Spectrum of one dimensional p-Laplacian Operator with indefinite weight

A. Anane¹, O. Chakrone¹ and M. Moussa²

¹Département de mathématiques, Faculté des Sciences, Université Mohamed I^{er}, Oujda. Maroc. e-mail: anane@sciences.univ-oujda.ac.ma chakrone@sciences.univ-oujda.ac.ma
²Départment de mathématiques, Faculté des Sciences, Université Ibn Tofail, Kénitra. Maroc. e-mail: moussa@univ-ibntofail.ac.ma

Abstract

This paper is concerned with the nonlinear boundary eigenvalue problem

 $-(|u'|^{p-2}u')' = \lambda m |u|^{p-2}u \qquad u \in I =]a, b[, \quad u(a) = u(b) = 0,$

where p > 1, λ is a real parameter, m is an indefinite weight, and a, b are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight m and the domain I, the k-th eigenfunction, corresponding to the k-th eigenvalue, has exactly k - 1 zeros in (a, b). At the end, we give a simple variational formulation of eigenvalues.

MSC 2000 35P30.

Key words and phrases: p-Laplacian spectrum, simplicity, isolation, strict monotonicity property, zeros of eigenfunctions, variational formulation.

1 Introduction

The spectrum of the *p*-Laplacian operator with indefinite weight is defined as the set $\sigma_p(-\Delta_p, m)$ of $\lambda := \lambda(m, I)$ for which there exists a nontrivial (weak) solution $u \in W_0^{1,p}(\Omega)$ of problem

$$\left(\mathcal{V}.\mathcal{P}_{(m,\Omega)}\right) \qquad \left\{ \begin{array}{rrr} -\Delta_p u &=& \lambda m |u|^{p-2} u \quad in \quad \Omega, \\ u &=& 0 \qquad on \quad \partial\Omega, \end{array} \right.$$

where p > 1, Δ_p : is the p-Laplacian operator, defined by $\Delta_p u := div(|\nabla u|^{p-2}\nabla u)$, in a bounded domain $\Omega \subset \mathbb{R}^N$, and $m \in M(\Omega)$ is an indefinite weight, with

$$M(\Omega) := \{ m \in L^{\infty}(\Omega) / meas \{ x \in \Omega, \ m(x) > 0 \} \neq 0 \}.$$

The values $\lambda(m, \Omega)$ for which there exists a nontrivial solution of $(\mathcal{V}.\mathcal{P}_{(m,\Omega)})$ are called eigenvalues and the corresponding solutions are the eigenfunctions. We will denote $\sigma_p^+(-\Delta_p, m)$ the set of all positive eigenvalues, and by $\sigma_p^-(-\Delta_p, m)$ the set of negative eigenvalues.

For p = 2 ($\Delta_p = \Delta$ Laplacian operator) it is well known (cf[4, 7, 8]) that,

- $\sigma_2^+(-\Delta, m) = \{\mu_k(m, \Omega), k = 1, 2, \cdots\}$, with $0 < \mu_1(m, \Omega) < \mu_2(m, \Omega) \le \mu_3(m, \Omega) \le \cdots \rightarrow +\infty, \ \mu_k(m, \Omega)$ repeated according to its multiplicity.
- The k-th eigenfunction corresponding to $\mu_k(m, \Omega)$, has at most k nodal domains.
- The eigenvalues $\mu_k(m, \Omega)$, $k \ge 1$, verify the strict monotonicity property (SMP in brief), i.e if $m, m' \in M(\Omega), m(x) \le m'(x)$ a.e in Ω and m(x) < m'(x) in some subset of nonzero measure, then $\mu_k(m, \Omega) > \mu_k(m', \Omega)$.
- Equivalence between the SMP and the unique continuation one.

For $p \neq 2$ (nonlinear problem), it is well known that the critical point theory of Ljusternik-Schnirelmann (*cf* [15]), provides a sequence of eigenvalues for those problems. Whether or not this sequence, denoted $\lambda_k(m, \Omega)$, constitutes the set of all eigenvalues is an open question when $N \geq 1$, $m \neq 1$, and $p \neq 2$. The principal results for the problem seems to be given in (*cf* [1, 2, 3, 5, 6, 9, 10, 11, 12, 13]), where is shown that there exists a sequence of eigenvalues of $(\mathcal{V}.\mathcal{P}_{(m,\Omega)})$ given by,

$$\lambda_n(m,\Omega) = \inf_{K \in \mathcal{B}_n} \max_{v \in K} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} m |v|^p \, dx} \tag{1}$$

 $\mathcal{B}_n = \{K, \text{ symmetrical compact}, 0 \notin K, \text{ and } \gamma(K) \geq n \}, \gamma \text{ is the genus function, or equivalently,}$

$$\frac{1}{\lambda_n(m,\Omega)} = \sup_{K \in \mathcal{B}_n} \min_{v \in K} \frac{\int_{\Omega} m|v|^p \, dx}{\int_{\Omega} |\nabla v|^p \, dx}$$
(2)

which can be written simply,

$$\frac{1}{\lambda_n(m,\Omega)} = \sup_{K \in \mathcal{A}_n} \min_{v \in K} \int_{\Omega} m |v|^p \, dx \tag{3}$$

