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Abstract. In this paper, we obtain new observability inequalities for the vibrating string.
This work was motivated by a recent paper of Szijártó and Hegedűs in which the authors
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and the estimations rely on the Fourier series expansion of the solutions and results of
Diophantine approximation.
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1 Introduction

Let q be a nonnegative number. The small transversal vibrations of a string of length π fixed at
its two ends satisfy 

y′′ − yxx + qy = 0 in R× (0, π),

y = 0 in R× {0, π},
y(0) = y0, y′(0) = y1 in (0, π).

(1.1)

Remark 1.1. The quantity y = y(t, x) is the height of the string at time t and abscissa x while
y(t) stands for the map y(t, ·). The choice of π for the length of the string is made in order to
simplify the writing in the expansion of the solutions in Fourier series.

Observability inequalities for the vibrating string and for oscillating systems in general have
been the object of many works. Indeed, observability being dual to controllability (cf. Russell
[15]), it is often a starting point to obtain exact controllability results (see, e.g. Lions [13], Haraux
[9]). A useful tool to obtain such inequalities is the Fourier series expansion of the solutions (cf.
Komornik and Loreti [11]).
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Among all the different ways to observe the system (1.1), pointwise observation has been
widely studied (see, e.g. Lions [14], Haraux [8]). It consists in getting estimations of the form

‖(y0, y1)‖I ≤ c‖y(·, ξ)‖O.

The main difficulties are the choice of the norms for the initial data ‖ · ‖I as for the observation
‖ · ‖O and the choice of a strategic point ξ in the domain. These particular points can be charac-
terized by some of their arithmetical properties (see, e.g. Butkovskiy [3], Komornik and Loreti
[12]).

Following a recent paper of Szijártó and Hegedűs [17], we focus on a pointwise-in-time obser-
vation. Such type of observation seems to have been studied at first by Egorov [6] and Znamen-
skaya [18]. Given two norms, one for the initial data ‖ · ‖I and one for the observation ‖ · ‖O,
the objective is to find two times t0 and t1 such that

‖(y0, y1)‖I ≤ c(‖y(t0)‖O + ‖y(t1)‖O). (1.2)

From a practical point of view, such an inequality means that only knowing the position of the
whole system at two different instants, we are able to recover the initial data y0 and y1.

Definition 1.2. A pair (t0, t1) of real numbers such that the observability inequality (1.2) holds
is called a strategic pair (for (1.2)).

Remark 1.3. In particular, the notion of strategic pair depends on the choice of the norms in
(1.2).

The main idea of this paper is the following: depending on how the quantity

t0 − t1

π

is approximable by rational numbers, such pointwise-in-time observability inequalities hold.
The main tools are the explicit expansion of the solutions in Fourier series and classical results
of Diophantine approximation.

Let us describe the organization of the paper and state (informally) the main results.
In Section 2, after recalling the definition of adapted functional spaces to study the well-

posedness of (1.1), we reformulate the observation problem in this setting. These spaces, de-
noted by Ds (s ∈ R), correspond essentially to the domain of −∆s/2. Then, we may chose two
real numbers r and s such that ‖ · ‖I = ‖ · ‖Ds and ‖ · ‖O = ‖ · ‖Dr .

In Section 3, we investigate the observation of the classical string (i.e. q = 0). We prove (see
Theorem 3.3) the following result:

Assume that r − s ≥ 1. Then, there exist strategic pairs. Moreover, if the inequality
is strict, then almost all pairs are strategic. This result is optimal in the sense that there
cannot be any strategic pair if r− s < 1.

In Section 4, we prove that the difference r− s (see Theorem 4.1) can be reduced by adding
further observations.

In Section 5, we focus on the loaded string (i.e. q > 0). First we recall the main result of [17] in
Theorem 5.1, which states essentially that if (t0− t1)/π is a rational number along with another
hypothesis, then (t0, t1) is a strategic pair with r − s = 1. After analysing the occurrence of
such pairs under the above hypotheses in Proposition 5.2, we use another method to obtain
new observability inequalities. We can state the following result (see Theorem 5.3):
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Assume that r− s = 1. If (t0, t1) is a strategic pair for the classical string, then it is also a
strategic pair for the loaded string provided that q is sufficiently small.

