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BOUNDED SOLUTIONS OF UNILATERAL PROBLEMS FOR
STRONGLY NONLINEAR EQUATIONS IN ORLICZ SPACES

AHMED YOUSSFI*, ABDELMOUJIB BENKIRANE, MOSTAFA EL MOUMNI

ABSTRACT. In this paper, we prove the existence of bounded solutions of uni-
lateral problems for strongly nonlinear equations whose principal part hav-
ing a growth not necessarily of polynomial type and a degenerate coercivity,
the lower order terms do not satisfy the sign condition and appropriate inte-
grable source terms. We do not impose the Ag-condition on the considered
N-functions defining the Orlicz-Sobolev functional framework.

1. INTRODUCTION

Let Q be a bounded open subset of RV, N > 2, and let M be an N-function.
In this paper, we establish the existence of bounded solutions for the unilateral
problem related to strongly nonlinear equations of the form

Au+ g(z,u, Vu) = f, (1.1)

in the subset ). The principal part A is a non everywhere defined elliptic differential
operator in divergence form

Au = —diva(z, u, Vu) (1.2)

defined from its domain D(A) := {u € WaLm(Q) : a(z,u, Vu) € (LM(Q))N} into
W1 L37(92) satisfying, among others, the following condition

—1
a(z,s,§) - & = M (M (h(|s])) M), (1.3)
where h : R — RT is a continuous decreasing function with unbounded primitive

_ -1
(for instance h(t) = sy and a(e,s,6) = M (M (h(|s])) T 1e).
The Hamiltonian g(x, u, Vu) does not satisfy the sign condition (i.e. g(z,s,&)s > 0)

but only grows at most like M (|Vul), precisely
lg(z, 5,6)] < B(s)M(E]), (1.4)

where 8 : R — R7T is a continuous function, while the source term have a suit-
able summability. Let us note that when h is a nonzero constant and ¢ satisfies
the sign condition, Dirichlet problems having lower order terms that behave like
M (|Vul) arise naturally in the Calculus of Variations. For example, if we consider
the functional

I(u)z/ﬂ(a(x,u) OIVUIM_l(M(t))dt)dx—/Qf(ac)u(x)dx,
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the Euler-Lagrange equation is

—1

M (M Vul __

_div (a(m,u)MVU> + a'(;v,u)/ MM ()t = f.
[Vul 0

Let ¢ : @ — R be a measurable function such that Ky = {v € WLy (Q) :

v > 1) a.e. in Q} is a nonempty set. In fact, we are interested in the existence of
bounded solution for the following obstacle problem

u € Ky, al-,u, Vu) € (Ly()" | g(-,u, Vu) € L1 (),
x,u, Vu) - V(u — v)de + /Q g(z,u, Vu)(u — v)dz (1.5)

Qa(
g/f(u—v)d:z:, Yo € Ky N L (),
Q

When M(t) =P, 1 < p < 400, and h in ([3) is a nonzero constant, existence
of bounded solution for problem ([[CH) have been obtained, using direct method, in
[6] with f = 0 and in[8] for quasilinear operators without lower order terms (i.e.
£ =0) and data satisfying

N
feL™Q), m> >

and then under smallness a condition on the data f in [I1] with
N
feL™(Q), m > max (1;—) (1.6)
p

using symmetrization methods.

In the non standard growth setting, existence basic works for variational inequal-
ities (i.e. where f € W'E5(2)) were initiated by Gossez and Mustonen in [IZ]
solving the obstacle problem () in the case g(z,u, Vu) = g(x,u) by assuming
some regularity conditions on the obstacle function . Since, several papers were
written on existence of solutions for problem like ([CH) either in the variational case
see, for instance, [B] or with L'-data see, for instance, [2 E M]. In this latter case,
solution is understood as meaning a function u such that

Ti(u) € Wy Lp () N D(A), u > a.e. in Q,
a('v u, Vu) € (LH(Q))N ) g('v u, Vu) € Ll(Q)u

a(z,u, Vu) - VT (u — v)de + / g(z,u, Vu) T (u — v)dx
Q Q
< [ fTy(u—v)dr, Yvey,NL*Q), Yk > 0.
Q
Ty (s) = max{—k, min{k, s}}, k > 0, is the truncation function defined on R.

It is our purpose, in this paper, to prove the existence of bounded solutions, for
unilateral problem associated to ([l in the setting of the Orlicz-Sobolev spaces
without assuming the As-condition on the N-function M. To this end, we use
rearrangement techniques and conditions &) and [B), (see [I8]), on the source
term covering ([CH) in the case of polynomial growth.

It is worth recalling here some difficulties we have found in dealing with this kind of
problems. First of all, the operator ([LA) does not satisfy the ’coercivity’ condition
in the setting of Orlicz spaces (see [I2]), this is due to the hypothesis [[3) and the
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fact that no positive lower bound is assumed on the function h when the unknown
has large values. The second difficulty in proving the existence of a solution stems
from the fact that g(z,u, Vu) does not define a mapping from Wi Ly () into
WL Ew£(Q), but from Wi La(€2) N L>(£2) into L'(2). The third one concerns the
lower order term; it does not satisfy the well known sign condition (i.e. g(x,s,£)s >
0) and so appears the problem of getting the a priori estimates. This hindrance
is overcome by using test functions of exponential type, the monotone convergence
theorem and a comparison result.

As examples of equations ([]) to which our result can be applied, we give

, |VulP~2Vu log(1 + |ul)
iv ((1 n |u|)9(p*1)) L+ a))? Vul? = f,
1
= tP = — <
here M (t) =17, p> 1, h(t) (1+|u|)9,0_9<1and

exp (|Vu| + h(u))

Vul? = f,
et ulFtogle + ) V4 =7

—div (h(u) exp (|Vu| + h(u))Vu) +

1
(e + Jul) log(e + |ul)”
The paper is organized as follows: in Section 2 we give some preliminaries and
auxiliary results. Section 3 contains the basic assumptions and the main result,
while Section 4 is devoted to the proof of the main result.

here M (t) = t? exp(t) and h(t) =

2. PRELIMINARIES

2.1 Let M : Rt — Rt be an N-function, ie. M is continuous, convex, with
M(t) > 0 for t > 0, @HOastHOand@Hooastﬂoo. The N-function
conjugate to M is defined as M (t) = sup{st — M(t),s > 0}. We will extend these

N-functions into even functions on all R. We recall that (see [I])
M(t) < 0 '(M(t)) < 2M(t) forallt >0 (2.1)
and the Young’s inequality: for all s,¢ > 0, st < M(s) 4+ M(t). If for some k > 0,
M(2t) < kM(t) forall t> 0, (2.2)

we said that M satisfies the As-condition, and if (Z2) holds only for t greater than
or equal to tg > 0, then M is said to satisfy the As-condition near infinity. Let P
and @ be two N-functions, the notation P<@Q means that P grows essentially less

rapidly than @, that is to say for all € > 0, Z;((Etg) — 0 as t — +oo. That is the case

ifandonlyifg:—iggHOastﬁoo.

