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VISCOUS-INVISCID COUPLED PROBLEM WITH INTERFACIAL DATA
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Abstract.The work presented in this article shows that the viscous/inviscid coupled prob-

lem (VIC) has a unique solution when interfacial data are imposed. Domain decomposition tech-

niques and non-uniform relaxation parameters were used to characterize the solution of the new

system. Finally, some exact solutions for the VIC problem are provided. These type of solutions

are an improvement over those found in recent literatures.
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1. Introduction. The Navier-Stokes equation is the primary equation of
computational fluid dynamics describing the flow/motion of fluids in R

n, (n =
2, 3). These types of equations are often used in computations of aircraft and ship
design, weather prediction, and climate modelling. By appropriate assumptions, it
has been generalized to a system of equations known as the incompressible Navier-
Stokes equations, see [8]. This important system has been studied for centuries by
mathematicians, engineers and other scientists to explain and predict the behavior
of the system under consideration, but still the understanding of the solutions to
this system remains minimal. The challenge is to make substantial progress to-
ward a mathematical theory which will solve the puzzle behind the Navier-Stokes
equations. To make contributions to this mathematical theory, scientists have stud-
ied and derived many other systems from it. Among them is the viscous/inviscid
coupled problem (VIC) introduced first by Xu Chuanju in his Ph.D dissertation
[15].

The work presented in this paper involves Xu’s [17] problem and focuses on
three main objectives. The first one is to show the existence and uniqueness of the
solution for the system, which results from the viscous/inviscid coupled problem
when interfacial data (VIC-ID) are imposed. The second objective is to prove
that the solution of this system can be obtained as a limit of solutions of two
subproblems defined in different subdomains of the domain by using non-uniform
relaxation parameters. Xu [17] used a similar techniques for the VIC problem but
using lifting operators and uniform relaxation parameter. Finally, the last objective
is to provide new exact solutions when all boundary conditions are satisfied in at
least one of the subdomains (weaker boundary conditions) of the viscous/inviscid
coupled problem, these solutions are an inprovement over those found in recent
literatures. The new improvements presented in this paper demostrate progress
towards the existing theory of the VIC problem and therefore for the Navier-
Stokes equations.

We end this section by introducing some notation, definitions and very well
known result from P.D.E that can be found [1] and [14] . Along this article we use
boldface letters to denote vectors and vectors functions.

Let Ω be a bounded, connected, open subset of R
2, with Lipschitz continuous
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boundary ∂Ω, and let Ω− and Ω+ be two open subsets of Ω which satisfy the
following conditions

(i) Ω− ∩ Ω+ = ∅.

(ii) Ω− ∪ Ω+ = Ω.

We define the boundaries Γ+ and Γ− of the subdomains Ω+ and Ω− respectively,
as follows

Γ+ = ∂Ω ∩ ∂Ω+,

Γ− = ∂Ω ∩ ∂Ω−,

and the interface is given by

Γ = ∂Ω− ∩ ∂Ω+,

we assume Γ 6= ∅. Let n denote the unit normal on ∂Ω to Ω, and n+, n− are the unit
normals to ∂Ω+ , and ∂Ω−, respectively. See figure 1 for a typical decomposition
of the domain Ω.

Ω
+

Ω
− Γ

Γ
−

Γ
−

Γ
− Γ

+

Γ
+

Γ
+

Figure 1: Decomposition of the domain Ω

We denote by L2(Ω) the space of real functions defined on Ω that are square-
integrable over Ω in the sense of Lebesgue measure dx = dx1dx2. This is a Hilbert
space with the scalar product

(u, v) =

∫

Ω

u(x)v(x)dx.

We then define the constrained space L2
0(Ω) as

L2
0(Ω) =

{

v ∈ L2(Ω);

∫

Ω

vdx = 0
}
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so L2
0(Ω) consists of all square integrable functions having zero mean over Ω. Let

D(Ω) be the linear space of functions infinitely differentiable and with compact
support on Ω. Then set

D(Ω) = {φ|Ω : φ ∈ D(R2)}.

For any integer m, we define the Sobolev space Hm(Ω) to be the set of functions in
L2(Ω) whose partial derivatives of order less than or equal to m belong to L2(Ω);
i.e

Hm(Ω) = {v ∈ L2(Ω) : ∂αv ∈ L2(Ω) for all |α| 5 m},

where

∂αv =
∂|α|v

∂xα1

1 ∂xα2

2

,

with α = (α1, α2), αi is a non-negative natural number and |α| = α1 + α2.
The set Hm(Ω) has the following properties:

(i) Hm(Ω) is a Banach space with the norm

‖u‖m,Ω = (
∑

|α| 5 m

∫

Ω

|∂αu(x)|2dx )1/2

(ii) Hm(Ω) is a Hilbert space with the scalar product

(

u, v
)

m, Ω
=

∑

|α| 5 m

∫

Ω

∂αu(x)∂αv(x)dx

(iii) Hm(Ω) can be equipped with the seminorm

|u‖m, Ω = (
∑

|α|=m

∫

Ω

|∂αu(x)|2dx )1/2.

Since we are dealing with 2-dimensional vector functions, we use the following
notation

L2(Ω) = {L2(Ω)}2, Hm(Ω) = {Hm(Ω)}2,

and assume that these product spaces are equipped with the usual product norm
(or any equivalent norm).

We defined the space H1
0 (Ω) as the closure of D(Ω) for the norm ‖.‖m, Ω.

In order to study more closely the boundary values of functions of Hm(Ω), we
assume that Γ, the boundary of Ω, is bounded and Lipschitz continuous, i.e. Γ can
be represented parametrically by Lipschitz continuous functions. Let dσ denote
the surface measure on Γ and let L2(Γ) be the space of square integrable functions
on Γ with respect to dσ, equipped with the norm

‖v‖0, Γ = {

∫

Γ

(v(σ))2dσ}
1
2
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Theorem 1 (Trace Theorem). If ∂Ω is bounded and Lipschitz continuous, then
there exist a bounded linear mapping γ : H1(Ω) −→ L2(∂Ω), such that,

(i) ‖γ(v)‖0, ∂Ω 5 k‖v‖1, Ω, for all v ∈ H1(Ω).