Finally, in Section 6, we extend our method to the vibrating beam and rectangular plates.

2 Problem setting and notations

Let us recall the construction of some useful functional spaces related to the above problem (see,
e.g. [10, pp. 7–11], [1, pp. 335–340]). The functions sin(kx), k = 1, 2, . . . form an orthogonal and
dense system in L2(0, π). We denote by D the vector space spanned by these functions and for
s ∈ R, we define an euclidean norm on D by setting∥∥∥ ∞

∑
k=1

ck sin(kx)
∥∥∥2

s
:=

∞

∑
k=1

k2s|ck|2.

The space Ds is defined as the completion of D for the norm ‖ · ‖s. The space D0 coincides with
L2(0, π) with equivalent norms and more generally, it is possible to prove that for s > 0,

Ds =

{
f ∈ Hs(0, π) : f (2j)(0) = f (2j)(π) = 0, ∀ 0 ≤ j ≤

[
s− 1

2

]}
.

Identifying D0 with its own dual, D−s is the dual of Ds. For example,

D0 = L2(0, π), D1 = H1
0(0, π) and D−1 = H−1(0, π)

with equivalent norms.
Now, we recall a well-posedness result for the problem (1.1) via an expansion of the solu-

tions in Fourier series. We set

ωk :=
√

k2 + q, k = 1, 2, . . .

Proposition 2.1. Let s ∈ R. For all initial data y0 ∈ Ds and y1 ∈ Ds−1, the problem (1.1) has a unique
solution y ∈ C(R, Ds) ∩ C1(R, Ds−1) ∩ C2(R, Ds−2) given by

y(t, x) =
∞

∑
k=1

(akeiωkt + bke−iωkt) sin kx, (2.1)

where the complex coefficients ak and bk satisfy 1

‖y0‖2
s + ‖y1‖2

s−1 �
∞

∑
k=1

k2s(|ak|2 + |bk|2). (2.2)

The observability problem that we are going to investigate in this paper is the following.
Given two real numbers r and s such that s ≤ r, we ask whether there exist two instants of time
t0 and t1 such that

‖y0‖s + ‖y1‖s−1 ≤ c(‖y(t0)‖r + ‖y(t1)‖r) (2.3)

for a positive constant c, independent of the initial data (y0, y1) ∈ Dr × Dr−1.

1 A � B means that there are two positive constants c1 and c2 such that c1B ≤ A ≤ c2B.
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3 Observability of the classical string (q = 0)

In this section, we assume that q = 0 in the problem (1.1). The following statement transforms
the observation inequality (2.3) into a problem of Diophantine approximation.

Proposition 3.1. The pair (t0, t1) is strategic if and only if there is a positive constant c such that 2∥∥∥∥ k(t0 − t1)

π

∥∥∥∥ ≥ c
kr−s , k = 1, 2, . . . (3.1)

For the proof, we need the following

Lemma 3.2. Set x ∈ R. We have

| sin kx| �
∥∥∥∥ kx

π

∥∥∥∥ , k = 1, 2, . . .

Proof of Lemma 3.2. We follow the proof of [12, Lemma 2.3]. Denoting by m the nearest integer
from kx/π,

| sin kx| = | sin(kx−mπ)| =
∣∣∣∣sin

(
kx
π
−m

)
π

∣∣∣∣ .

We notice that |kx/π − m|π ≤ π/2. Hence, using the estimations (2/π)|t| ≤ | sin t| ≤ |t|
which hold for |t| ≤ π/2, we have

2
π

∣∣∣∣ kx
π
−m

∣∣∣∣π ≤
∣∣∣∣sin

(
kx
π
−m

)
π

∣∣∣∣ ≤ π

∣∣∣∣ kx
π
−m

∣∣∣∣ ,

i.e.

2
∥∥∥∥ kx

π

∥∥∥∥ ≤ | sin kx| ≤ π

∥∥∥∥ kx
π

∥∥∥∥ .

