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Abstract. We consider a nonlinear Dirichlet problem driven by a nonautonomous (p, q)-
Laplacian and a Carathéodory reaction which is (p — 1)-linear near +oo. Using varia-
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rems producing six nontrivial smooth solutions, all with sign information and ordered.
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1 Introduction

Let O C RN be a bounded domain with a C2-boundary 9Q). In this paper we study the
following nonhomogeneous Dirichlet (p, g)-equation:

—Aju(z) — Afu(z) = f(z,u(z)) in Q, 1.1)
upn=01<g<p. '

If a € L*(Q), 0 < ¢ < essinfna and r € (1,00), then by A? we denote the weighted
r-Laplace differential operator defined by

A'u = div(a(z)|Du|"~2|Du), for all u € Wy"(Q).
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In (1.1) the equation is driven by the sum of two such operators with different exponents
(1 < g < p) and in general different weights (a1(-),a2(-)). So in (1.1) the differential op-
erator is nonautonomous and nonhomogeneous. The reaction (right-hand side) f(z,x) is a
Carathéodory function (that is, for all x € R, z — f(z,x) is measurable, and for a.a. z € (),
x — f(z,x) is continuous). Such a function is jointly measurable and so superpositionally
measurable (that is, for every measurable function u : Q) — R, the function z — f(z,u(z)) is
measurable). We assume that f(z, -) exhibits (p — 1)-linear growth as x — +o0.

Using variational tools from the critical point theory and the spectral properties of the
nonhomogeneous p and q Laplacians (see Liu-Papageorgiou [9]), we prove the existence of
at least six nontrivial smooth solutions, all with sign information and ordered. Our work
here extends that of Liu-Papageorgiou [8,9] where the authors obtain three nontrivial smooth
solutions. In the process of the proof, we prove two strong comparison theorems, which
provide powerful tools for the analysis of nonautonomous equations.

2 Mathematical background - hypotheses

The main spaces in the analysis of problem (1.1) are the Sobolev spaces W&’p (Q) and the
Banach space C}(Q)) = {u € C(Q) : ulyqo = 0}. On account of the Poincaré inequality, on
W,

)" (Q)) we can use the norm

|ul| = ||Dull, for all u € Wy (Q).
The Banach space C}(Q) is an ordered Banach space with positive (order) cone
C, = {u € C{(Q) :u(z) >0forall z € ﬁ}.

This cone has a nonempty interior given by

intC, = {u€C+:u(z) >0forallz € Q, SZ

<o},
a0
where g—z = (Du,n)gn with n(-) being the outward unit normal on 9Q).

Let C%1(Q)) be the space of all Lipschitz continuous functions on Q. Suppose a € C1(Q),
0<¢é¢<a(z)forallze€ Qand 1 < r < co. We consider the following nonlinear eigenvalue
problem

—Au(z) = Alu(z)|"2u(z) inQ, ulyn =0. (2.1)

From Liu-Papageorgiou [9], we know that

(a) Problem (2.1) has a smallest eigenvalue /A\‘lz(r) > 0 which has the following variational
characterization

fQIZ(Z)‘DM|rdZ uc W&’r(Q),M # 0} . (22)

A (r) = inf {

]I

(b) A?(r) > 0 is isolated, that is, if &(r) > 0 denotes the spectrum of (2.1), then there exists
€ > 0 such that
o(r) N (A(r), Al (r) +e) = .
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(c) A%(r) > 0 is simple, that is, if 1,9 € Wé’p(ﬂ) are eigenfunctions corresponding to A%(r),
then I = 09 for some 6 € R\{0}.

(d) All e1genfunct10ns of (2.1) belong in C}(Q)) (nonlinear regularity theory of Lieberman
[7]), if A > /\“( ) is an eigenvalue of (2.1), then the eigenfunctions corresponding to A
are nodal (sign-changing) and the eigenfunctions of /A\‘lz(r) have fixed sign (see (2.2)) and
by 1{(r) we denote the positive, r-normalized (that is, |7 ()|, = 1) eigenfunction for
A%(r). Using the nonlinear maximum principle (see Pacci-Serrin [16], p. 120), we have

0f(r) € intC.

(e) We do not have a full knowledge of &(r), r # 2. Using the Ljusternik-Schnirelmann
minimax scheme, we know that (2.1) has a sequence {A?(r) }xen of eigenvalues (known
as variational eigenvalues) such that )A&i(r) — 400 as k — co. We do not know if this
sequence exhausts 0(r).

If r = 2 (linear eigenvalue problem), then using the spectral theorem for compact op-
erators, we have a full description of the spectrum ¢(2) which consists of a sequence
{Ak(2) ke of distinct eigenvalues with A;(2) — +co. The eigenspaces E(A4(2)) are
finite dimensional linear spaces and we have E(A;(2)) € C}(Q) for all k € IN. We have
variational characterizations for all the eigenvalues:

2

A0(2) = {fﬁ Hu‘fu’ 9 e HI(Q), u #o}, (2.3)
2
2
m>2 }Lfn(z)_lf{fﬂ HM|HD214|dZ cV— @E/\k u#()}
k>m
D Zd m

{fﬂ T V= DEnED. #0} 9

The extrema in (2.3) and (2.4) are realized on the corresponding eigenspaces.
The next inequalities are easy consequences of the aforementioned properties (see Hu-
Papageorgiou [5]).

Proposition 2.1. If i € L*(Q), 7i(z) < A%(r) for a.a. z € Qand fj # A%(r), then there exists ¢; > 0
such that
cillul]” < ||Dul|; —/ 7(z)|ul"dz  forall u € Wy (Q).
0

Proposition 2.2.

(a) Iffj € L=(Q), 1i(z) < A%(2) for a.a. z € Q and fj # A%(2), then there exists c; > 0 such that

ollul* < || Du|)3 — /Qﬁ(z)uzdz forallu € V.= E(Au(2)).

m>k

() Ifj € L®(Q), 7i(z) > AL(2) for a.a. z € Qand i # A2(2), then there exists c5 > 0 such that

k
|Dul|3 —/ H(z)u*dz < —csljul|3 forallu € V=P E(An(2)).
)

m=1
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Let A% : W7 (Q) — W=7 (Q) = W, ¥ (Q)* (p’ = %) and A% : W(Q) — W11'(Q) =
Wé'q(ﬂ)* be defined by

(AD (1), ) = /Q a1(2)| Dul?~2(Du, Dh)gn dz for all u,h € W2 (Q0),

_ 1,
(A% (u), h) :/Qaz(z)\ouw 2(Du, Dh)gn dz  for all u,h € W2(Q).