2.2 Let  be an open subset of RY. The Orlicz class K/ () ( resp. the Orlicz
space Ljr(Q2)) is defined as the set of (equivalence class of) real-valued measurable
functions u on € such that:

M (u(zx))dz < 0o (resp./Q M <@> dx < oo for some A\ > O> .

A
Q
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Endowed with the norm

|u|M=inf{A>o;/QM(%””)) d:zc<oo},

L (€) is a Banach space and Kj/(€2) is a convex subset of L/ (€2). We define the
Orlicz norm ||ul|(ar) by

lull (ary = Sup/ﬂU(x)v(x)dx,
where the supremum is taken over all v € E7(Q) such that [jv||g7 < 1, for which

lullar < llullary < 2lulla

holds for all u € Lp(92) (see [I7]). The closure in Lps(€2) of the set of bounded
measurable functions with compact support in Q is denoted by Ey/ ().

2.3 The Orlicz-Sobolev space WL () (resp. WLE () is the space of functions
u such that « and its distributional derivatives up to order 1 lie in L/ (€2) (resp.
En(9)). Tt is a Banach space under the norm

lulliar = 3 11D%ul .
laf<1
Thus, WLy (Q) and WE () can be identified with subspaces of the product
of (N + 1) copies of L/ (£2). Denoting this product by IIL s, we will use the weak
topologies o(IILys, I1E;) and o(IILys, ITL7). The space Wi Ep(Q) is defined as
the norm closure of the Schwartz space D(£2) in W Ej;(Q2) and the space W L ()
as the o(IIL s, I1E57) closure of D(2) in WLy (€2).
We say that a sequence {u,} converges to u for the modular convergence in
WLy (Q) if, for some A > 0,

/M(w> dz — 0 for all |a] < 1;
Q

this implies the convergence for o (IIL s, IILy;).

If M satisfies the As-condition on RT (near infinity only if Q has finite measure),
then the modular convergence coincides with norm convergence. Recall that the
norm || Dul|ps defined on Wi L (Q2) is equivalent to ||ull1,ar (see [IH]).

Let WLy (Q) (resp. W1Ep(Q)) denotes the space of distributions on
which can be written as sums of derivatives of order < 1 of functions in L/ (£2)
(resp. Ep(€)). Tt is a Banach space under the usual quotient norm. Recall that
an open domain  C RY has the segment property (see [IH] p.167) if there exist
a locally finite open covering {O;} of the boundary 9Q of Q and corresponding
vectors {y;} such that if x € QN O; for some i, then x+ty; € Q for 0 < ¢ < 1. If the
open  has the segment property then the space D(Q) is dense in Wi Ly (Q2) for
the topology o(IIL s, I1Ly;) (see [I5]). Consequently, the action of a distribution
in W='Ly7(Q) on an element of W Ly (€2) is well defined.

For an exhaustive treatment one can see for example [T, [I.
2.4 We will use the following lemma, (see[I0)]), which concerns operators of Nemyt-
skii Type in Orlicz spaces. It is slightly different from the analogous one given in
.
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Lemma 2.1. Let Q be an open subset of RN with finite measure. let M, P and Q
be N-functions such that Q<K P, and let f: Q) xR — R be a Carathéodory function
such that, for a.e.x € Q0 and for all s € R,

|f (. 8)] < ex) + ki P~ M (kos)),
where ki, ko are real constants and c(z) € Eq(). Then the Nemytskii operator
Ny, defined by Ny(u)(z) = f(z,u(x)), is strongly continuous from P(En, k—12) =
{u e Ly () : d(u, Epr(Q2)) < %} into Eq(Q).

We will also use the following technical lemma which can be found in [I6].
Lemma 2.2. If {f,} C L}*(Q) with f, — f € LY(Q) a.e. in Q, fn, [ >0 a.e. in
Q and / fn(x)dz — / f(x)dz, then f, — f in L'(Q).

Q Q

2.5 We recall the definition of decreasing rearrangement of a real-valued measurable
function v in a measurable subset Q of R having finite measure. Let |E| stands for
the Lebesgue measure of a subset E of €). The distribution function of u, denoted
by 4y, is @ map which informs about the content of level sets of u, that is
() = {z € Q: |u(x)| > t}|, t>0.
The decreasing rearrangement of « is defined as the generalized inverse function of
Ly, that is the function u* : [0, |Q|] — [0, +00], defined as
w*(s) =inf{t > 0: u,(t) <s}, sel0,9].

In other words, u* is the (unique) non-increasing, right-continuous function in
[0, +00) equi-distributed with w. Furthermore, for every ¢t > 0

u” (pe(t)) < t. (2:3)
We also recall that (see [1]])
u*(0) = esssup |ul. (2.4)

3. BASIC ASSUMPTIONS AND MAIN RESULT

Through this paper Q will be a bounded open subset in of RV, N > 2, satisfying
the segment property and M is an N-function twice continuously differentiable and
strictly increasing, and P is an N-function such that P<M. Let us consider the
following convex set

Ky ={veWiLy(Q):v>1¢ ae. inQ} (3.1)
where ¢ : Q — R is a measurable function. On the convex Ky we assume that