(ii) γv = v|∂Ω for all v ∈ D(Ω).

Theorem 2. With γ defined as above, we have

1. Ker(γ) = H1
0 (Ω).

2. The range space of γ is a proper and dense subspace of L2(∂Ω).

For proofs see [3] and [11]. Both theorems can be extended to vector-valued
functions.
The range space of the mapping γ, denote by H1/2(∂Ω), is a Hilbert space with
the norm

‖µ‖1/2,∂Ω = inf
v∈H1(Ω)

γv=µ

‖v‖1, Ω.

Let H−1/2(∂Ω) be the corresponding dual space of H1/2(∂Ω) , with norm given
by

‖µ̂‖−1/2,∂Ω = sup
µ∈H1/2(∂Ω)

µ6=0

|〈 ˆµ, µ〉|

‖µ‖1/2,∂Ω
,

where 〈 , 〉 denotes the duality between H−1/2(∂Ω) and H1/2(∂Ω). For any vector
function v ∈ L2(Ω), we consider the pair of functions v− = v|Ω

−

and v+ = v|Ω+
.

We define the following inner products in Ω+ and Ω− respectively as follows:

(u+, v+)+ =

∫

Ω+

u+v+dx,

(u−, v−)− =

∫

Ω
−

u−v−dx,

and for any Ψ and Φ ∈ L2(Γ) as:

(Ψ, Φ)Γ =

∫

Γ

ΨΦdσ.

The scalar product on L2(Ω−) × L2(Ω+),

(u, v) = (u−, v−)− + (u+, v+)+,

which coincides with the usual one on L2(Ω).
Consider the following space:

V = {v ∈ H1
0(Ω) : ∇·v = 0}

and we denote V⊥ the orthogonal complement of V in H1
0(Ω) for the scalar product

(∇u , ∇v) =
∑ ∂ui

∂xj
∂vi

∂xj . Thus we have the following divergence isomorphism
theorem.
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Theorem 3 (Divergence Isomorphism Theorem). The divergence operator
is an isomorphism from V⊥ onto L2

0(Ω) and satisfies

‖v‖1, Ω ≤
1

β
‖∇·v‖0, Ω ∀v ∈ V ⊥. (1)

For a proof see Girault [7]. This theorem plays an important role in the proof of
uniqueness and existence of the VIC-ID problem.
2. Viscous-Inviscid Coupled Problem with Interfacial Data. In this article
we show that is it is possible to impose further conditions on the interfacial data
and still have a solution to the problem. These conditions are expressed in the
form of membership to certain function spaces. Specifically, we study the VIC-ID
problem. For f ∈ L2(Ω), ĝ0 ∈ H−1/2(Γ), p̂0

+ ∈ L2(Γ), α and ν positive constants,
find two pairs (u−,u+), (p−, p+), defined in (Ω−, Ω+), satisfying the following
conditions

αu− − ν∆u− + ∇p− = f− in Ω−

∇·u− = 0 in Ω−

u− = 0 on Γ−

αu+ + ∇p+ = f+ in Ω+

∇·u+ = 0 in Ω+

u+n+ = 0 on Γ+

ν
∂u−

∂n−
− p−n− = p+n+ on Γ

p+n+ = p̂0
+ on Γ

u+n+ = −u−n− on Γ

−u−n− = ĝ0 on Γ;

(2)

where the domain Ω satisfies the properties mentioned previously, and the function
ĝ0 satisfies the condition

∫

Γ

ĝ0 = 0.

In fluid mechanics this conditions is generally known as compatibility condition,
see [5] and [10]. From above, the first three equations correspond to the viscous
part, from fourth to sixth to the inviscid part, and the last four corresponds to the
interface data. Next we prove existence and uniqueness of the solution. For that
we use the saddle point theory which involves: (i) finding the weak or variational
formulation of the VIC-ID problem, to describe the spaces where the interfacial
data have sense. (ii) rewriting the weak formulation to find the saddle point prob-
lem; which involves the definition of two bilinear forms a, b and must satisfy the
following conditions:

(i) Continuity of the bilinear form a: | a(u, v) | 5 c‖u‖X‖v‖X , for some positive
constant c.
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(ii) Coerciveness of the bilinear form a: a(v, v) = d‖v‖2
X , for some positive

constant d.

(iii) Continuity of the bilinear form b: | b(u, q) | 5 c‖u‖X‖q‖M , for some
positive constant c.

(iv) Inf-sup condition for the bilinear form b: infq∈M supv∈X
b(v, q)

‖v‖X‖q‖M
≥ β, for

some positive constant β.

Above conditions guarantee the existence and uniqueness of the solution for the
given problem, for more details see [3] and [4]. By showing the following steps we
can find the weak formulation of (2).

(i) From the first and fourth equations of (2) the following inner product equa-
tions are obtained

α(u−, v−)− − ν(∆u−, v−)− + (∇p−, v−)− = (f−, v−)− (3)

α(u+, v+)+ + (∇p+, v+)+ = (f+, v+)+ (4)

(ii) From the second and the fifth equations of (2) we get the two pair of inner
product equations

(∇·u−, q−)− = 0, (5)

and
(∇·u+, q+)+ = 0; (6)

adding equations (5) and (6), we have

(∇·u+, q+)+ + (∇·u−, q−)− = 0 (7)

Using the following well known identities for vector functions:

−(∆u−, v−)− = (∇u−, ∇v−)− −

∫

Γ

∂u−

∂n−
v−dσ,

(∇p−, v−)− =

∫

Γ

p−v−n−dσ −

∫

Ω

∇·v−p−dx,

(∇·u+, q+)+ =

∫

Γ

u+n+q+dσ − (u+, ∇q+)+,

adding equations (3) and (4), and by appropriate substitutions, We have the
following weak formulation of VIC-ID problem: find (u, p) ∈ X ×M, such that for
all v ∈ X, q ∈ M,

α(u, v) + ν(∇u−, ∇v−)− − (p−, ∇·v−)− + (∇p+, v+)+ = (f , v) + 〈p̂0
+, v−〉Γ

−(∇·u−, q−)− + (u+, ∇q+)+ = 〈ĝ0, q+〉Γ
(8)
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where X , M are the two Hilbert space, defined by

X = {v; v|Ω
−

∈ H1(Ω−), v|Ω+
∈ L2(Ω+), v|Γ

−

= 0}, (9)

M = {q; q|Ω
−

∈ L2(Ω−), q|Ω+
∈ H1(Ω+),

∫

Ω

qdx = 0}, (10)

with respective norms

‖v‖X = ‖v−‖1, Ω
−

+ ‖v+‖0, Ω+
,

and
‖q‖M = ‖q−‖0, Ω

−

+ |q+|1, Ω+
.