 $\mathcal{A}_n = \{K \cap S, K \in \mathcal{B}_n\}$. S is the unit sphere of $W_0^{1,p}(\Omega)$ endowed with the usual norm $(\|v\|_{1,p}^p = \int_{\Omega} |\nabla v|^p dx)$, the equation (2) is the generalized Rayleigh quotient for the problem $(\mathcal{V}.\mathcal{P}_{(m,\Omega)})$. The sequence is ordered as $0 < \lambda_1(m,\Omega) < \lambda_2(m,\Omega) \leq \lambda_3(m,\Omega) \leq \cdots \rightarrow +\infty$. The first eigenvalue $\lambda_1(m,\Omega)$ is of special importance. We give some of its properties which will be of interest for us (cf[1]). First, $\lambda_1(m,\Omega)$ is given by,

$$\frac{1}{\lambda_1(m,\Omega)} = \sup_{v \in S} \int_{\Omega} m|v|^p \, dx = \int_{\Omega} m|\phi_1|^p \, dx \tag{4}$$

 $\phi_1 \in S$ is any eigenfunction corresponding to $\lambda_1(m, \Omega)$, for this reason $\lambda_1(m, \Omega)$ is called the principal eigenvalue, also we know that $\lambda_1(m, \Omega) > 0$, simple (i.e. if v and u are two eigenfunctions corresponding to $\lambda_1(m, \Omega)$ then $v = \alpha u$ for some $\alpha \in \mathbb{R}$), isolate (i.e there is no eigenvalue in]0, a[for some $a > \lambda_1(m, \Omega)$, finally it is the unique eigenvalue which has an eigenfunction with constant sign. We denote $\phi_1(x)$ the positive eigenfunction corresponding to $\lambda_1(m, \Omega)$, $\phi_1(x)$ verifies the strong maximum principle (cf [17]), $\frac{\partial \phi_1}{\partial n}(x) < 0$, for x in $\partial \Omega$ satisfying the interior ball condition.

In [14] Otani considers the case N = 1, $m(x) \equiv 1$, and proves that , $\sigma_p(-\Delta_p, 1) = \{\mu_k(m, I), k = 1, 2, \dots\}$, the sequence can be ordered as $0 < \mu_1(m, \Omega) < \mu_2(m, \Omega) < \mu_3(m, \Omega) < \dots \rightarrow +\infty$, the k-th eigenfunction has exactly k-1 zeros in I = (a, b). In [10] Elbert proved the same results in the case N = 1, $m(x) \ge 0$ and continuous, the author gives an asymptotic relation of eigenvalues.

In this paper we consider the general case, N = 1 and m(x) can change sign and is not necessarily continuous. We prove that $\sigma_p^+(-\Delta_p, m) = \{\lambda_k(m, I), k = 1, 2, \dots\}$, the sequence can be ordered as $0 < \lambda_1(m, \Omega) < \lambda_2(m, \Omega) < \lambda_3(m, \Omega) < \dots < \lambda_k(m, I) \to +\infty$ as $k \to +\infty$, the k-th eigenfunction has exactly k - 1 zeros in I = (a, b). The eigenvalues verify the SMP with respect to the weight m and the domain I.

In the next section we denote by: $M(I) := \{m \in L^{\infty}(I) / meas\{x \in I, m(x) > 0\} \neq 0\},\ m_{/J}$ the restriction of m on J for a subset J of $I, Z(u) = \{t \in I / u(t) = 0\}$, a nodal domain ω of u is a component of $I \setminus Z(u)$, where $(u, \lambda(m, I))$ is a solution of $(\mathcal{V}.\mathcal{P}_{(m,I)})$. $u_{/\omega}$ is the extension, by zero, on I of $u_{/\omega}$

2 Results and technical Lemmas

We first state our main results

Theorem 1 Assume that N=1 ($\Omega =]a, b[=I)$, $m \in M(I)$ such that $m \not\equiv 1$ and $p \neq 2$, we have

- 1. Every eigenfunction corresponding to the k-th eigenvalue $\lambda_k(m, I)$, has exactly k-1 zeros.
- 2. For every k, $\lambda_k(m, I)$ is simple and verifies the strict monotonicity property with respect to the weight m and the domain I.
- 3. $\sigma_p^+(-\Delta_p, m) = \{\lambda_k(m, I), k = 1, 2, \cdots\}, \text{ for any } m \in M(I).$ The eigenvalues are ordered as $0 < \lambda_1(m, \Omega) < \lambda_2(m, \Omega) < \lambda_3(m, \Omega) < \cdots > \lambda_k(m, I) \to +\infty \text{ as } k \to +\infty.$

Corollary 1 For any integer n, we have the simple variational formulation,

$$\frac{1}{\lambda_n(m,I)} = \sup_{F \in \mathcal{F}_n} \min_{F \cap S} \int_a^b m |v|^p \, dx \tag{5}$$

 $\mathcal{F}_n = \{ F / F \text{ is a } n \text{ dimensional subspace of } W_0^{1,p}(I) \}.$

For the proof of Theorem 1 we need some technical Lemmas.

