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OSCILLATION AND SPECTRAL PROPERTIES OF SELF-ADJOINT

EVEN ORDER DIFFERENTIAL OPERATORS WITH MIDDLE

TERMS

ONDŘEJ DOŠLÝ

Abstract. Oscillation and spectral properties of even order self-adjoint differential
operators of the form

L(y) :=
1

w(t)

n
∑

k=0

(−1)k

(

rk(t)y(k)
)(k)

, rn(t) > 0 , w(t) > 0,

are investigated. A particular attention is devoted to the fourth order operators
with a middle term, for which new (non)oscillation criteria are derived. Some open
problems and perspectives of further research are discussed.

Dedicated to Professor László Hatvani on the occasion of his 60th birthday.

1. Introduction and preliminaries

In this contribution we deal with oscillation and spectral properties of the even
order (formally) self-adjoint differential operator

(1) L(y) :=
1

w(t)

n
∑

k=0

(−1)k
(

rk(t)y
(k)
)(k)

, t ∈ [T,∞)

where r0, . . . , rn, w are continuous functions and rn(t) > 0, w(t) > 0 for t ∈ [T,∞).
Note that one can investigate differential operator L under weaker assumptions (the
so-called minimal integrability assumptions) that the functions r0, . . . , rn−1,

1
rn

and w

are integrable on intervals [T, b) for every b > T . However, the continuity assumption
is sufficiently general for our purpose.

First we recall some basic concepts of the oscillation theory of the self-adjoint
equation L(y) = 0, i.e. of the equation

(2)

n
∑

k=0

(−1)k
(

rk(t)y
(k)
)(k)

= 0.
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The substitution

(3) x =









y
y′

...
y(n−1)









, u =











∑n

k=1(−1)k−1(rky
(k))(k−1)

...
−(rny(n))′ + rn−1y

(n−1)

rny(n)











transforms equation (2) into the linear Hamiltonian system

(4) x′ = Ax + B(t)u, u′ = C(t)x − AT u

with

B(t) = diag

{

0, . . . , 0,
1

rn

}

, C(t) = diag {r0, . . . , rn−1}

and

Ai,j =

{

1, j = i + 1, i = 1, . . . , n − 1,

0 elsewhere.

In this case we say that the solution (x, u) of (4) is generated by the solution y of
(2). Moreover, if y1, . . . , yn are solutions of (2) and the columns of the matrix solution
(X, U) of (4) are generated by the solutions y1, . . . , yn, we say that the solution (X, U)
is generated by the solutions y1, . . . , yn.

Recall that two different points t1, t2 are said to be conjugate relative to system (4)
if there exists a nontrivial solution (x, u) of this system such that x(t1) = 0 = x(t2).
Consequently, by the above mentioned relationship between (2) and (4), these points
are conjugate relative to (2) if there exists a nontrivial solution y of this equation
such that y(i)(t1) = 0 = y(i)(t2), i = 0, 1, . . . , n − 1. System (4) (and hence also
equation (2)) is said to be oscillatory if for every T ∈ R there exists a pair of points
t1, t2 ∈ [T,∞) which are conjugate relative to (4) (relative to (2)), in the opposite
case (4) (or (2)) is said to be nonoscillatory. The equation L(y) = y, i.e. the equation

(5)

n
∑

k=0

(−1)k
(

rk(t)y
(k)
)(k)

= w(t)y

is said to be conditionally oscillatory if there exists λ0 > 0 such that the equation

(6)

n
∑

k=0

(−1)k
(

rk(t)y
(k)
)(k)

= λw(t)y

is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. If (6) is oscillatory (nonoscil-
latory) for every λ > 0, then equation (6) or (5) is said to be strongly oscillatory
(strongly nonoscillatory).
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A conjoined basis (X, U) of (4) (i.e. a matrix solution of this system with n × n
matrices X, U satisfying XT (t)U(t) = UT (t)X(t) and rank (XT , UT )T = n) is said to
be the principal solution of (4) if X(t) is nonsingular for large t and for any other
conjoined basis (X̄, Ū) such that the (constant) matrix X̄T U − ŪT X is nonsingular,
limt→∞ X̄−1(t)X(t) = 0 holds. The last limit equals zero if and only if

(7) lim
t→∞

(
∫ t

X−1(s)B(s)XT−1(s) ds

)−1

= 0,

see [22]. A principal solution of (4) is determined uniquely up to a right multiple by a
constant nonsingular n×n matrix. If (X, U) is the principal solution, any conjoined ba-
sis (X̄, Ū) such that the matrix XT Ū−UT X̄ is nonsingular is said to be a nonprincipal
solution of (4). Solutions y1, . . . , yn of (2) are said to form the principal (nonprincipal)
system of solutions if the solution (X, U) of the associated linear Hamiltonian system
generated by y1, . . . , yn is a principal (nonprincipal) solution. Note that if (2) pos-
sesses a fundamental system of positive solutions y1, . . . , y2n satisfying yi = o(yi+1) as
t → ∞, i = 1, . . . , 2n−1, (the so-called ordered system of solutions), then the “small”
solutions y1, . . . , yn form the principal system of solutions of (2).