The VIC-ID problem is well posed in the sense that its corresponding weak
formulation admits a unique solution. The statement of the theorem and proof is
given below, which is one of the main results of these work.

Theorem 4. For all f ∈ L2(Ω), ĝ0 ∈ H−1/2(Γ), p̂0
+ ∈ L2(Γ), α and ν positive

constants, problem (8) admits a unique solution; furthermore, its unique solution
(u, p) satisfies VIC-ID problem.

Proof. The second part of the theorem is trivial. In order to prove the well posed-
ness of (8), we need to apply the saddle point theory. This can be achieved by
reorganizing the terms of the weak formulation by defining two bilinear forms a,b
as follows:

a(u, v) = α(u, v) + ν(∇u−, ∇v−)− ∀ u ∈ X, ∀ v ∈ X,

b(v, q) = (v+, ∇q+)+ − (∇·v−, q−)− ∀ v ∈ X, ∀ q ∈ M.

By appropriate substitutions in (8), the saddle point problem is given as: find
(u, p) ∈ X × M such that,

a(u, v) + b(v, p) = (f , v) + 〈p̂0
+, v−〉Γ ∀v ∈ X,

b(v, q) = 〈ĝ0, q+〉Γ ∀q ∈ M.

To show the above forms a, b satisfy the conditions mentioned previously:

(i) The form a is continuous, since

|a(u,v)| 5 α|(u,v)| + ν|(∇u−,∇v−)−|

5 α(|(u−,v−)−| + |(u+,v+)+|) + ν|u−|1,Ω
−

|v−|1,Ω
−

taking max(α, ν) = c and applying Schwartz inequality,

|a(u,v)| 5 c(‖u−‖1,Ω
−

‖v−‖1,Ω
−

+ ‖u+‖0,Ω+
‖v+‖0,Ω+

),

EJQTDE, 2005 No. 4, p. 7



then

| a(u, v) | 5 c(‖u−‖1,Ω
−

‖v−‖1, Ω
−

+ ‖u+‖0,Ω+
‖v+‖0, Ω+

+‖u+‖0,Ω+
‖v−‖1, Ω

−

+ ‖u−‖1,Ω+
‖v+‖0, Ω+

).

Therefore
| a(u, v) | 5 c‖u‖X‖v‖X .

(ii) The form a is coercive,

a(v, v) = α(v, v) + ν(∇v−, ∇v−)−

= α((v+, v+)+ + (v−, v−)−) + ν(∇v−, ∇v−)−,

by definition of the inner product, we have

a(v,v) = α(|v+|
2
0,Ω+

+ |v−|
2
0,Ω

−

) + ν|v−|
2
1, Ω

−

,

choosing min(α, ν) = d0, and applying Schwartz inequality we get

a(v,v) = d0(|v+|
2
0,Ω+

+ ‖v−‖
2
1,Ω

−

) = d‖v‖2
X

where d = d0

2 .

(iii) The form b is continuous,

|b(v, q)| 5 ‖q−‖0, Ω
−

|v−|1, Ω
−

+ |q+|1, Ω+
‖v+‖0, Ω+

,

since |v−|1, Ω
−

5 c0 ‖v−‖1, Ω
−

, and adding appropriate terms to complete
the norms for the above form, we obtain

|b(v, q)| 5 c0 ‖q−‖0,Ω
−

‖v−‖1,Ω
−

+ |q+|1,Ω+
‖v+‖0,Ω+

+ ‖q−‖0,Ω
−

‖v+‖0,Ω+

+ |q+|1,Ω+
‖v−‖1,Ω

−

,

choosing c = max(1, c0) , it follows that

|b(v, q)| 5 c ‖v‖X‖q‖M .

(iv) The form b satisfies the inf-sup condition in the space X×M : The objective
is to decompose the general vector v into v+ and v− in such a way that
inf-sup condition is satisfied.
Let q ∈ M , and q− can be decomposed as

q− = q0
− + r−, (11)

where q0
− ∈ L2

0(Ω−) and r− is a constant. The decomposition of q− is justified
by the following calculation

∫

Ω
−

q−dx = k1,
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then
∫

Ω
−

(q− −
k1

|Ω−|
) dx = 0,

where k1 is a constant,and set

q0
− = q− − r−, and r− =

k1

|Ω−|
.

Using theorem 3 it follows that there exists a positive constant β− and a
function v0

− ∈ H1
0(Ω−) such that

∇·v0
− = −q0

− and ‖v0
−‖1, Ω

−

5
1

β−
‖q0

−‖0, Ω
−

. (12)

Choosing a function g ∈ X such that

∫

Γ

gn−dσ = |Ω−|,

where |Ω−| is the measure of Ω−. Let w be a function in H1
0(Ω−) which

satisfies:
(∇·w, q)− = (∇·g, q)− ∀q ∈ L2

o(Ω−). (13)

To establish the existence of w we apply a special case of the saddle point
theory when only one bilinear form is given. Consider the following bilinear
form
b̂ : H1

0(Ω−) × L2
o(Ω−) −→ R, defined as

b̂(v, q) = −(v, ∇q)− ∀ (v, q) ∈ H1
0(Ω−) × L2

o(Ω−),

that satisfies
b̂(w, q) = (∇·g, q)− ∀q ∈ L2

o(Ω−).