(Al) ’lb+ S W(}EM(Q) N LOO(Q),

(Ag) for each v € Ky N L>(Q), there exists a sequence {v;} C Ky MW EpN(Q)N

L>(§) such that v; — v for the modular convergence.
Let A : D(A) C WgLn(Q) — W Lg7(Q) be the mapping ( non-everywhere
defined) given by
Au = —div a(z,u, Vu),
where a : Q@ x Rx RY — R is a Carathéodory function satisfying, for almost every

x € Qand for all s € R, £, € RY (£ # ), the following conditions
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(43)
ala,5,€) & > T (M(h(s)M (). (3:2)
where h : Rt — R is a continuous decreasing function such that: h(0) < 1
and its primitive H(s) = /Sh(t)dt is unbounded,
(A4) there exist a function c(x) 06 E;(£2) and some positive constants ki, ka2, k3
and k4 such that
la(z,5,6)] < c(@) + kP M(kals|) + ksDT M (kal€]), (3.3)

(As)
(a(z,s,8) —a(x,s,m)) - (§—n)>0. (3.4)
Let g: Q x R x RN — R be a Carathéodory function satisfying
(Ag) for all s € R, £ € RY and for almost every x € €,

lg(@, 5, 6)| < B(s)M(IE]), (3.5)
where 8 : R — R™ is a continuous function. We assume that the function ¢t —

t
- A) belongs to L(R). So that defining

M (M(h(]])))

N0
) /oM1<M<h<|t|>>>dt’

for all s € R, we have that the function v is bounded. For what concerns the right
hand, we assume one of the following two assumptions: Either

fel™NQ)), (3.6)

or

N
ferLm™f) withm= 1 for some r > 0,

wi [ (%)T . @)

Remark 3.1. If Q has the segment property, assumption (As) is fulfilled if one of
the following conditions is verified:

1)- There exists 1 € Ky N Wa Ep(Q) such that ¢ — v is continuous on Q (see
[T2, Proposition 9]).

2)- € WIEN(Q) (see [IZ Proposition 10]).

3)- The N-function M satisfies the Ag-condition.

4)- 1 = —oo. In this case Ky = Wi La(Q), then (As) is a consequence of [14,
Theorem 4].

Our main result is the following
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Theorem 3.2. Suppose that the assumptions (A1 )-(As) and either [Z4) or ({374
are fulfilled. Then, the following obstacle problem

N
ue Ky L®Q), al-u, Vu) € (LM(Q)) L g(u, V) € LY(Q),

/Q a(z,u, Vu) - V(u —v)dz + /Q g(x,u, Vu)(u — v)de (3.8)
< / flu—v)dz, Yvely,nL>TQ).
Q

has at least one solution.

Before giving the proof of the previous result, the following remarks are in order.
Remark 3.3. Observe that, in (Z3), we can not replace v € Ky N L>(2) by only
v € Ky, since in general the two integrals | g(z,u, Vu)(u—v)dz and | f(u—v)dx
may have no meaning. . .

Remark 3.4. 1)- It is known (see [12]) that Ky is sequentially o(I1L s, 11ESy)
closed in Wi Ly (Q).
2)- Observe that K N W¢ En(Y) is o(ILLyy, ILgz) dense in Ky. This follows
from assumption (As) and from the fact that for all u € Ky one has
T (u) — u for the modular convergence in W1 Ly ().
3)- The assumption (A1) is not a restriction on the obstacle function 1), instead
of it we can assume that Ky N WgEp (Q) N L°(Q) is a nonempty set.

Remark 3.5. In light of Remark Bl and Remark if v = —oo then Ky =
WL () and problem [@3) will be reduced to an equation. Hence, our result
extends to inequalities the one in [Bl stated for equations and also these in [6, 7 []].

Remark 3.6. Let M(t) be an N-function. Consider the following equation

. M_(M(|Vu]))
—div (a(:b,u)T

where 3 : R — RT is a continuous function such Ti% belongs to L' (R)
and a(z,u) is a Carathéodory function such that M~ (M (h(u))) < a(z,u) < «a, the

function h is as above. Then, the assumptions (Z3), (Z3), (5-4), ) of Theorem
[ZA are fulfilled.

In what follows, we will use the following real functions of a real variable Ty (s) =
max(—k, min(k, s)), k > 0, Gx(s) = s — Tk(s) and ¢, (s) = sexp(As?), where A is a
positive real number. The following classical lemma turns out to be useful later

Vu) +BM(Vul) = f inQ,

Lemma 3.7. If ¢ and d are positive real numbers such that \ = (2—Cd)2 then
d
dp\(s) — cloa(s)| > 3 VsER.

4. PROOF OF MAIN RESULT

The proof of Theorem is divided into eight steps.
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Step 1: Approximate problems. For n € N* Let us denote by m* either
N or m according as we assume [BH) or BX). Define f, := T,(f), Apu =
—div a(z, T, (u), Vu) and g, (x, s,§) := T (g(x, s,&)). We can easily check that we
have |gn(z,s,8)| < |g(x,s,&)| and |gn (2, s,€)| < n. Let us consider the sequence of
approximate problems,

Uy € K:w n D(An),

a(x, Ty (un), Vuy) - V(u, —v)de + / In (T, Un, Vuy) (U, — v)de

Q Q (41)

< [ falu, —v)dz, Yv e Ky.
Q
Let v > 1 be large enough. By ([B4) one has

—a(:v, Tn(s)ug) ) v"/}—i_ > —%a(m, Tn(s)ug) : 5 - a(ac, Tn(s)v va-i_) : v"/}—i_
1 v—1 Ja(z, Tu(s),vVyT)]

—M (M(h(|T,(s —
(M(R(Tn(5)D) 5, — (MW Tu(s)))) 5

148
Then, Young’s inequality enables us to get

—a(x,Th(s),€) - Vb > —%a(x,Tn(s),f) & —afx, Ty (s), vVyt) - Vot
1 la(z, Ty (s), vVopt)] )

I UG g (e S

2
M{([E])-

1 v—1

I M T ) ))

— -1
Let us define the positive real number p,, := M ! (M(h(n))) V2
v

Tn by

and the function

o(z) = CL(:E,Tn(S),I/Vi/)Jr)'V;/)JF . -

For each n in N, the function 7, belongs to L!(£2). Thus we have

a(z, T(s),€) - (€ = VYT) = pa M(I€]) — Yn(2),

By [[2, Proposition 5] the operator A,, satisfies the conditions of [I2, Proposition
1] with respect to ™. So that in view of the Remark B4, by [I2, Proposition 1]
the variational inequality ] has at least a solution w,,.