Lemma 1 Let $m, m' \in M(I), m(x) \leq m'(x)$, then for any $n, \lambda_n(m', I) \leq \lambda_n(m, I)$

Proof Making use of equation (2), we obtain immediately $\lambda_n(m', I) \leq \lambda_n(m, I)$.

Lemma 2 Let $(u, \lambda(m, I))$ be a solution of $(\mathcal{V}.\mathcal{P}_{(m,I)})$, $m \in M(I)$, then $m_{/\omega} \in M(\omega)$ for any nodal domain ω of u.

Proof Let ω be a nodal domain of u and multiply $(\mathcal{V}.\mathcal{P}_{(m,I)})$ by $u_{i\omega}$ so that we obtain

$$0 < \int_{\omega} |u'|^p \, dx = \lambda(m, I) \int_{\omega} m |u|^p \, dx \,. \tag{6}$$

This completes the proof.

Lemma 3 The restriction of a solution $(u, \lambda(m, I))$ of problem $(\mathcal{V}.\mathcal{P}_{(m,I)})$, on a nodal domain ω , is an eigenfunction of problem $(\mathcal{V}.\mathcal{P}_{(m/\omega,\omega)})$, and we have $\lambda(m, I) = \lambda_1(m/\omega, \omega)$.

Proof Let $v \in W_0^{1,p}(\omega)$ and let \tilde{v} be the extension by zero of v on Ω . It is obvious that $\tilde{v} \in W_0^{1,p}(\Omega)$. Multiply $(\mathcal{V}.\mathcal{P}_{(m,\Omega)})$ by \tilde{v}

$$\int_{\omega} |u'|^{p-2} u'v' \, dx = \lambda(m, I) \int_{\omega} m |u|^{p-2} uv \, dx \tag{7}$$

for all $v \in W_0^{1,p}(\omega)$. Hence the restriction of u in ω is a solution of problem $(\mathcal{V}.\mathcal{P}_{(m_{/\omega},\omega)})$ with constant sign. We then have $\lambda(m,\Omega) = \lambda_1(m_{/\omega},\omega), \omega$, which completes the proof.

Lemma 4 Each solution $(u, \lambda(m, I))$ of the problem $(\mathcal{V}.\mathcal{P}_{(m,I)})$ has a finite number of zeros.

Proof This Lemma plays an essential role in our work. We start by showing that u has a finite number of nodal domains. Assume that there exists a sequence I_k , $k \ge 1$, of nodal domains (intervals), $I_i \cap I_j = \emptyset$ for $i \ne j$. We deduce by Lemmas 3 and 1, respectively, that

$$\lambda(m,I) = \lambda_1(m,I_k) \ge \lambda_1(C,I_k) = \frac{\lambda_1(1,I_k)}{C} = \frac{\lambda_1(1,[0,1[))}{C(meas(I_k))^p},$$
(8)

where $C = ||m||_{\infty}$.

From equation (8) we deduce $(meas(I_k)) \ge (\frac{\lambda_1(1,[0,1[))}{\lambda(m,I)C})^{\frac{1}{p}}$, for all k, so

$$meas(I) = \sum_{k \ge 1} (meas(I_k)) = +\infty.$$

This yields a contradiction.

Let $\{I_1, I_2, \dots, I_k\}$ be the nodal domains of u. Put $I_i =]a_i, b_i[$, where $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \dots a_k < b_k \leq b$. It is clear that the restriction of u on $]a, b_1[$ is a nontrivial eigenfunction with constant sign corresponding to $\lambda(m, I)$. The maximum principle (cf [17]) yields u(t) > 0 for all $t \in]a, b_1[$, so $a = a_1$. By a similar argument we prove that $b_1 = a_2, b_2 = a_3, \dots b_k = b$, which completes the proof.

Lemma 5 (cf [16]) Let u be a solution of problem $(\mathcal{V}.\mathcal{P}_{(m,\Omega)})$ and $u \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ then $u \in C^{1,\alpha}(\Omega) \cap C^1(\overline{\Omega})$ for some $\alpha \in (0,1)$.

3 Proof of main results

Proof of Theorem 1

For n = 1, we know that $\lambda_1(m, I)$ is simple, isolate and the corresponding eigenfunction has constant sign. Hence it has no zero in (a, b) and it remains to prove the SMP.