The norms for this spaces are ‖ . ‖H1
0

= ‖ . ‖0, Ω
−

and ‖ . ‖L2
o

= | . |1,Ω
−

,

respectively. Since the continuity of b̂ is obvious from the definition itself.
Next step is to show that the form b̂ satisfies the inf-sup condition as follows:
taking v = −∇q, and substituting in the form b̂ we have the following

b̂(v, q) = (∇q, ∇q) = ‖ ∇q ‖2
0, Ω

−

= ‖ ∇q ‖0, Ω
−

|q|1, Ω
−

= ‖ v ‖0, Ω
−

|q|1, Ω
−

.

Therefore b̂ satisfies the inf-sup condition for β = 1. To guarantee surjectivity
of b̂ it is necessary to show that for every q ∈ L2

o(Ω−) there exists v ∈

H1
0(Ω−) such that b̂(v, q) 6= 0. By choosing v = −∇q such a way so that

it satisfies the required condition, otherwise ‖ ∇q ‖2
0, Ω

−

= 0 occurs, if and

EJQTDE, 2005 No. 4, p. 9



only if q is zero. Therefore, the existence of w is proved.
Since we prove the existences of w, then the following statement is true

(∇·w, q)− = (∇·g, q)− ∀q ∈ L2
o(Ω−).

Let v̂− = g −w which satisfies

(∇·v̂−, q)− = 0 ∀q ∈ L2
o(Ω−) and

∫

Γ

v̂−n−dσ = |Ω−|. (14)

By setting v− = v0
− − r−v̂−, and using relationships (11) , (12), and (14)

it follows that
v− ∈ H1(Ω−), v−|Γ

−

= 0,

and
−(q−, ∇·v−)− = −(q0

− + r−,∇·(v0
− − r−v̂−))−

by linearity of the inner product, we have

−(q−, ∇·v−)− = − (q0
−, ∇·v0

−)− + (q0
−, r−∇·v̂−)− − (r−, ∇·v0

−)−

+ r−(r−, ∇·v̂−)−.

Using the properties of q0
−, ∇v̂− and divergence theorem, it follows

−(q−, ∇·v−)− = (q0
−, q0

−)− + r2
−

∫

Γ

v̂−n−dσ,

which can be equivalently expressed in the following form

−(q−, ∇·v−)− = ‖q0
−‖

2
0, Ω

−

+ r2
−|Ω−|. (15)

By applying the same procedure as in equation (11) to decompose q+ in the
subdomain Ω+ as

q+ = q0
+ + r+,

where q0
+ ∈ H1(Ω+) ∩ L2

0(Ω−) and r+ is a constant.
Let v0

+ = ∇q0
+,

then
(∇q+, v0

+)+

‖v0
+‖0, Ω+

= ‖∇q0
+‖0, Ω+

= ‖∇q+‖0, Ω+
= |q+|1, Ω+

.

Using the fact that ∇q+ ∈ L2(Ω+), we can choose v+ = v0
+,

so
(∇q+, v+)+ = |q+|

2
1, Ω+

, (16)

and the vector v is characterized as follows:

v(x) =

{

v−(x) if x ∈ Ω−

v+(x) if x ∈ Ω+
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Therefore, v ∈ X and from equations (15), and (16), we can write
b(v, q) = −(∇·v−, q−)−(v+, ∇q+)+

= ‖q0
−‖

2
0, Ω

−

+ r2
−|Ω−| + |q+|21, Ω+

.

By using
‖q−‖

2
0, Ω

−

= (q−, q−)− = (q0
− + r−, q0

− + r−)−,

and applying the linearity of the inner product in the above equation, we
obtain

‖q−‖
2
0, Ω

−

= (q0
−, q0

−)− + 2(q0
−, r−)− + r2

−|Ω−|. (17)

By using (17) in the bilinear form b, we have

b(v, q) = ‖q−‖
2
0, Ω

−

− r2
−|Ω−| + r2

−|Ω−| + |q+|
2
1, Ω+

.

Therefore, the bilinear form b satisfies

b(v, q) ≥ ‖q‖2
M . (18)

The next step is to show that the components of the vector v are bounded.
Using the definition of v− and the relationships obtained in (12), (13), and
(14), we have the following estimates

‖v−‖0, Ω
−

= ‖v0
− − r−v̂−‖0, Ω

−

≤
1

β−
‖q0

−‖0, Ω
−

+ r−‖v̂−‖1, Ω
−

. (19)

Since w ∈ H1
0(Ω−), there exist constants c̄ and ĉ such that

‖v̂−‖1, Ω
−

≤ c̄ ‖w−‖1, Ω
−

≤ ĉ ‖g−‖1, Ω
−

. (20)

Therefore,

‖v−‖0, Ω
−

≤
1

β−
‖q0

−‖0, Ω
−

+ ĉr−‖g−‖1, Ω
−

. (21)

By knowing that ‖r−‖0, Ω
−

= ‖q− − q0
−‖0, Ω

−

, we can find a constant c1

such that
‖r−‖0, Ω

−

‖g‖1, Ω
−

≤
c1

β−
‖q−‖0, Ω

−

. (22)

By combining (19), (20), (21), and (22), it follows that v− satisfies the
following inequality:

‖v−‖1, Ω
−

≤
c2

β−
‖q−‖0, Ω

−

, (23)

where c2 = 1+ĉc1

β
−

. Using the definition of v+ we get the following estimates:

‖v+‖1, Ω+
≤ ‖∇q0

+‖0, Ω+
≤ ‖∇q+‖0, Ω+

≤ |q+|1, Ω+
≤ ‖q‖M . (24)

By making use of (23) and (24), it follows that

‖v‖X ≤
c2

β−
‖q−‖0, Ω

−

+ ‖q‖M ,
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since ‖q−‖0, Ω
−

≤ ‖q‖M , we have

‖v‖X ≤
c2 + β−

β−
‖q‖M . (25)

Using (18) and (25), we obtain

b(v, q)

‖v‖X
≥

‖q‖2
M

c1+β
−

β
−

‖q‖M

,

and setting β = β
−

c1+β
−

, in the above inequality we get

b(v, q)

‖v‖X‖q‖M
≥ β. (26)

By taking inf-sup of (26), we get the following inequality

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X‖q‖M
≥ β,

which completes the proof.