Step 2: Preliminary results.

Lemma 4.1. Let u, be a solution of {). For all t, € in R with t > |||,
one has the following inequality:

/ a(x, Ty (un), V) - Vune ) d
{t<u,<t+e} (4'2)
ut
< LI TGyt () = 97 00) ) .
{un>t}
EJQTDE, 2013 No. 21, p. 8



Proof. Let e,t,k in R with ¢ > [[¢)™||o. Define
V=, — ne'y(Tk(ui))Ts(GFHw”w(Tk(wn)))

where w,, = (uf — ||[#||oo)t and n = e=7*). Thanks to [[3, lemma 2], the function
v belongs to K. Thus, using v as test function in (1)) and then B2) we get

., B(Ti (u)) M (VT3 ()" DTG,y (T (wn)))dax

+/ a(x, Ty (up), V) - VTk(wn)e"(T’“(“I))d:v
/t||w+|00<Tk(wn)<t”w+|co+5}

+ | gul@, i, Vg ) T TG, vy (T (w,)))da

) Fue DTGy (T wa))) der

(4.3)
Now, we will pass to the limit as k tends to +o00 in [3). Observe that the second
integral in the left-hand side of [@3)) reads as

/ a(x, Ty (un), Vuy,) - VTk(wn)eWT’“(“i))d:c
{t=]lY T [loo <Th (wn)<t—[[9 T [lcot+e}

_ a(z, T (un), V) - vu:e'y(ﬂ(ui))dx.
{t<uit <tte}n{0<ut — |9 F | oo <k}

It follows by applying the monotone convergence theorem, that

/ a(z, Tn(un)a Vuy) - VT (wn)GV(Tk(ui))de'
{t—/IWIoo<Tk<wn>St—|w+||m+a}
{

(@, Ty (un), V) - Ve dz,

N
t<u, <t+e}

as k — 4o00. In the first integral in the left-hand side of {3) the integrand function
is nonnegative, so that Fatou’s lemma allows us to get

/ ﬁ |Vu+|)67 )Tg(Gt_”wﬂ‘x(wn))dac

<liminf [ B(Th(uf)M (VT () T DTG, jyr o (Te(wn)))da,

k—oo Q

while for the remaining terms in ([3]), being g, and f, bounded, we apply the
Lebesgue’s dominated convergence theorem. Consequently, letting k tends to +oo
in ([E3)) we obtain

/ﬁ MV NV DTGy (wn)
G(LL', Tn(un), Vun) . vunGV(uI)dl'

t<uf <t4e} (4'4)
+/ gn($ Un,VUn)e’Y n (Gt ||1,ZJ+H ( ))dll?

¢
S/fnGV(uI)TE(Gt_”wﬂOo(’wn))dx.
Q
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Due to the fact that w7 > 1™, the function w, vanishes if u,, < 0. By virtue of

B3 we get

/ ﬁ |Vu+|)67 )Ta(Gt—|\w+||m(wn))d$

gn x un,Vun)e'V( E(Gt,nwﬂ‘w(wn))dz

/ﬁ |Vu+|)e'y(“ )T, (Gt || (wn) )d

gn(z, un,Vun)e"Y T (G| (wn))dz > 0.
{0<un}
Hence, () is reduced to

/ ({E, Tn(un), Vun) . Vune'Y(“i)dz
{t<u <t+s}

o fn€7 " )Ta (Gt—l\dﬁ loo (wn))dx

Since To(Gy—|jy+ | (wn)) is different from zero only on the subset

{wn >t = [¥7 oo} = {uyy >t}
and f, < f we finally have

/ G(LL', Tn(un), Vun) . VUHQV(uz)dI
{t<un<t+e}

</ }f:e““DTs(Gt,WHN<<u:—||w+||oo>+>>dz
Up >t

O

Lemma 4.2. Let u, be a solution of {Z1}). For allt, e in R7, one has the following
inequality:

/ G(LL', T (un), Vun) . Vun€7(“;)d:v
{—t—e<un<—t}

< fr e TUGy(uy))da.
{un<—t}

(4.5)

Proof. For all k > 0 the function v = u,, +67(T’€(“;))T8(Gt (T (

u,,))) belongs to ICy.
Thus, the choice of v as test function in (EII), yields

a(@, T (n), Vatn) - VTi(uyy )" PTGy (Ti ()
B(Tk(u,,))

M (M (h(|Ti(un )))))

- B a(z, T (un), Vi) - VT (u;, e D)) gy (4.6)

t<Ty(uy )<t+e}
- / 9n (@, U, V)Y T T (Gy(Th (uy, ) )
Q

— | fn T TG (T (uy,)))dar.
Q
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The first integral in the left-hand side of ([8) is written as

a(z, T (un), V) - Vi (u; )Y T )T (G (Th (uy))))
B(Tk(u,))

—1

T M (T ))

= a($7 Tn (Un)u vun) : vune’Y(ug)TE(Gt (u;))
{—k<u,<0}

B(u, )
M (M (h(lux )

By the monotone convergence theorem, we have

X

a(x, Ty (un), Vug,) - VTk(u;)eW(T"(“;))TE(Gt(Tk(u;)))
: B(Ty(uy))

WM T ()
a(x, Tn(un)7 vun) : vunGV(ug)TE (Gt(u;))

B(u;)
3 (M(h(Juz )

as k — 4o0. For the seconde integral in the left-hand side of @), we write

dx,

—/ a(x, Tn(un), Vuy) - VTk(u;)e'V(Tk(";))d:c
{t<Ty(un )<t+e}

= a(x, Ty (un), Vug,) - Ve ) d
t< Ty (un ) <t+e}N{—k<un, <0}

_/ a(x, Ty (un), V) - Ve ) d.
{—t—e<u,<—t}n{—k<u, <0}

Applying again the monotone convergence theorem, we obtain
o / a(IaTn(un); vun) . VTk(u;)e'y(Tk(“;))d‘r
{t<Tx(un)<t+e}
- (L(,CE, T, (un), Vun) . VUnGV(u;)dx,

{—t—e<un,<—t}

as k — +o0. Since g, f, and v are bounded, we apply the Lebesgue’s dominated
convergence theorem for the remaining integrals in (). Hence, letting & tend to