Proposition 1 $\lambda_1(m, I)$ verifies the strict monotonicity property with respect to weight m and the domain I. i.e If $m, m' \in M(I), m(x) \leq m'(x)$ and m(x) < m'(x) in some subset of I of nonzero measure then,

$$\lambda_1(m', I) < \lambda_1(m, I) \tag{9}$$

and, if J is a strict sub interval of I such that $m_{/J} \in M(J)$ then,

$$\lambda_1(m, I) < \lambda_1(m_{/J}, J). \tag{10}$$

Proof Let $m, m' \in M(I)$ as in Proposition 1 and recall that the principal eigenfunction $\phi_1 \in S$ corresponding to $\lambda_1(m, I)$ has no zero in I; i.e $\phi_1(t) \neq 0$ for all $t \in I$. By (3), we get

$$\frac{1}{\lambda_1(m,I)} = \int_I m |\phi_1|^p \, dx < \int_I m' |\phi_1|^p \, dx \le \sup_{v \in S} \int_I m' |v|^p \, dx = \frac{1}{\lambda_1(m',I)}.$$
 (11)

Then inequality (9) is proved. To prove inequality (10), let J be a strict sub interval of I and $m_{/J} \in M(J)$. Let $u_1 \in S$ be the (principal) positive eigenfunction of $(\mathcal{V}.\mathcal{P}_{(m,J)})$ corresponding to $\lambda_1(m_{/J}, J)$, and denote by \tilde{u}_1 the extension by zero on I. Then

$$\frac{1}{\lambda_1(m_{/J},J)} = \int_J m|u_1|^p \, dx = \int_I m|\tilde{u}_1|^p \, dx < \sup_{v \in S} \int_I m|v|^p \, dx = \frac{1}{\lambda_1(m,I)}.$$
 (12)

The last strict inequality holds from the fact that \tilde{u}_1 vanishes in I/J so can't be an eigenfunction corresponding to the principal eigenvalue $\lambda_1(m, I)$.

For n = 2 we start by proving that $\lambda_2(m, I)$ has a unique zero in (a, b).

Proposition 2 There exists a unique real $c_{2,1} \in I$, for which we have $Z(u) = \{c_{2,1}\}$ for any eigenfunction u corresponding to $\lambda_2(m, I)$. For this reason, we will say that $c_{2,1}$ is the zero of $\lambda_2(m, I)$.

Proof Let u be an eigenfunction corresponding to $\lambda_2(m, I)$. u changes sign in I. Consider $I_1 =]a, c[$ and $I_2 =]c', b[$ two nodal domains of u, by Lemma 3, $\lambda_1(m_{/I_1}, I_1) = \lambda_2(m, I) = \lambda_1(m_{/I_2}, I_2)$. Assume that c < c', choose $d \in]c, c'[$ and put $J_1 =]a, d[, J_2 =]d, b[$; hence $J_1 \cap J_2 = \emptyset$, and for $i = 1, 2, I_i \subset J_i$ strictly, and $m_{/J_i} \in M(J_i)$. Making use of Lemma 3, by (10), we get

$$\lambda_1(m_{/J_1}, J_1) < \lambda_1(m_{/I_1}, I_1) = \lambda_2(m, I)$$
(13)

and

$$\lambda_1(m_{/J_2}, J_2) < \lambda_1(m_{/I_2}, I_2) = \lambda_2(m, I).$$
(14)

Let $\phi_i \in S$ be an eigenfunction corresponding to $\lambda_1(m_{J_i}, J_i)$, by (4) we have for i = 1, 2

$$\frac{1}{\lambda_1(m,J_i)} = \int_{J_i} m |\phi_i|^p \, dx \tag{15}$$

 $\tilde{\phi}_i$ is the extension by zero of ϕ_i on *I*. Consider the two dimensional subspace $F = \langle \tilde{\phi}_1, \tilde{\phi}_2 \rangle$ and put $K_2 = F \cap S \subset W_0^{1,p}(I)$. Obviously $\gamma(K_2) = 2$ and we remark that for $v = \alpha \tilde{\phi}_1 + \beta \tilde{\phi}_2$, $\|v\|_{1,p} = 1 \iff |\alpha|^p + |\beta|^p = 1$. Hence by (3), (13), (14) and (15) we obtain,

$$\frac{1}{\lambda_{2}(m,I)} \geq \min_{v \in K_{2}} \int_{I} m |v|^{p} dx
= \min_{v = \alpha \tilde{\phi}_{1} + \beta \tilde{\phi}_{2} \in K_{2}} (|\alpha|^{p} \int_{J_{1}} m |\phi_{1}|^{p} + |\beta|^{p} \int_{J_{2}} m |\phi_{2}|^{p})
= |\alpha_{0}|^{p} \int_{J_{1}} m |\phi_{1}|^{p} + |\beta_{0}|^{p} \int_{J_{2}} m |\phi_{2}|^{p})
= \frac{|\alpha_{0}|^{p}}{\lambda_{1}(m_{/J_{1}},J_{1})} + \frac{|\alpha_{0}|^{p}}{\lambda_{1}(m_{/J_{2}},J_{2})}
> \frac{|\alpha_{0}|^{p} + |\beta_{0}|^{p}}{\lambda_{2}(m,I)}
= \frac{1}{\lambda_{2}(m,I)},$$

a contradiction; hence c = c'. On the other hand, let v be another eigenfunction corresponding to $\lambda_2(m, I)$. Denote by d its unique zero in (a, b). Assume, for example, that c < d. By Lemma 3 and relation (10), we get

$$\lambda_2(m, I) = \lambda_1(m_{/]a, d[},]a, d[) < \lambda_1(m_{/]a, c[},]a, c[) = \lambda_2(m, I).$$
(16)

This is a contradiction so c = d. We have proved that every eigenfunction corresponding to $\lambda_2(m, I)$ has one, and only one, zero in (a, b), and that the zero is the same for all eigenfunctions, which completes the proof of the Proposition.