Our differential operator (1) is singular since t ∈ [T,∞), i.e. t = ∞ is a possible
singularity in the sense that the functions r0, . . . , rn−1,

1
rn

, w may fail to be integrable

on the whole interval [T,∞). On the other hand, the left endpoint t = T is supposed
to be regular, i.e., given any x0, u0 ∈ R

n, the associated linear Hamiltonian system
(4) has a unique solution given by the initial condition x(a) = x0, u(a) = u0. The
spectral properties of the operator L are investigated in the Hilbert space

H =

{

y :

∫

∞

T

w(t)|y(t)|2 < ∞
}

.

The maximal differential operator Lmax generated by the differential expression L (i.e.
Lmax(y) = L(y)) is the operator with the domain

D(Lmax) = {y : [a,∞) → R : xk, uk ∈ AC[T,∞), k = 1, . . . , n, and L(y) ∈ H},
where x = (x1, . . . , xn)T , u = (u1, . . . , un)

T are related to y by (3) and AC denotes
the class of absolutely continuous functions. The minimal operator Lmin is defined as
the adjoint operator to the maximal operator, i.e., Lmin := (Lmax)

∗. The domain of

every self-adjoint extension L̂ of the minimal operator Lmin satisfies

D(Lmin) ⊂ D(L̂) ⊂ D(Lmax)

It is known that all self-adjoint extensions of the minimal operator have the same
essential spectrum, see [20, 21, 24].

In this paper we focus our attention to the following spectral property of the oper-
ator L.
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Definition 1. Operator L is said to have property BD if every self-adjoint extension
of Lmin has spectrum discrete and bounded below.

The link between oscillatory and spectral properties of the operator L is the fol-
lowing statement.

Proposition 1. Operator L has property BD if and only if the equation L(y) = λy
is strongly nonoscillatory.

The paper is organized as follows. In the next section we recall some general state-
ments of oscillation theory of self-adjoint equations (2). In Section 3 we present known
results concerning oscillation and spectral properties of one and two-term differential
operators. Section 4 contains new results – oscillation and nonoscillation criteria for
fourth order differential equations with middle terms. The last section is devoted to
remarks on the results of the paper and to the formulation of some open problems.

2. Oscillation theory of self-adjoint equations

Our oscillation results are based on the following variational principle.

Lemma 1. ([15]) Equation (2) is nonoscillatory if and only if there exists T ∈ R

such that

F(y; T,∞) :=

∫

∞

T

[

n
∑

k=0

rk(t)(y
(k)(t))2

]

dt > 0

for any nontrivial y ∈ W n,2(T,∞) with compact support in (T,∞).

In nonoscillation criteria, the following Wirtninger inequality is frequently used.

Lemma 2. ([15]) Let y ∈ W 1,2(T,∞) have compact support in (T,∞) and let M be
a positive differentiable function such that M ′(t) 6= 0 for t ∈ [T,∞). Then

∫

∞

T

|M ′(t)|y2 dt < 4

∫

∞

T

M2(t)

|M ′(t)|y
′2 dt.

We will need also a statement concerning factorization of disconjugate differential
operators.

Lemma 3. ([2]) Suppose that equation (2) possesses a system of positive solutions
y1, . . . , y2n satisfying yi = o(yi+1), i = 1, . . . , 2n − 1, as t → ∞. Then the operator L
given by (1) admits the factorization for large t

L(y) =
1

a0(t)

(

1

a1(t)

(

. . .
rn(t)

a2
n(t)

(

1

an−1(t)
. . .

1

a1(t)

(

y

a0(t)

)

′

. . .

)′

. . .

)

′
)′

,
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where

a0 = y1, a1 =

(

y2

y1

)

′

, ai =
W (y1, . . . , yi+1)W (y1, . . . , yi−1)

W 2(y1, . . . , yi)
, i = 1, . . . , n − 1

and an = (a0 · · ·an−1)
−1, W (·) being the Wronskian of the functions in brackets.

Oscillation criteria presented in this paper are based on the following general state-
ment. This statement concerns oscillation of the equation

(8) L(y) = M(y),

where the operator M is given by

M(y) =

m
∑

k=0

(−1)k
(

r̃k(t)y
(k)
)(k)

with m ∈ {1, . . . , n− 1} and r̃j(t) ≥ 0 for large t. Equation (8) is viewed as a pertur-
bation of (nonoscilatory) equation (2). The next proposition says, roughly speaking,
that (8) is oscillatory if the functions r̃j are sufficiently positive, in a certain sense.
The proof of the next proposition can be found in [3, 4].

Proposition 2. Suppose that (2) is nonoscillatory and y1, . . . , yn is the principal
system of solutions of this equation. Equation (8) is oscillatory if there exists c =
(c1, . . . , cn) ∈ R

n such that one of the following conditions holds:

(i) We have
∫

∞

[

m
∑

k=0

r̃k(t)(h
(k)(t))2

]

dt = ∞, h := c1y1 + · · ·+ cnyn

(ii) The previous integral is convergent and

(9) lim sup
t→∞

∫

∞

t

[
∑m

k=0 r̃k(t)(h
(k)(s))2

]

ds

cT

(

∫ t
X−1(s)B(s)XT−1(s) ds

)

−1

c
> 1,

where (X, U) is the solution of the linear Hamiltonian system associated with
(2) generated by y1, . . . , yn.