Proof of Proposition 3.1. Using the Fourier series expansion (2.1) of the solutions of (1.1) and the
estimation (2.2), we observe that the square of the left-hand side in (2.3) is equivalent (in the
sense of the symbol � defined previously) to

∞

∑
k=1

k2s(|ak|2 + |bk|2)

and the square of the right-hand side is equivalent to

∞

∑
k=1

k2r(|akeikt0 + bke−ikt0 |2 + |akeikt1 + bke−ikt1 |2
)
.

Therefore, the observability inequality (2.3) holds if and only if there exists a positive constant
c′ such that for all k = 1, 2, . . . and all complex numbers a and b,

k2s(|a|2 + |b|2) ≤ c′k2r(|aeikt0 + be−ikt0 |2 + |aeikt1 + be−ikt1 |2
)
. (3.2)

Now, for all k, we consider the linear maps Tk in C×C (endowed with its usual euclidean
norm) defined by

Tk(a, b) := (aeikt0 + be−ikt0 , aeikt1 + be−ikt1).

2 Given a real number x, the distance between x and the nearest integer is denoted by ‖x‖.
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Hence, the estimation (3.2) holds for all k if and only if all the Tk are invertible and there exists
a positive constant c′′ independent of k such that

1
‖T−1

k ‖
≥ c′′

kr−s .

The determinant of Tk equalling 2i sin k(t0 − t1), we deduce that all the Tk are invertible if and
only if (t0 − t1)/π is an irrational number. In that case, their inverses are given by

T−1
k (a, b) =

1
2i sin k(t0 − t1)

(e−ikt1 a− e−ikt0 b,−eikt1 a + eikt0 b)

and a computation of their norms yield

‖T−1
k ‖ =

√
1 + | cos k(t0 − t1)|√

2| sin k(t0 − t1)|
.

Thus,
1

‖T−1
k ‖
� | sin k(t0 − t1)| �

∥∥∥∥ k(t0 − t1)

π

∥∥∥∥ .

The first estimation follows from the expression of ‖T−1
k ‖ while the second estimation is a

consequence of the Lemma 3.2. We observe that if (3.1) holds, then (t0 − t1)/π must be an
irrational number and that ensures that all the Tk are invertible. The proof is complete.

Theorem 3.3.

(a) If r− s < 1, there is no strategic pair.

(b) If r− s = 1, the set of strategic pairs has zero Lebesgue measure and full Hausdorff dimension in
R2.

(c) If r− s > 1, the set of strategic pairs has full Lebesgue measure in R2.

In the following lemma, we gather some classical results of Diophantine approximation.
The results concerning the Lebesgue measure are due to Khinchin and the one concerning the
Hausdorff dimension is due to Jarník. For a real number α, we set

Eα := {x ∈ R : ∃ c > 0 : ‖kx‖ ≥ ck−α, k = 1, 2, . . .}.

Lemma 3.4 ([4, pp. 120–121], [2, p. 104], [7, p. 142]).

(a) If α = 1, then Eα has zero Lebesgue measure and full Hausdorff dimension in R.

(b) If α > 1, then Eα has full Lebesgue measure in R.

Proof of Theorem 3.3. The result is a consequence of the Proposition 3.1 and results of Diophan-
tine approximation.

If α < 1 then the set E1 defined in the Lemma 3.4 is empty. Indeed, if we suppose that
x ∈ E1, then for sufficiently large k, ‖kx‖ ≥ 1/k, which is in contradiction with a theorem of
Dirichlet (see [4, p. 4]) that asserts that if x is irrational, then the inequality ‖kx‖ < 1/k has
infinitely many solutions in k.

If α ≥ 1, then we use the Lemma 3.4. One can notice that the set of pairs (t0, t1) ∈ R2 such
that (t0 − t1)/π ∈ Eα has full (resp. zero) Lebesgue measure or Hausdorff dimension in R2 if
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Eα has full (resp. zero) Lebesgue measure or Hausdorff dimension in R. For the Lebesgue mea-
sure, this results from Fubini’s theorem. For the Hausdorff dimension, this is a consequence
of its behaviour with a product of sets and its invariance by a bi-Lipschitz transformation (see,
e.g. [7]).