+oo in [EH), we get
Buy)
(M (h(lun 1))

/a(x,Tn(un),Vun) Ve )T (G (u n))—= dx
Q M

/ a(gc, Tn(un), Vun) . vunGV(u;)d,’E
{ t—e<un<— t}
[ 000 V) G

/ Fa OO (G (i )) da
EJQTDE, 2013 No. 21, p. 11



Since u,, = |u,| on the set {x € Q: u,(x) < 0}, using @A) and BI) we obtain

Buy)
(M (h(lunl)))

/ a(x, T, (un), Vuy,) - Vune'Y(";)TE(G,g(u;))_71 dx
Q M

—/ G (@, U, Vg )" )T (G (uy, ) )da > 0.
Q

Observing that —f,, < f,, and {u, >t} N {u, <0} = {u, < —t}, we have

/ a(gc, Tn(un), Vun) . Vune’)’(“;)dx
{—t—e<u,<—t}
< fJeW(“Z)Ts(Gt(u;))da:,

N {un < —t}

O

Lemma 4.3. Let u,, be a solution of {Q). There exists a constant ¢y, not depend-
ing on n, such that for almost every t > ||| o

d T

- — M (h(|un|)))M(|Vu,|)dr < c nldr. 4.7
A L L ey A TR

{lun|>t}

Proof. Being v bounded, summing up both inequalities ([EZ) and ), there is a
constant ¢y not depending on n, such that for all ¢ > ||/ || and all € > 0

/ a(z, Ty (un), Vuy,) - Vupde < eco/ | fr|dz.
{t<lun|<t+e} {lun|>t}

Using (B3), dividing by € and then letting € tends to 07 we obtain ). O
Inequality () allows us to obtain the following comparison result, proved in

B, which is the starting point to obtain uniform estimation in L for solutions of
approximate equations (ET).

Lemma 4.4. Let K(t) = % and pn(t) = {zx € Q : |uy(z)| > t}|, for all t > 0.
We have for almost every t > ||| :

h(t) <

c nldx
PO S Ay

M (MQ)NCY pa(t) M (MQ)NCY ()

where Cy stands for the measure of the unit ball in R and cg is the constant which
appears in [{_4)-
EJQTDE, 2013 No. 21, p. 12



Proof. The hypotheses made on the N-function M, allow to affirm that the function

C(t) = 1) is decreasing and convex (see [I8]). Hence, Jensen’s inequality yields
——1
/ 37 (M (A ))) M|V,
O | Zilunlstrk}
——1
N (M (h(fun )| Vit
{t<|un|<t+k}
——1
/ K(un )3T (b)) [Vt
_ o | Jegluisirn
——1
M (M (h(fun])))|Vun|dz
{t<]un|<t+k}
——1
/ 3 (M (b))
< {t<|un|<t+k}

= —1
M (M (h(fun])))|Vun|dz
{t<lun|<t+k}

o MM O) patR) +pan(8)
M’l(M(h(tJrk))){ - }|Vun|dx
t<|un|<t+k

Taking into account that M_l(M(h(t))) < M_l(M(l)), using the convexity of C

and then letting &k — 01, we obtain for almost every ¢ > ||[¢T ||
d —1
o [ T 000l M (T o
{|un|>t}

(M) | &
M (M(h(1))) H_l(M(l))(—%/{ | t}|Vun|d:c)

— (1)

< .
[V, |dx

4
A J{Jun| >t}
Recall the following inequality, (see for instance [I8]):
4
A J{jun] >t}
The monotonicity of the function C, ) and E3) yield
v
(M (h(1)))

o 00/ | frnldx
< pn (1) -1 >}

T M (MQ)NCT () M (MQ)NCT ()™
EJQTDE, 2013 No. 21, p. 13
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Using ([Tl and the fact that 0 < h(t) < 1, we obtain 3. O

Step 3: Uniform L>*-estimation. If we assume ([B0), by the Holder’s inequality
one has

1
[ ifulde < v b
{lun|>t}
Then for almost every ¢ > ||[¢"||o, inequality @X) becomes

W) < MO ) K( coll/ [ )
T MQ)NOE () M (MQ)NCY

Then, integrating between [|1)7 ||« and s, we get

/S h(t)dt < — 20 — K (__1COHfHN _>/ 7_%(1%
9+ oo M (M(1)NCY M (MQ)NCT ) St in(®)'F

So that one has
1o lloo
H(s) < / h(t)dt
0

+_—1 2M(1) 1 K_l (__1 CO”fHN 1) /S _u’/n’l(f)i dt
M (MQ1)NCY M (MQ)NCY ) el pn()~N

Hence, a change of variables yields

o]
() < 0 oo+ oyt (_ /Ly ) [
M H

(M(1)NCF M (MOYNCE ) Sty 17
By 23) we get
2M (1 ol
H(uy(0)) < [ oo + ——r 2T ) IK_1<__1co|f|N ) / d_
M S (M(1)NCY M (MM)NCY ) Jo W
So that

i (0)) < o+ oo + — 2L WIAT ey (__fo”f v ) -
MOMO)eE M (M)NCE

Thanks to [Z4) and the fact that liIJP H(s) = +o0, we conclude that the sequence

{u,} is uniformly bounded in L°°(2). Moreover, if we denote by H ! the inverse
function of H, one has:

il < (uwum L Mot ( col Iy )) |
M(M(1)CF 7 (MQ)NCE

(4.10)
We now assume that [B) is filled. Then, using again Holder’s inequality we have

_ 1
[ Ufalde < om0
{lun|>t}
EJQTDE, 2013 No. 21, p. 14



For almost every t > || " ||s, inequality ([EH) becomes

he < — 2D ) g (__1 oll/ )
M (M(1))NCY mn(t)' ™™ M (MQ1)NCY pn(t)m v

Integrating between ||1)" || and s, we get
H(s) < ¥ [loo

MO O ey
M(M)NCY I

( collfllm ) i
T _ T :
Voo fn(8) TN M (MQ)NCOY () w =%
Then, a change of variables gives