3. One and two-term differential operators

A typical method of the investigation of the spectral properties of the operator
L consists in assuming (this assumption is satisfied in many applications) that one

of the terms in L, say (−1)j
(

rj(t)y
(j)
)(j)

for some j ∈ {1, . . . , n}, is dominant, in a
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certain sense, and then the operator L is viewed as a perturbation of the one-term
operator

Lj(y) =
(−1)j

w(t)

(

rj(t)y
(j)
)(j)

.

This approach has been used, e.g., in the papers [11, 16]. For this reason, we turn first
our attention to one-term differential operators. We consider the differential operator
of the form

(10) l(y) :=
(−1)n

w(t)

(

r(t)y(n)
)(n)

and the associated equation

(11) (−1)n(r(t)y(n))(n) = w(t)y.

Basic results concerning property BD of one term differential operators are based
on the following statement, usually referred to as the reciprocity principle, the proof
can be found e.g. in [1].

Proposition 3. Equation (11) is nonoscillatory if and only if the so-called reciprocal
equation (related to (11) by the substitution z = r(t)y(n))

(12) (−1)n

(

z(n)

w(t)

)(n)

=
1

r(t)
z

is nonoscillatory.

Now we present two oscillation criteria for equation (11) in case r(t) = tα, i.e. we
consider the equation

(13) (−1)n
(

tαy(n)
)(n)

= w(t)y,

where α is a real constant.

Theorem 1. ([6, 17]) Let α 6∈ {1, 3, . . . , 2n − 1}, α < 2n − 1,
∫

∞

w(t) dt < ∞,

(14) M := lim sup
t→∞

t2n−1−α

∫

∞

t

w(s) ds

and

(15) γ̂n,α :=

∏2n−1
k=0 (2n − 1 − 2k − α)2

4n(2n − 1 − α)
.

If M < γ̂n,α then (13) is nonoscillatory and if M > γ̂n,α the this equation is oscilla-
tory.
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Theorem 2. ([6, 13]) Let α ∈ {1, 3, . . . , 2n − 1},
∫

∞

w(t)t2n−1−αdt < ∞,

(16) K := lim sup
t→∞

lg t

∫

∞

t

w(s)s2n−1−α ds

and

(17) ρn,α :=
[n!(n − m − 1)]2

4
, m :=

2n − 1 − α

2
.

If K < ρn,α then (13) is nonoscillatory and if K > ρn,α then this equation is oscilla-
tory.

Note that the oscillation parts of the previous theorem were proved in [13, 17] under
the stronger assumption M > (2n − 1 − α)[(n − 1)!]2 for α 6∈ {1, 3, . . . , 2n − 1} and
K > 4ρn,α if α ∈ {1, 3, . . . , 2n− 1}. In the form presented in Theorems 1, 2 (with the
improved value of the oscillation constant) these criteria were proved in the recent
paper [6].

Consider now the differential operator

(18) l̃(y) = (−1)ntα
(

r(t)y(n)
)(n)

,

The reciprocal equation of the equation l̃(y) = y is the equation

(−1)n
(

tαz(n)
)(n)

=
1

r(t)
z.

Applying the previous oscillation and nonoscillation criteria to this equation we get
the following necessary and sufficient condition for property BD of l̃. For α = 0 this
is the classical condition of Tkachenko [15] (sufficiency) and of Lewis [18] (necessity).
For α 6∈ {1, 3, . . . , 2n − 1}, α < 2n − 1, this condition is formulated in [17]. The case
α ∈ {1, 3, . . . , 2n − 1} is treated in [13].

Theorem 3. Operator l̃ has property BD if and only if

(i) α 6∈ {1, 3, . . . , 2n − 1} and

lim
t→∞

t2n−1−α

∫

∞

t

ds

r(s)
= 0,

(ii) α ∈ {1, 3, . . . , 2n − 1} and

lim
t→∞

lg t

∫

∞

t

s2n−1−α

r(s)
ds = 0.

Observe that if M = γn,α in (14) resp. K = ρn,α in (16), Theorems 1 and 2 do not
apply. A typical example of a function w for which this happens is

w(t) =
γn,α

t2n−α
, γn,α := (2n − 1 − α)γ̂n,α, α 6∈ {1, 3, . . . , 2n − 1},
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with γ̂n,α given by (15), resp.

w(t) =
ρn,α

t2n−α lg2 t
, α ∈ {1, 3, . . . , 2n − 1}.

This fact was a motivation for the research of the papers [5, 9, 10] where the equations

(19) (−1)n
(

tαy(n)
)n − γn,α

t2n−α
y = w(t)y, α 6∈ {1, 3, . . . , 2n − 1},

and

(20) (−1)n
(

tαy(n)
)n − ρn,α

t2n−α lg2 t
y = w(t)y, α ∈ {1, 3, . . . , 2n − 1},

were investigated. In the next criteria equations (19) and (20) are viewed as a per-
turbation of the equations

(21) (−1)n
(

tαy(n)
)n − γn,α

t2n−α
y = 0, α 6∈ {1, 3, . . . , 2n − 1},

and

(22) (−1)n
(

tαy(n)
)n − ρn,α

t2n−α lg2 t
y = 0, α ∈ {1, 3, . . . , 2n − 1}.