Lemma 6 $\lambda_2(m, I)$ is simple, hence $\lambda_2(m, I) < \lambda_3(m, I)$.

Proof Let u and v be two eigenfunctions corresponding to $\lambda_2(m, I)$. By Lemma 3 the restrictions of u and v on $]a, c_{2,1}[$ and $]c_{2,1}, b[$ are eigenfunctions corresponding to $\lambda_1(m_{/]a,c_{2,1}[},]a, c_{2,1}[)$ and $\lambda_1(m_{/]c_{2,1},b[},]c_{2,1}, b[)$, respectively. Making use of the simplicity of the first eigenvalue, we get $u = \alpha v$ in $]a, c_{2,1}[$ and $u = \beta v$ in $]c_{2,1}, b[$. But both of u and v are eigenfunctions, so then by Lemma 5, there are $C^1(I)$. The maximum principle (cf [17]) tell us that $u'(c_{2,1}) \neq 0$, so $\alpha = \beta$. Finally, by the simplicity of $\lambda_2(m, I)$ and the theorem of multiplicity (cf [15]) we conclude that $\lambda_2(m, I) < \lambda_3(m, I)$.

Proposition 3 $\lambda_2(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Proof Let $m, m' \in M(I)$ such that, $m(x) \leq m'(x)$ a.e in I and m(x) < m'(x) in some subset of nonzero measure. Let $c_{2,1}$ and $c'_{2,1}$ be the zeros of $\lambda_2(m, I)$ and $\lambda_2(m', I)$ respectively. We distinguish three cases :

1. $c_{2,1} = c'_{2,1} = c$, then $meas(\{x \in I/m(x) < m'(x) \cap]a, c[\}) \neq 0$, or $meas(\{x \in I/m(x) < m'(x) \cap]c, b[\}) \neq 0$, by Lemma 3 and (9) we obtain

$$\lambda_2(m', I) = \lambda_1(m'_{|a,c[},]a, c[) < \lambda_1(m_{|a,c[},]a, c[) = \lambda_2(m, I),$$
(17)

or

$$\lambda_2(m', I) = \lambda_1(m'_{]c,b[},]c, b[) < \lambda_1(m_{]c,b[},]c, b[) = \lambda_2(m, I).$$
(18)

2. $c_{2,1} < c'_{2,1}$, by Lemmas 1, 3 and (10), we get

$$\lambda_{2}(m',I) = \lambda_{1}(m'_{/]a,c'_{2,1}[},]a,c'_{2,1}[) \leq \lambda_{1}(m_{/]a,c'_{2,1}[},]a,c'_{2,1}[) \\ < \lambda_{1}(m_{/]a,c_{2,1}[},]a,c_{2,1}[) = \lambda_{2}(m,I).$$
(19)

3. $c'_{2,1} < c_{2,1}$, as before, by Lemmas 1, 3 and (10), we have

$$\lambda_{2}(m',I) = \lambda_{1}(m'_{/]c'_{2,1},b[},]c'_{2,1},b[) \leq \lambda_{1}(m_{/]c'_{2,1},b[},]c'_{2,1},b[) < \lambda_{1}(m_{/]c_{2,1},b[},]c_{2,1},b[) = \lambda_{2}(m,I).$$

$$(20)$$

For the SMP with respect to the domain, put J =]c, d[a strict sub interval of I with $m_{/J} \in M(J)$, and denote $c'_{2,1}$ the zero of $\lambda_2(m_{/J}, J)$. As in the SMP with respect to the weight, three cases are distinguished:

1. $c_{2,1} = c'_{2,1} = l$, then]c, l[is a strict sub interval of]a, l[or]l, d[is a strict sub interval of]l, b[. By Lemma 3 and (10), we get

$$\lambda_2(m, I) = \lambda_1(m_{/]a, l[},]a, l[) < \lambda_1(m_{/]c, l[},]c, l[) = \lambda_2(m_{/J}, J)$$
(21)

or

$$\lambda_2(m, I) = \lambda_1(m_{/]l, b[},]l, b[) < \lambda_1(m_{/]l, d[},]l, d[) = \lambda_2(m_{/J}, J).$$
(22)

2. $c_{2,1} < c'_{2,1}$, again by Lemma 3 and (10), we obtain

$$\lambda_2(m,I) = \lambda_1(m_{/]c_{2,1},b[},]c_{2,1}, b[) < \lambda_1(m_{/]c_{2,1}',d[},]c_{2,1}', b[) = \lambda_2(m_{/J}, J).$$
(23)

3. $c'_{2,1} < c_{2,1}$, for the same reason as in the last case, we get

$$\lambda_2(m, I) = \lambda_1(m_{/]a, c_{2,1}[},]a, c_{2,1}[) < \lambda_1(m_{/]c, c'_{2,1}[},]c, c_{2,1}[) = \lambda_2(m_{/J}, J).$$
(24)

The proof is complete.

