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Abstract. We consider a nonlinear Dirichlet problem driven by a nonautonomous (p, q)-
Laplacian and a Carathéodory reaction which is (p − 1)-linear near ±∞. Using varia-
tional tools, comparison principles and critical groups, we prove two multiplicity theo-
rems producing six nontrivial smooth solutions, all with sign information and ordered.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the
following nonhomogeneous Dirichlet (p, q)-equation:{

−∆a1
p u(z)− ∆a2

q u(z) = f (z, u(z)) in Ω,

u|∂Ω = 0, 1 < q < p.
(1.1)

If a ∈ L∞(Ω), 0 < ĉ ≤ essinfΩa and r ∈ (1, ∞), then by ∆a
r we denote the weighted

r-Laplace differential operator defined by

∆a
r u = div(a(z)|Du|r−2|Du), for all u ∈ W1,r

0 (Ω).
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In (1.1) the equation is driven by the sum of two such operators with different exponents
(1 < q < p) and in general different weights (a1(·), a2(·)). So in (1.1) the differential op-
erator is nonautonomous and nonhomogeneous. The reaction (right-hand side) f (z, x) is a
Carathéodory function (that is, for all x ∈ R, z 7→ f (z, x) is measurable, and for a.a. z ∈ Ω,
x 7→ f (z, x) is continuous). Such a function is jointly measurable and so superpositionally
measurable (that is, for every measurable function u : Ω → R, the function z 7→ f (z, u(z)) is
measurable). We assume that f (z, ·) exhibits (p − 1)-linear growth as x → ±∞.

Using variational tools from the critical point theory and the spectral properties of the
nonhomogeneous p and q Laplacians (see Liu–Papageorgiou [9]), we prove the existence of
at least six nontrivial smooth solutions, all with sign information and ordered. Our work
here extends that of Liu–Papageorgiou [8,9] where the authors obtain three nontrivial smooth
solutions. In the process of the proof, we prove two strong comparison theorems, which
provide powerful tools for the analysis of nonautonomous equations.

2 Mathematical background – hypotheses

The main spaces in the analysis of problem (1.1) are the Sobolev spaces W1,p
0 (Ω) and the

Banach space C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. On account of the Poincaré inequality, on

W1,p
0 (Ω) we can use the norm

∥u∥ = ∥Du∥p for all u ∈ W1,p
0 (Ω).

The Banach space C1
0(Ω) is an ordered Banach space with positive (order) cone

C+ =
{

u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣∣
∂Ω

< 0
}

,

where ∂u
∂n = (Du, n)RN with n(·) being the outward unit normal on ∂Ω.

Let C0,1(Ω) be the space of all Lipschitz continuous functions on Ω. Suppose a ∈ C0,1(Ω),
0 < ĉ ≤ a(z) for all z ∈ Ω and 1 < r < ∞. We consider the following nonlinear eigenvalue
problem

−∆a
r u(z) = λ̂|u(z)|r−2u(z) in Ω, u|∂Ω = 0. (2.1)

From Liu–Papageorgiou [9], we know that

(a) Problem (2.1) has a smallest eigenvalue λ̂a
1(r) > 0 which has the following variational

characterization

λ̂a
1(r) = inf

{∫
Ω a(z)|Du|r dz

∥u∥r
r

: u ∈ W1,r
0 (Ω), u ̸= 0

}
. (2.2)

(b) λ̂a
1(r) > 0 is isolated, that is, if σ̂(r) > 0 denotes the spectrum of (2.1), then there exists

ε > 0 such that
σ̂(r) ∩ (λ̂a

1(r), λ̂a
1(r) + ε) = ∅.
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(c) λ̂a
1(r) > 0 is simple, that is, if û, v̂ ∈ W1,p

0 (Ω) are eigenfunctions corresponding to λ̂a
1(r),

then û = θv̂ for some θ ∈ R\{0}.

(d) All eigenfunctions of (2.1) belong in C1
0(Ω̄) (nonlinear regularity theory of Lieberman

[7]), if λ > λ̂a
1(r) is an eigenvalue of (2.1), then the eigenfunctions corresponding to λ

are nodal (sign-changing) and the eigenfunctions of λ̂a
1(r) have fixed sign (see (2.2)) and

by ûa
1(r) we denote the positive, r-normalized (that is, ∥ûa

1(r)∥r = 1) eigenfunction for
λ̂a

1(r). Using the nonlinear maximum principle (see Pacci–Serrin [16], p. 120), we have

ûa
1(r) ∈ int C+.

(e) We do not have a full knowledge of σ̂(r), r ̸= 2. Using the Ljusternik–Schnirelmann
minimax scheme, we know that (2.1) has a sequence {λ̂a

k(r)}k∈N of eigenvalues (known
as variational eigenvalues) such that λ̂a

k(r) → +∞ as k → ∞. We do not know if this
sequence exhausts σ̂(r).

If r = 2 (linear eigenvalue problem), then using the spectral theorem for compact op-
erators, we have a full description of the spectrum σ̂(2) which consists of a sequence
{λ̂k(2)}k∈N of distinct eigenvalues with λ̂k(2) → +∞. The eigenspaces E(λ̂k(2)) are
finite dimensional linear spaces and we have E(λ̂k(2)) ⊆ C1

0(Ω) for all k ∈ N. We have
variational characterizations for all the eigenvalues:

λ̂a
1(2) = inf

{∫
Ω a(z)|Du|2dz

∥u∥2
2

: u ∈ H1
0(Ω), u ̸= 0

}
, (2.3)

m ≥ 2 λ̂a
m(2) = inf

{∫
Ω a(z)|Du|2dz

∥u∥2
2

: u ∈ V =
⊕
k≥m

E(λ̂k(2)), u ̸= 0

}

= sup

{∫
Ω a(z)|Du|2dz

∥u∥2
2

: u ∈ V =
m⊕

k=1

E(λ̂k(2)), u ̸= 0

}
. (2.4)

The extrema in (2.3) and (2.4) are realized on the corresponding eigenspaces.
The next inequalities are easy consequences of the aforementioned properties (see Hu–

Papageorgiou [5]).

Proposition 2.1. If η̂ ∈ L∞(Ω), η̂(z) ≤ λ̂a
1(r) for a.a. z ∈ Ω and η̂ ̸≡ λ̂a

1(r), then there exists c1 > 0
such that

c1∥u∥r ≤ ∥Du∥r
r −

∫
Ω

η̂(z)|u|rdz for all u ∈ W1,r
0 (Ω).

Proposition 2.2.

(a) If η̂ ∈ L∞(Ω), η̂(z) ≤ λ̂a
k(2) for a.a. z ∈ Ω and η̂ ̸≡ λ̂a

k(2), then there exists c2 > 0 such that

c2∥u∥2 ≤ ∥Du∥2
2 −

∫
Ω

η̂(z)u2dz for all u ∈ V =
⊕
m≥k

E(λ̂m(2)).

(b) If η̂ ∈ L∞(Ω), η̂(z) ≥ λ̂a
k(2) for a.a. z ∈ Ω and η̂ ̸≡ λ̂a

k(2), then there exists c3 > 0 such that

∥Du∥2
2 −

∫
Ω

η̂(z)u2 dz ≤ −c3∥u∥2
2 for all u ∈ V =

k⊕
m=1

E(λ̂m(2)).
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Let Aa1
p : W1,p

0 (Ω) → W−1,p′(Ω) = W1,p
0 (Ω)∗

(
p′ = p

p−1

)
and Aa2

q : W1,q
0 (Ω) → W−1,q′(Ω)=

W1,q
0 (Ω)∗ be defined by

⟨Aa1
p (u), h⟩ =

∫
Ω

a1(z)|Du|p−2(Du, Dh)RN dz for all u, h ∈ W1,p
0 (Ω),

⟨Aa2
q (u), h⟩ =

∫
Ω

a2(z)|Du|q−2(Du, Dh)RN dz for all u, h ∈ W1,q
0 (Ω).

We set V = Aa1
p + Aa2

q (recall W1,p
0 (Ω) ↪→ W1,q

0 (Ω)).