In the easier case α 6∈ {1, 3, . . . , 2n − 1} we have obtained the following result.

Theorem 4. ([6, 8, 9]) Let α 6∈ {1, 3, . . . , 2n − 1},

M̃ := lim sup
t→∞

lg t

∫

∞

t

w(s)s2n−1−α ds

and

(23) γ̃n,α :=

∏n−1
k=0(2n − 1 − α − 2k)2

4n

[

n−1
∑

k=0

1

(2n − 1 − α − 2k)2

]

.

If M̃ < γ̃n,α then (19) is nonoscillatory and if M̃ > γ̃n,α then this equation is oscilla-
tory.

Note that similarly to the case treated in Theorem 1, the oscillation part of the
previous theorem was proved in [5, 9] under the stronger assumption M̃ > 4γ̃n,α and
this assumption is weakened to the form as presented in Theorem 4 in [8] using the
method introduced in [6].

In the more difficult case α ∈ {1, 3, . . . , 2n − 1} we have not been able to find a
“unifying” limit which “separates” oscillatory and nonoscillatory equations, but we
proved the following result.

Theorem 5. Let α ∈ {1, 3, . . . , 2n − 1}.
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(i) If

(24)

∫

∞

w(t)s2n−1−α lg s ds = ∞,

then (20) is oscillatory.
(ii) If the second order equation

(25) (t lg t u′)′ +
w(t)t2n−1−α lg t

4ρn,α

u = 0

is nonoscillatory, then (20) is also nonoscillatory. In particular, (20) is non-
oscillatory provided

lim
t→∞

lg(lg t)

∫

∞

t

w(s)s2n−1−α lg s ds < ρn,α.

The case when we consider two-term differential operators can be regarded as
a model of the situation when not only one term is dominant in the differential
operator L given by (1), but two terms are dominant. One term is again a term

(−1)j
(

rj(t)y
(j)
)(j)

for some j ∈ {1, 2, . . . , n} and the second one is the term r0(t)y.
This leads then to differential equations of the form

(−1)j(rj(t)y
(j))(j) + r0(t)y = w(t)y

and equations (19) and (20) are just of this form.

Theorems 4 and 5 give the following conditions for property BD of the operators

(26) L̃(y) :=
1

w(t)

[

(−1)n
(

tαy(n)
)n − γn,α

t2n−α
y
]

, α 6∈ {1, 3, . . . , 2n − 1},

and

(27) L̂(y) :=
1

w(t)

[

(−1)n
(

tαy(n)
)n − ρn,α

t2n−α lg2 t
y

]

, α ∈ {1, 3, . . . , 2n − 1}.

The result given in the next theorem is new, it is not given in the above mentioned
references [9, 10]. However, as we will see, this statement follows easily from Theorems
4 and 5.

Theorem 6. Let the differential operators L̃ and L̂ be given by (26), (27), respectively.

(i) Let α 6∈ {1, 3, . . . , 2n − 1}, then L̃ has property BD if and only if

(28) lim
t→∞

lg t

∫

∞

t

w(s)s2n−1−α ds = 0.
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(ii) Let α ∈ {1, 3, . . . , 2n − 1}. If L̂ has property BD then

(29)

∫

∞

w(t)t2n−1−α lg t dt < ∞.

Conversely, if

(30) lim
t→∞

lg(lg t)

∫

∞

t

w(s)s2n−1−α lg s ds = 0.

then L̂ has property BD.

Proof. (i) Let α 6∈ {1, 3, . . . , 2n − 1}. Note that if
∫

∞

w(t)t2n−1−α dt = ∞, then

the equation L̃(y) = y is (strongly) oscillatory by Proposition 2 since the function

y = t
2n−1−α

2 is contained in the principal system of solution of the equation L̃(y) = 0.

Hence, L̃ cannot have property BD by Proposition 1.
Suppose now that L̃ has property BD and the limit (28) is not zero, i.e.

lim sup
t→∞

lg t

∫

∞

t

w(s)s2n−1−α ds = ε > 0.

Hence, for λ > γ̃n,α

ε
we have

lim sup
t→∞

lg t

∫

∞

t

λw(s)s2n−1−α ds > γ̃n,α

and thus equation (19) with λw(t) instead of w(t) is oscillatory. This means that
this equation is not strongly nonoscillatory and this contradicts to Proposition 1.
Conversely, suppose that (28) holds. Then for every λ > 0

lim
t→∞

lg t

∫

∞

t

λw(s)s2n−1−α ds = 0 < γ̃n,α.