H(s) <

. 2M (1) e coll.f [l do
||1/1 HOO+__1 1 K -1 1y 1 1—L°
M (MA)NCY Junts) M (MQ)NCYom—% ) o' n
By virtue of 3) we get
H{(uy (1)) <

n

[ oo+ —— 2D /"’Kl (_1 collfln ) do_
M (M(1)NCY Jr M (M(1))NCYow~-~ ) 0" ¥
Then, by Z4l) we obtain
H(”un”m)ﬁ
[ p— RS (—1 Ol ) d
M (M1)NCT Jo M (M1)NCYow—w%) 0" ¥

A change of variables gives

oM (1) fII% oo
H(lunle) < 10+ — Wep]l /] / K (1),

— r+1
1 N

(M(1)))*+IN"Cy

where A = —— o[l f]lm T —. Then, by an integration by parts we obtain
M (M1))NCT Q7
that
H([lunlloo) <
2M (V)| FIIm, K=\ oo s\
A r— (Wl _( M( >+/ (W) d8>,
(M (M(1))+IN"C\[F K=1(0) s

N

The assumption made on H guarantees that the sequence {uy, } is uniformly bounded
in L°°(€2). Indeed, denoting by H~! the inverse function of H, one has

[tnlloe <
et (e 2V <K-1<A> (s d>>
(W’ lloo + (Hfl(M(l)))THNTCJ:f% AT " /KI(A) <M(S))

(4.11)
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Consequently, in both cases the sequence {uy} is uniformly bounded in L>°(2), so
that in the sequel, we will denote by ¢, the constant appearing either in [EI0) or

in ([ETI), that is :
[tnloc < Coo- (4.12)

Step 4: Estimation in WolLM(Q). It’s easy to see that the function v, = u, —
NP (un — 1), where n = e_’\(°°°+”w+”°°)2, belongs to Ky and can be used as test
function in (), giving

/ a(x U, Vun) ! V(u - er)(b/)\(u" - er)dI
Q

(2, Un, Vg )Px(un — b )da (4.13)

/fn(b)\ )

Let now v > 1 be large enough. By (B one has
—a(x, Upn, Vuy,) - Vb
1
Z ——CL(.I,’LL", vun) ' vun - a’(xvunv ]/Vq/)-‘r) ! Vq/}"r
v

1 v—1 |a(z,up, vVipT)
T O g

[V,

Then, Young’s inequality enables us to get

—a(z, Uun, Vuy,) - Vbt
> —la(:zr, U, Viy) - Vi, — a(@, ty, vVYT) - Vi
v

_M’l(M(h(lunl)))”;M(_l_al(x’u"’VW+)| )

M (M (h(|ual)) 5+
M(|Vuy).

—1 VvV —

A (M ()

— -1
Let us define the positive real number p := M 1(M(h(coo)))y2— and the function
v
Yn by

1 Vv — 11— a\x,Un,V +
V(@) = a(x, up, V™) - Vot + M (M (h(0))) 2V1M(M|l((]’\4(h( Vl)ﬂ))i|l )
€s))) 5

It is clear to see that |[y,[|L1() is uniformly bounded in L*(£2), this stems from
[EI2) and the fact that ¢ belongs to Wi Eps (). Therefore, we obtain
a(@, i, Vttn) - V(up — %) = pM(|Vun|) = 7a(2).

Being /3 continuous, thanks to @IZ) the sequence {5(u,)} is uniformly bounded.
Thus, there exists a constant 3y such that

[8(un)llso < Bo- (4.14)
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In view of (BH), we can rewrite {I3) as
IR |Vun|>[p¢x< 0%) — ol (s — )]
< [ Vallortun = ldo + [ 206 un — 0¥

Applying now Lemma B with ¢ = By, d = p and A = ( )2 we get

/M [Vuy,|)d
(4.15)
(anm*mv 77 (oo + 107 loo) + [nllr (08 (o0 + 47 1) )

where m* stands for either N or m according as we assume [BH) or BI).
follows that the sequence {u,} is bounded in W L/ (€). Consequently, there exist
a subsequence on {uy,}, still denote by {u,}, and a function u € Wi Ly () such
that

u, — u weakly in Wy L (Q) for o(ITLL (), ITE(€2)) (4.16)
Uup, — u in Ep () strongly and a.e. in . (4.17)

Step 5: Almost every where convergence of the gradients. Let us begin by
the following lemma which will be used in the sequel.

Lemma 4.5. The sequence {a(x, T, (un), Vuy)}n is uniformly bounded in the space
(Lr()™.

Proof. We will use the dual norm of (LH(Q))N. Let ¢ € (Ep ()N such that
ll¢llar = 1, by @) we have

(a(:v,Tn(un), Vuy,) — a(:v,Tn(un), k%)) (Vun — ]Z) > 0.

Then we can write

/ a(x, Ty (un), Vuy) - odr < k4/ a(x, Ty (un), Vuy,) - Vupde
Q

_l<:4/Qa(a:,Tn(un)7 k—i) .Vundars—)l— /Qa(a:,Tn(un), ki;) - dz.

Let A =1+ k1 + k3. Using (B3)), @I2) and the Young inequality, we obtain
/ a(z, Ty (up), Vuy,) - gdx
Q

< k4/ a(z, Tn(un), Vuy) - Vupdr + kg
Q

CooCo | f ||~
M M(h(cs))
+(1+ k1) | M (|ao(@))dz + ky(1+ ka)MTP M (kacoo)|Q + ks (1 + k) + A.
Q

To end the proof it is sufficient to show that / a(x, Ty (un), V) - Vupdr can be

Q
estimated by a constant which does not depend on n. To do this, let us use u, as
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test function in @I and then [BH) obtaining
/ a(z, Tn(un), Vuy) - Vupdr << coo||f||m*|Q|17# + cooﬂo/ M(|Vuy,|)dz.
Q Q
So that by [EIH) we get the desired result. O

From @T2), [ETD) and EID) one deduces that u € K, NL>(Q). So that by [14]
Theorem 4], there exists a sequence {v;} in D(Q2) such that v; — u in W§ La(Q),

as j — oo, for the modular convergence and almost everywhere in 2. Moreover
[0jlloc < (N + 1) Juf|co-

Hence, we have v; > ¢ a.e. in Q. For s > 0, we denote by x; the characteristic
functions of the two subsets Qf = {z € Q : [Vy;(z)| < s} and Q° = {z € Q:

|[Vu(z)| < s} respectively. Define v = u,, — nox(u, — v;) with n = e N+l

It’s clear that v € Ky. Let n > co. Using v = uy, — noa(un — vj5) as test function

in (@) we get
/ a(@, un, V) - V(up — vj)@) (uy — v;)dz
Q

(4.18)
n / Gt V)5 (tn — v} < | Fudr(tn — v7)d2
Q Q

In what follows, €;(n,j) (i = 0,1,2,...) denote various sequences of real numbers
which converge to 0 when n and j — oo, i.e.

lim lim ¢(n,j) = 0.
J—00 N—00

In view of (EEI2) and ID), we have
B (un —v;) — ¢x(u —v;) weakly in L>() for o*(L>°, L) as n — o0.
So that one has
5 fnoa(un —vj)de — 5 for(u—vj)dz as n — oo.