Proposition 2.3. The operators Aa1
p , Aa2

q , V are bounded (map bounded sets to bounded ones), contin-
uous, strictly monotone (thus maximal monotone too), coercive and of type (S)+, that is,

if un → u in X (with X = W1,p
0 (Ω) or X = W1,q

0 (Ω))

and lim supn→∞⟨G(un), un − u⟩ ≤ 0 (with G = Aa1
p or G = Aa2

q or G = V), then un → u in X.

Let X be a Banach space and φ ∈ C1(X). We say that φ(·) satisfies the “C-condition” if it
has the following property:

“every sequence {un}n∈N ⊆ X such that |φ(un)| ≤ M for some M > 0, all n ∈ N,
(1 + ∥un∥X)φ′(un) → 0 in X∗ as n → ∞, admits a strongly convergent subsequence”.

We introduce the following sets:

Kφ = {u ∈ X : φ′(u) = 0} (critical set of φ(·)),
φc = {u ∈ X : φ(u) ≤ c} for every c ∈ R.

If Y2 ⊆ Y1 ⊆ X and k ∈ N0 = N ∪ {0}, then by Hk(Y1, Y2) we denote the kth-singular
homology group with real coefficients (so the critical groups are vector spaces). Let u ∈ Kφ be
isolated and c = φ(u). The critical groups of φ(·) at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k ∈ N0,

where U is a neighborhood of u such that Kφ ∩ U ∩ φc = {u}. The excision property of
singular homology implies that this definition is independent of the isolating neighborhood
U.

If u, v : Ω → R are measurable functions such that u(z) ≤ v(z) for a.a. z ∈ Ω". We define

[u, v] = {h ∈ W1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω}

intC1
0(Ω)[u, v] = interior in C1

0(Ω) of [u, v] ∩ C1
0(Ω).

Also given u : Ω → R measurable, we write 0 ≺ u if for every K ⊆ Ω compact we have
0 < cK ≤ u(z) for a.a z ∈ K. Also, we set u± = max{±u, 0} and we have u = u+ − u−,
|u| = u+ + u− and if u ∈ W1,p

0 (Ω), then u± ∈ W1,p
0 (Ω). By | · |N we denote the Lebesgue

measure on RN .
The hypotheses on the data of (1.1), are the following:

H0 a1, a2 ∈ C0,1(Ω), 0 < ĉ ≤ a1(z), a2(z) for all z ∈ Ω, 1 < q < p < N.

H1 f : Ω × R → R is a Carathéodory function such that

(i) | f (z, x)| ≤ â(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω);
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(ii) there exists η̂ ∈ L∞(Ω) such that

λ̂a1
1 (p) ≤ η̂(z) for a.a. z ∈ Ω, η̂ ̸≡ λ̂a1

1 (p),

η̂(z) ≤ lim inf
x→±∞

f (z, x)
|x|p−2x

uniformly for a.a. z ∈ Ω;

(iii) there exists η ∈ L∞(Ω) such that

λ̂a2
1 (q) ≤ η(z) for a.a. z ∈ Ω, η ̸≡ λ̂a2

1 (q),

η(z) ≤ lim inf
x→0

f (z, x)
|x|q−2x

uniformly for a.a. z ∈ Ω;

(iv) there exist real numbers θ− < 0 < θ+ such that

f (z, θ+) ≤ −l < 0 < l ≤ f (z, θ−) for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function x →
f (z, x) + ξ̂ρ|x|p−2x is nondecreasing on [−ρ, ρ].

Remark 2.4. Hypotheses H1(i),(ii) imply that f (z, ·) is (p − 1)-linear as x → ±∞. We can have
partial interaction with λ̂a1

1 (p) > 0 from the right (nonuniform nonresonance). Similarly as
x → 0 with respect to λ̂a2

1 (q) > 0, Hypothesis H1(i),(iii) imply that f (z, 0) = 0 for a.a. z ∈ Ω.
Hypothesis H1(iv) implies that f (z, ·) is necessarily sign changing (it exhibits an oscillatory
behavior near zero). Later (see hypotheses H2 in Section 4), we will see that by requiring
that q = 2, we can relax hypothesis H1(iii) and incorporate in our framework reactions which
satisfy the sign condition (that is, f (z, x)x ≥ 0 for a.a. z ∈ Ω, all x ∈ R).

In what follows, for notational economy, we write

ρa1,p(Du) =
∫

Ω
a1(z)|Du|p dz,

ρa2,q(Du) =
∫

Ω
a2(z)|Du|q dz for all u ∈ W1,p

0 (Ω).

Let φ : W1,p
0 (Ω) → R be the energy functional for problem (1.1) defined by

φ(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
F(z, u) dz for all u ∈ W1,p

0 (Ω),

where F(z, x) =
∫ x

0 f (z, s)ds. Evidently φ ∈ C1(W1,p
0 (Ω)).

To produce solutions of constant sign, we introduce the positive and negative truncations
of φ(·), namely the C1-functionals φ± : W1,p

0 (Ω) → R defined by

φ±(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
F(z,±u±)dz for all u ∈ W1,p

0 (Ω).
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3 Comparison theorems

In this section, we prove two strong comparison theorems which we will use in the sequel and
which are of independent interest.

Given two measurable functions u, v : Ω → R, we write

u ≺ v if 0 ≺ u − v (see Section 2).

Proposition 3.1. If hypotheses H0 hold, ξ̂ ≥ 0, h1, h2 ∈ L∞(Ω) and h1 ≺ h2 and u ∈ C1
0(Ω) \ {0},

v ∈ intC+ satisfy the equations

− ∆a1
p u − ∆a2

q u + ξ̂|u|p−2u = h1 in Ω,

− ∆a1
p v − ∆a2

q v + ξ̂vp−1 = h2 in Ω,

then v − u ∈ int C+.

Proof. From Theorem 3.4.1, p. 61 of Pucci–Serrin [16] (the weak comparison principle), we
have

u(z) ≤ v(z) for all z ∈ Ω. (3.1)

We introduce the following closed subsets of Ω:

E0 = {z ∈ Ω : u(z) = v(z)}, E1 = {z ∈ Ω : Du(z) = Dv(z) = 0}.

First we show that E0 ⊆ E1. To this end let ẑ ∈ E0 and set y = v − u. Then y ∈ C+ \ {0}
and y(ẑ) = minΩ y. Hence

Dy(ẑ) = 0,

⇒ Dv(ẑ) = Du(ẑ).

If ẑ /∈ E1, then Dv(ẑ) = Du(ẑ) ̸= 0 and so we can find an open ball B centered at ẑ such
that Dv(z) ̸= 0, Du(z) ̸= 0 for all z ∈ B. As in the proof of Proposition 2.1 of Guedda–Véron
[3], we show that there exists K ∈ W1,∞(Ω, RN×N) such that

−div(K(z)Dy) = h2(z)− h1(z)− ξ̂(vp−1 − |u|p−2u) in B. (3.2)

By taking B even smaller if necessary, we can apply the strong maximum principle of
Pucci–Serrin [16] (p. 111) and obtain

y(z) > 0 for all z ∈ B,

⇒ u(z) < v(z) for all z ∈ B,

a contradiction since ẑ ∈ E0 ∩ B. This proves that

E0 ⊆ E1. (3.3)

Since v ∈ int C+, it follows that E1 ⊆ Ω is compact. Hence E0 is compact too (see (3.3)).
So, we can find Ω′ ⊂ Ω open such that

E0 ⊆ Ω′ ⊆ Ω′ ⊆ Ω. (3.4)
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From (3.4) and since Ω′ is compact, we can find ε > 0 such that

u(z) + ε ≤ v(z) for all z ∈ ∂Ω′, (3.5)

h1(z) + ε ≤ h2(z) for all z ∈ Ω′ (recall h1 ≺ h2). (3.6)

We choose δ ∈ (0, ε) small such that

ξ̂
∣∣|s|p−2s − |t|p−2t

∣∣ ≤ ε for all s, t ∈ [minΩ u, ∥v∥∞], |t − s| ≤ δ. (3.7)

Then we have

− ∆a1
p (u + δ)− ∆a2

q (u + δ) + ξ̂|u + δ|p−2(u + δ)

= −∆a1
p u − ∆a2

q u + ξ̂|u + δ|p−2(u + δ)

= h1 − ξ̂|u|p−2u + ξ̂|u + δ|p−2(u + δ)

≤ h2 − ε + ε (see (3.6), (3.7))

= −∆a1
p v − ∆a2

q v + ξ̂vp−1 in Ω′,

⇒ u + δ ≤ v in Ω′ (by the weak comparison principle, see [16], p. 61)

⇒ E0 = ∅ (see (2.4)),

⇒ u(z) < v(z) for all z ∈ Ω.