Remark 3.5.

• The assertion (a) of Corollary 3.3 can be seen as an optimality result. Indeed, it means that
with only two observations, the difference r− s between the orders of the Sobolev norms
in the inequality (2.3) must be at least 1.

• One cannot obtain such estimations with only one observation. Indeed, let t0 ∈ R. Then,
the function y(t, x) = sin(t− t0) sin(x) is a solution to (1.1) with y(0) 6= 0 or y′(0) 6= 0,
but y(t0) = 0.

• If the pair (t0, t1) is strategic, then, having only access to the two observations, i.e. the
position of the string at times t0 and t1, we can recover the initial data y0 and y1 using
the expansion in Fourier series of y(t0) and y(t1) and the applications T−1

k . Moreover, the
observability inequality ensures a “continuity property” in this reconstruction process.
Indeed, if two sets of observations are close, then the two sets of associated initial data
must be close too.

• In the same way, if r− s ≥ 1, we can obtain estimations of the form

‖y0‖s + ‖y1‖s−1 ≤ c(‖y′(t0)‖r−1 + ‖y(t1)‖r),

‖y0‖s + ‖y1‖s−1 ≤ c(‖y(t0)‖r + ‖y′(t1)‖r−1),

‖y0‖s + ‖y1‖s−1 ≤ c(‖y′(t0)‖r−1 + ‖y′(t1)‖r−1).

• Applying the Hilbert Uniqueness Method (see [13, 10]), it is possible to prove the follow-
ing exact controllability result: let 0 < t0 < t1 < T such that the observability inequality
(2.3) holds with r = 0 and s = −1. Then, for given initial data (y0, y1) ∈ D2 × D1, we
can find two control vectors v and w in D0 such that the solution (that can be defined
rigorously) of the inhomogeneous problem

y′′ − yxx = δ(t− t0)v + δ(t− t1)w in (0, T)× (0, π),

y = 0 on (0, T)× {0, π},
y(0) = y0, y′(0) = y1 in (0, π)

satisfy y(T) = y′(T) = 0, the symbol δ denoting the Dirac delta function.

4 With more observations

In this section, we still assume that q = 0 in (1.1). In Section 3, we have seen that with only two
observations, it is necessary that r − s ≥ 1 in the estimation (2.3). In this part, we prove that
adding other observations, it is possible to reduce the gap r− s.

Theorem 4.1. Let t1, t2, . . . , tn ∈ R with n ≥ 2, r ∈ R and set s := r − 1/(n − 1). Assume that
among the (ti − tj)/π, 1 ≤ i, j ≤ n, we can extract n− 1 elements τ1, . . . , τn−1 that belong to a real
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algebraic extension of Q of degree n and such that 1, τ1, . . . , τn−1 are linearly independent over Q. Then,
there exists a positive constant c such that

‖y0‖s + ‖y1‖s−1 ≤ c(‖y(t1)‖r + . . . + ‖y(tn)‖r)

for all initial data (y0, y1) ∈ Dr × Dr−1.

The proof relies on the following result (whose second estimation will only be used in sec-
tion 6).

Lemma 4.2 ([4, p. 79]). Let x1, . . . , xn be numbers that belong to a real algebraic extension of Q

of degree n + 1 such that 1, x1, . . . , xn are linearly independent over Q. Then, there exists a positive
constant c, only depending on x1, . . . , xn, such that

max ‖kxj‖ ≥ ck−1/n, k = 1, 2, . . .

and
‖k1x1 + k2x2 + . . . knxn‖ ≥ c(max |k j|)−n, (k1, . . . , kn) ∈ Zn \ {(0, . . . 0)}.