Lemma 7 If any eigenfunction u corresponding to some eigenvalue $\lambda(m, I)$ is such that $Z(u) = \{c\}$ for some real number c, then $\lambda(m, I) = \lambda_2(m, I)$.

Proof We shall prove that $c = c_{2,1}$. Assume, for example, that $c < c_{2,1}$. By Lemma 1 and (10) we get

$$\lambda(m, I) = \lambda_1(m_{/]c, b[},]c, b[) < \lambda_1(m_{/]c_{2,1}, b[},]c_{2,1}, b[) = \lambda_2(m, I).$$
(25)

On the other hand,

$$\lambda_2(m, I) = \lambda_1(m_{/]a, c_{2,1}[},]a, c_{2,1}[) < \lambda_1(m_{/]a, c[},]a, c[) = \lambda(m, I),$$
(26)

a contradiction. Hence, $c = c_{2,1}$ and $\lambda(m, I) = \lambda_2(m, I)$. The proof is complete.

For n > 2, we use a recurrence argument. Assume that, for any k, $1 \le k \le n$, that the following hypothesis:

- 1. **H.R.1** For any eigenfunction u corresponding to the k-th eigenvalue $\lambda_k(m, I)$, there exists a unique $c_{k,i}$, $1 \le i \le k-1$, such that $Z(u) = \{c_{k,i}, 1 \le i \le k-1\}$.
- 2. **H.R.2** $\lambda_k(m, I)$ is simple.
- 3. **H.R.3** $\lambda_1(m, I) < \lambda_2(m, I) < \cdots < \lambda_{n+1}(m, I).$
- 4. **H.R.4** If $(u, \lambda(m, I))$ is a solution of $(\mathcal{V}.\mathcal{P}_{(m,I)})$ such that $Z(u) = \{c_i, 1 \le i \le k-1\}$, then $\lambda(m, I) = \lambda_k(m, I)$.
- 5. **H.R.5** $\lambda_k(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Holds, and prove them for n + 1.

Proposition 4 There exists a unique family $\{c_{n+1,i}, 1 \leq i \leq n\}$ such that $Z(u) = \{c_{n+1,i}, 1 \leq i \leq n\}$, for any eigenfunction u corresponding to $\lambda_{n+1}(m, I)$.

Proof Let u be an eigenfunction corresponding to $\lambda_{n+1}(m, I)$. By H.R.3 and H.R.4, u has at least n zeros. According to Lemma 4, we can consider the n + 1 nodal domains of u, $I_1 =]a, c_1[, I_2 =]c_1, c_2[, ..., I_n =]c_{n-1}, c_n[, I_{n+1} =]c, b[$. We shall prove that $c = c_n$. Remark that the restrictions of u on $]a, c_{i+1}[, 1 \leq i \leq n - 1$, are eigenfunctions with i zeros, by H.R.4 $\lambda_{n+1}(m, I) = \lambda_i(m_{/]a, c_{i+1}[},]a, c_{i+1}[]$. Assume that $c_n < c$, choose d in $]c_n, c[$ and put, $J_1 =]a, d[, J_2 =]d, b[$. Remark that $J_1 \cap J_2 = \emptyset$, $]a, c_n[$ is a strict sub interval of $J_1 \subset I$, and]c, b[is a strict sub interval of $J_2 \subset I$. It is clear that $m_{/J_i} \in M(J_i)$ for i = 1, 2, by H.R.4 and H.R.5. We have

$$\lambda_n(m_{/J_1}, J_1) < \lambda_n(m_{/]a, c_n[},]a, c_n[) = \lambda_{n+1}(m, I),$$
(27)

and

$$\lambda_1(m_{/J_2}, J_2) < \lambda_1(m_{/]c,b[},]c, b[) = \lambda_{n+1}(m, I).$$
(28)

Denote by $(\phi_{n+1}, \lambda_1(m_{/J_2}, J_2))$ a solution of $(\mathcal{V}.\mathcal{P}_{(m,J_2)})$, $(v, \lambda_n(m_{/J_1}, J_1))$ a solution of $(\mathcal{V}.\mathcal{P}_{(m,J_1)})$, ϕ_i , $1 \leq i \leq n$ the restrictions of v on I_i , and $\tilde{\phi}_i$, $1 \leq i \leq n$, their extensions, by zero, on I. Let $F_{n+1} = \langle \tilde{\phi}_1, \tilde{\phi}_2, \cdots, \tilde{\phi}_{n+1} \rangle$ and $K_{n+1} = F_{n+1} \cap S$, then $\gamma(K_{n+1}) = n+1$. We obtain by (3) and the same proof as in Proposition 2

$$\frac{1}{\lambda_{n+1}(m,I)} \ge \min_{K_{n+1}} \int_{I} m |v|^p \, dx > \frac{1}{\lambda_{n+1}(m,I)},\tag{29}$$

a contradiction, so $c = c_n$. On the other hand, let v be an eigenfunction corresponding to $\lambda_{n+1}(m, I)$. Denote by d_1, d_2, \dots, d_n the zeros of v. If $d_1 \neq c_1$, then $\lambda_{n+1}(m, I) = \lambda_1(m_{/]a, d_1[},]a, d_1[) \neq \lambda_1(m_{/]a, c_1[},]a, c_1[) = \lambda_{n+1}(m, I)$, so $d_1 = c_1$, by the same argument we conclude that $d_i = c_i$ for all $1 \leq i \leq n$.