Now let z0 ∈ ∂Ω and let z1 = z0 − 2rn with n = n(z0) the outward unit normal at z0 ∈ ∂Ω.
For r ∈ (0, 1) small, we consider the annulus

R = {z ∈ Ω : r ≤ |z − z1| ≤ 2r}

and let m = min{y(z) : z ∈ ∂Br(z1)} > 0. From the proof of Proposition 2.3 of Papageorgiou–
Vetro–Vetro [13], we can find w̃ ∈ C1(R) ∩ C2(R) satisfying

−∆a1
p w̃ − ∆a2

q w̃ + ξ̂|w̃|p−2w̃ ≤ 0 in R

with w̃ ≤ u on ∂R. Then by the weak comparison principle, we have

w̃ ≤ u in R.

Moreover, it follows w̃(z0) = 0, ∂y
∂n (z0) ≤ ∂ŵ

∂n (z0) and so y ∈ int C+,

=⇒ v − u ∈ int C+.

In the second comparison result, we strengthen the relation between the two forcing terms
h1, h2 but relax the conditions on u, v.

Proposition 3.2. If hypothesis H0 holds, ξ̂ ≥ 0, h1, h2 ∈ L1(Ω) satisfy

α ≤ ĉ0 ≤ h2(z)− h1(z) for a.a. z ∈ Ω

and u, v ∈ C1(Ω) \ {0} with 0 < v(z) for all z ∈ Ω satisfy

− ∆a1
p u − ∆a2

q u + ξ̂|u|p−2u = h1 in Ω,

− ∆a1
p v − ∆a2

q v + ξ̂|v|p−1 = h2 in Ω, u ≤ v on ∂Ω,

then u(z) < v(z) for all z ∈ Ω.
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Proof. Let η(z, y) = a1(z)|y|p−2y + a2(z)|y|q−2y for all z ∈ Ω, all y ∈ RN . We have

−div(η(z, Dv)− η(z, Du)) = h2 − h1 − ξ̂(vp−1 − |u|p−2u) in Ω. (3.8)

As before the weak comparison principle implies u ≤ v. Let y = v − u. Then y ∈ C1(Ω),
y(z) ≥ 0 for all z ∈ Ω and as in Guedda–Véron [3], we have

−div(K(z)Dy(z)) = h2 − h1 − ξ̂(vp−1 − |u|p−2u) in Ω,

with K ∈ W1,∞(Ω, RN×N).
Suppose that for some ẑ ∈ Ω, we have y(ẑ) = 0, hence v(ẑ) = u(ẑ). Then from (3.8) and

the hypothesis on h1, h2 we can find r ∈ (0, 1) small such that

−div(K(z)Dy(z)) ≥ ĉ1 > 0 in Br(ẑ) = {z ∈ RN : |z − ẑ| ≤ r} ⊆ Ω.

Invoking Theorem 4 of Vázquez [18], we obtain

0 < y(z) for all z ∈ Br(ẑ),

a contradiction since y(ẑ) = 0. It follows that

u(z) < v(z) for all z ∈ Ω.

In the next section we will use these comparison results to produce multiple constant sign
solutions of (1.1).

4 Constant sign solutions

We start by obtaining constant sign solutions which are local minimizers of the energy func-
tional φ(·).

Proposition 4.1. If hypotheses H0, H1 (i), (iii), (iv), (v) hold, then problem (1.1) has two constant sign
solutions

u0 ∈ int C+ with u(z) < θ+ for all z ∈ Ω,

v0 ∈ − int C+ with θ− < v(z) for all z ∈ Ω

and u0 is a local minimizer of the functionals φ, φ+, v0 is a local minimizer of the functionals φ, φ−.

Proof. First we produce the positive solution. To this end we introduce the Carathéodory
function f̂+ : Ω × R → R defined by

f̂+(z, x) =

{
f (z, x+) if x ≤ θ+,

f (z, θ+) if θ+ < x.
(4.1)

We set F̂+(z, x) =
∫ x

0 f̂+(z, s)ds and consider the C1-functional φ̂+ : W1,p
0 (Ω) → R defined

by

φ̂+(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
F̂+(z, u) dz for all u ∈ W1,p

0 (Ω).
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From (4.1) and hypotheses H0, we see that φ̂+(·) is coercive. Also, using the Sobolev
embedding theorem, we have that φ̂+(·) is sequentially weakly lower semicontinuous, so by
the Weierstrass–Tonelli theorem, we can find u0 ∈ W1,p

0 (Ω) such that

φ̂+(u0) = inf
{

φ̂+(u) : u ∈ W1,p
0 (Ω)

}
. (4.2)

On account of hypothesis H1(iii), given ε > 0, we can find δ ∈ (0, θ+) such that

1
q
[η(z)− ε]xq ≤ F(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ. (4.3)

From Section 2, we know that ûa2
1 (q) ∈ int C+. So, we can find t ∈ (0, 1) small such that

0 ≤ tûa2
1 (q)(z) ≤ δ for all z ∈ Ω. (4.4)

Using (4.3), (4.4) and (4.1), we have

φ̂+(tûa2
1 (q)) ≤ tp

p
ρa1,p(Dûa2

1 (q))

+
tq

q

[∫
Ω
(λ̂a2

1 (q)− η(z))(ûa2
1 (q)q) dz + ε

]
(recall that ∥ûa2

1 (q)∥q = 1). (4.5)

Since by hypothesis the inequality λ̂a2
1 (q) ≤ η(z) is strict on a set of positive Lebesgue

measure, we have
β =

∫
Ω
(η(z)− λ̂a2

1 (q))ûa2
1 (q)q dz > 0.

So, choosing ε ∈ (0, β) small, from (4.5), we obtain

φ̂+(tûa2
1 (q)) ≤ c4tp − c5tq for some c4, c5 > 0.

Since q < p, choosing t ∈ (0, 1) even smaller if necessary, we have

φ̂+(tûa2
1 (q)) < 0,

⇒ φ̂+(u0) < 0 = φ̂+(0) (see (4.2)),

⇒ u0 ̸= 0.

From (4.2) we have

⟨φ̂′
+(u0), h⟩ = 0 for all h ∈ W1,p

0 (Ω),

⇒ ⟨V(u0), h⟩ =
∫

Ω
f̂+(z, u0)h dz for all h ∈ W1,p

0 (Ω). (4.6)

In (4.6) first we choose the test function h = −u−
0 ∈ W1,p

0 (Ω). Then from (4.1) we have

ĉ∥Du−
0 ∥

p
p ≤ 0 ⇒ u0 ≥ 0, u0 ̸= 0.

