ)) − ar(u)ϕ(u− τ)] du|

≤ TM
(1 − a)K

MT
= (1 − a)K.

From the estimation of |Aϕ(t)| it follows that

||Aϕ|| ≤ (1 − a)K.
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This shows that A(M) is uniformly bounded. Left to show that A(M) is equi-
continuous. Let ϕ ∈ M. Then a differentiation of (3.3) with respect to t yields

(Aϕ)′(t) = G(t, t+ T )[f(t, ϕ(t− τ)) − ar(t)ϕ(t− τ)] + r(t)(Aϕ)(t).

Hence, by taking the supremum norm in the above expression we have

||(Aϕ)′|| ≤
(1 − a)K

T
+ ||r||(1− a)K.

Thus the estimation on |(Aϕ)′(t)| implies that A(M) is equicontinuous. Then using
Ascoli-Arzela theorem we obtain that A is a compact map. Due to the continuity
of all terms in (3.3), we have that A is continuous. This completes the proof of
Lemma 3.1.

Theorem 3.2. If (2.1), (2.2), (3.1) and (3.2) hold, then Equation (1.1) has a
positive periodic solution z satisfying L ≤ ‖z‖ ≤ K.

Proof. Let ϕ, ψ ∈ M. Then, by (3.3) and (3.4) we have that

(Bϕ)(t) + (Aψ)(t) = aϕ(t− τ) +

∫ t+T

t

G(t, u)[f(u, ψ(u− τ)) − ar(u)ψ(u− τ)] du

≤ aK +M

∫ t+T

t

[f(u, ψ(u− τ)) − ar(u)ψ(u− τ)] du

≤ aK +MT
(1 − a)K

MT
= K.

On the other hand,

(Bϕ)(t) + (Aψ)(t) = aϕ(t− τ) +

∫ t+T

t

G(t, u)[f(u, ψ(u− τ)) − ar(u)ψ(u− τ)] du

≥ aL+m

∫ t+T

t

[f(u, ψ(u− τ)) − ar(u)ψ(u− τ)] du

≥ aL+mT
(1 − a)L

mT
= L.

This shows that Bϕ + Aψ ∈ M. All the hypothesis of Theorem 2.1 are satisfied
and therefore equation (1.1) has a periodic solution, say z residing in M. This
completes the proof.
For the next theorem we substitute conditions (3.1) and (3.2) with

−1 < a ≤ 0 (3.5)
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and for all u ∈ R, ρ ∈ M

L− aK

mT
≤ f(u, ρ) − ar(u)ρ ≤

K − aL

MT
, (3.6)

where M and m are defined by (2.6) and (2.7), respectively.

Theorem 3.3. If (2.1), (2.2), (3.5) and (3.6) hold, then Equation (1.1) has a
positive periodic solution z satisfying L ≤ ‖z‖ ≤ K.

The proof follows along the lines of Theorem 3.2, and hence we omit.

4 Example

Let a = − 1
50
. Then the neutral differential equation

d

dt
[x(t) − ax(t− π)] =

1

2
sin2(t)x(t) −

cos2(t)

x2(t− π) + 100
−

1

25
(4.1)

has a positive π-periodic solution x satisfying 0 ≤ ‖x‖ ≤ 2. To see this, we have

f(u, ρ) =
cos2(u)

ρ2 + 100
+

1

25
, r(u) =

1

2
sin2(u) and T = π.

A simple calculation yields

8.923 < M < 8.925, and 0.382 < m < 0.383.

Let K = 2, and L = 0 and define the set M = {φ ∈ Pπ : 0 ≤ ‖φ‖ ≤ 2}. Then for
ρ ∈ [0, 2] we have

f(u, ρ) − ar(u)ρ =
cos2(u)

ρ2 + 100
+

1

100
sin2(u)ρ+

1

25

≤
1

100
+

1

50
+

1

25
= 0.07 <

K − aL

MT
.

On the other hand,

f(u, ρ) − ar(u)ρ =
cos2(u)

ρ2 + 100
+

1

100
sin2(u)ρ+

1

25

>
1

25
>
L− aK

mT
.

By Theorem 3.3, Equation (4.1) has a positive π-periodic solution x such that
0 ≤ ‖x‖ ≤ 2.

Acknowledgement: The author is grateful to the anonymous referee for his/her
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