Hence, (19) is strongly nonoscillatory by Theorem 5 and L̃ has property BD by
Proposition 1.
(ii) Let α ∈ {1, 3, . . . , 2n − 1}. If L̂ has property BD and the integral in (29) is
divergent, i.e.,

∫

∞

w(t)t2n−1−α lg t dt = ∞,

then the equation L̂(y) = y is oscillatory by Theorem 5, a contradiction with Propo-
sition 1. Conversely, if (30) holds, we have

lim
t→∞

lg(lg t)

∫

∞

t

λw(s)s2n−1−α lg s ds = 0 < ρn,α
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which means that the second order equation

(t lg t u′)′ +
λw(t)t2n−1−α lg t

4ρn,α

u = 0

is nonoscillatory for every λ > 0.
Hence, by Theorem 5, the equation L̂(y) = λy has the same property and hence

the operator L̂ has property BD by Proposition 1. �

4. Fourth order operators with a middle term

In this section we present new oscillation and nonoscillation criteria for the fourth
order differential equation

(31) y(iv) − (q(t)y′)
′

+ p(t)y = 0

where this equation is viewed as a perturbation of the Euler differential equation

(32) Lν,γ(y) := y(iv) − ν

(

y′

t2

)

′

− γ

t4
y = 0.

We follow essentially the same idea as in the papers [7, 8, 14], where two-term
differential operators are investigated. Our ultimate aim is to study general three-
term differential operators and equations

(33) L(y) := (−1)n
(

r(t)y(n)
)(n)

+ (−1)m
(

q(t)y(m)
)(m)

+ p(t)y = 0

with m ∈ {1, . . . , n− 1}. Similarly to [7, 14], we “test” first the situation in the most
simple case of the fourth order equation in order to see where are the main problems.
Then, solving these problems in this simple case, we are going to “attack” the general
three-term equation (33). This idea is applied in the case of two-term operators in
[8].

We start with an elementary statement concerning the fourth order Euler equation
(32).

Lemma 4. Let ν ≥ − 5
2
. Equation (32) is nonoscillatory if and only if

(34) ν +
1

4
− 4

9
γ ≥ 0.

If ν = 4
9
γ − 1

4
then this equation possesses a fundamental system of solutions

(35) y1 = t
3

2
−ñu, y2 = t

3

2 , y3 = t
3

2 lg t, y4 = t
3

2
+ν̃ ,
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where ν̃ :=
√

5
2

+ ν. Moreover, the differential operator Lν,γ admits Polya’s factor-

ization

(36) Lν,γ(y) =
1

t
3

2

{

t1+ν̃

[

t1−2ν̃

(

t1+ν̃

(

y

t
3

2

)

′
)′
]

′
}′

,

and we have
∫

∞

T

[

y′′2 + ν
y′2

t2
− γ

y2

t4

]

dt =

∫

∞

T

t1−2ν̃

{

[

t1+ν̃

(

y

t
3

2

)

′
]′
}2

dt

for every y ∈ W 2,2(T,∞) with compact support in (T,∞).

Proof. We will prove that (32) is nonoscillatory for ν, γ satisfying (34); oscillation
of (32) if this inequality is violated will be proved later as a consequence of a more
general result.

By the Wirtinger inequality given in Lemma 2,
∫

∞

T

y′′2 dt + ν

∫

∞

T

y′2

t2
dt − γ

∫

∞

T

y2

t4
dt >

(

ν +
1

4

)
∫

∞

T

y′2

t2
dt − γ

∫

∞

T

y2

t4
dt

>

[

9

4

(

ν +
1

4

)

− γ

]
∫

∞

T

y2

t4
dt.

Hence, (32) is nonoscillatory by Lemma 1 if (34) holds.
Now suppose that equality in (34) holds, i.e.,

(37) ν +
1

4
− 4

9
γ = 0.

We look for a solution of (32) in the form y(t) = tλ. Substituting into (32) we obtain

λ(λ − 1)(λ − 2)(λ − 3) − νλ(λ − 3) − γ = 0.

The substitution µ = λ − 3
2

converts the last equation into the equation
(

µ2 − 9

4

)(

µ2 − 1

4

)

− ν

(

µ2 − 9

4

)

− γ = 0.

If (37) holds, this equation has the roots µ1,2 = 0 and µ3,4 = ±
√

ν + 5
2

= ±ν̃, and

this means that (35) is really a fundamental system of solutions of (32).
In order to prove the factorization formula (36), it suffices to apply Lemma 3 with

y1 = t
3

2 and y2 = t
3

2
−ν̃ . Finally, multiplying (36) by y, integrating the obtained

equation from T to ∞, and using integration by parts, we get the last formula stated
in Lemma 4. �
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Next, we study oscillation and nonoscillation of the equation Lµ,γ(y) = p(t)y in the
critical case (37).

Theorem 7. Suppose that (37) holds and p(t) ≥ 0 for large t.

(i) If the second order equation

(38) (tu′)
′

+
t3p(t)

ν̃2
u = 0

is nonoscillatory, then the equation

(39) y(iv) − ν

(

y′

t2

)

′

− γ

t4
y = p(t)y

is also nonoscillatory. In particular, (39) is nonoscillatory provided p(t) ≥
ν̃2

4t4 lg2 t
for large t and

(40) lim
t→∞

lg(lg t)

∫

∞

t

[

p(s) − ν̃2

4s4 lg2 s

]

s3 lg s ds <
ν̃2

4
.

(ii) If

(41)

∫

∞
[

p(t) − ν̃2

4t4 lg2 t

]

t3 lg t dt = ∞,

then (39) is oscillatory.