We set V = A% + A% (recall W,” (Q) — W, 1(Q)).

Proposition 2.3. The operators A}, A2, V are bounded (map bounded sets to bounded ones), contin-
uous, strictly monotone (thus maxzmal monotone too), coercive and of type (S)+, that is,

ifu, — uin X (with X = W, (Q) or X = W,7(Q))
and limsup,,_, (G (un), un — u) < 0 (with G = Ay or G = A2 or G = V), then u, — u in X.

Let X be a Banach space and ¢ € C!(X). We say that ¢(-) satisfies the “C-condition” if it
has the following property:

“every sequence {u,}nen C X such that |¢(u,)] < M for some M > 0, all n € N,
(1+ ||unllx) ¢’ (un) — 0in X* as n — oo, admits a strongly convergent subsequence”.

We introduce the following sets:

Ky ={ueX:¢'(u) =0} (critical set of ¢(-)),
¢ ={ueX:¢pu)<c} foreveryceR.

If Y, C Yy C Xand k € Ng = NU {0}, then by Hi(Y1,Y2) we denote the k™-singular
homology group with real coefficients (so the critical groups are vector spaces). Let u € K, be
isolated and ¢ = ¢(u). The critical groups of ¢(-) at u are defined by

Cr(p,u) = Hi(o°NU, o°NU\ {u}) forall ke Ny,

where U is a neighborhood of u such that K, N U N ¢° = {u}. The excision property of
singular homology implies that this definition is independent of the isolating neighborhood
u.

If u,v: QO — R are measurable functions such that u(z) < v(z) for a.a. z € Q". We define

[u,0] = {h € W,"(Q) : u(z) < h(z) < v(z) foraa. z € O}
of [u,

intey ) [u,v] = interior in C}(Q)) 0] NCH(Q).

Also given u : () — R measurable, we write 0 < u if for every K C () compact we have
0 < ck < u(z) for a.a z € K. Also, we set u= = max{+u,0} and we have u = u* —u~,
u| = ut +u~ and if u € Wy?(Q), then u* € W,”(Q). By |- |y we denote the Lebesgue
measure on RY.

The hypotheses on the data of (1.1), are the following;:

Hy aj,ap € CO(Q),0 < ¢ <ay(z),a(z) forallze O, 1<qg<p<N.
H; f: QO xR — Ris a Carathéodory function such that

() |f(z,x)| <a(z)[1+ |x|P~1] fora.a. z € O, all x € R, with @ € L®(Q);
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(ii) there exists 7 € L®(Q)) such that

Al(p) <ii(z) foraa. z€ Q, 7§ A7 (p),

7(z) < liminf f(z ) uniformly fora.a.z € ()

x— oo |x‘

(iii) there exists 7 € L*(Q)) such that

AP(9) <1(z) foraa. z€Q, 7 #£AP(q),

f(z, ) :
< a. ;
n(z) llgcrhlglf e umformly fora.a. z € ();

(iv) there exist real numbers 6_ < 0 < 6, such that

f(z,04) < —-1<0<1<f(z,0-)foraa. ze€ )

(v) for every p > 0, there exists 6p > 0 such that for a.a. z € ), the function x —
f(z,x) + &|x|P~2x is nondecreasing on [—p, p].

Remark 2.4. Hypotheses H;(i),(ii) imply that f(z,-) is (p — 1)-linear as x — £co. We can have
partial interaction with }qu (p) > 0 from the right (nonuniform nonresonance). Similarly as
x — 0 with respect to AT>(q) > 0, Hypothesis Hy (i), (iii) imply that f(z,0) = 0 for a.a. z € Q.
Hypothesis Hj(iv) implies that f(z,-) is necessarily sign changing (it exhibits an oscillatory
behavior near zero). Later (see hypotheses H, in Section 4), we will see that by requiring
that g = 2, we can relax hypothesis H;(iii) and incorporate in our framework reactions which
satisfy the sign condition (that is, f(z,x)x > 0 for a.a. z € (), all x € R).

In what follows, for notational economy, we write

pup(Du) = [ (@) Dul dz,

Pana(Dt) = / ax(2)|Dulldz for all u € W (Q).
0
Let ¢ : Wg’p (Q)) — R be the energy functional for problem (1.1) defined by
1 1 Lp
P() = o0, (D) + _praq(D) ~ /Q F(z,u)dz forall u € WP (Q),

where F(z,x) = [ f(z,s)ds. Evidently ¢ € Cl(W P(Q)).
To produce solutions of constant sign, we introduce the positive and negative truncations
of ¢(+), namely the C!-functionals ¢ : W&’p (Q)) — R defined by

p+(u) = ;Pm,p(Du) + ;puw(Du) - /QF(z,j:ui)dz forall u € W&’p(ﬂ).
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3 Comparison theorems

In this section, we prove two strong comparison theorems which we will use in the sequel and
which are of independent interest.
Given two measurable functions u,v : O — R, we write

u<v if0<u—v (seeSection 2).

Proposition 3.1. If hypotheses Hy hold, & > 0, hy, hy € L®(Q) and hy < hy and u € C{(Q) \ {0},
v € intC_. satisfy the equations

—AJu— AZu+ EulPu=nh inQ,
— A‘;}v — Agzv + &P =h, inQ,
then v —u € intC,.

Proof. From Theorem 3.4.1, p. 61 of Pucci-Serrin [16] (the weak comparison principle), we
have
u(z) <o(z) forallz € Q. (3.1)

We introduce the following closed subsets of ():
Eo={z€Q:u(z) =v(z)}, E; ={z€ Q:Du(z) =Do(z) =0}.

First we show that Eg C E;. To this end let £ € Ej and set y = v —u. Theny € C \ {0}
and y(2) = mingy. Hence
Dy(2) =0,

= Dv(2) = Du(2).

