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Abstract

We study exact multiplicity of positive solutions for a class of
Dirichlet problems on a ball. We consider nonlinearities generalizing
cubic, allowing both f(0) = 0 and non-positone cases. We use bifurca-
tion approach. We first prove our results for a special case, and then
show that the global picture persists as we vary the roots.

Key words: Multiplicity of solutions, positivity for linearized equation,
Crandall-Rabinowitz bifurcation theorem.

AMS subject classification: 35J60, 34B15.

1 Introduction

We study positive solutions of the Dirichlet problem for the semilinear el-
liptic equation on the unit ball

∆u + λf(u) = 0 for |x| < 1, u = 0 on |x| = 1,(1.1)

i.e, a Dirichlet problem on a ball in Rn, depending on a positive parameter
λ. In view of the classical results of B. Gidas, W.-M. Ni and L. Nirenberg
[4] any positive solution of (1.1) is radial, i.e. u = u(r), where r = |x|, and
the problem (1.1) takes the form

u′′(r) +
n − 1

r
u′(r) + λf(u) = 0 r ∈ (0, R), u′(0) = u(R) = 0.(1.2)
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Exact multiplicity for (1.1) is a notoriously difficult question, and few results
are available (even for the radial solutions). One could compare this problem
to finding the exact number of critical points for some implicitly defined
function y = y(x). Unless one has some strong information about y(x), it is
hard to exclude the possibility of “wiggles” for some range of x.

Recently together with Y. Li and T. Ouyang (see [8] and the references
there to our earlier papers) we developed a bifurcation theory approach
to the exact multiplicity question. Instead of studying the solution at some
particular λ, we take a more global approach, and study the solution curves.
We then follow these curves to some corner in (λ, u) “plane”, where some
extra information is available (usually it is either where λ = 0, or where
u = ∞). This way we can often prove uniqueness of the solution curve. If,
moreover, we can prove that this solution curve does not turn, we obtain a
uniqueness result. If the solution curve admits exactly one turn, we get an
exact multiplicity result. To continue solutions we use a bifurcation theorem
of M.G. Crandall and P.H. Rabinowitz, which is recalled below. The crucial
ingredient of our approach is to prove positivity of any nontrivial solution
of the corresponding linearized problem

w′′ +
n − 1

r
w′ + λf ′(u)w = 0 r ∈ (0, R), w′(0) = w(R) = 0.(1.3)

This information is used to compute the direction of bifurcation, and to
prove monotonicity of some solution branches.

Next we state a bifurcation theorem of Crandall-Rabinowitz [1].

Theorem 1.1 [1] Let X and Y be Banach spaces. Let (λ, x) ∈ R×X and let
F be a continuously differentiable mapping of an open neighborhood of (λ, x)
into Y . Let the null-space N(Fx(λ, x)) = span {x0} be one-dimensional and
codim R(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of
span {x0} in X, then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a
curve (λ(s), x(s)) = (λ+τ(s), x+sx0+z(s)), where s → (τ(s), z(s)) ∈ R×Z

is a continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0,
z(0) = z′(0) = 0.

We assume that the function f ∈ C2(R̄+) satisfies the following condi-
tions

(f1) f(0) ≤ 0,

(f2) f(b) = f(c) = 0 for some 0 < b < c, and f(u) < 0 on (0, b);
∫ c
0 f(u)du > 0,
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(f3) f ′′(u) changes sign only once on (0, c), i.e. there exists an α ∈ (0, c)
such that

f ′′(u) ≥ 0 on (0, α), f ′′(u) ≤ 0 on (α, c).

Define θ to be the smallest positive number such that
∫ θ
0 f(u)du = 0. We set

G(u) = uf ′(u)
f(u) , and after T. Ouyang and J. Shi [12] we define ρ = α − f(α)

f ′(α) ,

provided that α > b. (If α ≤ b then the assumptions (f4) and (f5) below
are vacuous. In that case it easy to prove that any nontrivial solution of
the linearized equation (2.2) is positive, see Lemma 2.1 below, and then our
result follows along the lines of [8].) Our next assumption is

(f4) If ρ > θ then

G(u) < 1 on (0, b),

G(u) is decreasing on (θ, ρ),

G(u) > G(ρ) on (b, θ),

G(u) < G(ρ) on (ρ, c).