Lemma 8 $\lambda_{n+1}(m, I)$ is simple, hence. $\lambda_{n+1}(m, I) < \lambda_{n+2}(m, I)$.

Proof Let u and v be two eigenfunctions corresponding to $\lambda_{n+1}(m, I)$. The restrictions of u and v on $]a, c_{n+1,1}[$ and $]c_{n+1,1}, b[$ respectively, are eigenfunctions corresponding to $\lambda_1(m_{/]a,c_{n+1,1}[},]a, c_{n+1,1}[)$ and $\lambda_n(m_{/]c_{n+1,1},b[},]c_{n+1,1}, b[)$. By H.R.2 and H.R.4 we have $u = \alpha v$ in $]a, c_{n+1,1}[$ and $u = \beta v$ in $]c_{n+1,1}, b[$. On the other hand, u and v are $C^1(I)$ and $u'(c_{n+1,1}) \neq 0$, so $\alpha = \beta$. From the simplicity of $\lambda_{n+1}(m, I)$ and theorem of multiplicity we conclude that $\lambda_{n+1}(m, I) < \lambda_{n+2}(m, I)$.

Proposition 5 $\lambda_{n+1}(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Proof Let $m, m' \in M(I)$, such that $m(x) \leq m'(x)$ with m(x) < m'(x) in some subset of nonzero measure and $(c'_{n+1,i})_{1 \leq i \leq n}$ the zeros of $\lambda_{n+1}(m')$ three cases are distinguished,

1. $c_{n+1,1} = c'_{n+1,1} = c$, one of the subsets is of nonzero measure,

$$\{x \in I/m(x) < m'(x)\} \cap]a, c[$$
 and $\{x \in I/m(x) < m'(x)\} \cap]c, b[.$

By Lemma 3 and (9), we have

$$\lambda_{n+1}(m',I) = \lambda_1(m'_{/]a,c[},]a,c[) < \lambda_1(m_{/]a,c[},]a,c[) = \lambda_{n+1}(m,I)$$
(30)

or

$$\lambda_{n+1}(m',I) = \lambda_n(m'_{]c,b[},]c,b[) < \lambda_n(m_{]c,b[},]c,b[) = \lambda_{n+1}(m,I).$$
(31)

2. $c_{n+1,1} < c'_{n+1,1}$, by Lemmas 1, 3 and (10) we have

$$\lambda_{n+1}(m', I) = \lambda_1(m'_{]a,c'_{n+1,1}[},]a, c'_{n+1,1}[) \leq \lambda_1(m_{]a,c'_{n+1,1}[},]a, c'_{n+1,1}[) < \lambda_1(m_{]a,c_{n+1,1}[},]a, c_{n+1,1}[) = \lambda_{n+1}(m, I).$$
(32)

3. $c'_{n,1} < c_{n,1}$, from the same reason as before, we get

$$\lambda_{n+1}(m', I) = \lambda_n(m'_{|c'_{n+1,1},b[},]c'_{n+1,1}, b[) \leq \lambda_n(m_{|c'_{n+1,1},b[},]c'_{n+1,1}[, b) < \lambda_n(m_{|c_{n+1,1},b[},]c_{n+1,1}, b[) = \lambda_{n+1}(m, I).$$
(33)

By similar argument as in proof of Proposition 3, we prove the SMP with respect to the domain I.

Lemma 9 If $(u, \lambda(m, I))$ is a solution of $(\mathcal{V}.\mathcal{P}_{(m,I)})$ such that $Z(u) = \{d_1, d_2, \cdots d_n\}$, then $\lambda(m, I) = \lambda_{n+1}(m, I)$.

Proof It is sufficient to prove that $d_i = c_{n+1,i}$ for all $1 \le i \le n$. If $c_{n+1,1} < d_1$ then, by Lemma 1, (10), H.R.4 and H.R.5,

$$\lambda(m, I) = \lambda_1(m_{/]a, d_1[},]a, d_1[) < \lambda_1(m_{/]a, c_{n+1, 1}[},]a, c_{n+1, 1}[) = \lambda_{n+1}(m, I) = \lambda_n(m_{/]c_{n+1, 1}, b[},]c_{n+1, 1}, b[) < \lambda_n(m_{/]d_1, b[},]d_1, b[) = \lambda(m, I),$$
(34)

a contradiction. If $d_1 < c_{n+1,1}$ then, by Lemma 1, (10), H.R.4 and H.R.5,

$$\lambda_{n+1}(m, I) = \lambda_1(m_{/]a, c_{n+1}[},]a, c_{n+1}[) < \lambda_1(m_{/]a, d_1[},]a, d_1[) = \lambda(m, I) = \lambda_n(m_{/]d_1, b[},]d_1, b[) < \lambda_n(m_{/]c_{n+1, 1}, b[},]c_{n+1}, b[) = \lambda_{n+1}(m, I),$$
(35)

a contradiction. The proof is then complete, which completes the proof of Theorem 1. \blacksquare