If 2 ¢ E;, then Dv(2) = Du(2) # 0 and so we can find an open ball B centered at 2 such
that Dv(z) # 0, Du(z) # 0 for all z € B. As in the proof of Proposition 2.1 of Guedda-Véron
[3], we show that there exists K € W' (Q, RN*N) such that

—div(K(z)Dy) = hy(z) — hy(z) — E(0P 1 — |u|P~2u) in B. (3.2)

By taking B even smaller if necessary, we can apply the strong maximum principle of
Pucci-Serrin [16] (p. 111) and obtain

y(z) >0 forallz € B,

= u(z) <v(z) forallz € B,
a contradiction since Z € Eg N B. This proves that

Ey C E;. (3.3)

Since v € intCy, it follows that E; C () is compact. Hence Ej is compact too (see (3.3)).
So, we can find () C Q) open such that

EcCcQ' CcO/'CO. (3.4)
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From (3.4) and since () is compact, we can find € > 0 such that

u(z) +e<wv(z) forallzeaY, (3.5)
h(z) +e < hy(z) forallze (Y (recall hy < hy). (3.6)

We choose § € (0, ¢) small such that
Ells|P2s — |t|P~%t] < e foralls,t € [mingu, ||v]«], |t —s| <6 (3.7)
Then we have
— AJ (w4 6) — AP (u+6) + Elu+ 6P (u +6)

= —AJu — APu+ Elu+ 8|72 (u+0)

=hy — ElulP"2u+ Elu+ 6|72 (u +6)

<hy—e+e (see(3.6),(3.7))

= —Ajv—APv+ &Pt in(Y,

=u+d6<v inQ (bythe weak comparison principle, see [16], p. 61)

= Ey=0 (see (2.4)),
= u(z) <ov(z) forallze Q.

Now let zg € 0Q) and let z; = zy — 2rn with n = n(zp) the outward unit normal at zg € dQ).
For r € (0,1) small, we consider the annulus

R={zeQ:r<|z—z| <2r}

and let m = min{y(z) : z € 9B,(z1)} > 0. From the proof of Proposition 2.3 of Papageorgiou—
Vetro—Vetro [13], we can find w € C}(R) N C?(R) satisfying

—ASW — AP+ E|w|P 7w <0 in R

with @w < u on dR. Then by the weak comparison principle, we have

Moreover, it follows w(zp) = 0, g—n(zo) < 9%(z0) and so y € intCy,
— v—u€intCy. O

In the second comparison result, we strengthen the relation between the two forcing terms
h1, ho but relax the conditions on u, v.

Proposition 3.2. If hypothesis Hy holds, ¢ > 0, hy, ho € LY(Q) satisfy
a <& <hy(z) —hi(z) foraa zeQ
and u,v € CH(Q) \ {0} with 0 < v(z) for all z € Q satisfy

—Aju— APu+ ElulPu=hn inQ,

— A’;}v — Agzv + {f\v]p_l =h, inQ, u<vonadQ,

then u(z) < v(z) forall z € Q.
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Proof. Let 7(z,y) = a1(z)|y|P~2y + az(z)|y|7 2y for all z € O, all y € RN. We have
—div(5(z, Dv) — 5(z, Du)) = hy — hy — E(0P ™1 — |u|P~u) in Q. (3.8)

As before the weak comparison principle implies u < v. Let y = v — u. Then y € C}(Q),
y(z) > 0 for all z € Q) and as in Guedda-Véron [3], we have

—div(K(z)Dy(z)) = hy — hy — E(P~ 1 — |u[P~2u) inQ,

with K € W (Q, RN*N).
Suppose that for some Z € (), we have y(2) = 0, hence v(£) = u(2). Then from (3.8) and
the hypothesis on hy, hy we can find r € (0,1) small such that

—div(K(z)Dy(z)) > é1 >0 inB,(2)={zcRN:|z—2 <r} CQ.
Invoking Theorem 4 of Vazquez [18], we obtain
0<y(z) forallze B.(2),
a contradiction since y(2) = 0. It follows that
u(z) <ov(z) forallze Q. O

In the next section we will use these comparison results to produce multiple constant sign
solutions of (1.1).

4 Constant sign solutions

We start by obtaining constant sign solutions which are local minimizers of the energy func-
tional ¢(-).

Proposition 4.1. If hypotheses Hy, Hy (i), (iii), (iv), (v) hold, then problem (1.1) has two constant sign
solutions

up €intCy  with u(z) <04 forallze Q,
v € —intCy  with 0_ <v(z) forallz€ Q)
and ug is a local minimizer of the functionals ¢, ¢, vo is a local minimizer of the functionals ¢, ¢_.

Proof. First we produce the positive solution. To this end we introduce the Carathéodory
function f, : Q x R — R defined by

R | flzxt) ifx <6y,
J+(z3) = {f(z, 0.) if6, <x. @1

We set F, (z,x) = [ fi(z,5)ds and consider the C!-functional ¢ : Wé’p(ﬂ) — R defined
by
1 1 .
P+(u) = ;Panp(D“) + apum(Du) - /QFJr(z,u) dz forallu € Wol’p(Q).
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From (4.1) and hypotheses Hj, we see that ¢ (-) is coercive. Also, using the Sobolev
embedding theorem, we have that ¢ () is sequentially weakly lower semicontinuous, so by
the Weierstrass—Tonelli theorem, we can find 1y € WO1 7(Q) such that

¢ (1) = inf {@(u) ue WP (Q)}. (4.2)
On account of hypothesis H; (iii), given € > 0, we can find ¢ € (0,0, ) such that
;[17(2) —¢]xT < F(z,x) foraa.ze€Q, all0 <x <. (4.3)

From Section 2, we know that 17?(g) € intC,. So, we can find ¢ € (0,1) small such that
0 <taf?(q)(z) <6 forallz € Q. (4.4)

Using (4.3), (4.4) and (4.1), we have

94 (t12(q)) < tppmpww(q))

A

21 O3 @) = ne) @ @)z ] (recall that [ @), = 1) 45

Since by hypothesis the inequality A{?(q) < 7(z) is strict on a set of positive Lebesgue
measure, we have

B = / — A%(q))a%(q)7dz > 0.
So, choosing ¢ € (0, ) small, from (4.5), we obtain
P4 (t072(q)) < cat? —cs5tT  for some ¢y, c5 > 0.

Since g < p, choosing t € (0,1) even smaller if necessary, we have

¢+ (t*(q)) <0,
= ¢y (ug) <0=¢.(0) (see (42)),
= Uy 75 0.