Next in (4.6) we choose the test function (u0 − θ+)+ ∈ W1,p
0 (Ω). Then

⟨V(u0), (u0 − θ+)
+⟩ =

∫
Ω

f (z, θ+)(u0 − θ+)
+ dz (see (4.1))

≤ 0 (see hypothesis H1(iv))

= ⟨V(θ+), (u0 − θ+)
+⟩

⇒ u0 ≤ θ+.
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So, we have proved that
u0 ∈ [0, θ+], u0 ̸= 0. (4.7)

From (4.7), (4.1) and (4.6), we infer that u0 is a nontrivial nonnegative solution of (1.1).
Evidently u0 ∈ L∞(Ω) and then the nonlinear regularity theory of Lieberman [7] implies
u0 ∈ C+ \ {0}. Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1(v). We have

− ∆a1
p u0 − ∆a2

q u0 + ξ̂ρup−1
0 ≥ 0 in Ω,

⇒ u0 ∈ int C+ (see Pucci–Serrin [16], pp. 111, 120). (4.8)

We have

−∆a1
p u0 − ∆a2

q u0 + ξ̂ρup−1
0 = f (z, u0) + ξ̂ρup−1

0 (see (4.7), (4.1))

≤ f (z, θ+) + ξ̂ρθ
p−1
+ (see (4.7) and hypothesis H1(v))

≤ − l + ξ̂θ
p−1
+ (see hypothesis H1(iv))

≤ − ∆a1
p θ+ − ∆a2

q θ+ + ξ̂ρθ
p−1
+ in Ω.

Invoking Proposition 3.2, we infer that

u0(z) < θ+ for all z ∈ Ω. (4.9)

Then (4.8) and (4.9) imply that

u0 ∈ intC1
0(Ω)[0, θ+]. (4.10)

Note that
φ̂+

∣∣
[0,θ+]

= φ+

∣∣
[0,θ+]

(see (4.1)). (4.11)

Recall that u0 is a minimizer of φ̂+(·). So, from (4.10) and (4.11) it follows that

u0 is a local C1
0(Ω)-minimizer of φ+(·),

⇒ u0 is a local W1,p
0 (Ω)-minimizer of φ+(·). (4.12)

(see Hu–Papageorgiou [5, p. 339]).

Let W+ = {u ∈ W1,p
0 (Ω) : u(z) ≥ 0 for a.a. z ∈ Ω}. We have

φ
∣∣
W+

= φ+

∣∣
W+

, u0 ∈ int W+. (4.13)

So, from (4.12) and (4.13) it follows that

u0 is a local W1,p
0 (Ω)-minimizer of φ(·).

For the negative solution, we start with the Carathéodory function f̂−(z, x) defined by

f̂−(z, x) =

{
f (z, θ−) if x < θ−,

f (z,−x−) if θ− ≤ x.

We set F̂−(z, x) =
∫ x

0 f̂−(z, s) ds and consider the C1-functional φ̂− : W1,p
0 (Ω) → R defined

by

φ̂−(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
F̂−(z, u) dz for all u ∈ W1,p

0 (Ω).
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Working as above, this time with the functional φ̂−(·), we produce a negative solution
v0 ∈ − int C+, such that

v0 ∈ intC1
0(Ω)[θ−, 0],

and v0 is a local W1,p
0 (Ω) minimizer of both φ−(·), φ(·).

As we already mentioned, hypothesis H1(iv) forces f (z, ·) to be sign-changing. We can
modify hypothesis H1(iv) so as to include in our framework reactions which satisfy the sign
condition. We can do this if we restrict to q = 2. The new hypotheses on f (z, x) are the
following:

H2 : Ω × R → R is a Carathéodory function such that

(i) same as hypothesis H1(i);

(ii) same as hypothesis H1(ii);

(iii) same as hypothesis H1(iii) with q = 2;

(iv) there exist θ− < 0 < θ+ such that f (z, θ+) ≤ 0 ≤ f (z, θ−) for a.a. z ∈ Ω;

(v) same as hypothesis H1(v).

Remark 4.2. We see that this set of hypotheses includes also reactions which satisfy the sign
condition, that is, f (z, x)x ≥ 0 for a.a. z ∈ Ω, all x ∈ R. Such functions were excluded under
hypotheses H1.

Proposition 4.3. If hypotheses H0, H2(i), (iii), (iv), (v) hold, then problem (1.1) has at least two
constant sign solutions

u0 ∈ int C+ with u0(z) < θ+ for all z ∈ Ω,

v0 ∈ − int C+ with θ− < v0(z) for all z ∈ Ω,

u0 is a local minimizer of the functionals φ, φ+, v0 is a local minimizer of the functionals φ, φ−.

Proof. The proof is the same as that of Proposition 4.1 and it differs only at the point where
we show that u0(z) < θ+ (resp. θ− < v0(z)) for all z ∈ Ω. In this case we argue as follows: let
η(z, y) = a1(z)|y|p−2y + a2(z)|y|q−2y for all z ∈ Ω, all y ∈ RN . Then

div η(z, Du) = ∆a1
p u + ∆a2

q u for all u ∈ W1,p
0 (Ω).

Since 2 < p (see hypothesis H2(iii)), we see that η(z, ·) ∈ C1(RN , RN) and we have

∇yη(z, y) = a1(z)|y|p−2
[

id + (p − 2)
y ⊗ y
|y|2

]
+ a2(z)id.

Therefore for any h ∈ RN \ {0}, we have

(∇yη(z, y)h, h)RN ≥ ĉ|h|2,

⇒ ∇yη(z, ·) is positive definite. (4.14)

Note that

div η(z, Du0) + f (z, u0) ≥ −div η(z, θ+) + f (z, θ+) in Ω. (4.15)

(see hypothesis H2(iv)).
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From (4.14), (4.15) and the tangency principle of Serrin [17] (see also Pucci–Serrin [16],
p. 35), we have

u0(z) < θ+ for all z ∈ Ω.

Similarly, we show that θ− < v0(z) for all z ∈ Ω.

Next we will show the existence of extremal constant sign solutions, that is, a minimal
positive solution and a maximal negative solution. In Section 4 we will use these extremal
constant sign solutions in order to produce a nodal (sign-changing) solutions.

On account of hypotheses H1(i), (iii) (they are also valid when H2 hold, with q = 2), given
ε > 0, we can find c6 = c6(ε) ≥ 0 such that

f (z, x)x ≥ [η(z)− ε]|x|q − c6|x|p for a.a. z ∈ Ω, all x ∈ R. (4.16)

This unilateral growth condition suggests that we consider the following auxiliary
Dirichlet problem{

−∆a1
p u(z)− ∆a2

q u(z) = [η(z)− ε]|u(z)|q−2u(z)− c6|u(z)|p−2u(z) in Ω,

u|∂Ω = 0.
(4.17)

For this problem we have the following existence and uniqueness result.

Proposition 4.4. If hypothesis H0 holds, then for all ε ∈ (0, 1) small problem has a unique positive
solution

ū ∈ int C+,

and since the equation is odd v̄ = −ū ∈ − int C+ is the unique negative solution of (4.17).

Proof. Let σ+ : W1,p
0 (Ω) → R be the C1-functional defined by

σ+(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)− 1
q

∫
Ω
[η(z)− ε](u+)q dz +

c6

p
∥u+∥p

p

for all u ∈ W1,p
0 (Ω).

Since q < p, we see that σ+(·) is coercive. Also using the Sobolev embedding theorem, we
show that σ+(·) is sequentially weakly lower semicontinuous. So, we can find ū ∈ W1,p

0 (Ω)

such that
σ+(ū) = inf

{
σ+(u) : u ∈ W1,p

0 (Ω)
}

. (4.18)

As in the proof of Proposition 4.1, for t ∈ (0, 1) small, we have

σ+(tûa2
1 (q)) < 0,

⇒ σ+(ū) < 0 = σ+(0) (see (4.18)),

⇒ ū ̸= 0.

From (4.18) we have

⟨σ′
+(ū), h⟩ = 0 for all h ∈ W1,p

0 (Ω),

⇒ ⟨V(ū), h⟩ =
∫

Ω
[η(z)− ε](ū+)q−1h dz − c6

∫
Ω
(ū+)p−1h dz (4.19)

for all h ∈ W1,p
0 (Ω).
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In (4.19) we choose the test function h = ū− ∈ W1,p
0 (Ω) and obtain

ĉ∥Dū∥p
p ≤ 0, ⇒ ū ≥ 0, ū ̸= 0.