Proof of Theorem 4.1. Adapting the method described in the proof of Theorem 3.1, it is sufficient
to obtain the estimation

n

∑
p=1
|aeiktp + be−iktp |2 ≥ ck−

2
n−1 (|a|2 + |b|2),

where c is a positive constant, independent of a, b ∈ C and k ∈ N∗. With no loss of generality,
we can assume that τp = (t1 − tp+1)/π for p = 1, . . . , n− 1. We have

n

∑
p=1
|aeiktp + be−iktp |2 =

n

∑
p=2

(
1

n− 1
|aeikt1 + be−ikt1 |2 + |aeiktp + be−iktp |2

)

≥ c1

n

∑
p=2

(|aeikt1 + be−ikt1 |2 + |aeiktp + be−iktp |2)

≥ c2

(
n

∑
p=2
| sin k(t1 − tp)|2

)
(|a|2 + |b|2)

≥ c3

(
n

∑
p=2

∥∥∥∥ k(t1 − tp)

π

∥∥∥∥2
)
(|a|2 + |b|2)

≥ c3 max
∥∥∥∥ k(t1 − tp)

π

∥∥∥∥2

(|a|2 + |b|2)

≥ c4k−2/(n−1)(|a|2 + |b|2)

for all k = 1, 2, . . ., with positive constants c1, c2, c3, c4 independent of a, b ∈ C. The numbers
1, (t1 − t2)/π, . . . , (t1 − tn)/π are independent over Q. In particular the numbers (t1 − tp)/π,
p = 1, . . . , n are irrational. This ensures that some corresponding linear transformations on
C×C (see the proof of Theorem 3.1) are invertible and implies the second inequality. The third
inequality is a consequence of Lemma 3.2 while the last inequality results from Lemma 4.2.

Remark 4.3. Formally, letting the number of observations tend to +∞, setting r = 0 and T > 0,
we recover an internal observability result:

‖y0‖2
0 + ‖y1‖2

−1 ≤ c
∫ T

0

∫ π

0
|y(t, x)|2 dx dt.
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5 Observability of the loaded string (q > 0)

In this part, we assume that q > 0 in (1.1) and that r and s are two real numbers such that
r− s = 1. First, let us recall the

Theorem 5.1 (Szijártó and Hegedűs [17, Theorem 1 p. 4]). Let t0 and t1 be real numbers such that

t0 − t1

π
∈ Q (5.1)

and
sin
(
(t0 − t1)

√
k2 + q

)
6= 0, k = 1, 2, . . . (5.2)

Then, (t0, t1) is a strategic pair.

Are such hypotheses easily satisfied? We can answer this question with the following result.

Proposition 5.2. The set of strategic pairs satisfying the hypotheses (5.1) and (5.2) is dense in R2.

Proof. It is sufficient to prove that for each real number τ and each δ > 0, there exists a real
number τ′ satisfying the three conditions : |τ − τ′| < δ, τ′ ∈ πQ and sin

(
τ′
√

k2 + q
)
6= 0 for

all k = 1, 2, . . .
First, we notice that sin(ζ

√
k2 + q) = 0 if and only if ζ

√
k2 + q ∈ πZ. Now, we distinguish

three cases.
1. If q is an irrational number. The set πQ being dense in R, there exists a number τ′ ∈ πQ

such that |τ − τ′| ≤ δ. Moreover, τ′ can be written as τ′ = (a/b)π with a ∈ Z and b ∈ N∗

relative primes. Assume that there exist k ∈N∗ and n ∈ Z such that

τ′
√

k2 + q = nπ ⇐⇒ a
b

√
k2 + q = n.

Then,

q =
n2b2

a2 − k2 ∈ Q,

which is in contradiction with our assumption on q.
2. If q is an integer. We recall that if (a/b)π ∈ πQ, then, sin

(
(a/b)π

√
k2 + q

)
= 0 if and

only if (a/b)
√

k2 + q ∈ Z. Moreover, the quantity
√

k2 + q is either an integer or an irrational
number (depending on the fact that k2 + q is a square or not). For sufficiently large k,

√
k2 + q

cannot be an integer. Indeed,√
k2 + q = k

√
1 +

q
k2 = k

(
1 +

q
2k2 + o

(
1
k2

))
= k +

q
2k

+ o
(

1
k

)
and this is not an integer for sufficiently large k. Hence, for such k, it is an irrational number
and so is (a/b)

√
k2 + q. Now, let τ′′ := (a/b)π ∈ πQ such that

|τ′′ − τ| < δ

2
.