From (4.2) we have
(@' (o), h> =0 forallhe erP(Q)
= (V(uo), h / Fi(z uo)hdz forall h € Wy?(Q). (46)

n (4.6) first we choose the test function 1 = —u, € W&’p (Q). Then from (4.1) we have
¢|Dug || <0 =19 >0, wup#0.
Next in (4.6) we choose the test function (ug — 0,)" € Wl’p (Q)). Then
(V(wo), (w0 = 02)") = [ f(z,0:)(uo—0.)" 2 (see (4:1)

<0 (see hypothesis Hi(iv))

= (V(64), (10— 61)")
= ug < 0.
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So, we have proved that
Ug € [0, 9+], uy # 0. 4.7)

From (4.7), (4.1) and (4.6), we infer that u( is a nontrivial nonnegative solution of (1.1).
Evidently 1y € L®(Q) and then the nonlinear regularity theory of Lieberman [7] implies
ug € Cs+ \ {0}. Let p = [|up||co and let &, > 0 be as postulated by hypothesis H;(v). We have

— AJug — AR ug + épug_l >0 inQ,
= up € intCy (see Pucci-Serrin [16], pp. 111, 120). 4.8)
We have
— ATy — APug + Eoul ' = flzu0) + Eoul T (see (47), (4.1))
< f(z,04)+ fpﬁi_l (see (4.7) and hypothesis H;(v))
< —14 (fGi_l (see hypothesis H(iv))
< —ATO — ARG +E0T inQ
Invoking Proposition 3.2, we infer that
up(z) < 64 forallz € Q. (4.9)
Then (4.8) and (4.9) imply that
ug € intcé @) [0,64]. (4.10)

Note that
¢+‘[o,9+] = €0+\[o,9+] (see (4.1)). (4.11)

Recall that ug is a minimizer of ¢ (-). So, from (4.10) and (4.11) it follows that

ug is a local C}(Q))-minimizer of ¢ (-),
= 1 is a local Wé’p(Q)-minimizer of ¢4 (-). (4.12)
(see Hu-Papageorgiou [5, p. 339]).

Let Wy ={u € Wlp(Q) u(z) >0 fora.a.ze Q}. Wehave
go‘w+ = go+|w+, up € int Wy (4.13)
So, from (4.12) and (4.13) it follows that
up is a local W&’p (Q))-minimizer of ¢(-).

For the negative solution, we start with the Carathéodory function f_(z, x) defined by

o) = f(z,0-) ifx<6_,
' flz,—x7) ifo_- <.
We set F_( = [, f-(z,5)ds and consider the C!-functional ¢_ : 3 7(Q) — R defined
by

P_(u) = ;Pm,p(Du) + ;pum(Du) - /01:"_ (z,u)dz forallu € Wol’p(Q).
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Working as above, this time with the functional ¢_(-), we produce a negative solution
vy € —intC,, such that
(] S lntca (6) [97, 0],
and vy is a local Wé’p(ﬂ) minimizer of both ¢_(-), ¢(-). O

As we already mentioned, hypothesis Hj(iv) forces f(z,-) to be sign-changing. We can
modify hypothesis H;(iv) so as to include in our framework reactions which satisfy the sign
condition. We can do this if we restrict to 4 = 2. The new hypotheses on f(z, x) are the
following:

H; : 3 x R — R is a Carathéodory function such that
(i) same as hypothesis H;(i);
(ii) same as hypothesis Hj (ii);
(iii) same as hypothesis H (iii) with g = 2;
(iv) there exist 6 < 0 < 6, such that f(z,0,) <0< f(z,6_) fora.a.ze€ ()
(v) same as hypothesis Hy(v).

Remark 4.2. We see that this set of hypotheses includes also reactions which satisfy the sign
condition, that is, f(z,x)x > 0 for a.a. z € (), all x € R. Such functions were excluded under
hypotheses Hj.

Proposition 4.3. If hypotheses Hy, H(i), (iii), (iv), (v) hold, then problem (1.1) has at least two
constant sign solutions

ug € intCy with up(z) <04 forallz € Q,
v € —intCy  with 0_ <wy(z) forallze Q,
ug is a local minimizer of the functionals ¢, ¢, vg is a local minimizer of the functionals ¢, ¢_.

Proof. The proof is the same as that of Proposition 4.1 and it differs only at the point where
we show that uy(z) < 65 (resp. 6— < vy(z)) for all z € Q. In this case we argue as follows: let
1(z,y) = a1(2)|y|P "2y + a2(z)|y|7 2y for all z € O, all y € RN. Then

div 17(z, Du) = Aju+ Agu forallu € Wé’p(ﬂ).

Since 2 < p (see hypothesis Ha(iii)), we see that 7(z,-) € C' (RN, RV) and we have

s . &® .
Vyn(z,y) = a(z)]yP 2 1d+<p—z>y|y‘2y +a(2)id.

Therefore for any h € RN \ {0}, we have

(Vyn(z,y)h,h)gn = elnf?,
= Vy1(z,-) is positive definite. (4.14)

Note that

div #(z, Dug) + f(z,up) > —div 5(z,04) + f(z,04) in Q. (4.15)
(see hypothesis H(iv)).
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From (4.14), (4.15) and the tangency principle of Serrin [17] (see also Pucci-Serrin [16],
p- 35), we have
up(z) < 64 forallz € Q.

Similarly, we show that 6_ < vy(z) for all z € Q. O

Next we will show the existence of extremal constant sign solutions, that is, a minimal
positive solution and a maximal negative solution. In Section 4 we will use these extremal
constant sign solutions in order to produce a nodal (sign-changing) solutions.

On account of hypotheses Hj (i), (iii) (they are also valid when H» hold, with g = 2), given
e > 0, we can find ¢ = c4(¢) > 0 such that

f(z,x)x > [n(z) —¢]|x|T — cg|x|P foraa. zeQ, allx € R. (4.16)

This unilateral growth condition suggests that we consider the following auxiliary
Dirichlet problem

{‘A?;u(z) — Au(z) = [1(2) — el [u(2)|7%u(z) — cs|u(z)["~2u(z) inQ, (4.17)

ulan = 0.
For this problem we have the following existence and uniqueness result.

Proposition 4.4. If hypothesis Hy holds, then for all € € (0,1) small problem has a unique positive
solution
7l €int C+,

and since the equation is odd 0 = —il € —int C is the unique negative solution of (4.17).
Proof. Let o : W&’p (Q)) — R be the C!-functional defined by

1 1 1 c
71 (1) = pup(Du) + pung(Dw) = [ [(z) —€](u )7z u |

forall u € Wé’p(ﬂ).
Since q < p, we see that o, (+) is coercive. Also using the Sobolev embedding theorem, we

show that o, (-) is sequentially weakly lower semicontinuous. So, we can find 7 € Wol’p (Q)
such that
o (1) = inf {@(u) ‘U € w(}"’(n)} . (4.18)

As in the proof of Proposition 4.1, for t € (0,1) small, we have

0. (2 (9)) < 0,
= o0 (i1) <0=04(0) (see (4.18)),
=1 # 0.