If θ ≥ ρ these assumptions are vacuous. Finally, another technical assump-
tion

(f5) If ρ > θ then for any t ∈ [0, c − b] the function

f ′′(u)(c − t − u)(c − u)2 − 2f ′(u)t(c − u) − 2tf(u)

changes sign exactly once on (0, c).

Our motivating example was f(u) = u(u − b)(c − u) with positive con-
stants b and c. In case c ≤ 2b it is easy to check that the problem (1.1)
has no positive solutions. We will therefore assume that c > 2b. Then the
function f(u) satisfies all of the above conditions, so that our main result,
Theorem 2.1 below, applies. In particular it implies the following theorem.

Theorem 1.2 Assume that c > 2b > 0. There exists a critical value λ0 > 0
so that the problem

∆u + λu(u − b)(c − u) = 0 for |x| < 1, u = 0 on |x| = 1.(1.4)

has no positive solutions for λ < λ0, exactly one positive solution for λ = λ0,
and exactly two for λ > λ0.
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This application is not a new result, it is included in P. Korman, Y. Li and
T. Ouyang [8] in the case of two spatial dimensions, and in T. Ouyang and
J. Shi [12] for the general case. What is novel here is the technique of the
proof, which allows one to avoid a very difficult step of proving positivity
for the linearized equation (except in a relatively easy special case). In case
of cubic the easier case is when c is close to 2b. We then vary c, and show
that the global picture persists. In case f(0) < 0 our result appears to be
new. In particular it implies uniqueness of solution for large λ. In case of
one space dimension we obtain an exact multiplicity result.

2 Multiplicity of Solutions

By the classical theorem of Gidas, Ni and Nirenberg [4] positive solutions of
(2.1) are radially symmetric, which reduces (1.1) to

u′′ +
n − 1

r
u′ + λf(u) = 0 for 0 < r < 1, u′(0) = u(1) = 0.(2.1)

We shall also need the corresponding linearized equation

w′′ +
n − 1

r
w′ + λf ′(u)w = 0 for 0 < r < 1, w′(0) = w(1) = 0.(2.2)

For multiplicity results it is important to know if w(r) is of one sign on (0, 1),
i.e. we could then assume that w(r) > 0 on (0, 1). The following lemma
provides a condition for the positivity of w.

Lemma 2.1 Assume that f(u) satisfies the conditions (f1-f5). Assume that

θ ≥ ρ.(2.3)

Then we may assume that w(r) > 0 on (0, 1).

Proof. Multiplying (2.1) by u′ and integrating over (0, 1), we conclude
that

u(0) > θ.(2.4)

We can therefore find 0 < r1 < r2 < 1, so that u(r1) = θ and u(r2) = ρ.
By the uniqueness result in [13] we know that w(0) 6= 0, and hence we may
assume that w(0) > 0. By T. Ouyang and J. Shi [12], see also J. Wei [14],
w(r) cannot vanish on [0, r2]. By the results of M.K. Kwong and L. Zhang
[9] w(r) cannot vanish on (r1, 1) either. (In formula (3.4) of [9] a function
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w̄(r) was defined. This function satisfies the linearized equation (2.2) and
w̄(r1) = 0. In Lemma 15 of the same paper M.K. Kwong and L. Zhang show
that w̄ has no zeroes on (r1, 1). Since w and w̄ are solutions of the same
equation, it follows by the Sturm’s comparison theorem that w(r) has no
zeroes on (r1, 1).) The proof follows.

We recall that solution (λ, u) of (2.1) is called singular if (2.2) possesses
a nontrivial solution. The following lemma was proved in Korman [5].

Lemma 2.2 Let (λ, u) be a singular solution of (2.1). Then

∫ 1

0
f(u)wrn−1dr =

1

2λ
u′(1)w′(1).(2.5)

We shall say that a singular solution is regular singular if u′(1) < 0,
irregular singular if u′(1) = 0. By the Hopf’s boundary lemma we have
u′(1) < 0 in case f(0) ≥ 0. Using Lemma 2.2, it is easy to show that at
a regular singular solution the Crandall-Rabinowitz theorem applies, and
hence solution set is locally a simple curve, see [8] for more details. In
case of irregular singularity one may have a more complicated solution set
(including pitchfork bifurcation and symmetry breaking), which we do not
discuss in this work.