Proof. We skip details of the proof since it is similar to that of [7, Theorem 1], where
the case ν = 0, γ = 9

16
is investigated. To prove the nonoscillation part (i), we use

Lemma 4 and the Wirtinger inequality of Lemma 2. According to Lemma 1, it suffices
to find T ∈ R such that

(42)

∫

∞

T

[

y′′2 + ν
y′2

t2
− γ

y2

t4

]

dt −
∫

∞

T

p(t)y2 dt > 0
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for every nontrivial y ∈ W 2,2(T,∞) with compact support in (T,∞). We have by
Lemma 4

∫

∞

T

[

y′′2 + ν
y′2

t2
− γ

y2

t4

]

dt −
∫

∞

T

p(t)y2 dt

=

∫

∞

T

t1−2ν̃

{

[

t1+ν̃

(

y

t
3

2

)

′
]′
}2

dt −
∫

∞

T

p(t)y2 dt

≥ ν̃2

∫

∞

T

t

[(

y

t
3

2

)

′
]2

dt −
∫

∞

T

t3p(t)

(

y

t
3

2

)2

dt

= ν̃2

∫

∞

T

[

tu′2 − t3p(t)

ν̃2
u2

]

dt,

where u = y

t
3
2

. Since the second order equation (38) is nonoscillatory, the last integral

is positive for every u ∈ W 1,2(T,∞) with compact support in (T,∞) if T is suffi-
ciently large. Hence, (42) holds which means that (39) is nonoscillatory. To prove the
sufficiency of (40) for the nonoscillation of (38) we rewrite this equation into the form

(tu′)
′

+
1

4t lg2 t
u +

[

t3p(t)

ν̃2
− 1

4t lg2 t

]

u.

The transformation u =
√

lg t v transforms the last equation into the equation (see,
e.g., [23])

(43) (t lg t v′)
′

+

[

p(t) − ν̃2

4t4 lg2

]

t3 lg t

ν̃2
v = 0.

By the classical Hille nonoscillation criterion, the equation

(r(t)x′)′ + c(t)x = 0

with c(t) ≥ 0,
∫

∞

c(t) dt < ∞ and
∫

∞

r−1(t) dt = ∞ is nonoscillatory if

(44) lim
t→∞

(
∫ t

r−1(s) ds

)(
∫

∞

t

c(s) ds

)

<
1

4
.

Now, applying Hille’s nonoscillation criterion to (43) gives just (40).
In the proof of (ii), let T ∈ R be arbitrary and t3 > t2 > t1 > t0 > T (these values

will be specified later). Denote h(t) = t
3

2

√
lg t, let f ∈ C2[t0, t1] be any function

satisfying f(t0) = 0 = f ′(t0), f(t1) = h(t1), f ′(t1) = h′(t1), and let g be the solution
of equation (32) satisfying

(45) g(t2) = h(t2), g′(t2) = h′(t2), g(t3) = 0 = g′(t3).
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Define the function y ∈ W 2,2(T,∞) with compact support in (T,∞) as follows:

y(t) =























0, t ≤ t0,
f(t), t0 ≤ t ≤ t1,
h(t), t1 ≤ t ≤ t2,
g(t), t2 ≤ t ≤ t3,
0, t ≥ t3.

and denote

K :=

∫ t1

t0

[

f ′′2 − ν

t2
f ′2 −

( γ

t4
+ p(t)

)

f 2
]

dt.

By a direct computation, we have

∫ t2

t1

(

h′′2 + ν
h′2

t2
− γ

t4
h2

)

dt

=
3

2
(ν + 1) lg t2 +

5 + 2ν

8

∫ t2

t1

dt

t lg t
+ K̃ + o

(

lg−1 t2
)

,

as t2 → ∞, where K̃ is a real constant.
Computing the integral

F(g; t2, t3) :=

∫ t3

t2

[

g′′2 + νt−2g′2 − γt−4g2
]

dt,

denote by
(

x

u

)

the solution of the linear Hamiltonian system (further LHS) associated

with (32) generated by the solution g, and let h̃ =
(

h

h′

)

. Then,

F(g; t2, t3) =

∫ t3

t2

[

uT B(t)u + xT C(t)x
]

dt

=

∫ t3

t2

[

uT (x′ − Ax) + xT C(t)x
]

dt

= uT x
∣

∣

t3

t2
+

∫ t3

t2

xT
[

−u′ − AT u + C(t)x
]

dt

= −uT (t2)x(t2).
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Let (X, U) be the principal solution of the LHS associated with (32), i.e., this solution

is generated by y1 = t
3

2
−ν̃ , y2 = t

3

2 . Then we have

x(t) = X(t)

∫ t3

t

X−1BXT−1 ds

(
∫ t3

t2

X−1BXT−1 ds

)−1

X−1(t2)h̃(t2),

u(t) =

[

U(t)

∫ t3

t

X−1BXT−1 ds − XT−1(t)

](
∫ t3

t2

X−1BXT−1 ds

)−1

X−1(t2)h̃(t2),

(see e.g. [2] or [7]) and hence

−uT (t2)x(t2) = h̃T (t2)X
T−1(t2)

(
∫ t3

t2

X−1BXT−1 ds

)−1

X−1(t2)h̃(t2)

− h̃T (t2)U(t2)X
−1(t2)h̃(t2).