From (4.18) we have
(o'.(@),h) =0 forallh € W, (),
= (V(@),h) = /Q () — €] ()7 " hdz — cq /Q (@) dz (4.19)

forall h € Wé’p(ﬂ).
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In (4.19) we choose the test function h =~ € W&’p (Q) and obtain
¢|pallh <0, = >0, @#0.

Therefore # is a nontrivial positive solution of (4.17). Using Theorem 7.1, p. 286, of
Ladyzhenskaya—Uraltseva [6], we have that 7 € L*(()) and then the nonlinear regularity
theory of Lieberman [7] implies that 7 € C; \ {0}. We have

A?Q+A$ﬂ§caﬁ4'in0,
=i €intCy (see Pucci-Serrin [16], p. 120).

Now we show the uniqueness of this positive solution of (4.17). To this end, we introduce
the integral functional j : L!(Q)) — R = R U {+oo} defined by

i(u) = %Pm,p(Dul/q) + %pgz,q(Dul/q) ifu>0,ul/1c Wé'p(Q),
oo otherwise.

From Diaz-Saa [2], we know that j(-) is convex. Suppose that 7 is another positive solution
of (4.17). Again we have 7 € int C;.. On account of Proposition 4.1.22, p. 274, of Papageorgiou—
Radulescu-Repovs [12], implies that

€ L™(Q), % € L™(Q). (4.20)

Set h = @17 — i1 € C}(Q). Then (4.20) implies that for t > 0 small, we have
ii+thedomj, §+thecdomj,

where dom j = {u € L}(Q) : j(u) < oo} (effective domain of j(-)). Then we can compute the
directional derivatives of j(-) at #7 and at 77 in the direction h. A simple computation using
the convexity of j(-) and the nonlinear Green's theorem (see [12], p. 35), we obtain

g 1 p —AYa—AZa,
P = o [ S ) de

1

= (=) —0) st 7] (& - ),

. 1 —AYT— A7y
1 (=54 _ - p q 79 — 74
j' (") (h) q/Q i (@ — %) dz

1

o /Q [(7(2) — &) — cag? ] (a7 — ") d.

The convexity of j(-) implies the monotonicity of j/(-). So, we have
e _p— p—a\ (5 _
0<f/ P01 _ =1 (@1 — 1) dz,
< Jo ) (@ - gt dz
=1n0=7 (sinceq < p).

Therefore 1 € intC, is the unique positive solution of (4.17). The equation is odd, so
0 = —il € —intC; is the unique negative solution of (4.17). O
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Let Sy (resp. S—) be the set of positive (resp. negative) solutions of (1.1). From Proposi-
tions 4.1 and 4.3 and the nonlinear regularity theory, we have

D#S. CintCy and ©#S_ C —intCy.

Next we show that the solutions 7 € intC (resp. o € —intC) from Proposition 4.4, is a
lower bound (resp. upper bound) for the elements of S (resp. of S_).

Proposition 4.5. If hypotheses Hy and Hy or Hy (q = 2) hold, then i1 < u forallu € S, and v <9

forallv e S_.

Proof. For u € S C intC, and consider the Carathéodory function k4 : 3 x R — R defined

by

((z) =) (x )17 —ce(x )Pt ifx < (),

(1(z) — &) (u(2))1™" — co(u(z))P! if u(z) <x.
We set K (z,x) = fox k. (z,s) ds and consider the C!-functional 7 : W&’p (Q) — R defined

by

ki(z,x) = { 4.21)

1 1
Y4(u) = Epa],p(Du) + ﬁpaz,q(Du) - /QKJF(z,u) dz forallu e Wg’p(Q).

Clearly () is coercive (see (4.21)). Also using the Sobolev embedding theorem, we see
that ¢ (-) is sequentially weakly lower semicontinuous. So, we can find ii € Wg’p (Q) such
that

v+ (i) = inf {7+(u) € w(}'?’(n)} . (4.22)

As in the proof of Proposition 4.1, we choose t € (0,1) small so that t172(q) < u (recall
u € int C4 and use Proposition 4.1.22, p. 274 of [12]) and using (4.21) and since g < p, we have

Y4+ (t172 (7)) <0 (choosing t € (0,1) even smaller if necessary),

= 7+(i1) <0=7.(0) (see(422),
=1 #0.

From (4.22) we have
(7, (@),h) =0 forall h € Wy*(Q),
= (V(i1),h) = / ki(z,0)hdz forall h € WP (Q). (4.23)
0
In (4.23) we choose the test function h = —ii~ € Wg’p (Q) and obtain
eiDa ||l <0 (see (4.21)),
=i>0, i#0.
Next in (4.23), we choose the test function h = (i —u)* € Wg’p (Q). Then
(V(@), (i —u)*t) = / [(n(z) —)ul1 — couP~ 1} (i —u)*dz (see (4.21))

/ f(z,u)(@—u)"dz (see (4.16))

u)*) (since u € Sy).

:z

(V(u)
<u
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So, we have proved that
ie[0,u], @#0. (4.24)

From (4.24), (4.21), (4.23) and Proposition 4.5, it follows that

i=1u<u forallu e S, (u € S; was arbitrary).

Similarly, we show that
v<7 forallveS_. O

Using these bounds, we can produce the extremal constant sign solutions for problem
(1.1).

Proposition 4.6. If hypotheses Hy and Hy or Hy (q = 2) hold, then there exist u* € Sy and v* € S_
such that u* < wuforallu € S;, v <v* forallve S_.

Proof. We know that S is downward directed, that is, if u1, up € S, then there exists u € S
such that u < uy, u < up (see Papageorgiou—Radulescu—Repovs [11]). Then using Theorem
5.109, p. 308, of Papageorgiou—-Radulescu [4], we can find {u, },en € S decreasing such that

inf S, = inf u,.
inf S = inf v
From Proposition 4.5, we have
i <u, <u; foralln € IN. (4.25)

Also, since u, € S, for all n € N, we have

(V (), h) = /Q F(z,un)hdz forall h € Wi (Q). (4.26)
In (4.26) we choose the test function & = u, € Wé’p (Q)). Then using (4.25) and hypothesis
Hy(i) = Hj(i), we infer that
{tn}nen C W&’p((}) is bounded.
So, we may assume that
wy St in WeP(Q), u, —u* in LP(Q). (4.27)

In (4.26) we choose the test function h = u, — u* € Wé’p (Q)), pass to the limit as n — oo
and use (4.27). Then
lim (V(uy), u, —u*) =0,

n—o0
= u, - u" in Wg’p(Q) (see Proposition 2.3).
Passing to the limit as n — oo in (4.26), we obtain
(V(u*),h)y = / f(z,u*)hdz forallh e W&’p(Q),
0

i <u* (see (4.25)).