Next we study the linearized eigenvalue problem corresponding to any
solution of (2.2):

ϕ′′ +
n − 1

r
ϕ′ + λf ′(u)ϕ + µϕ = 0 on (0, 1), ϕ′(0) = ϕ(1) = 0.(2.6)

Comparing this to (2.2), we see that at any singular solution of (2.1) µ = 0
is an eigenvalue, corresponding to an eigenfunction ϕ = w. We shall need
the following generalization of Lemma 2.2.

Lemma 2.3 Let ϕ > 0 be a solution of (2.6) with µ ≤ 0. (I.e. ϕ is a
principal eigenfunction of (2.6).) Then

∫ 1

0
f(u)ϕrn−1dr ≥

1

2λ
u′(1)ϕ′(1).(2.7)

Proof. The function v = rur − ur(1) satisfies

∆v + λf ′(u)v + µv = µv − 2λf(u) − λf ′(u)u′(1) for |x| < 1,(2.8)

v = 0 on |x| = 1.
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Comparing (2.8) with (2.6), we conclude by the Fredholm alternative

µ
∫ 1
0 vϕrn−1dr − 2λ

∫ 1
0 f(u)ϕrn−1dr −(2.9)

λu′(1)
∫ 1
0 f ′(u)ϕrn−1dr = 0.

Integrating (2.6)

−λ

∫ 1

0
f ′(u)ϕrn−1dr = ϕ′(1) + µ

∫ 1

0
ϕrn−1dr.

Using this in (2.9), we have

2λ

∫ 1

0
f(u)ϕrn−1dr = µ

∫ 1

0
rurϕrn−1dr + u′(1)ϕ′(1),

and the proof follows.
We now define the Morse index of any solution of (2.1) to be the num-

ber of negative eigenvalues of (2.6). The following lemma is based on K.
Nagasaki and T. Suzuki ([11]).

Lemma 2.4 Assume that (λ, u) is a regular singular solution of (2.1) such
that w′(1) < 0 and

∫ 1

0
f ′′(u)w3rn−1dr < 0.(2.10)

Then at (λ, u) a turn to “the right” in (λ, u) “plane” occurs, and as we
follow the curve in the direction of decreasing u(0, λ), the Morse index is
increased by one.

Proof. To see that the turn is to the right, we observe that the function
τ(s), defined in Crandall-Rabinowitz theorem, satisfies τ(0) = τ ′(0) = 0 and

τ ′′(0) = −
λ

∫ 1
0 f ′′(u)w3rn−1dr

∫ 1
0 f(u)wrn−1dr

,(2.11)

see [8] for more details. By our assumption the numerator in (2.11) is
negative, while by Lemma 2.2 the denominator is positive. It follows that
τ ′′(0) > 0, and hence τ(s) is positive for s close to 0, which means that the
turn is to the right.

At a turning point one of the eigenvalues of (2.6) is zero. Assume it is
the `-th one, and denote µ = µe. Here µ = µ(s), and µ(0) = 0. We now
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write (2.6) in the corresponding PDE form and differentiate this equation
in s

∆ϕs + λf ′(u)ϕs + λ′f ′(u)ϕ + λf ′′(u)usϕ + µ′ϕ + µϕs = 0(2.12)

for |x| < 1, ϕs = 0 on |x| = 1.

At (λ, u) the Crandall-Rabinowitz theorem applies, and hence we have:
µ(0) = 0, ϕ(0) = w, λ′(0) = 0, and us(0) = −w (considering the chosen
parameterization). Here w is a solution of the linearized equation (2.2).
The equation (2.12) becomes

∆ϕs − λf ′′(u)w2 + λf ′(u)ϕs + µ′(0)w = 0.(2.13)

Multiplying (2.2) by ϕs, (2.13) by w, subtracting and integrating, we have

µ′(0) =
λ

∫ 1
0 f ′′(u)w3rn−1dr
∫ 1
0 w2rn−1dr

< 0.