3. The iteration-by-subdomain procedure and its convergence. The pur-
pose of this section is to prove that the solution of VIC-ID problem can be obtained
as a limit of solutions of two subproblems in the subdomains Ω− and Ω+, respec-
tively, of Ω.

Let {p̃m
+} be a sequence of functions in L2(Γ) such that p̃m

+ −→ p+, for some
p+ ∈ L2(Γ). We define the sequence of function pairs (um

− , pm
− )m≥1 by solving for

each m the following viscous interfacial data problem in Ω−:

αum
− − ν∆um

− + ∇pm
− = f− in Ω−

∇·um
− = 0 in Ω−

um
− = 0 in Γ−

ν
∂um

−

∂n−
− pm

−n− = p̃m
+n+ on Γ.

(27)

We have to find the variational problem corresponding to the viscous interfacial
data problem using the saddle point theory. For that we consider the first and the
second equation of (27) to get the pair of inner product equations as follows:

α(um
− , v−)− − ν(∆um

− , v−)− + (∇pm
− , v−)− = (f−, v−)−,

(∇·um
− , q−) = 0.

(28)
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Using the well known identities for vector functions,

(∆um
− , v−)− = (∇um

− , ∇v−)− −

∫

Γ

∂u−

∂n−
v−dσ,

(∇pm
− , v−)− = −

∫

Γ

pm
−v−n−dσ −

∫

Ω

∇·v−pm
−dx,

by combining the equations in (28), and making the appropriate substitutions we
can state the following weak formulation of the viscous interfacial data problem:
find (um

− , pm
− ) ∈ X− × M− such that

A−[(um
− , pm

− ), (v−, q−)] = (f−, v−)−+〈p̃m
+n+, v−〉Γ ∀ (v−, q−) ∈ X−×M−,

(29)
where

X− = {v− ∈ H1(Ω−),v−|Γ
−

= 0} and M− = L(Ω−),

and A− is defined by

A−[(um
− , pm

− ), (v−, q−)] =α(um
− , v−)− + ν(∇um

− , ∇v−)−

− (∇·v−, pm
− )− + (∇·um

− , q−)−.

The next step is to make use of the following theorem, from the Navier-Stokes
equations literature( for more details see [2]) that guarantees the existence and
uniqueness of the solution for the weak formulation of the viscous interfacial data
problem.

Theorem 5. For all f− ∈ L2(Ω−)and p̃m
+ ∈ L2(Γ), the variational problem (29)

admits one solution; furthermore, its solution (um
− , pm

− ) satisfies

‖um
−‖1, Ω

−

+ ‖pm
−‖0, Ω

−

≤ c3(‖f‖0, Ω
−

+ ‖p̃m
+‖0, Γ), (30)

where c3 depends on α and ν.

By the theorem we can define a sequence of function pairs (um
− , pm

− ) to state
the inviscid interfacial data problem in Ω+ as follows:

αum
+ + ∇pm

+ = f+ in Ω+

∇·um
+ = 0 in Ω+

um
+n+ = 0 in Γ+

um
+n+ = ϕm on Γ.

(31)

The functions ϕm are defined by:

ϕm = e−tmu−n−|Γ + tmum
−n−|Γ,
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where the terms e−tm , tm are the non-uniform relaxation parameters, and these
functions satisfy the following compatibility condition

∫

Γ

ϕmdσ = 0 ∀m.

Where {tm} is a sequence of non-negative numbers such that tm −→ 0 as m −→ ∞.
As discussed in the viscous case, we need to find the corresponding variational
problem for the inviscid interfacial data problem. From the first and the third
equations of (31) we obtain the following pair of inner product equations

α(um
+ , v+)+(∇pm

− , v+)+ = (f+, v−)+,

(um
+ n+, q+)+ = 〈ϕm, q+〉+,

(32)

and using the identity

(∇q+, um
+ )+ =

∫

Γ

q+um
+n−dσ −

∫

Ω

∇·um
+ q+dx,

the variational problem for the inviscid interfacial data problem can be stated as:
find a pair of functions (um

+ , pm
+ ) ∈ X+ × M+ such that

A+[(um
+ , pm

+ ), (v+, q+)] = (f+, v+)+ − 〈ϕm, q+〉Γ ∀ (v+, q+) ∈ X+ ×M+,

(33)
where 〈. , .〉Γ denotes the pairing between the space H1/2(Γ) and its dual space
H−1/2(Γ). The form A+ is defined by

A+[(um
+ , pm

+ ), (v+, q+)] = α(um
+ , v+)+ + (v+, ∇pm

+ )+ − (um
+ , ∇q+)+,

where the spaces X+ and M+ are given as:

X+ = L2(Ω+),

M+ = H1(Ω+) ∩ L2
0(Ω+),

and these are equipped by the following norms:

‖ . ‖X+
= ‖ . ‖0, Ω+

, ‖ . ‖M+
= | . |1, Ω+

.

The following theorem states the existence and uniqueness of the weak formulation
for the inviscid interfacial data problem.

Theorem 6. For all f+ ∈ L2(Ω+)and ϕm ∈ H−1/2(Γ), the variational problem
(33) admits a unique solution; furthermore, its solution (um

+ , pm
+ ) satisfies the

following condition

‖um
+‖0, Ω+

+ |pm
+ |1, Ω+

≤ (
1

α
+ 2)‖f+‖0, Ω+

+ 2(1 + α)‖ϕm‖−1/2, Γ. (34)
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If f+ = 0 then the following inequalities hold

‖um
+‖0, Ω+

≤ 2‖ϕm‖−1/2, Γ, (35)

|pm
+ |1, Ω+

≤ α‖um
+‖0, Ω+

≤ 2α‖ϕm‖−1/2, Γ. (36)

Proof. In order to prove the theorem Saddle point theory is used. The well posed-
ness of equation (33) can be shown by solving its equivalent saddle problem and
is given as follows

a+(um
+ , v+) + b+(v+, pm

+ ) = (f+, v+) ∀v+ ∈ X+

b+(um
+ , q+) = 〈ϕm, q+〉Γ ∀q+ ∈ M+.