Since u—wv; — 0 weakly in L>(Q) for 0*(L>°, L") as j — oo, we obtain [, féx(u—
vj)dr — 0 as j — oo. Hence,

/an(b,\(un —vj)dx = ego(n, ).
For the first term in the left-hand side of EI8), we write
/Qa(a:,un, V) - V(up — ;)@ (un — vj)da
= /s (a(x,un, Vuy,) — a(z, uy, ijxj)) . (Vun - ijxj) &\ (un, — vj)dx
+ /Qa(:t,un, Vuix3) - (Vun — Vojx5) oy (un — v;)da

- / a(x, un, Vuy,) - Vo;d (un, — v;)da.
Q\Qs
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As a consequence of Lemma FE3 there exists [ € (Lys(2))Y such that
a(z,un, Vuy) = 1 weakly in (Lar(Q)) for o(I1Ly;, ITE).

Since ij)m\gj € (Ep ()N, we have

/ a(z, un, Vi) - Vojdh (uy, — vj)de — L Vv (u—vj)da
o\Q: o\Q:

as n — 00, then the modular convergence of {v;} gives

/ 1- Vv (u—vj)de — [ - Vudz
a\0: o\

as j — oo. So that

/ a(z, un, Vi) - Vo;d (un, — vj)de = / - Vudx + e1(n, j).
o\Qs o\Qs

Since a(x, uy, V’UjXQ\ij)(b/)\(un —vj) — a(x,u,ijXQ\Qj)d)\(u — v;) strongly in

(Bxr())Y as n — oo by Lemma Bl and Vu,, — Vu weakly in (L (Q))V by
(ETH), we obtain

/Qa(x,un, Vuix3) - (Vun — Voix§) o5 (un — vj)dz
= [ oo Ves) - (V= Vo) (u—v,)da
as n — 00, and since Vv;x; — Vuyx?® strongly in (Ep ()N as j — oo, we get
/Qa(:z:, u, Vo;x;j) - (Vu — ijxj)(b&(u —v;)dz — 0
as j — oo. Thus,
[ a0, 9023) - (Vi = Topx)ohn = 0} = eafrn )
Hence, ([EIX) becomes

/ (a(@, tn, Vug) — a(@,un, Vo;x3)) - (Vun — Vuix;) o) (un — vj)da
Q

+ /gn(:v,un,Vun)¢,\(un —v;)dr = / [-Vudzx + e3(n,j).
Q Q\Qs

(4.19)

/80 . .
STRIYITIO)) where ¢ is the constant in @I2). We now turn to evaluate

the second term in the left-hand side of {I9). Using BX), B2) and EIA), we
EJQTDE, 2013 No. 21, p. 19

Let op =



have

gn(fE, Un,, vun)¢)\(u" - ’U])d(E

Q
< [ B )MVt Dlor (= v,)lda
< / #a(m,un,Vun) Vg |oa(un, — vj)|dx
o T M(h(Jun)
< 0’0/ (a(x,un, Vu,) — a(z, uy,, ijX;)) . (Vun — ijxj) |oA(un — v;)|dz
Q
+ 00/ a(x, un, VU;X5) - (Vn — Vuix;)|oa(un — vj)|de
Q
+ 00/ a(z, un, Vun) - Vuixjloa(un — vj)|dz.
Q

In a similar way as above, we have

Uo/ a(w, up, VUiX3) - (Vun — Vojx;)|oa(un — vj)|de = es(n, j),
Q

0'0/ a(@, un, Vug) - Voixiloa(u, —vj)|de = es(n, 7).
Q

Then

/ gn(xv una vun)gb)\(un - ’UJ)dI
Q

<oy (a(x,un, Vuy,) — a(z, u,, ijxj)) . (Vun — ijxj) |oa(un, — v;)|dz
Q
+66(n7j)'

This inequality enables us to write (LI9) under the forme

/ (a(:v, U, Vg) — a(x, ty, ijxj)) . (Vun — ijxj)
Q
x (64 (1 = v5) = G0l (= vy)| ) da
g/ l-Vudr + ez(n,j).
Q\Qs

Applying now Lemma B with ¢ = 09, d=1 and \ = (“—20)2, we get

/Q (a(:z:, Up,y Vug) — a2, U, Vz@-x?)) . (Vun — ijxj)d:c

< 2 l-Vudr + 2e7(n,j).
Q\Q¢

(4.20)
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On the other hand
/ (a(x, Up,y Vig) — a(T, U, Vuxs)) . (Vun - Vuxs)d:c
Q
= (a(x,un, V) — a(z, uy, ijxj)) : (Vun - ijxjf)d:v
+ fa(:z:, Up, V) - (Vojx; — Vux®)dr
- /Qa(:zr, U, Vux®) - (Vuy, — Vux®)dx

Q

+ / a(x, un, VU;X3) - (Vun, — Vojx;)de.
Q

Similarly as above we have
[ 4t Vun) - (Vo = Vu)ds = es(n. ),
Q

a(z, un, Vux®) - (Vu, — Vux®)dz = eg(n, j),
Q

/ a(x, un, Vu;X3) - (Vun — Vujxj)dz = eo(n, j). (4.21)
Q
These estimates together with inequality [E20) allow us to get
/ (a(:v, Un, VUup) — a(x, U, Vux5)> . (Vun - Vuxs)d:v
Q

<2 l-Vudx + e11(n,j).
o\Q¢

Let now r < s, we write

/“ (a(x,un, Vu,) — a(z, wy, Vu)) . (Vun _ Vu) de

/S (a(:v,un, Vuy,) — alz, up, Vu)) . (Vun _ Vu)dgc

N /: (@@, un, Vun) = ae, un, Tux*)) - (Va = Vux*)de
: / (a(:v,un,v%) - a(%“nvvuxs)) : (Vun — Vuxs)dx

Q

< 2 l-Vudzr + e11(n, 7).
Q\00

0

IN

IN

Since [ - Vu € LY(Q), letting s — oo, we get

/ (a(:z:, Up,y Vug) — a2, U, Vu)) . (Vun — Vu)d:c — 0 (4.22)
o
as n — oo. Let D,, be defined by

D, = (a(:z:, Up,y Vug) — a2, U, Vu)) . (Vun - Vu).