It follows that across the turning point one of the positive eigenvalues crosses
into the negative region, increasing the Morse index by one.

The following lemma is due to T. Ouyang and J. Shi [12]. For complete-
ness we sketch an independent geometric proof.

Lemma 2.5 Assume that conditions (f1 − f3) hold. Then the function

f(u) =
f(u)

u − ρ
is nonincreasing for all u > ρ. Moreover, ρ is the smallest

number with such property.

Proof. The lemma asserts that the line joining the points (ρ, 0) and (u, f(u))
rotates clockwise as we increase u. The proof follows, given the concavity
properties of f(u).

In the following lemma we adapt an argument of E.N. Dancer [3].

Lemma 2.6 Assume that conditions (f1 − f4) hold. Then

ρf ′(ρ)

f(ρ)
> 1.(2.14)

Proof. By the definition of ρ

f ′(α)(α − ρ) − f(α) = 0.
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Using this and our last condition in (f4),

G(ρ) > G(α) = 1 +
ρf ′(α)

f(α)
> 1,

proving the lemma.
We now state the main result of this paper.

Theorem 2.1 Assume that conditions (f1-f5) are satisfied. If f(0) = 0
then there is a critical λ0, such that for λ < λ0 the problem (2.1) has no
nontrivial solutions, it has exactly one nontrivial solution for λ = λ0, and
exactly two nontrivial solutions for λ > λ0. Moreover, all solutions lie on a
single smooth solution curve, which for λ > λ0 has two branches denoted by
0 < u−(r, λ) < u+(r, λ), with u+(r, λ) strictly monotone increasing in λ and
limλ→∞ u+(r, λ) = c for r ∈ [0, 1). For the lower branch, limλ→∞ u−(r, λ) =
0 for r 6= 0, while u−(0, λ) > θ for all λ > λ0.

If f(0) < 0 then the problem (2.1) admits exactly one infinite curve
of positive solutions, which has exactly one turn (to the right). Any two
solutions on the curve corresponding to the same λ are strictly ordered. The
upper branch of this curve has the same properties as u+(r, λ) in the f(0) ≥ 0
case. In addition to this curve only the following curves of positive solutions
are possible (we call them submarines): they exist over bounded λ-intervals,
say λ < λ < λ, and lose positivity at λ and λ (i.e. at λ we have u′(1, λ) = 0
and u(r, λ) < 0 near r = 1 for λ > λ, and similarly at λ).For large λ there
exists exactly one positive solution. No submarines are possible if any non-
trivial solution of the linearized problem (2.2) is of one sign (e.g. in the
one-dimensional case).

Proof. We begin by noticing that existence of solutions under our con-
ditions follows by the Theorem 1.5 in P.L. Lions [10], see also [12]. Indeed
the result in [10] implies existence of a critical λ̄, so that for λ ≥ λ̄ there
exists a maximal positive solution of (1.1), while for λ > λ̄ there exists at
least two positive solutions. Next we remark that once properties of the
infinite curve of solutions are established, uniqueness of solutions for large λ

in case f(0) < 0 will follow similarly to [5]. Indeed, we showed in [5] that for
large λ the solutions must be uniformly close to c. Since solutions of (1.1)
are globally parameterized by u(0), see [2], it follows in view of the above ex-
istence result from [10], that there is an infinite solution curve with exactly
one turn, and no submarines are possible for large λ. Also we showed in [7]
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that no submarines are possible if any non-trivial solution of the linearized
problem (2.2) is of one sign.
We now consider two cases.

Case (i) θ ≥ ρ. By Lemma 2.1 any solution of the linearized problem
(2.2) is positive. This implies that only turns to the right are possible. In
case f(0) ≥ 0 the theorem follows the same way as in P. Korman, Y. Li and
T. Ouyang [8], see also T. Ouyang and J. Shi [12] and J. Wei [14]. In case
f(0) < 0 the theorem follows from the Theorem 2.4 in Korman [5]. In both
cases we can compute the direction of bifurcation since we can prove that

∫ 1

0
f ′′(u)w3rn−1dr < 0.(2.15)

Only conditions (f1 - f3) are needed for both cases.