We are going to perturb a little bit the rational number (a/b) in order to construct a number
τ′ such that the sine does not vanish either. From the above discussion, the quantity

√
k2 + q

can take at most a finite number of integer values when k varies. We denote them by x1, . . . , xN

(if it does not take any integer value, then it is always an irrational number and we can take
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τ′ = τ′′). Let p be a prime number that is not a divisor of any of the numbers x1, . . . , xN . For
sufficiently large n, ∣∣∣∣π (pn − 1)a

pnb
− τ

∣∣∣∣ < δ.

and pn does not divide a. Now, two cases are possible. If
√

k2 + q is not an integer, then it is an
irrational number and

(pn − 1)a
pnb

√
k2 + q 6∈ Z.

On the other hand, if
√

k2 + q is an integer, then
√

k2 + q = xl for one l ∈ {1, . . . , N} and

(pn − 1)a
pnb

√
k2 + q =

(pn − 1)axl

pnb
6∈ Z.

because pn does not divide (pn − 1)axl . Finally,

τ′ :=
(pn − 1)a

pnb
π

satisfies the three expected conditions.
3. If q is a rational number but not an integer. Then, we can write q = c/d, where c and d are

integers. Hence,

τ
√

k2 + q = τ

√
k2 +

c
d
= τ

√
k2 +

cd
d2 =

τ

d

√
k2d2 + cd

and we are lead back to the case where q is an integer.

Now, let us give another method to obtain an observability result for the loaded string.

Theorem 5.3. Let (t0, t1) be a strategic pair for the classical string, i.e.

| sin(k(t0 − t1)| ≥
c
k

, k = 1, 2, . . . (5.3)

for a suitable positive constant c. Then, it is also a strategic pair for the loaded string, provided that q is
sufficiently small.

Remark 5.4. This result can be viewed as a complementary result to Theorem 5.1 since the
hypothesis (5.3) implies that (t0 − t1)/π is irrational; hence (5.1) cannot hold.

Proof. Applying the method described in the proof of Proposition 3.1, a necessary and sufficient
condition for estimation (2.3) to hold true is

| sin(ωk(t0 − t1))| =
∣∣∣∣sin

(√
q + k2(t0 − t1)

)∣∣∣∣ ≥ c′

k
, k = 1, 2, . . . , (5.4)

where c′ is a positive constant, independent of k.
Comparing the quantities | sin ωk(t0 − t1)| and | sin(k(t0 − t1))|, we will find a sufficient

condition that implies (5.4). Let us estimate the difference∣∣∣∣sin
(√

q + k2(t0 − t1)
)
− sin(k(t0 − t1))

∣∣∣∣ .
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For a fixed k ∈N∗, we consider the application fk, defined for x ≥ 0 by

fk(x) := sin
(√

k2 + x(t0 − t1)
)

.

We have

| f ′k(x)| =
∣∣ cos

(√
k2 + x(t0 − t1)

)∣∣|t0 − t1|
2
√

k2 + x

≤ |t0 − t1|
2k

.

From the triangle inequality and the mean value theorem,

| fk(0)| − | fk(q)| ≤ | fk(q)− fk(0)| ≤
|t0 − t1|q

2k
.

Hence, ∣∣∣∣sin
(√

q + k2(t0 − t1)
)∣∣∣∣ ≥ | sin(k(t0 − t1))| −

|t0 − t1|q
2k

≥ c
k
− |t0 − t1|q

2k

and these estimations are satisfied for all k = 1, 2, . . . Thus, if the quantity

c′ := c− |t0 − t1|q
2

(5.5)

is positive, the estimation (2.3) is true. A sufficient condition is

q <
2c

|t0 − t1|
. (5.6)

Remark 5.5.

• Given a real number x, let K(x) denote the largest partial quotient in the continued frac-
tion of x, i.e. if the development in continued fraction of x is given by x = [a0; a1, a2, . . .],
then K(x) := supk≥1 ak. Then, inequality (5.6) can be rewritten more precisely as

q <
4

|t0 − t1|(K((t0 − t1)/π) + 2)
.