Therefore, u* € Sy, u* =infS..
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To produce the maximal negative solution, we note that S_ is upward directed (that is, if
v1,0; € S_, there exists v € S_ such that v; < v, v, < v). Therefore, we can find {v,},en
increasing such that

sup S_ = sup v,.
nelN

Reasoning as above, we produce v* € S_ such that
v<v* forallveS_. O

In Proposition 4.1, to obtain the solutions #y € intC, and vy € —intC,, we did not use
the asymptotic condition as x — £oo (hypothesis H;(ii) = H,(ii)). If we bring this condition
in the picture and strengthen hypotheses H(iii), H(iii), we can generate additional constant
sign solutions.

The new hypotheses on f(z, x) are the following;:
Hi : f: QxR — Ris a Carathéodory function such that Hj(i), (ii), (iv), (v) are the same as
the corresponding hypotheses Hj (i), (i), (iv), (v) and
(iii) there exist T € (1,4), 6 > 0 and ¢ > 0 such that

colx|" < f(z,x)x < TF(z,x) foraa.z e, all |x| <é.

H} :f : QO xR — R is a Carathéodory function such that Hj(i), (ii), (iv), (v) are the same as
the corresponding hypotheses Ha(i), (ii), (iv), (v) and

(iii) g = 2 and there exist 11,772 € L*(Q)) and k > 2 such that

A2(2) <mlz) <mlz) <A2,(2) foraa. zeQ,
m#EAQ), m#EALQ),
flzx) _

71(z) < lim infM < limsup — = 172(2)

X= x—0

uniformly for a.a. z € Q).

Proposition 4.7. If hypotheses Hy and Hj or Hy (q = 2) hold, then we can find two more constant
sign solutions:
heintCy, ug<i, i 751/[0,

e —intCy, 0<wvy 0F#uvy.
Proof. From Proposition 4.1, we know that there is a positive solution ug € int C such that
Ug € intcé @) [0, 9+]
and ug is a local minimizer of ¢, (-). We assume that K, is finite, otherwise we already have
an infinite number of positive smooth solutions and so we are done.

Claim: ¢ (-) satisfies the C-condition.

Consider a sequence {uy },en C Wé’p(ﬂ) such that {¢; (#) }nenw € R is bounded and

- el

[ERELE LIRS L 428
S T [ (4.28)

]<v<un>,h> ~ [ fleutynds
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forall h € W&’p(Q), all n € N with ¢, — 0.
In (4.28), we choose the test function h = —u,, € Wé’p (Q)) and obtain

¢||Duy ||h < ey forallnm €N,
= u; =0 in Wy (Q). (4.29)
Suppose that [|u; || — oo and let y, = B +”, n € IN. Then
lyall =1, y» >0 forall n € N.
So, we may assume that
v Sy inWyP(Q), y.—y inLP(Q), y>0. (4.30)
From (4.28) and (4.29) it follows that
V() 1) < il + [ fle, i hdz @31)
for all i € Wy (Q), all n € N, with ¢}, — 0.

1
= / al(z)\Dyn|P‘2(Dyn,Dh)IRNdz+W/Qaleyn\q_z(Dyn,Dh)]RNdz

< *HP _En )+ f’fiH”p ) pdz forallh € WP(Q), all n € N. (4.32)

On account of hypothesis H;(i)=H>(i), we have that

{JW} crL (Q) is bounded. (4.33)
nelN

o 1P~ -

So using hypothesis Hj(ii) = H;(ii), we may assume that
= fo()y? ! (4.34)

with 7y € L®(Q), 7(z) < #o(z) for a.a. z € Q. (see Aizicovici-Papageorgiou-Staicu [1], proof
of Proposition 16). In (4.32), we choose the test function h = y, —y € W;’p (Q)), pass to the
limit as n — oo and use (4.30) and (4.33). Then

lim sup A a1(2)|Dyn|P~2(Dyy,, Dy, — Dy)gn dz < 0,

n—oo
=y —y mWP(Q), lyll=1 y>0 (4.35)
(see Papageorgiou-Winkert [14], p. 665).

If in (4.32), we pass to the limit as n — oo and use (4.34), (4.35), we obtain

/Qal(z)|Dy|p_2(Dy, Dh)gn dz = /Qﬁo(z)yp_lh dz forallh e Wé’p(Q),
= — Ay =#o(z)y" ! InQ, ylon=0. (4.36)
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Recall that AlY(p) < 7i(z) < fo(z) for aa. z € Q. Let A{'(p, i) be the principal eigenvalue
of —AY'y = Afjo(2)|y|P~2y in O, y[sn = 0 (weighted version of the eigenvalue problem (2.1).
From Proposition 4.133, p. 271, of Hu-Papageorgiou [5] we have

AT (p,10) < AT (p, AT (p)) = 1.
Then from (4.36) it follows that
y(-) is nodal or zero (see Hu-Papageorgiou [5, Proposition 4.127, p. 268]).
Both possibilities contradict (4.35). Therefore
{uf bnen C W&’p(ﬂ) is bounded,
= {uty nen C W&’p(Q) is bounded (see (4.29)).
So, we may assume that
uy B u in Wy (Q), up—u in LP(Q). (4.37)

In (4.28) we choose the test function h = u, —u € W& 7(Q), pass to the limit as n — co and
use (4.37). Then

Jg(V(un),un —u)y =0
= u, > u in W&’p(Q) (see Proposition 2.3),

= ¢ (-) satisfies the C-condition.

This proves the claim.

Recall that 1 is a local minimizer of ¢, (-) and that K, is finite (see the beginning of the
proof). These facts and Proposition 3.132, p. 179, of Hu-Papageorgiou [5], imply that we can
find p € (0,1) small such that

¢+ (uo) < inf{e(u) : |lu—uol = p} =my. (4.38)
Hypotheses Hj(i),(ii) = Ha(i),(ii) imply that given ¢ > 0, we can find § = é(e) > 0 such that

F(z,x) > ;[ﬁ(z) —¢]|x|F foraa.z e Q, all x| <4.
For t € (0,1), we have
A~ tp 3 a1 A~ p Etp tq ~dq
¢+ (ty' (p)) < ” /Q[/\] (p) —n(2)]ay' (p)P dz + >t 77Pa20 (D7 (P))

(since pa, p (DY (p)) = AT (p) 127 (P)IIp, 147 (P) ]Iy = D).