Case (ii) θ < ρ. We define a family of functions ft(u), depending on a
positive parameter t,

ft = f(u)ht(u), where ht(u) =
c − t − u

c − u
.

Clearly both conditions (f1) and (f2) are satisfied for ft. (With the obvious
modification that the second zero of ft(u) is now c−t.) An easy computation
shows that the condition (f5) ensures that the condition (f3) is satisfied as
well. As for (f4), we compute

Gt(u) = G(u) +
uh′

t

ht

< G(u) < 1 for u ∈ (0, b),

so that the first condition in (f4) is satisfied, and

G′

t = G′ +
h′′

t htu + h′

tht − h′

t
2
u

u2
< G′.

The last inequality means that Gt is a sum of G and a decreasing function.
We shall show next that ft satisfies the other conditions in (f4) as well.

We define θt by
∫ θt

0 ft(u)du = 0, θ0 = θ. We know that f ′′

t (u) can change

sign only once at some u = αt. As before we define ρt = αt −
f(αt)
f ′(αt)

. If t > τ

then

ft(u) − fτ (u) =
τ − t

c − u
f(u)

{

> 0 on (0, b)
< 0 on (b, c),
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It easily follows that θt is increasing in t. Since ft(u) = f(u) − t
c−u

f(u) ≡
f(u) − th(u), and h′′(u) > 0 for u ∈ (b, α), it follows easily that αt moves
monotonically to the left, i.e. αt is decreasing in t. We claim that ρt is
decreasing in t as well. Since it is easier to work with derivatives rather
than differences, let us assume just for simplicity of presentation that f is
of class C3, which will imply that the derivative dα

dt
≡ αt is defined, and by

the above αt < 0. We also write ft(αt) ≡ f̄(α(t), t), and ρ = α −
f̄(α, t)

f̄u(α, t)
.

Differentiate this (using that f̄uu(α(t), t) = 0)

ρt = αt −

(

f̄uαt + f̄t

)

f̄u − f̄
(

f̄uuαt + f̄ut

)

f̄2
u

=
−f̄tf̄u + f̄ f̄ut

f̄2
u

.(2.16)

Since f̄t = − f
c−u

, f̄u = f ′ − tf
(c−u)2 − tf ′

c−u
, and f̄ut = − f

(c−u)2 − f ′

c−u
, we

compute

−f̄tf̄u + f̄ f̄ut = −
tf2

(c − u)3
−

tff ′

(c − u)2
−

f2

(c − u)2
,

which is negative when u ∈ (b, α). By (2.16) we see that ρt is decreasing
in t, as claimed. It follows that as we increase t the interval (θt, ρt) shrinks
with both of its ends moving toward each other. Since G′

t(u) is a sum of
G(u) and a decreasing function, it follows that Gt is decreasing on (θt, ρt),
verifying the second condition in (f4). Likewise, the other two conditions in
(f4) are preserved, when a decreasing function is added to G.

As we increase t the points θt and ρt will move together. Hence we must
reach a point such that θt0 = ρt0 . Notice that for all 0 ≤ t ≤ t0 the function
ft satisfies all of the conditions (f1 - f4). For t = t0 by Case (i) the result
is true. Our goal is to show that the same picture persists as we decrease t

from t0 back to zero, where f0 = f , giving the desired result.
At t = t0 solution of the linearized equation is positive, and hence the

inequality (2.15) holds. This is precisely the “condition A” of E. N. Dancer
[2]. It follows by [2] that near the turning point the solution curve looks the
same, and in particular the turning point itself is perturbed only slightly.
We denote the turning point by ut, and by wt the corresponding eigenvector.
It is known that simple eigenvalues of elliptic operators vary continuously,
and the same is true for the corresponding eigenvectors, see M. G. Crandall
and P. H. Rabinowitz [1]. It follows that the linearized equation at ut has an
eigenvalue µt close to zero with corresponding eigenfunction zt which is close
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to wt0 . (We assume that all eigenfunctions are normalized to have the slope
of say −1 at r = 1.) But eigenvalues of elliptic operator are discrete, and zero
is an eigenvalue of the linearized equation at ut (since ut is a turning point).
It follows that µt = 0 and zt = wt. We conclude that the eigenfunction
corresponding to the turning point varies continuously. It follows that this
eigenfunction has to stay positive. (Indeed, uniqueness theorem for ODE
precludes w′

t(ξ) = 0 for any ξ ∈ [0, 1], which would have to occur in order
for w to cease being positive. For ξ ∈ (0, 1] this is a standard result, while
ξ = 0 case is covered in L.A. Peletier and J. Serrin [13].)