(37)

The above bilinear forms a+ and b+ are defined by

a+(u, v) = α(u, v)+, ∀u,v ∈ X+

b+(u, q) = (v, ∇q)+, ∀v ∈ X+,∀q ∈ M+,

which has to satisfy the requirements discussed in the previous section, so that it
guarantees the uniqueness of the solution of the weak problem and is given as

(i) The form a+ is continuous:

|a+(u, v)| = |α(u, v)+| ≤ α‖u‖0, Ω+
‖v‖0, Ω+

≤ α‖u‖X+
‖v‖X+

.

(ii) the form a+ is coercive:

a+(u, u) = α(u, u)+ = α‖u‖2
0, Ω+

= α‖u‖2
X+

.

(iii) the form b+ is continuous:

|b+(u, q)| ≤ ‖v‖0, Ω+
‖∇q‖0, Ω+

= ‖v‖0, Ω+
|q|1, Ω+

= ‖v‖X+
‖q‖M+

.

(iv) the form b+ satisfies the inf-sup condition:

By replacing v = ∇q, in the bilinear form b+ and using the norms defined
above, we obtain

b+(u, q) = (v, ∇q)+ = (∇q, ∇q)+ = ‖q‖2
0, Ω+

= ‖∇q‖0, Ω+
|q|1, Ω+

,

then
b+(u, q) = ‖v‖X+

‖q‖M+
,

which implies that the form b+ satisfies the inf-sup condition for the case
β = 1.
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Therefore, by the saddle point theory, the problem (33) has a unique solution
(um

+ , pm
+ ). So the next objective is to prove the inequalities described in (34),

(35), and (36). For every pair of functionals f+, ϕm ∈ L2(Ω+) × H−1/2(Γ), there
exist exactly one pair of solution (um

+ , pm
+ ) corresponding to the saddle point

problem which satisfies the following conditions:

‖um
+‖X+

≤ α−1‖f+‖0, Ω+
+ β−1(1 +

c

α
)‖ϕm‖−1/2, Γ,

‖pm
+‖M+

≤ β−1(1 +
c

α
)‖f+‖0, Ω+

+ β−1(1 +
c

α
)
c

β
‖ϕm‖−1/2, Γ.

In the above inequalities, β the constant of inf-sup condition of b+ is 1, α and c

are the constants for coerciveness and continuity of a+.
Let V and V(ϕm) be linear subspaces defined as follows:

V(ϕm) = {v ∈ X+ : b+(v, q) = 〈ϕm, q〉, ∀ q ∈ M+}

V = {v ∈ X+ : b+(v, q) = 0, ∀ q ∈ M+};

V is a closed subspace of X+, since b+ is continuous. By the inf-sup condition
there exists um

0 ∈ V⊥ with Bum
0 = ϕm, where B : X+ −→ H−1/2(Γ) is a

mapping associated to b+, defined by

〈Bum, q+〉 = b+(um, q+), ∀ q ∈ M+,

moreover,
‖um

0 ‖X+
≤ β−1‖ϕm‖−1/2, Γ. (38)

By setting w = um
+ − um

0 , the equivalent saddle point problem (37) can be
rewritten as

a+(w, v+) + b+(v+, pm
+ ) = (f+, v+) − a+(um

0 , v+) ∀ v+ ∈ X+

b+(w, q+) = 0 ∀q+ ∈ M+.
(39)

Since a+ is coercive, the real valued function

1

2
a+(v+, v+) − (f+, v+) + a+(um

0 , v+)

attains a minimum for some w ∈ V having the following property

‖w‖X+
≤ α−1(‖f+‖0, Ω+

+ c‖um
+‖0, Ω+

). (40)

In particular , the characterization theorem [3] implies

a+(w, v+) = (f+, v+) − a+(um
0 , v+) ∀ q+ ∈ M+. (41)

The equation (39) will be satisfied if we can find pm
+ ∈ M+ such that

b+(v+, pm
+ ) = (f+, v+) − a+(um

0 + w, v+) ∀ v+ ∈ X+, (42)
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holds. The right-hand side of (42) defines a functional in the dual space X ′
+, since

b+ satisfies the inf-sup condition, it follows that the functional can be represented
as B′pm

+ with pm
+ ∈ M+, which satisfies the following condition

‖pm
+‖M+

≤ β−1(‖f+‖0, Ω+
+ c‖um

+‖X+
), (43)

where β and c are the constants for the inf-sup and continuity conditions for
the bilinear form b+. This establishes the solvability for equation (42). Since
w = um

+ − um
0 , it follows that um

+ = w + um
0 , then by triangular inequality, we

obtain
‖um

+‖X+
≤ ‖w‖X+

+ ‖um
0 ‖X+

.

By using inequality (40), we have

‖um
+‖X+

≤ α−1(‖f+‖0, Ω+
+ c‖um

+‖0, Ω+
) + ‖um

0 ‖X+
,

and by (38) we get

‖um
+‖X+

≤ α−1(‖f+‖0, Ω+
+ cβ−1‖ϕm‖−1/2, Γ) + β−1‖ϕm‖−1/2, Γ.

By combining the above terms, we obtain the following inequality

‖um
+‖X+

≤ α−1‖f+‖0, Ω+
+ (1 +

c

α
)β−1‖ϕm‖−1/2, Γ.