Since 7' € intCy and the inequality A{'(p) < 75(z) for aa. z € Q is strict on a set of
positive Lebesgue measure, it follows that

B= [ 1) = A7 ()i (p)" dz > .

Choosing ¢ € (0, 3) small, we obtain

¢4 (117 (p)) < c7t1 — cgt?  for some ¢z, cg > 0.
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Since g < p, we infer that
¢+ (t(p)) — —c0  as t — +oo. (4.39)

Then (4.38), (4.39) and the Claim, permit the use of the mountain pass theorem and obtain
e Wol’p(Q) such that

i€ Ky, CintCoU{0}, my < go(d),
=1 7'é up.

If we show that 11 # 0, then 7 € int C;. is the second positive solution of (1.1). First assume
that hypotheses Hj hold. On account of hypothesis Hj(iii) and of Lemma 5.125, p. 459, of
Hu-Papageorgiou [5] we have

Ci(9+,0) =0 forall k € IN,. (4.40)

On the other hand since # € K, is a critical point of mountain pass type, using Corol-
lary 3.125, p. 178, of Hu-Papageorgiou [5], we have

Ci(g+, 1) # 0. (4.41)

Comparing (4.40) and (4.41), we conclude that i # 0. So 71 € intC. is the second positive
solution of (1.1).

Similarly working this time with the functional ¢_(-), we produce a second negative solu-
tion 9 € —intC,, 0 # vp. O

5 Nodal solutions

In this section we prove the existence of nodal solutions (sign-changing solutions) for problem
(1.1) and state the complete multiplicity theorem.

First we consider the case where hypotheses H{ hold.
Proposition 5.1. If hypotheses Hy, Hj hold, then problem (1.1) admits at least two nodal solutions
Yo € intea ey [vo, o], 7 € [00,u0] N Co(Q), § # yo.

Proof. Let u, € intC, v, € —intCy be the two extremal constant sign solutions produced in
Proposition 4.6. We introduce the Carathéodory function defined by

f(z,v*(z)) if x <v*(z),
Y(z,x) =< f(z,x) if v*(z) <x <u*(z), (5.1)
f(z,u*(z)) ifu*(z) <«

In addition, we introduce the positive and negative truncations of y.(z,-), namely the
Carathéodory functions

v+ (z,x) = v(z, j:xi) forallze O, all x € R. (5.2)
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We set I'(z,x) = [y v(z,5)ds, T+(z,x) = [; 7+(z,5)ds and consider the C!-functionals
i s s WyP(Q) — R defined by
() = o (D) + - (D)~ [ T(z,u)dz
M = ppal,p anz,q o\ ’

pe(u) = ;Pal,p(Du) + ;pam(Du) - /Ql"i(z,u) dz forallu e Wg’p(Q).

Using (5.1) and (5.2), we can check easily that
Ky, C [0.,u]NCH(Q), Ky, C[0,u]NCy, Ky C[o,,0/N(—Cy).
The extremality of u*, v* implies that
Ky C [0, u]NC(Q), Ky, ={0,u*}, K, ={00.}. (5.3)

From (5.1) and (5.2) it is clear that p (-) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find 1* Wé’p (Q)) such that

e (0°) = inf g (u) 11w € WP (Q) ) < 0= i (0),
(since T < g and u* € intCy)
=0"#0 andsod* =u" (see (5.3)).

From (5.1) and (5.2) it is clear that
K+ ‘c+ = V‘cg
Therefore, we have that
u* € intCy is a local C§(Q))-minimizer of ¢(-),
= u* € intCy is a local Wg’p(ﬂ)—minimizer of u(-).
In a similar fashion, using this time the functional y:_(-), we show that
v* € —intCy is a local Wg’p(ﬂ)—minimizer of u(-).

We may assume that
p(v*) <u(u*) and K, is finite (54)

(see (5.3) and note that any solution y ¢ {0, u*,v*} of (1.1) is necessarily nodal). The func-
tional (- ) being coercive, satisfies the C-condition (see Hu-Papageorgiou [5], Proposition 3.19,
p- 123). So, using Proposition 3.132, p. 179, of Hu-Papageorgiou [5], we can find p € (0,1)
small such that

o <|lu" —o"ll, p(u") <inf{p(u): lu—u’l| = p} =m". (5.5)

Then (5.4),(5.5) and the C-condition of (-), permit the use of the mountain pass theorem.
So, we can find y € W&’p (Q) such that

yo € Ky € [0, u*] NCH(Q) (see(5.3)), m* < u(yo) (see (5.5)). (5.6)
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We know that
Ci(u,y0) #0 (see [5, Corollary 3.123, p. 176]). (5.7)

Using the homotopy invariance property of critical groups (see [5, p. 179]) and the nonlin-
ear regularity theory, we obtain

Cr(1,0) = Cr(¢,0) for all k € No. (5.8)
From hypothesis Hj(iii) and Hu-Papageorgiou [5, Lemma 5.126, p. 462], we have
Cr(¢,0) =0 for all k € Ny,
= Cr(u,0) =0 forallk € Ny (see (5.8)). (5.9)

From (5.7) and (5.9), we infer that
Yo # 0.
Also, yo & {u*,v*} (see (5.5), (5.6)). Therefore
Yo € [v%,u*] N C}(Q) is a nodal solution of (1.1).
By Theorem 1.3 of Lucia—Prashanth [10] (see also Pucci-Serrin [15, p. 6]), we have
yo(z) <u*(z) forallz e Q. (5.10)
Let p = max{||v*||eo, ||#*|| } and let CAP > 0 be as postulated by hypothesis H;(v). We take
& > ép and have
— gy — APyo + & |yolPPyo = f(zy0) + & lyol” w0

< flzu*) + &)t

= —Ajut — APu" + Ew* )Pt in Q.
Note that

flzu™) + & )P = flz,u") + Ep(u) + (6 = o) (u™)P !
> f(z,y0) + Eolyol”2yo + (6" = o) lyol’2yo
= f(z,v0) + & |yolP 2y in Q. (5.11)
From hypothesis H;(v) and (5.10), we see that
FCyo()) +E oGP 2yo () < flu* () + & (u ()P
So, using Preccosition 3.1, from (5.11) we infer that
u* —yo € intCy.