Therefore ū is a nontrivial positive solution of (4.17). Using Theorem 7.1, p. 286, of
Ladyzhenskaya–Uraltseva [6], we have that ū ∈ L∞(Ω) and then the nonlinear regularity
theory of Lieberman [7] implies that ū ∈ C+ \ {0}. We have

∆a1
p ū + ∆a2

q ū ≤ c6ūp−1 in Ω,

⇒ ū ∈ int C+ (see Pucci–Serrin [16], p. 120).

Now we show the uniqueness of this positive solution of (4.17). To this end, we introduce
the integral functional j : L1(Ω) → R = R ∪ {+∞} defined by

j(u) =

{
1
p ρa1,p(Du1/q) + 1

q ρa2,q(Du1/q) if u ≥ 0, u1/q ∈ W1,p
0 (Ω),

+∞ otherwise.

From Diaz-Saa [2], we know that j(·) is convex. Suppose that ȳ is another positive solution
of (4.17). Again we have ȳ ∈ int C+. On account of Proposition 4.1.22, p. 274, of Papageorgiou–
Rădulescu–Repovš [12], implies that

ū
ȳ
∈ L∞(Ω),

ȳ
ū
∈ L∞(Ω). (4.20)

Set h = ūq − ȳq ∈ C1
0(Ω). Then (4.20) implies that for t > 0 small, we have

ū + th ∈ dom j, ȳ + th ∈ dom j,

where dom j = {u ∈ L1(Ω) : j(u) < ∞} (effective domain of j(·)). Then we can compute the
directional derivatives of j(·) at ūq and at ȳq in the direction h. A simple computation using
the convexity of j(·) and the nonlinear Green’s theorem (see [12], p. 35), we obtain

j′(ūq)(h) =
1
q

∫
Ω

−∆a1
p ū − ∆a2

q ū
ūq−1 (ūq − ȳq) dz

=
1
q

∫
Ω

[
(η(z)− ε)− c4ūp−q] (ūq − ȳq) dz,

j′(ȳq)(h) =
1
q

∫
Ω

−∆a1
p ȳ − ∆a2

q ȳ
ȳq−1 (ūq − ȳq) dz

=
1
q

∫
Ω

[
(η(z)− ε)− c4ȳp−q] (ūq − ȳq) dz.

The convexity of j(·) implies the monotonicity of j′(·). So, we have

0 ≤ c6

q

∫
Ω

(
ȳp−q − ūp−q) (ūq − ȳq) dz,

⇒ ū = ȳ (since q < p).

Therefore ū ∈ int C+ is the unique positive solution of (4.17). The equation is odd, so
v̄ = −ū ∈ − int C+ is the unique negative solution of (4.17).
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Let S+ (resp. S−) be the set of positive (resp. negative) solutions of (1.1). From Proposi-
tions 4.1 and 4.3 and the nonlinear regularity theory, we have

∅ ̸= S+ ⊆ int C+ and ∅ ̸= S− ⊆ − int C+.

Next we show that the solutions ū ∈ int C+ (resp. v̄ ∈ − int C+) from Proposition 4.4, is a
lower bound (resp. upper bound) for the elements of S+ (resp. of S−).

Proposition 4.5. If hypotheses H0 and H1 or H2 (q = 2) hold, then ū ≤ u for all u ∈ S+, and v ≤ v̄
for all v ∈ S−.

Proof. For u ∈ S+ ⊆ int C+ and consider the Carathéodory function k+ : Ω × R → R defined
by

k+(z, x) =

{
(η(z)− ε)(x+)q−1 − c6(x+)p−1 if x ≤ u(z),

(η(z)− ε)(u(z))q−1 − c6(u(z))p−1 if u(z) < x.
(4.21)

We set K+(z, x) =
∫ x

0 k+(z, s) ds and consider the C1-functional γ+ : W1,p
0 (Ω) → R defined

by

γ+(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
K+(z, u) dz for all u ∈ W1,p

0 (Ω).

Clearly γ+(·) is coercive (see (4.21)). Also using the Sobolev embedding theorem, we see
that γ+(·) is sequentially weakly lower semicontinuous. So, we can find ũ ∈ W1,p

0 (Ω) such
that

γ+(ũ) = inf
{

γ+(u) : u ∈ W1,p
0 (Ω)

}
. (4.22)

As in the proof of Proposition 4.1, we choose t ∈ (0, 1) small so that tûa2
1 (q) ≤ u (recall

u ∈ int C+ and use Proposition 4.1.22, p. 274 of [12]) and using (4.21) and since q < p, we have

γ+(tûa2
1 (q)) < 0 (choosing t ∈ (0, 1) even smaller if necessary),

⇒ γ+(ũ) < 0 = γ+(0) (see (4.22)),

⇒ ũ ̸= 0.

From (4.22) we have

⟨γ′
+(ũ), h⟩ = 0 for all h ∈ W1,p

0 (Ω),

⇒ ⟨V(ũ), h⟩ =
∫

Ω
k+(z, ũ)h dz for all h ∈ W1,p

0 (Ω). (4.23)

In (4.23) we choose the test function h = −ũ− ∈ W1,p
0 (Ω) and obtain

ĉ∥Dũ−∥p
p ≤ 0 (see (4.21)),

⇒ ũ ≥ 0, ũ ̸= 0.

Next in (4.23), we choose the test function h = (ũ − u)+ ∈ W1,p
0 (Ω). Then

⟨V(ũ), (ũ − u)+⟩ =
∫

Ω

[
(η(z)− ε)uq−1 − c6up−1

]
(ũ − u)+ dz (see (4.21))

≤
∫

Ω
f (z, u)(ũ − u)+ dz (see (4.16))

= ⟨V(u), (ũ − u)+⟩ (since u ∈ S+).

⇒ ũ ≤ u.
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So, we have proved that
ũ ∈ [0, u], ũ ̸= 0. (4.24)

From (4.24), (4.21), (4.23) and Proposition 4.5, it follows that

ũ = ū ≤ u for all u ∈ S+ (u ∈ S+ was arbitrary).

Similarly, we show that
v ≤ v̄ for all v ∈ S−.

Using these bounds, we can produce the extremal constant sign solutions for problem
(1.1).

Proposition 4.6. If hypotheses H0 and H1 or H2 (q = 2) hold, then there exist u∗ ∈ S+ and v∗ ∈ S−
such that u∗ ≤ u for all u ∈ S+, v ≤ v∗ for all v ∈ S−.

Proof. We know that S+ is downward directed, that is, if u1, u2 ∈ S+, then there exists u ∈ S+

such that u ≤ u1, u ≤ u2 (see Papageorgiou–Rădulescu–Repovs̆ [11]). Then using Theorem
5.109, p. 308, of Papageorgiou–Rădulescu [4], we can find {un}n∈N ⊆ S+ decreasing such that

inf S+ = inf
n∈N

un.

From Proposition 4.5, we have

ū ≤ un ≤ u1 for all n ∈ N. (4.25)

Also, since un ∈ S+ for all n ∈ N, we have

⟨V(un), h⟩ =
∫

Ω
f (z, un)h dz for all h ∈ W1,p

0 (Ω). (4.26)

In (4.26) we choose the test function h = un ∈ W1,p
0 (Ω). Then using (4.25) and hypothesis

H1(i)= H2(i), we infer that

{un}n∈N ⊆ W1,p
0 (Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W1,p

0 (Ω), un → u∗ in Lp(Ω). (4.27)

In (4.26) we choose the test function h = un − u∗ ∈ W1,p
0 (Ω), pass to the limit as n → ∞

and use (4.27). Then
lim
n→∞

⟨V(un), un − u∗⟩ = 0,

⇒ un → u∗ in W1,p
0 (Ω) (see Proposition 2.3).

Passing to the limit as n → ∞ in (4.26), we obtain

⟨V(u∗), h⟩ =
∫

Ω
f (z, u∗)h dz for all h ∈ W1,p

0 (Ω),

ū ≤ u∗ (see (4.25)).

Therefore, u∗ ∈ S+, u∗ = inf S+.