Since (X, U) is the principal solution, the first term on the right-hand side of the last
expression tends to zero as t3 → ∞ (t2 being fixed). Concerning the second term, by
a direct computation similar to that in [7],

h̃T (t2)U(t2)X
−1(t2)h̃(t2) =

3

2
(ν + 1) lg t2 + K̂ + o(1)

as t2 → ∞, where K̂ is a positive real constant.
Summarizing the above computations

F(y; t0, t3) ≤ K +
3

2
(ν + 1) lg t2 +

5 + 2ν

8

∫ t2

t1

dt

t lg t

+ K̃ + o(1) −
∫ t2

t1

q(t)t3 lg t dt

+ h̃T (t2)X
T−1(t2)

(
∫ t3

t2

X−1BXT−1 ds

)−1

X−1(t2)h̃(t2)

−
[

3

2
(ν + 1) lg t2 + K̂ + o(1)

]

.

Now, let t2 > t1 be such that the following conditions are satisfied:

(a)
∫ t2

t1

(

q(t) − 5+2ν̃

8t4 lg2 t

)

t3 lg t dt > K + K̃ + 1,

(b) the sum of all terms o(1) (as t2 → ∞) is less than 1.

Let t3 > t2 be such that

h̃(t2)X
T−1(t2)

(
∫ t3

t2

X−1BXT−1 ds

)−1

X−1(t2)h̃(t2) < K̂.
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For t2, t3 chosen in this way we have

F(y; T,∞) ≤ K − (K + K̃ + 1) + K̃ − K̂ + K̂ + 1 ≤ 0.

Therefore, equation (39) is oscillatory by Lemma 1. �

Substituting p(t) = λ

t4 lg2 t
in the previous statement we have the folowing statement.

Corollary 1. The equation

y(iv) − ν

(

y′

t2

)

′

− γ

t4
y =

λ

t4 lg2 t
y

with 9
4

(

ν + 1
4

)

− γ = 0 is nonoscillatory if and only if λ ≤ ν̃2

4
= 2ν+5

8
.

The next corollary completes the proof of Lemma 4.

Corollary 2. If 9
4

(

ν + 1
4

)

− γ < 0 then (32) is oscillatory.

Proof. Let ε > 0 be such that 9
4

(

ν + 1
4

)

− (γ − ε) = 0 and denote γ̃ = γ − ε. Then
(32) can be written in the form

Lν,γ̃(y) =
ε

t4
y.

The function p(t) = εt−4 obviously satisfies (41), so (32) is oscillatory. �

Now we will deal with the equation

(46) y(iv) − ν

(

y′

t2

)

′

− γ

t4
y = −(q(t)y′)′

which will be viewed again as a perturbation of (32).

Theorem 8. Suppose that (37) holds.

(i) If ν̃2 − t2q(t) > 0 for large t and the second order equation

(47)

[

t

(

1 − t2q(t)

ν̃2

)

u′

]

′

− 3

2ν̃2
t

3

2

(

q(t)
√

t
)

′

u = 0

is nonoscillatory, then (46) is also nonoscillatory. In particular, (46) is non-
oscillatory if

∫

∞

t−1(ν̃2 − t2q(t))−1 dt = ∞, (q(t)
√

t)′ ≤ 0 for large t, and

(48) lim
t→∞

(
∫ t

s−1(ν̃2 − s2q(s))−1 ds

)(
∫

∞

t

s
3

2

∣

∣

∣

(

q(s)
√

s
)

′

∣

∣

∣

)

<
ν̃2

6
.

(ii) If q(t) ≥ 0 for large t and

(49) lim sup
t→∞

lg t

∫

∞

t

q(s)s ds >
4ν̃2

9

then (47) is oscillatory.
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Proof. (i) To prove nonoscillation of (46) we will use again Lemmas 1, 2 and the
factorization of the operator Lν,γ given in Lemma 4. We have

∫

∞

T

[

y′′2 + ν
y′2

t2
− γ

y2

t4

]

dt −
∫

∞

T

q(t)y′2 dt

=

∫

∞

T

t1−2ν̃

{

[

t1+ν̃

(

y

t
3

2

)

′
]′
}2

dt −
∫

∞

T

q(t)y′2 dt

≥ ν̃2

∫

∞

T

t

[(

y

t
3

2

)

′
]2

−
∫

∞

T

q(t)y′2 dt

= ν̃2

∫

∞

T

{

[

t

(

1 − t2q(t)

ν̃2

)]

u′2 +
1

ν̃2

[

3t
3

2

2

(

q(t)
√

t
)

′

]

u2

}

dt,(50)

where u = t−
3

2 y and we have used the identity
∫

∞

T

q(t)y′2 dt =

∫

∞

T

[

t3q(t)u′2 − 3

2
t

3

2

(

q(t)
√

t
)

′

u2

]

dt

which holds for every y ∈ W 1,2(T,∞) with compact support in (T,∞). Since the
equation (47) is nonoscillatory, the integral (50) is positive by Lemma 1 and this
implies, again by Lemma 1, that (46) is nonoscillatory as well.
(ii) We use Proposition 2, part (ii) with L = Lν,γ , M(y) = −(q(t)y′)′ and c = e2 =

(0, 1)T . Let y1 = t
3

2
−ν̃ , y2 = t

3

2 and

X(t) =

(

y1 y2

y′

1 y′

2

)

, U(t) =

(

−y′′′

1 + ν
y′

1

t2
−y′′′

2 + ν
y′

2

t2

y′′

1 y′′

2

)

.