Similarly we show that
yo— 0" €intCy.
It follows that
Yo € inter g [0, u™]. (5.12)

Moreover, using the flow invariance argument from the proof of Proposition 5.1 of Liu-
Papageorgiou [8], we generate another solution

7€, u]NnC(Q) \intey ) [0%, 7). (5.13)
From (5.12) and (5.13) it follows that
7 € C}(Q) is a nodal solution of (1.1), 7 # vyo. O
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When hypotheses H}(q = 2) hold, since the behavior of f(z,-) near zero is different, we
need to strengthen the hypotheses on the reaction f(z, x) in order to have nodal solutions.

Hy: f: QxR — R is a measurable function such that f(z,-) € C}(R) for a.a. z € Q,
hypotheses HY (i), (ii), (iv), (v) are the same as the corresponding hypotheses H(i), (ii), (iv),
(v) and

(iii) there exists k > 2 such that
fi(z,0) € [A2(2),A2,(2)] foraa.z€Q,
£2(0) #A2(2), fi(0) # A2, (2).

Proposition 5.2. If hypotheses Hy and HY} (q # 2) hold, then problem (1.1) (g = 2) admits at least
two nodal solutions

Yo € inter gy [0*, u*]
g€ uwInG(Q), 7# .
Proof. The proof is similar to that of Proposition 5.1.
In this case (5.10) follows from the tangency principle (see Pucci-Serrin [16, p. 35]). Since
f(z,-) exhibits a linear behavior near zero (see hypothesis H (iii)) and so there is no resonance,
we can not claim that Cx(p,0) = 0 for all k € INy. So, to prove the nontriviality of i, we have

to use a different argument.
Let [ : H{(Q)) — R be the C?-functional defined by

[(u) = %paz,z(Du) - /QP(z,u)dz for all u € HA(Q).

We consider the following orthogonal direct sum decomposition

H(Q) =YV

with Y = @[, E(A?(2)), V = @iz E(AP(2)).
Hypotheses HJ (i), (iii), imply that given &€ > 0, we can find c19 = c19(€) > 0 such that

F(z,x) < 5[f1(z,0) + €]+ caoll? (5.14)

If u € V, then using (5.14), we have

1 €
[(u) > Pa22 (Du) / fl(z,0)u*dz — mpaz,z(Du) —cq1||ul|P for some 13 >0
1

| — c11]ju||P for some c1p > 0 (see Proposition 2.2)

> 2 lerz —¢]
Choosing ¢ € (0, c12), we obtain
[(u) > cys||ul|* = c11||u||P  for some c13 > 0.
Since 2 < p, for p € (0,1) small we can say that

[(u) >0 forallu € V,with |lu|| < p. (5.15)
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On the other hand, again from hypothesis HY (iii), we see that given ¢ > 0, we can find
0 = 6(e) > 0 such that

F(z,x) > %[f,’c(z,O) —¢]x? foraa.z€Q, all [x| <. (5.16)

The space Y is finite dimensional and so all norms are equivalent (see Papageorgiou—
Winkert [14], p. 183). Therefore we can find p > 0 such that

ueyY, |lul| <p=lu(z)|<é forallze Q. (5.17)

Therefore if u € Y with ||u|| < g, then

[(u) < %pazlz(Du) - % Q[fJ’C(Z,O) —eJu?dz  (see (5.16), (5.17))

—_

< 5 [e —c14] |u||*> for some c4 >0 (see Proposition 2.2)

Choosing ¢ € (0, c14), we conclude that
[(u) <0 foralluc, |ul| <p. (5.18)

From (5.15) and (5.18), we infer that [(-) has a local linking at the origin with respect to the
orthogonal decomposition (Y, V) (see [5, p. 145]). If dy = dim Y > 2 (recall k > 2), then

Cw([,0) = 8,4 R forallme Ny (see[12], p.539). (5.19)

Let/ =1 | @ (recall Wé'p (Q)) — H{(Q) densely since p > 2). So by Proposition 3.128,
0
p. 178, of Hu-Papageorgiou [5], we have

Cn(1,0) = Cyu(1,0) for all m € Ny,
= Cu(1,0) = 0,4 R forallm € Ny (see (5.17)). (5.20)

From the C!-continuity property of critical groups (see Theorem 3.129, p. 179, of Hu-
Papageorgiou [5]), we have

Cm(,0) = Cy(1,0) for all m € Ny.
= Cu(9,0) =6, 4R forallm € Ny (see (5.20)).

Recall via the homotopy invariance property of critical groups (see [5, p. 179]), we have

Cn(p,0) = Cpu(¢,0)R for all m € Ny,
= Cu(1,0) = &g R for all m € Ny (dg > 2). (5.21)

We know that C; (i, y0) # 0. Comparing with (5.21) we deduce that

Yo # 0,
= Yo € C{(Q) is a nodal solution of (1.1) (g = 2).

Since yo(z) < u*(z) for all z € ), as in the proof of Proposition 5.1, we show that
Yo € inter gy [0*, u*].

Finally, the flow invariance argument of Liu-Papageorgiou [8], generates § € [v*,u*] N
C(Q) another nodal solution of problem (1.1) (g = 2), § # yo. O
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We conclude with the following two multiplicity theorems for

Theorem 5.3. If hypotheses Hy and H; hold, then problem (1.1) admits at least six nontrivial smooth
solutions:

up, i €intCy, up <, wup(z) <0y forallzeQ,
09,0 € —intCy, 0<wy, 0_<uvp(z) forallzeQ,
Yo € intcg(ﬁ) [vo, o], G € [vo,uo] N Ctl) (Q), yo # 1§ both nodal.

Theorem 5.4. If hypotheses Hy and H} (q = 2) hold, then problem (1.1) (g = 2) admits at least six
nontrivial smooth solutions

up, €intCy, up <, wup(z) <0y forallzeQ,
09,0 € —intCy, 0<70vy, 0_-<wvy(z) forallze€Q,
Yo € intey ) [vo, 10, T € [v0,u0] NCA(Q), yo # 7 both nodal.

Remark 5.5. We point out that in the above multiplicity theorems, we provide sign information
for all the solutions produced. Moreover, the solutions {1, 1, v, 9, yo } and {uo, 1, vo, 9,y } are
ordered.
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