If we substitute β = 1, the inf-sup condition for b+ and c = α, the continuity
condition for a+, we have the following inequality

‖um
+‖X+

≤ α−1‖f+‖0, Ω+
+ 2‖ϕm‖−1/2, Γ. (44)

From inequalities (43) and (44), we get

‖pm
+‖M+

≤ β−1‖f+‖0, Ω+
+ β−1c(α−1‖f+‖0, Ω+

+ 2‖ϕm‖−1/2, Γ),

which is equivalent to

‖pm
+‖M+

≤ β−1(1 +
c

α
)‖f+‖0, Ω+

+ 2cβ−1‖ϕm‖−1/2, Γ,

again by substituting β = 1 and c = 1 the continuity condition for b+, we obtain

‖pm
+‖M+

≤ 2‖f+‖0, Ω+
+ 2α‖ϕm‖−1/2, Γ. (45)

By combining inequalities (44) and (45) we proved inequality (34) stated in
theorem 6 asfollows:

‖um
+‖0, Ω+

+ |pm
+ |1, Ω+

≤ (
1

α
+ 2)‖f+‖0, Ω+

+ 2(1 + α)‖ϕm‖−1/2, Γ.

If f+ = 0, we get (35) and (36) from (44) and (45), respectively, i.e

‖um
+‖0,Ω+

≤ 2‖ϕm‖−1/2,Γ,

and
|pm

+ |1,Ω+
≤ α‖um

+‖0,Ω+
≤ 2α‖ϕm‖−1/2Γ.
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3.1 Convergence of the iteration-by-subdomain procedure. To prove con-
vergence we use the fact that the relaxation parameter in ϕm is non-uniform and
the properties of the norms imposed on the interface Γ and the spaces X+ and
X−. The next step is to prove the sequence {ϕm} converges to u−n− with respect

to the dual norm of H
1
2 (Γ) . For that we have the following estimates:

‖ϕm − u−n−‖−1/2,Γ = sup
µ∈H1/2(Γ)

µ6=0

|〈ϕm − u−n−, µ〉Γ|

‖µ‖1/2,Γ
,

since ϕm − u−n− ∈ L2(Γ), so we have,

〈ϕm−u−n−, µ〉Γ =

∫

Γ

(ϕm−u−n−µ)dσ =

∫

Γ

(e−tm−1)u−n−µdσ+tm

∫

Γ

um
−n−µdσ.

Using Schwartz inequality, we have the following

|〈ϕm − u−n−, µ〉Γ| ≤ |e−tm − 1|

∫

Γ

|u−n−µ|dσ + |tm|

∫

Γ

|um
−n−µ|dσ.

By taking sup and dividing by ‖µ‖1/2,Γ, we obtain

‖ϕm − u−n−‖−1/2,Γ ≤ |e−tm − 1| ‖u−n−‖−1/2, Γ + |tm| ‖um
−n−‖−1/2, Γ.

By using the following estimate (see [1] and [11] for further details),

‖um
−n−‖−1/2, Γ ≤ c4(‖u

m
−‖0, Ω

−

+ |‖∇.um
−‖0, Ω

−

) ≤ c4‖u
m
−‖1, Ω

−

,

and equation (30) in theorem 5, , we obtain the following

‖um
−n−‖−1/2, Γ ≤ c4(‖u

m
−‖0, Ω

−

+ ‖∇.um
−‖0, Ω

−

)

≤ c4‖u
m
−‖1, Ω

−

≤ c5(‖f−‖0, Ω
−

+ ‖p̃m
+‖0, Γ).

Therefore,

‖ϕm − u−n−‖−1/2,Γ ≤ |e−tm − 1| ‖u−n−‖−1/2, Γ + c5|tm| (‖f−‖0, Ω
−

+ ‖p̃m
+‖0, Γ).

Since tm −→ 0 as m −→ ∞, and p̃m
+ −→ p+ as m −→ ∞ we obtain

‖ϕm − u−n−‖−1/2,Γ −→ 0, therefore ϕm −→ u−n− as m −→ ∞. The next
objective is to prove that um

+ − u+ −→ 0 in Ω+. By taking f+ = 0, and using the
variational form A+ as discussed in section 4.1 for the inviscid problem, we have

A+[(um
+ − u+, pm

+ − p+), (v+, q+)] = 〈u−n− − ϕm, q+〉Γ,

and (34) from theorem 6, we get

‖um
+ − u+‖0,Ω+

+ ‖pm
+ − p+‖M+

≤ 2(1 + α)‖u−n− − ϕm‖−1/2, Γ.
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Since ϕm − u−n− −→ 0 as m −→ ∞, it follows that um
+ −→ u+ in X+, and

pm
+ −→ p+ in M+ as m −→ ∞. By similar argument we show that um

− −u− −→
0 in Ω−. By taking f− = 0, and using the fact pm

− −p− ∈ L2(Γ), the form A− take
the form

A−[(um
− − u−, pm

− − p−), (v−, q−)] = 〈(pm
− − p−)n+, v−)〉Γ,

and by (30) in theorem 5, we get

‖um
− − u−‖1, Ω

−

+ ‖pm
− − p−‖0, Ω

−

≤ c3 ‖p̃m
+ − p+‖0, Γ.

Using the hypothesis p̃m
+ −→ p+

textas m −→ ∞, it follows that um
− −→ u− inX− and pm

− −→ p− as m −→
∞ in M−, which concludes the proof of convergence of the iteration-by-subdomain
procedure.
4. Exact solutions with weaker boundary conditions. During the investi-
gation of the viscous/inviscid coupled problem we found few exact solutions with
weak boundary conditions. For computational purposes it is always advantageous
to have as many test functions as possible, and the visualization for analyzing and
characterizing the behavior of the problem under investigation, see [12]. Also with
the purpose of designing newer algorithms and testing the ones suggested by others.
We briefly describe two kinds of solutions with weak boundary conditions found in
earlier literatures. The first kind of solutions (u, p) are those that do not satisfy
some of the boundary conditions in both subdomains, but satisfy the interface con-
ditions. In such solutions the vector field component, u(x, y) = (u1(x, y),u2(x, y)),
has a particular form, in such a way that one of the component, either u1(x, y) = 0
or u2(x, y) = 0. In other words, the graph of the vector field u is embedded in R