We show next that having wt > 0 is enough to show that the entire
solution curve has the desired shape. For simplicity we drop the subscript
t when working with ft. By the Crandall-Rabinowitz Theorem near the
turning point ut the solution set has two branches u−(r, λ) < u+(r, λ), r ∈
[0, 1), λ > λt. By the Crandall-Rabinowitz Theorem we also conclude

u+
λ (r, λ) > 0 for λ close to λt (for all r ∈ [0, 1)).(2.17)

Arguing like in P. Korman, Y. Li and T. Ouyang [8] we show that the same
inequality holds for all λ > λt (until a possible turn), see also T. Ouyang
and J. Shi [12] and J. Wei [14]. We claim next that solutions u+(r, λ) are
stable, i.e. all eigenvalues of (2.6) are negative. Indeed, let µ ≤ 0 be an
eigenvalue of (2.6) and ϕ > 0 the corresponding eigenvector. The equation
for uλ is

u′′

λ + n−1
r

u′

λ + λf ′(u)uλ + f(u) = 0 for r ∈ (0, 1],(2.18)

u′

λ(0) = uλ(1) = 0.

¿From the equations (2.6) and (2.18) we obtain

rn−1(ϕ′uλ − u′

λϕ)|10 = −µ

∫ 1

0
ϕuλrn−1dr +

∫ 1

0
f(u)ϕrn−1dr.(2.19)

The right hand side in (2.19) is positive by our assumptions, inequality
(2.17), and Lemma 2.2, while the quantity on the left is zero, a contradiction.

We show next that for λ > λt both branches u+(r, λ) and u−(r, λ) have
no critical points. Indeed, if we had a critical point on the upper branch
u+(r, λ) at some λ > λt, then by the Crandall-Rabinowitz Theorem solu-
tion of the linearized equation would be positive at λ = λ. But then we
know precisely the structure of solution set near (λ, u+(r, λ)), namely it is
a parabola-like curve with a turn to the right. This is impossible, since
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solution curve has arrived at this point from the left. Turning to the lower
branch u−(r, λ), we know by Lemma 2.3 that each solution on this branch
has Morse index of one, until a possible critical point. At the next possible
turning point one of the eigenvalues becomes zero, which means that the
Morse index of the turning point is either zero or one. If Morse index is
zero, it means that solutions of the corresponding linearized equation are
of one sign, and we obtain a contradiction the same way as on the upper
branch. If Morse index = 1, it means that zero is a second eigenvalue, i.e.
wt(r) changes sign exactly once, but that is ruled out by the results of M.
K. Kwong and L. Zhang [9]. Indeed, condition (f4) implies that for any
v ∈ (θt, ρt) the horizontal line y = γ, with γ ≡ G(v) intersects y = G(u)
exactly once on the entire interval (0, c). It follows that for each v ∈ (θt, ρt)
there exists a constant γ > 1 such that

γf(u) − uf ′(u)

{

< 0 for all u < v

> 0 for all u > v,
(2.20)

i.e. the conclusion of Lemma 7 in M. K. Kwong and L. Zhang [9] holds.
(Recall that if wt(r) is not of one sign, its first zero, call it r0 has the
property that u(r0) ∈ (θt, ρt). We then use that G(ρt) > 1 by Lemma 2.6.)
We now select v = u(r0) and the corresponding γ so that the inequality
(2.20) holds. By Lemma 8 in the same paper [9], wt(r) cannot have its
second zero at r = 1, which is a contradiction, and the claim follows. (We
are using the inequality (2.30) of [9].)