16 J. Han, Z. Liu and N.S. Papageorgiou

To produce the maximal negative solution, we note that S− is upward directed (that is, if
v1, v2 ∈ S−, there exists v ∈ S− such that v1 ≤ v, v2 ≤ v). Therefore, we can find {vn}n∈N

increasing such that
sup S− = sup

n∈N

vn.

Reasoning as above, we produce v∗ ∈ S− such that

v ≤ v∗ for all v ∈ S−.

In Proposition 4.1, to obtain the solutions u0 ∈ int C+ and v0 ∈ − int C+, we did not use
the asymptotic condition as x → ±∞ (hypothesis H1(ii)= H2(ii)). If we bring this condition
in the picture and strengthen hypotheses H1(iii), H2(iii), we can generate additional constant
sign solutions.

The new hypotheses on f (z, x) are the following:

H′
1 : f : Ω × R → R is a Carathéodory function such that H′

1(i), (ii), (iv), (v) are the same as
the corresponding hypotheses H1(i), (ii), (iv), (v) and

(iii) there exist τ ∈ (1, q), δ > 0 and c∗0 > 0 such that

c∗0 |x|τ ≤ f (z, x)x ≤ τF(z, x) for a.a. z ∈ Ω, all |x| ≤ δ.

H′
2 : f : Ω × R → R is a Carathéodory function such that H′

2(i), (ii), (iv), (v) are the same as
the corresponding hypotheses H2(i), (ii), (iv), (v) and

(iii) q = 2 and there exist η1, η2 ∈ L∞(Ω) and k ≥ 2 such that

λ̂a2
k (2) ≤ η1(z) ≤ η2(z) ≤ λ̂a2

k+1(2) for a.a. z ∈ Ω,

η1 ̸≡ λ̂a2
k (2), η2 ̸≡ λ̂a2

k+1(2),

η1(z) ≤ lim inf
x→0

f (z, x)
x

≤ lim sup
x→0

f (z, x)
x

≤ η2(z)

uniformly for a.a. z ∈ Ω.

Proposition 4.7. If hypotheses H0 and H′
1 or H′

2 (q = 2) hold, then we can find two more constant
sign solutions:

û ∈ int C+, u0 ≤ û, û ̸= u0,

v̂ ∈ − int C+, v̂ ≤ v0, v̂ ̸= v0.

Proof. From Proposition 4.1, we know that there is a positive solution u0 ∈ int C+ such that

u0 ∈ intC1
0(Ω)[0, θ+]

and u0 is a local minimizer of φ+(·). We assume that Kφ+ is finite, otherwise we already have
an infinite number of positive smooth solutions and so we are done.

Claim: φ+(·) satisfies the C-condition.

Consider a sequence {un}n∈N ⊆ W1,p
0 (Ω) such that {φ+(un)}n∈N ⊆ R is bounded and∣∣∣∣⟨V(un), h⟩ −
∫

Ω
f (z, u+

n )h dz
∣∣∣∣ ≤ εn∥h∥

1 + ∥un∥
(4.28)
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for all h ∈ W1,p
0 (Ω), all n ∈ N with εn → 0.

In (4.28), we choose the test function h = −u−
n ∈ W1,p

0 (Ω) and obtain

ĉ∥Du−
n ∥

p
p ≤ εn for all n ∈ N,

⇒ u−
n → 0 in W1,p

0 (Ω). (4.29)

Suppose that ∥u+
n ∥ → ∞ and let yn = u+

n
∥u+

n ∥
, n ∈ N. Then

∥yn∥ = 1, yn ≥ 0 for all n ∈ N.

So, we may assume that

yn
w−→ y in W1,p

0 (Ω), yn → y in Lp(Ω), y ≥ 0. (4.30)

From (4.28) and (4.29) it follows that

|⟨V(u+
n ), h⟩| ≤ ε′n∥h∥+

∫
Ω

f (z, u+
n )h dz (4.31)

for all h ∈ W1,p
0 (Ω), all n ∈ N, with ε′n → 0+.

⇒
∫

Ω
a1(z)|Dyn|p−2(Dyn, Dh)RN dz +

1
∥un∥p−q

∫
Ω

a2|Dyn|q−2(Dyn, Dh)RN dz

≤ ε′n
∥u+

n ∥p−1 ∥h∥+
∫

Ω

f (z, u+
n )

∥u+
n ∥p−1 h dz for all h ∈ W1,p

0 (Ω), all n ∈ N. (4.32)

On account of hypothesis H1(i)=H2(i), we have that{
f (·, u+

n (·))
∥u+

n ∥p−1

}
n∈N

⊆ Lp′(Ω) is bounded. (4.33)

So using hypothesis H1(ii)= H2(ii), we may assume that

f (·, u+
n (·))

∥u+
n ∥p−1

w−→ η̂0(·)yp−1 (4.34)

with η̂0 ∈ L∞(Ω), η̂(z) ≤ η̂0(z) for a.a. z ∈ Ω. (see Aizicovici–Papageorgiou–Staicu [1], proof
of Proposition 16). In (4.32), we choose the test function h = yn − y ∈ W1,p

0 (Ω), pass to the
limit as n → ∞ and use (4.30) and (4.33). Then

lim sup
n→∞

∫
Ω

a1(z)|Dyn|p−2(Dyn, Dyn − Dy)RN dz ≤ 0,

⇒ yn → y in W1,p
0 (Ω), ∥y∥ = 1, y ≥ 0 (4.35)

(see Papageorgiou–Winkert [14], p. 665).

If in (4.32), we pass to the limit as n → ∞ and use (4.34), (4.35), we obtain∫
Ω

a1(z)|Dy|p−2(Dy, Dh)RN dz =
∫

Ω
η̂0(z)yp−1h dz for all h ∈ W1,p

0 (Ω),

⇒ − ∆a1
p y = η̂0(z)yp−1 in Ω, y|∂Ω = 0. (4.36)
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Recall that λ̂a1
1 (p) ≤ η̂(z) ≤ η̂0(z) for a.a. z ∈ Ω. Let λ̃a1

1 (p, η̂0) be the principal eigenvalue
of −∆a1

p y = λ̃η̂0(z)|y|p−2y in Ω, y|∂Ω = 0 (weighted version of the eigenvalue problem (2.1).
From Proposition 4.133, p. 271, of Hu–Papageorgiou [5] we have

λ̃a1
1 (p, η̂0) < λ̃a1

1 (p, λ̂a1
1 (p)) = 1.

Then from (4.36) it follows that

y(·) is nodal or zero (see Hu–Papageorgiou [5, Proposition 4.127, p. 268]).

Both possibilities contradict (4.35). Therefore

{u+
n }n∈N ⊆ W1,p

0 (Ω) is bounded,

⇒ {un}n∈N ⊆ W1,p
0 (Ω) is bounded (see (4.29)).

So, we may assume that

un
w−→ u in W1,p

0 (Ω), un → u in Lp(Ω). (4.37)

In (4.28) we choose the test function h = un − u ∈ W1,p
0 (Ω), pass to the limit as n → ∞ and

use (4.37). Then

lim
n→∞

⟨V(un), un − u⟩ = 0

⇒ un → u in W1,p
0 (Ω) (see Proposition 2.3),

⇒ φ+(·) satisfies the C-condition.

This proves the claim.
Recall that u0 is a local minimizer of φ+(·) and that Kφ+ is finite (see the beginning of the

proof). These facts and Proposition 3.132, p. 179, of Hu–Papageorgiou [5], imply that we can
find ρ ∈ (0, 1) small such that

φ+(u0) < inf{φ+(u) : ∥u − u0∥ = ρ} = m+. (4.38)

Hypotheses H1(i),(ii)= H2(i),(ii) imply that given ε > 0, we can find δ = δ(ε) > 0 such that

F(z, x) ≥ 1
p
[η̂(z)− ε]|x|p for a.a. z ∈ Ω, all |x| ≤ δ.

For t ∈ (0, 1), we have

φ+(tû
a1
1 (p)) ≤ tp

p

∫
Ω
[λ̂a1

1 (p)− η(z)]ûa1
1 (p)p dz +

εtp

p
+

tq

tq ρa2,q(Dûa1
1 (p))

(since ρa1,p(Dûa1
1 (p)) = λ̂a1

1 (p)∥ûa1
1 (p)∥p

p, ∥ûa1
1 (p)∥p = 1).