Then
(

X

U

)

is the principal solution of LHS associated with (32) and by a direct com-
putation, we have

cT

(
∫ t

X−1BXT−1 ds

)−1

c =

(
∫ t

X−1BXT−1 ds

)−1

2,2

=
ν̃2

lg t
(1 + o(1))

as t → ∞. Hence (9) becomes

lim sup
t→∞

9
4

∫

∞

t
q(s)s ds
ν̃2

lg t

> 1,

and this inequality is equivalent to (49). �

Corollary 3. Let q(t) = β

t2 lg2 t
. Then (46) is oscillatory for β > 4ν̃2

9
and it is nonoscil-

latory for β < ν̃2

9
.
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5. Remarks and Comments

(i) The last Corollary reveals a typical phenomenon in the application of the vari-
ational principle in the oscillation theory of even order self-adjoint differential equa-
tions. Using Theorem 8, we are not able to decide the oscillatory nature of (46) with

q(t) = β

t2 lg2 t
if β is between ν̃2

9
and 4ν̃2

9
. We already mentioned this phenomenon in

Section 3, e.g., equation (13) with α ∈ {1, 3, . . . , 2n− 1} was originally proved (using
a variational principle) to be nonoscillatory if the upper limit K given by (16) is less
than ρn,α/4 and oscillatory if K > ρn,α, i.e., oscillation constant is four-times bigger
than the nonoscillation constant. In [6] we developed a method which enables us to
remove this gap and to prove that the “right” oscillation constant equals the nonoscil-
lation one (compare Theorem 4 and the comment below this theorem). However, this
method does not apply (at least, not directly) to the perturbation in a middle term
and it is a subject of the present investigation how to modify this method to be ap-
plicable also to this case. We conjecture that (46) is oscillatory if the upper limit in

(49) is > ν̃2

9
, i.e., that the oscillation constant is actually four times less than stated

in Theorem 8.

(ii) As we have already mentioned before, our ultimate goal is to study perturba-
tions in middle terms of general self-adjoint, even order, differential equations and
operators. Here we study fourth order equations in order to “recognize” the main dif-
ficulties. Concerning a higher order extension of our results, consider the 2n-th order
Euler-type self-adjoint equation

(51) Lν(y) := (−1)n
(

tαy(n)
)(n)

+
n−1
∑

k=0

(−1)kνk

(

y(k)

t2n−α−2k

)(k)

= 0

with α 6∈ {1, 3, . . . , 2n−1}, where ν0, . . . , vn−1 are real constants. Based on the results
of the of the previous section, we conjecture that there exists a “critical hyperplane”

(52) α0ν0 + · · ·+ αn−1νn−1 = β,

where α0, . . . , αn−1, β are real constants, such that (51) is nonoscillatory for ν =
(ν0, . . . , nn−1) situated “above” this hyperplane (i.e. ≥ holds in (52) instead of equal-
ity) and oscillatory in the opposite case. Then, similarly to the fourth order case, one
may investigate the equation of the form

Lν(y) = (−1)m
(

q(t)y(m)
)(m)

, m ∈ {0, . . . , n − 1}

as a perturbation of (51).
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(iii) It is known ([10, 13], compare also Theorem 2) that if α ∈ {1, 3, . . . , 2n − 1},
the equation

(−1)n
(

tαy(n)
)(n)

=
λ

t2n−α
y

is no longer conditionally oscillatory (in fact, it is strongly oscillatory, in contrast to
the case α 6∈ {1, 3, . . . , 2n − 1}), and to get a conditionally oscillatory equation we
need to consider the equation

(53) (−1)n
(

tαy(n)
)(n)

=
λ

t2n−α lg2 t
y.

Now, let us look for an equation with middle terms which is a natural extension
of (53). We conjecture (again based on the computations for fourth order equations)
that such an extension is the equation

L̂ν(y) = (−1)α
(

tαy(n)
)(n)

+
n−1
∑

k=µ+1

(−1)kνk

(

y(k)

t2n−α−2k

)(k)

(54)

+

µ
∑

k=0

(−1)kνk

(

y(k)

t2n−α−2k lg2 t

)(k)

= 0,

where µ = 2n−1−α
2

. We also conjecture that one can find a “critical hyperplane” of
the form (52) for this equation as well, and that this hyperplane “separates” oscilla-
tory and nonoscillatory equations (54). Having proved such a result, similarly to the
previous remark and also to Theorem 5, we can investigate oscillation of the equation

L̂ν(y) = (−1)m
(

q(t)y(m)
)(m)

, m ∈ {0, . . . , n − 1},
with ν = (ν0, . . . , νn−1) on the critical hyperplane, viewed as a perturbation of (54).
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