Indeed, from the proof of Lemma 3.2 and classical results of Diophantine approximation
(see [16]), the hypothesis (5.3) holds if and only if the number (t0− t1)/π is badly approx-
imable by rational numbers so that its partial quotients are bounded i.e. K((t0− t1)/π) is
finite. Moreover,

| sin k(t0 − t1)| ≥ 2
∥∥∥∥k

t0 − t1

π

∥∥∥∥ ≥ 2
(K((t0 − t1)/π) + 2)k

.

• It is possible to avoid a restriction on the size of the potential q. Set ξ := (t0 − t1)/π ∈
R \Q and

ν(ξ) := lim inf
k→+∞

k‖kξ‖.
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If ξ is badly approximable, then ν(ξ) > 0. Moreover, if ξ ′ is an irrational number such
that its partial quotients coincide with those of ξ from a certain rank, then ν(ξ ′) = ν(ξ)

(see [4, p. 11]). Let us construct a strictly decreasing sequence of irrational numbers by
setting ξ0 = ξ and

ξn+1 =
ξn

1 + ξn
=

1
1 + 1/ξn

.

We can assume that 0 < ξ < 1 so that its development in continued fraction has the form

ξ = ξ0 = [0; a1, a2, a3, . . .].

Therefore, 1/ξ0 = [a1; a2, a3, . . .] and 1 + 1/ξ0 = [1 + a1; a2, a3, . . .], whence ξ1 = [0; 1 +

a1, a2, a3, . . .] and by recurrence

ξn = [0; n + a1, a2, a3, . . .].

Thus, for all n, ν(ξn) = ν(ξ) > 0 and the sequence (ξn) converges to zero. Now, from the
definition of ν(ξ) and the Lemma 3.2, we obtain, for k sufficiently large,

| sin kπξn| ≥ 2‖kξn‖ ≥ 2
ν(ξ)

k
.

Hence, going back to the relation (5.5), if we choose n sufficiently large so that

2ν(ξ)− ξnπq
2

> 0

and if we assume moreover that

sin(ωkπξn) 6= 0, k = 1, 2, . . . ,

then, choosing t0 and t1 such that t0 − t1 = πξn, the observability inequality holds.

6 Extension of the method to beams and plates

6.1 Observability of a hinged beam

The small transversal vibrations of a hinged beam of length π satisfy
y′′ + yxxxx = 0 in R× (0, π),

y = yxx = 0 in R× {0, π},
y(0) = y0, y′(0) = y1 in (0, π).

(6.1)

Using the same spaces Ds as for the vibrating string, we have the following proposition.

Proposition 6.1. Let s ∈ R. For all initial data y0 ∈ Ds and y1 ∈ Ds−2, the problem (6.1) admits a
unique solution y ∈ C(R, Ds) ∩ C1(R, Ds−2) ∩ C2(R, Ds−4) given by

y(t, x) =
∞

∑
k=1

(akeik2t + bke−ik2t) sin kx, (6.2)

where the complex coefficients ak and bk satisfy

‖y0‖2
s + ‖y1‖2

s−2 �
∞

∑
k=1

k2s(|ak|2 + |bk|2). (6.3)
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In this case, the observability problem turns to the following one: given two real numbers r
and s such that s ≤ r, we are looking for two instants of time t0 and t1 such that

‖y0‖s + ‖y1‖s−2 ≤ c(‖y(t0)‖r + ‖y(t1)‖r) (6.4)

for a positive constant c, independent of the initial data (y0, y1) ∈ Dr × Dr−1. Again, such a
pair (t0, t1) will be called a strategic pair. From the results obtained in Section 3 we deduce the
following ones.

Proposition 6.2. The pair (t0, t1) is strategic if and only if there is a positive constant c such that∥∥∥ k2(t0 − t1)

π

∥∥∥ ≥ c
kr−s , k = 1, 2, . . .

Theorem 6.3.

(a) If r − s = 2, there is a set of strategic pairs that is infinite, has zero Lebesgue measure and full
Hausdorff dimension in R2.