Proof of Corollary 1. Since for $F \in \mathcal{F}_n$, the compact $F \cap S \in \mathcal{A}_n$, by (3) we have:

$$\sup_{F \in \mathcal{F}_n} \min_{v \in F \cap S} \int_{\Omega} m |v|^p \, dx \le \frac{1}{\lambda_n(m,\Omega)}.$$
(36)

On the other hand, for a *n* dimensional subspace *F* of $W_0^{1,p}(I)$, the compact set $K = F \cap S \in \mathcal{A}_n$. Let *u* be an eigenfunction corresponding to $\lambda_n(m, I)$ and put

$$F = \langle \tilde{\phi}_1(]a, c_{n,1}[), \tilde{\phi}_1(]c_{n,1}, c_{n,2}[), \cdots, \tilde{\phi}_1(]c_{n_1,n}, b[) \rangle$$

to conclude $F \cap S \in \mathcal{A}_n$. By an elementary computation as in Proposition 2, one can show that

$$\frac{1}{\lambda_n(m,I)} = \min_{F \cap S} \int_I m |v|^p \, dx. \tag{37}$$

Then combine (36) with (37) to get (5). Which completes the proof.

3.1 Remark

The spectrum of p-Laplacian, with indefinite weight, in one dimension, is entirely determined by the sequence $(\lambda_n(m, I))_{n\geq 1}$ if $m(x) \geq 0$ a.e in I. Therefore, if m(x) < 0 in some subset $J \subset I$ of nonzero measure, replace m by -m; by Theorem 1, since $-m \in M(I)$ we conclude that, the negative spectrum $\sigma_p^-(-\Delta_p, m) = -\sigma_p^+(-\Delta_p, -m)$ of this operator is constituted by a sequence of eigenvalues $\lambda_{-n}(m, I) = -\lambda_n(-m, I)$. Thus the spectrum of the operator is,

$$\sigma_p(-\Delta_p, m) = \sigma_p^+(-\Delta_p, m) \cup \sigma_p^-(-\Delta_p, m).$$

References

- A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris, t.305, Série 1, (1987), pp. 725-728.
- [2] A. Anane and O. Chakrone, Sur un théorème de point critique et application à un problème de non résonance entre deux valeurs propres du p-Laplacien, Annales de la Faculté des Sciences de Toulouse, Vol. IX, No.1, (2000), pp. 5-30.

- [3] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Benkirane A., Gossez J.P., (Eds.), Pitman Res. Notes in Math. 343, (1996), pp. 1-9.
- [4] R. Courant and D. Hilbert, *Methods of Mathematical Physics*, Intersience, New York, (1943).
- [5] M. Cuesta, D.G. De Figueiredo and J.P. Gossez, *The beginning of the Fucik* spectrum for the p-Laplacian, J. Differential Equations, 159, (1999), pp. 212-238.
- [6] M. Cuesta, D.G. De Figueiredo and J.P. Gossez, A nodal domain property for the *p*-Laplacian, C. R. Acad. Sci. Paris, t.330, Série I (2000), pp. 669-673.
- [7] D.G. De Figueiredo, *Positive solution of semi-linear elliptic equation*, Lecture Notes in Mathematics, 957, (1982), pp. 34-87.
- [8] D.G. De Figueiredo, and J.P. Gossez, *Strict monotonicity of eigenvalues and unique continuation*, Comm. Part. Diff. Equat., 17, (1992) pp. 339-346.
- [9] M. Del Pino, M. Elgueta and R. Manàsevich, A Homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')' + f(t,u) = 0$, u(0) = u(T) = 0, p > 1, J. Differential Equations, 80, (1989), 1-13.
- [10] A. Elbert, A half-linear second order differential equation, Colloquia Mathematica Societatis Janos Bolyai 30. Qualitative Theory of Differential Equations, Szeged, (Hungary) (1979), pp 124-143.
- [11] S. Fučik, J. Nečas and V. Souček, Spectral analysis of nonlinear operators, Lect. Notes Math. 346, Springer Verlag, New York. Berlin. Heidelberg (1973).
- [12] Y.X. Huang, Eigenvalues of the p-Laplacian in $\mathbb{I}\!\mathbb{R}^N$ with indefinite weight, Comment. Math. Univ. Carolinae. (1995), pp 519-527.
- [13] P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc. 109 (1990), pp. 157-164; addendum Proc. Amer. Math. Soc. 116, (1992), pp. 583-584.
- [14] M. Otani, A remark on certain nonlinear elliptic equations, Pro. Fac. Sci. Tokai Univ. No.19 (1984), pp. 23-28.
- [15] A. Szulkin, Ljusternik-Schnirelmann theory on C¹-manifolds, Ann. I. H. Poincaré, Anal. non linéaire, 5, (1988), pp. 119-139.
- [16] P. Tolksdorf, *Regularity for more general class of quasilinear elliptic equations*, J. Differential Equations, 51, (1984), pp. 126-150.
- [17] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12, (1984), pp. 191-202.