Since ûa1
1 ∈ int C+ and the inequality λ̂a1

1 (p) ≤ η(z) for a.a. z ∈ Ω is strict on a set of
positive Lebesgue measure, it follows that

β̂ =
∫

Ω
[η̂(z)− λ̂a1

1 (p)]û1(p)p dz > 0.

Choosing ε ∈ (0, β̂) small, we obtain

φ+(tû
a1
1 (p)) ≤ c7tq − c8tp for some c7, c8 > 0.
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Since q < p, we infer that

φ+(tû1(p)) → −∞ as t → +∞. (4.39)

Then (4.38), (4.39) and the Claim, permit the use of the mountain pass theorem and obtain
û ∈ W1,p

0 (Ω) such that

û ∈ Kφ+ ⊆ int C+ ∪ {0}, m+ ≤ φ+(û),

⇒ û ̸= u0.

If we show that û ̸= 0, then û ∈ int C+ is the second positive solution of (1.1). First assume
that hypotheses H′

1 hold. On account of hypothesis H′
1(iii) and of Lemma 5.125, p. 459, of

Hu–Papageorgiou [5] we have

Ck(φ+, 0) = 0 for all k ∈ N0. (4.40)

On the other hand since û ∈ Kφ+ is a critical point of mountain pass type, using Corol-
lary 3.125, p. 178, of Hu–Papageorgiou [5], we have

C1(φ+, û) ̸= 0. (4.41)

Comparing (4.40) and (4.41), we conclude that û ̸= 0. So û ∈ int C+ is the second positive
solution of (1.1).

Similarly working this time with the functional φ−(·), we produce a second negative solu-
tion v̂ ∈ − int C+, v̂ ̸= v0.

5 Nodal solutions

In this section we prove the existence of nodal solutions (sign-changing solutions) for problem
(1.1) and state the complete multiplicity theorem.

First we consider the case where hypotheses H′
1 hold.

Proposition 5.1. If hypotheses H0, H′
1 hold, then problem (1.1) admits at least two nodal solutions

y0 ∈ intC1
0(Ω)[v0, u0], ŷ ∈ [v0, u0] ∩ C1

0(Ω), ŷ ̸= y0.

Proof. Let u∗ ∈ int C+, v∗ ∈ − int C+ be the two extremal constant sign solutions produced in
Proposition 4.6. We introduce the Carathéodory function defined by

γ(z, x) =


f (z, v∗(z)) if x < v∗(z),

f (z, x) if v∗(z) ≤ x ≤ u∗(z),

f (z, u∗(z)) if u∗(z) < x.

(5.1)

In addition, we introduce the positive and negative truncations of γ∗(z, ·), namely the
Carathéodory functions

γ±(z, x) = γ(z,±x±) for all z ∈ Ω, all x ∈ R. (5.2)
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We set Γ(z, x) =
∫ x

0 γ(z, s) ds, Γ±(z, x) =
∫ x

0 γ±(z, s) ds and consider the C1-functionals
µ, µ± : W1,p

0 (Ω) → R defined by

µ(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
Γ(z, u) dz,

µ±(u) =
1
p

ρa1,p(Du) +
1
q

ρa2,q(Du)−
∫

Ω
Γ±(z, u) dz for all u ∈ W1,p

0 (Ω).

Using (5.1) and (5.2), we can check easily that

Kµ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kµ+ ⊆ [0, u∗] ∩ C+, Kµ− ⊆ [v∗, 0] ∩ (−C+).

The extremality of u∗, v∗ implies that

Kµ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kµ+ = {0, u∗}, Kµ− = {0, v∗}. (5.3)

From (5.1) and (5.2) it is clear that µ+(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find û∗ ∈ W1,p

0 (Ω) such that

µ+(û∗) = inf
{

µ+(u) : u ∈ W1,p
0 (Ω)

}
< 0 = µ+(0),

(since τ < q and u∗ ∈ int C+)

⇒ û∗ ̸= 0 and so û∗ = u∗ (see (5.3)).

From (5.1) and (5.2) it is clear that

µ+

∣∣
C+

= µ
∣∣
C+

.

Therefore, we have that

u∗ ∈ int C+ is a local C1
0(Ω)-minimizer of φ(·),

⇒ u∗ ∈ int C+ is a local W1,p
0 (Ω)-minimizer of µ(·).

In a similar fashion, using this time the functional µ−(·), we show that

v∗ ∈ − int C+ is a local W1,p
0 (Ω)-minimizer of µ(·).

We may assume that
µ(v∗) ≤ µ(u∗) and Kµ is finite (5.4)

(see (5.3) and note that any solution y ̸∈ {0, u∗, v∗} of (1.1) is necessarily nodal). The func-
tional µ(·) being coercive, satisfies the C-condition (see Hu–Papageorgiou [5], Proposition 3.19,
p. 123). So, using Proposition 3.132, p. 179, of Hu–Papageorgiou [5], we can find ρ ∈ (0, 1)
small such that

ρ < ∥u∗ − v∗∥, µ(u∗) < inf{µ(u) : ∥u − u∗∥ = ρ} = m∗. (5.5)

Then (5.4),(5.5) and the C-condition of µ(·), permit the use of the mountain pass theorem.
So, we can find y0 ∈ W1,p

0 (Ω) such that

y0 ∈ Kµ ∈ [v∗, u∗] ∩ C1
0(Ω) (see(5.3)), m∗ ≤ µ(y0) (see (5.5)). (5.6)
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We know that
C1(µ, y0) ̸= 0 (see [5, Corollary 3.123, p. 176]). (5.7)

Using the homotopy invariance property of critical groups (see [5, p. 179]) and the nonlin-
ear regularity theory, we obtain

Ck(µ, 0) = Ck(φ, 0) for all k ∈ N0. (5.8)

From hypothesis H′
1(iii) and Hu–Papageorgiou [5, Lemma 5.126, p. 462], we have

Ck(φ, 0) = 0 for all k ∈ N0,

⇒ Ck(µ, 0) = 0 for all k ∈ N0 (see (5.8)). (5.9)

From (5.7) and (5.9), we infer that
y0 ̸= 0.

Also, y0 /∈ {u∗, v∗} (see (5.5), (5.6)). Therefore

y0 ∈ [v∗, u∗] ∩ C1
0(Ω) is a nodal solution of (1.1).

By Theorem 1.3 of Lucia–Prashanth [10] (see also Pucci–Serrin [15, p. 6]), we have

y0(z) < u∗(z) for all z ∈ Ω. (5.10)

Let ρ = max{∥v∗∥∞, ∥u∗∥∞} and let ξ̂ρ > 0 be as postulated by hypothesis H1(v). We take
ξ̂∗ > ξ̂ρ and have

−∆a1
p y0 − ∆a2

q y0 + ξ̂∗|y0|p−2y0 = f (z, y0) + ξ̂∗|y0|p−2y0

≤ f (z, u∗) + ξ̂∗(u∗)p−1

= − ∆a1
p u∗ − ∆a2

q u∗ + ξ̂∗(u∗)p−1 in Ω.

Note that

f (z, u∗) + ξ̂∗(u∗)p−1 = f (z, u∗) + ξ̂ρ(u∗) + (ξ̂∗ − ξ̂ρ)(u∗)p−1

≥ f (z, y0) + ξ̂ρ|y0|p−2y0 + (ξ̂∗ − ξ̂ρ)|y0|p−2y0

= f (z, y0) + ξ̂∗|y0|p−2y0 in Ω. (5.11)

From hypothesis H1(v) and (5.10), we see that

f (·, y0(·)) + ξ̂∗|y0(·)|p−2y0(·) ≺ f (·, u∗(·)) + ξ̂∗(u∗(·))p−1.

So, using Preccosition 3.1, from (5.11) we infer that

u∗ − y0 ∈ int C+.