We now define S as the set of points t in [0, t0], such that our solution
curve has exactly one critical point, at which the condition

∫ 1
0 f ′′(u)w3rn−1 dr

< 0 holds. Our previous discussion shows that the set S is open in [0, t0].
We claim that S is also closed in [0, t0]. Notice that all eigenvalues of (2.6)
are simple (as easily follows by the uniqueness result for initial value prob-
lems). It follows that the eigenvector wt can be chosen to be continuous,
and if we have a sequence of {tn} ∈ S with tn → t, then wt > 0. As above,
the solution curve at t has the desired properties, i.e. t ∈ S. It follows that
S = [0, t0], and at t = 0 we obtain the conclusion of our theorem.

Remark. It is easy to check that the theorem applies in case of cubic,
f = u(u − b)(c − u). Our deformation was based on this case, since for a
cubic ft = u(u− b)(c− t−u). One could try other choices of ht(u), possibly
relaxing or even removing our condition (f5).
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We now give an example involving f(0) < 0. We consider f(u) = (u +
a)(u − b)(c − u), with some positive constants a, b and c. Writing

G(u) = u (ln f(u))′ = 3 −
a

u + a
+

b

u − b
−

c

c − u
,

we see that G(u) < 1 on (0, b) (the third and the fourth terms are less than
−1, and the second is negative). We observe also

G′ =
a

(u + a)2
−

b

(u − b)2
−

c

(c − u)2
<

1

4u
−

b

(u − b)2
−

c

(c − u)2
,

where we have optimized the first term on the right in a. We shall have
G′(u) < 0 on (b, c), provided we assume

b

(u − b)2
+

c

(c − u)2
>

1

4u
for all u ∈ (b, c).(2.21)

It is easy to see that this is not a very restrictive condition on b and c. Next
we claim that condition (f2) is verified, provided c > 2b+a. Indeed, defining
g(u) ≡ u(u − b − a)(c + a − u) we recognize our nonlinearity as a shifted
function (u+a)(u−b)(c−u) = g(u+a). For g(u) the condition (f2) is satisfied
since c+a > 2(b+a). When we shift g(u) to the left, we keep the area of the
positive hump fixed, while decreasing the area of the negative hump, so that
(f2) continues to hold. Alternatively, by rescaling u = av, and examining
the resulting equation, we easily see that condition (f2) is satisfied for all
a > 0, provided c > 3b. Finally, the function ft(u) = (u+a)(u−b)(c− t−u)
changes concavity only once at αt = −a+b+c−t

3 . (The possibility of αt < 0
poses no problem. Then f ′′(u) < 0 for all u > 0, and the exact multiplicity
result is even easier to prove, see [5].) We have proved the following theorem.

Theorem 2.2 With positive constants a, b and c assume that either c >

2b + a, or c > 3b holds, and the condition (2.21) is satisfied. Then for the
problem

∆u + λ(u + a)(u − b)(c − u) = 0 for |x| < 1, u = 0 on |x| = 1,

the second statement of the Theorem 2.1 applies.

Remark. These conditions on a, b and c are not optimal, as we sac-
rificed some generality for the sake of simplicity. We shall now give some
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completely explicit conditions on the coefficients, sacrificing some more gen-
erality. Minimizing the quantity on the left in (2.21), and maximizing the
one on the right, we see that (2.21) is satisfied, provided that

(1 +
c

2

3

b
2

3

)2
bc

2

3 + cb
2

3

c
2

3 (c − b)2
>

1

4b
.

Setting c = αb, we simplify this to

(1 + α
2

3 )2(1 + α
1

3 ) >
1

4
(α − 1)2.

Denoting α0 to be solution of (1 + α
2

3 )2(1 + α
1

3 ) = 1
4(α − 1)2, α0 ' 140.74,

we see that we can start with arbitrary b > 0, then take c = αb with either
α ∈ (3, α0) and arbitrary a > 0, or α ∈ (2, α0), and a < c − 2b.

Similarly to varying c we can also vary the root b, in particular sending
it to zero. I.e. we can cover the f ′(0) = 0 case. For simplicity we state the
result for the case of cubic, although one can easily generalize.

Theorem 2.3 Consider the problem

∆u + λu2(c − u) = 0 for |x| < 1, u = 0 on |x| = 1,

with any constant c > 0. Then the first statement of the Theorem 2.1 applies.
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