As a consequence of @ZJ), one has D, — 0 strongly in L'(Q"), extracting a
subsequence, still denoted by {u,}, we get
D, — 0 ae inQ".
EJQTDE, 2013 No. 21, p. 21



Then, there exists a subset Z of Q", of zero measure, such that: D,, — 0 for all
x € Q" \ Z. Fixe x € Q" \ Z, we obtain by using B2) and B3)

D) = N M(h(e)) M(|Vin (2)])
— (@) (14D Mkt Vun (@)]) + [Vun (@)

where ¢, is the constant which appears in @I2) and c¢;(z) is a constant which
does not depend on n. Thus, the sequence {Vu, ()} is bounded in RY then for a
sequence {u, (x)}, we have

Vi (z) — ¢ inRY,
and
(a(z,u(2),§) — a(z,u(z), Vu(z))) - (£ = Vu(z)) = 0.

Since a(z, s,§) is strictly monotone, we have £ = Vu(x) and then Vu,(z) — Vu(zx)
for the whole sequence. It follows that

Vu, — Vu a.e. in Q.
Consequently, as r is arbitrary, one can deduce that
Vu, — Vu a.e. in Q. (4.23)
It follows from Lemma LA (ETD), E23) and [I7, Theorem 14.6] that
a(z, T, (un), Vun) = a(z,u, Vu) € (Li7(Q))N weakly for o(IILy7, IIEy ).
(4.24)

Step 6: Modular convergence of the gradients. Let n > c.. Going back to

E2T) we can write
/ a(x, U, Vuy,) - Vude < / a(z, p, Vi) - Vu;jxjde
Q Q
-I—/ a(x, un, Vuix3) - (Vun — Vojxj)dz
Q

+2 a(z,u, Vu) - Vudz + 2e7(n, j).
Q\00

Then by [ZII), we get
/ a(x, U, Vuy,) - Vude < / a(x, U, Vuy,) - Vu;xjde
Q Q
+2/ a(xz,u, Vu) - Vudr + e12(n, j).
Q\Qs

Passing to the limit superior over n and then to the limit over j in both sides of
this inequality, we obtain

limsup/ a(z, up, V) - Vupde < / a(z,u, Vu) - Vux’dzx
n—oo (9] Q
+2 a(x,u, Vu) - Vudz,
Q\Q=
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Then by letting s — oo, one has

limsup/ a(x, U, V) - Vupde < /a(z,u,Vu)-Vudm.
Q Q

n—oo

Finally, Fatou’s Lemma allows us to get

lim [ a(z,un, Vuy,) - Vu,de = / a(x,u, Vu) - Vudz.

n—oo Jq Q

Hence, by Lemma B2 we deduce that
a(z,un, V) - Vu, — a(z,u,Vu)-Vu strongly in L1(Q). (4.25)

By B2) and ET2) and the convexity of the N-function M, we can write

[V, — Vul 1 —1 " "
w Ry < — e M
+ — M (M (h(Jul)) M (|Vu])
207 11<M<h<coo>>>
S 1 a(x,un, Vu’n«) ’ vu"

2M (M(hgcoo)))

+ —= a(z,u, Vu) - Vu.
2M (M (h(coo)))

Then, by [EZH) and Vitali’s theorem we conclude that

up — u in Wi Ly (Q) for the modular convergence.

Step 7: Compactness of the nonlinearities. We need to show that
Gn (@, Un, V) — g(x,u, Vu)  strongly in L(€). (4.26)
To this end, we use Vitali’s theorem. Thanks to [EI7) and [23)), one has
gn (T, Un, Vuy) — g(z,u, Vu) a.e. in £

It remains to show that the the sequence {g(z, un, Vu, )} is uniformly equi-integrable.

By [BH) and ETId), we have
Let E be a measurable subset of Q. Thanks to B2), @I2) and EId), we have

Bo

/E 900 Vi < B

/ la(z, wn, Vuy,) - Vug|dz.
E

Thus, the equi-integrability of the sequence {g(x, u,, Vuy,)} follows from [2H) and
Vitali’s theorem. So that (28] is proved.
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Step 8: Passing to the limit. Let v € Ky NL>(Q). By (A2) there is a sequence
{vj} C Ky N WG EwM() N L*®(Q) such that v; — v for the modular convergence
in W)Ly (2). For all n > coo, inserting v; as a test function in (@) yields

/ a(z, un, V) - V(u, —vj)dx +/ Gn (T, Up, V) (uy, — vj)dx
Q Q

< [ folun —vj)de.
Q
Since Vv; € (Eam(Q))Y, by @Z) one has
/ a(x, up, Vuy,) - Vu;dr — / a(z,u, Vu) - Vu;dz
Q Q
as n — oo. So that by ([E2H) we get

/ a(z,un, Vuy) - V(u, —vj)de — [ a(x,u, Vu) - V(u —v;)dz.
Q Q

Using [ET2) and [ZH), we can pass to the limit as n — 400 obtaining

/Qa(:t, u, Vu) - V(u —v;)dz + / g(z,u, Vu)(u — vj)de < /Q fu—vj)de.

Q
As we have, up to a subsequence still indexed by j, v; — v a.e. in Q and weakly
for o(I1L s, IILy7), we can pass to the limit as j — oo to obtain

/ a(x,u, Vu) - V(u — v)dz + / g(x,u, Vu)(u —v)dx < / fu—v)de.

Q Q Q

By virtue of [@Id) we have u € Ky N L>(£). This completes the proof of Theorem
. 2
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