Similarly we show that
y0 − v∗ ∈ int C+.

It follows that
y0 ∈ intC1

0(Ω)[v
∗, u∗]. (5.12)

Moreover, using the flow invariance argument from the proof of Proposition 5.1 of Liu–
Papageorgiou [8], we generate another solution

ŷ ∈ [v∗, u∗] ∩ C1
0(Ω) \ intC1

0(Ω)[v
∗, u∗]. (5.13)

From (5.12) and (5.13) it follows that

ŷ ∈ C1
0(Ω) is a nodal solution of (1.1), ŷ ̸= y0.
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When hypotheses H′
2(q = 2) hold, since the behavior of f (z, ·) near zero is different, we

need to strengthen the hypotheses on the reaction f (z, x) in order to have nodal solutions.

H′′
2 : f : Ω × R → R is a measurable function such that f (z, ·) ∈ C1(R) for a.a. z ∈ Ω,

hypotheses H′′
2 (i), (ii), (iv), (v) are the same as the corresponding hypotheses H2(i), (ii), (iv),

(v) and

(iii) there exists k ≥ 2 such that

f ′x(z, 0) ∈
[
λ̂a2

k (2), λ̂a2
k+1(2)

]
for a.a. z ∈ Ω,

f ′x(·, 0) ̸≡ λ̂a2
k (2), f ′x(·, 0) ̸≡ λ̂a2

k+1(2).

Proposition 5.2. If hypotheses H0 and H′′
2 (q ̸= 2) hold, then problem (1.1) (q = 2) admits at least

two nodal solutions

y0 ∈ intC1
0(Ω)[v

∗, u∗]

ŷ ∈ [v∗, u∗] ∩ C1
0(Ω), ŷ ̸= y0.

Proof. The proof is similar to that of Proposition 5.1.
In this case (5.10) follows from the tangency principle (see Pucci–Serrin [16, p. 35]). Since

f (z, ·) exhibits a linear behavior near zero (see hypothesis H′′
2 (iii)) and so there is no resonance,

we can not claim that Ck(µ, 0) = 0 for all k ∈ N0. So, to prove the nontriviality of y0, we have
to use a different argument.

Let l̂ : H1
0(Ω) → R be the C2-functional defined by

l̂(u) =
1
2

ρa2,2(Du)−
∫

Ω
F(z, u) dz for all u ∈ H1

0(Ω).

We consider the following orthogonal direct sum decomposition

H1
0(Ω) = Y ⊕ V

with Y =
⊕k

i=1 E(λ̂a2
i (2)), V =

⊕
i≥k E(λ̂a2

i (2)).
Hypotheses H′′

2 (i), (iii), imply that given ε > 0, we can find c10 = c10(ε) > 0 such that

F(z, x) ≤ 1
2
[ f ′x(z, 0) + ε]x2 + c10|x|p (5.14)

If u ∈ V, then using (5.14), we have

l̂(u) ≥ 1
2

ρa2,2(Du)− 1
2

∫
Ω

f ′x(z, 0)u2 dz − ε

2λ̂a2
1 (2)

ρa2,2(Du)− c11∥u∥p for some c11 > 0

≥ 1
2
[c12 − ε] ∥u∥2 − c11∥u∥p for some c12 > 0 (see Proposition 2.2)

Choosing ε ∈ (0, c12), we obtain

l̂(u) ≥ c13∥u∥2 − c11∥u∥p for some c13 > 0.

Since 2 < p, for ρ ∈ (0, 1) small we can say that

l̂(u) ≥ 0 for all u ∈ V, with ∥u∥ ≤ ρ. (5.15)
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On the other hand, again from hypothesis H′′
2 (iii), we see that given ε > 0, we can find

δ = δ(ε) > 0 such that

F(z, x) ≥ 1
2
[ f ′x(z, 0)− ε]x2 for a.a. z ∈ Ω, all |x| ≤ δ. (5.16)

The space Y is finite dimensional and so all norms are equivalent (see Papageorgiou–
Winkert [14], p. 183). Therefore we can find ρ̂ > 0 such that

u ∈ Y, ∥u∥ ≤ ρ̂ ⇒ |u(z)| ≤ δ for all z ∈ Ω. (5.17)

Therefore if u ∈ Y with ∥u∥ ≤ ρ̂, then

l̂(u) ≤ 1
2

ρa2,2(Du)− 1
2

∫
Ω
[ f ′x(z, 0)− ε]u2 dz (see (5.16), (5.17))

≤ 1
2
[ε − c14] ∥u∥2 for some c14 > 0 (see Proposition 2.2)

Choosing ε ∈ (0, c14), we conclude that

l̂(u) ≤ 0 for all u ∈ Y, ∥u∥ ≤ ρ̂. (5.18)

From (5.15) and (5.18), we infer that l̂(·) has a local linking at the origin with respect to the
orthogonal decomposition (Y, V) (see [5, p. 145]). If dk = dim Y ≥ 2 (recall k ≥ 2), then

Cm(l̂, 0) = δm,dk R for all m ∈ N0 (see [12], p. 539). (5.19)

Let l = l̂|W1,p
0 (Ω)

(recall W1,p
0 (Ω) ↪→ H1

0(Ω) densely since p > 2). So by Proposition 3.128,
p. 178, of Hu–Papageorgiou [5], we have

Cm(l, 0) = Cm(l̂, 0) for all m ∈ N0,

⇒ Cm(l, 0) = δm,dk R for all m ∈ N0 (see (5.17)). (5.20)

From the C1-continuity property of critical groups (see Theorem 3.129, p. 179, of Hu–
Papageorgiou [5]), we have

Cm(ψ, 0) = Cm(l, 0) for all m ∈ N0.

⇒ Cm(ψ, 0) = δm,dk R for all m ∈ N0 (see (5.20)).

Recall via the homotopy invariance property of critical groups (see [5, p. 179]), we have

Cm(µ, 0) = Cm(ψ, 0)R for all m ∈ N0,

⇒ Cm(µ, 0) = δm,dk R for all m ∈ N0 (dk ≥ 2). (5.21)

We know that C1(µ, y0) ̸= 0. Comparing with (5.21) we deduce that

y0 ̸= 0,

⇒ y0 ∈ C1
0(Ω) is a nodal solution of (1.1) (q = 2).

Since y0(z) < u∗(z) for all z ∈ Ω, as in the proof of Proposition 5.1, we show that

y0 ∈ intC1
0(Ω)[v

∗, u∗].

Finally, the flow invariance argument of Liu–Papageorgiou [8], generates ŷ ∈ [v∗, u∗] ∩
C1

0(Ω) another nodal solution of problem (1.1) (q = 2), ŷ ̸= y0.
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We conclude with the following two multiplicity theorems for

Theorem 5.3. If hypotheses H0 and H′
1 hold, then problem (1.1) admits at least six nontrivial smooth

solutions:

u0, û ∈ int C+, u0 ≤ û, u0(z) < θ+ for all z ∈ Ω,

v0, v̂ ∈ − int C+, v̂ ≤ v0, θ− < v0(z) for all z ∈ Ω,

y0 ∈ intC1
0(Ω)[v0, u0], ŷ ∈ [v0, u0] ∩ C1

0(Ω), y0 ̸= ŷ both nodal.

Theorem 5.4. If hypotheses H0 and H′
2 (q = 2) hold, then problem (1.1) (q = 2) admits at least six

nontrivial smooth solutions

u0, û ∈ int C+, u0 ≤ û, u0(z) < θ+ for all z ∈ Ω,

v0, v̂ ∈ − int C+, v̂ ≤ v0, θ− < v0(z) for all z ∈ Ω,

y0 ∈ intC1
0(Ω)[v0, u0], ŷ ∈ [v0, u0] ∩ C1

0(Ω), y0 ̸= ŷ both nodal.

Remark 5.5. We point out that in the above multiplicity theorems, we provide sign information
for all the solutions produced. Moreover, the solutions {u0, û, v0, v̂, y0} and {u0, û, v0, v̂, y0} are
ordered.
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