(b) If r− s > 2, there is a set of strategic pairs that has full Lebesgue measure in R2.

6.2 Observability of a hinged rectangular plate

Let a and b be positive real numbers and Ω = (0, a) × (0, b) ⊂ R2 the rectangular domain
whose boundary is denoted by Γ. The small transversal vibrations of a hinged plate whose
shape is delimited by Ω satisfy

y′′ + ∆2y = 0 in R×Ω,

y = ∆y = 0 in R× Γ,

y(0) = y0, y′(0) = y1 in Ω.

(6.5)

The eigenvalues of the operator −∆ with Dirichlet boundary conditions are (see e.g. [5])

λm,n =
m2π2

a2 +
n2π2

b2 , m, n = 1, 2, . . .

with associated eigenfunctions

em,n(x, y) = sin
mxπ

a
sin

nyπ

b
, m, n = 1, 2, . . .

These functions form an orthogonal and dense system in L2(Ω). For s ∈ R, we define Ds as the
completion of the vector space spanned by the functions em,n for the Euclidean norm∥∥∥∥∥ ∞

∑
m,n=1

cm,nem,n

∥∥∥∥∥
2

s

:=
∞

∑
m,n=1

λs
m,n|cm,n|2.

Proposition 6.4. Given y0 ∈ Ds and y1 ∈ Ds−2, the problem (6.5) has a unique solution y ∈
C(R, Ds) ∩ C1(R, Ds−2) ∩ C2(R, Ds−4), whose expansion in Fourier series is

y(t, x) =
∞

∑
m,n=1

(am,neiλm,nt + bm,ne−iλm,nt)em,n(x, y),

where the complex coefficients am,n and bm,n satisfy

‖y0‖2
s + ‖y1‖2

s−2 �
∞

∑
m,n=1

λs
m,n(|am,n|2 + |bm,n|2).
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The observability problem can be stated exactly as in the previous paragraph. In other
words, we are looking for pairs (t0, t1) satisfying the estimation (6.4).

From the expression of the eigenvalues,

λm,n � m2 + n2.

Moreover, an adaptation of Lemma 3.2 yields

| sin λm,n(t0 − t1)| �
∥∥∥∥λm,n(t0 − t1)

π

∥∥∥∥ .

Hence, setting θ1 := (π(t0 − t1))/a2, θ2 := (π(t0 − t1))/b2 and α := (r − s)/2, and applying
the same method as for the vibrating string, we get the following.

Proposition 6.5. The pair (t0, t1) is strategic if and only if there is a positive constant c such that

‖m2θ1 + n2θ2‖ ≥
c

(m2 + n2)(r−s)/2
, m, n = 1, 2, . . . (6.6)

We give sufficient conditions for (6.6) to hold.
First case: particular domains. We assume that there exists a positive integer N such that

θ1 = Nθ2 or equivalently
b2 = Na2.

Therefore, setting θ := θ2, the estimation (6.6) simplifies in

‖(Nm2 + n2)θ‖ ≥ c
(m2 + n2)(r−s)/2

, m, n = 1, 2, . . .

We have already seen that if r− s ≥ 2, the above estimation holds for some choices of t0 and t1.
More precisely, Theorem 6.3 remains true in this case.

Second (general) case. It is not always possible to uncouple the expression m2θ1 + n2θ2 as
we did in the first case. Nevertheless, we can use some results on the approximation of linear
forms by rationals.

Theorem 6.6.

(a) Assume that r− s = 4. If t0 and t1 are real numbers such that θ1 and θ2 belong to a real algebraic
extension of Q of degree 3 and 1, θ1, θ2 are linearly independent over the rationals, then (t0, t1) is
a strategic pair.

(b) Assume that r − s > 4. Then, almost all (in the sense of the Lebesgue measure) couples (t0, t1)

are strategic.

Proof. The assertion (a) is a direct consequence of the Proposition 6.5 and the second estimation
of the Lemma 4.2. the assertion (b) is a consequence of the Theorem 6.5 and of a generalization
of the Lemma (3.4) (see [2, p. 24]).
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