3.
Almost all the solutions found in earlier articles are of this kind, see [18]).

The second kind of solutions (u, p) are those that do not satisfy any of the
boundary conditions but satisfy the interface conditions. In this case the graph
of the vector field component is in R

4. In fact only one of this kind of solution
was found by Xu in his articles [16]. New examples of these solutions are found in
Ramirez’s dissertation [13].
Exact solutions with weaker boundary conditions are those that satisfy all the
boundary conditions in at least one of the subdomains, and the interface condi-
tions. In fact these solutions are an improvement over the exact solutions with
weak boundary conditions found in earlier literatures. Here we present two types
of solutions, which are exponential and polynomial in nature.
Given the domain Ω as follows:

Ω = {(x, y) ∈ R
2 : −2 ≤ x ≤ 2 & − 1 ≤ y ≤ 1},

which is decomposed into the two subdomains Ω+ and Ω− as

Ω+ = {(x, y) ∈ R
2 : 0 ≤ x ≤ 2 & − 1 ≤ y ≤ 1},
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and
Ω− = {(x, y) ∈ R

2 : −2 ≤ x ≤ 0 & − 1 ≤ y ≤ 1}

Example 1: Exact solution with weaker boundary condition in Ω+.
Consider the following data:
(i) the external force in the subdomain Ω− is of the following form

f−(x, y) =(α[4ye1−y2

(e1−y2

− 1)(e8+x3

− 1)2] − 4νye1−y2

(e1−y2

− 1)18x4e2(x3+8)

− 4νye1−y2

(e1−y2

− 1)[6xe8+x3

(e8+x3

− 1)(2 + 3x3)]

− ν(e8+x3

− 1)2[−16ye2(1−y2)[3 − 4y2] − ν(8e8+x3

− 1)2ye1−y2

[3 − 2y2]]

+ π cos(πx) cos(πy) , α[6x2(e1−y2

− 1)2e8+x3

(e8+x3

− 1)]

− ν(e1−y2

− 1)2[3x2(e2(8+x3))[12x + 18x4]

+ (e8+x3

− 1)e8+x3

[12 + 108x3 + 54x6] + e2(8+x3)[72x3 + 108x6]]

+ 6x2ex3+8(ex3+8 − 1)[8y2e2(1−y2)

+ e1−y2

(e1−y2

− 1)[−4 + 8y2]] − π sin(πy) sin(πx)),

and
(ii) the external force in the subdomain Ω+ is of the following form

f+(x, y) =(α[4ye1−y2

(e1−y2

− 1)(e8+x3

− 1)2] + π cos(πx) cos(πy) ,

α[6x2(e1−y2

− 1)2e8+x3

(e8+x3

− 1)] − π sin(πy) sin(πx)).

Then the vector field component u of the exact solution in the entire domain Ω is
given by

u(x, y) = (4ye1−y2

(e1−y2

− 1)(e8+x3

− 1)2 , 6x2(e1−y2

− 1)2e8+x3

(e8+x3

− 1)),

and the pressure component of the solution in Ω is

p+(x, y) = p−(x, y) = sin(πx) cos(πy).

Figure 2 below shows the behavior of the velocity vectors close to the bound-
ary in Ω and on the interface Γ. In other words, the graph below shows that the
velocity vectors have an uniform behavior in the viscous part, contrary to the in-
viscid part where the behavior of the velocity vectors change dramatically close
to the boundary, this happens because some of the boundary conditions are not
satisfied in the inviscid part.
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Figure 2: Velocity vectors of u in the domain Ω

Example 2: Exact Solution with weaker boundary condition in Ω−.

The external forces in the subdomains Ω− and Ω+ are of the forms:

f−(x, y) =(α4y(1 − y2)(x3 − 8)2 − 4νy(1 − y2)[30x4 + 96x] − 24y(x3 − 8)2 − 3x ,

α6x2(x3 − 8)(1 − y2)2 − ν(1 − y2)2[120x3 + 96] + 6x2(x3 − 8)(−4 + 12y2) + 2y),

and

f+(x, y) = (α4y(1 − y2)(x3 − 8)2 + 2x − 2νy , α6x2(x3 − 8)(1 − y2)2 + 2y − 2νx).

Then the vector field component u of the exact solution in the domain Ω can be
written as

u(x, y) = (4y(1 − y2)(x3 − 8)2 , 6x2(x3 − 8)(1 − y2)2).

For the completeness of the entire solution in the domain Ω, the pressures in both
subdomain Ω+ and Ω− are given as follows:
pressure p+ in the subdomain Ω+ is

p+(x, y) = x2 + y2 − yx ,

and pressure p− in the subdomain Ω− is

p−(x, y) =
−3

2
x2 + y2.
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Figure 3 below shows the behavior of the velocity vectors close to the bound-
ary ∂Ω and on the interface Γ. From the graph we can observe the smooth behavior
of the velocity vectors in the inviscid part without any hindrance.
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Figure 3: Velocity vectors of u in the domain Ω

For more information of these solutions see [13].

5. Conclusions. We have presented in this article (i) existence and uniqueness
of the viscous-inviscid coupled problem with interfacial data, when suitable con-
ditions are imposed on the interface (see theorem 4). (ii) convergence of the
algorithm-subdomain procedure without using lifting operators (see section 3.2).
(iii) exact solutions with weaker boundary condition in at least one of the sub-
domains for the viscous-inviscid coupled problem (see section 4), an improvement
over those exact solutions with weak boundary conditions found in earlier litera-
tures.

Further extensions of this work will be focused in several objectives: (i) Ap-
proximate the solutions of the viscous/inviscid coupled problem using finite el-
ement methods, with non-uniform relaxation parameters found along this work
to improve convergence. (ii) Investigate the existence and uniqueness theorem for
general case of the Navier-Stokes equations and apply to special applications in
the field of fluid dynamics, see [6] and [9]. (iii) Extend the viscous-inviscid coupled
problem with interfacial data to the unsteady Navier-Stokes equations by applying
a similar methodology as Xu did in his work.
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