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Abstract. In this paper, four types of new nonlinear Henry–Gronwall type integral
inequalities have been established. As for the first type, by employing inequality tech-
niques, we overcome the limitation of traditional methods in which dividing the range
of parameter β ∈ (0, 1) into two parts is needed. For the second type, we derive a
bound that is more precise than previous studies by comparative analysis. Regarding
the third type and the fourth type, they are new models that are studied in our work.
Specifically, the third type extends our proposed inequality to case when β ≥ 1, and
the fourth type constitutes a new variant of the nonlinear Bihari-type inequality with
time-varying delay that offers greater generality. As applications of the derived results,
the existence of solutions to the fractional differential equations has been discussed by
fixed point theorems and two examples are provided to illustrate the validity of the
theorems.
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1 Introduction

In the study of ordinary, partial, and functional differential equations, one has often to deal
with certain integral inequalities. The Gronwall–Bellman–Bihari inequality [3, 4] and its vari-
ous linear and nonlinear generalizations [13, 14, 21, 26–28, 34] play a vital role in the study of
existence, uniqueness, boundedness, stability and asymptotic behavior of solutions of differ-
ential equations [5, 15, 17, 18, 31, 38]. Among these generalizations, what interests us is that
Jiang and Meng [13] considered the following nonlinear integral inequality with time-varying
delay:

xp(t) ≤ ρ(t) + π(t)
∫ t

0

[
f (s)xq(s) + h(s)xr(σ(s))

]
ds, (1.1)
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where x(t), ρ(t), π(t), f (t), h(t) ∈ C(R+, R+), ρ(t) and π(t) are non-decreasing in R+, p ̸= 0,
p ≥ q ≥ 0, p ≥ r ≥ 0. The approach primarily relies on an inequality introduced by Li, Han
and Meng [16], so that inequality (1.1) can be simplified to a linear case.

With the development of fractional-order differential equations, the study of integral in-
equalities with weakly singular kernels has gained significant attention, resulting in inspiring
theoretical advances. The pioneering work for weakly singular Gronwall-type inequalities
was studied by Henry [12] who proved, by an iterative process, some L1 bounds given by
series related to the Mittag-Leffler function. The Henry version is as follows:

u(t) ≤ a(t) + b
∫ t

0
(t − s)β−1u(s) ds, (1.2)

where u(t) and a(t) are non-negative and locally integrable when 0 ≤ t < T ≤ +∞, b ≥ 0, β >

0. In [12], Henry first defined Bu(t) as the integral on the right-hand side of inequality (1.2).
Then, through an iterative process, inequality (1.2) was transformed into u ≤ ∑n−1

k=0 Bka + Bnu,
where Bnu is convergent. The desired bound was obtained as n → ∞.

Henry’s pioneering study stimulated extensive follow-up research, with numerous schol-
ars proposing improved approaches [6, 9–11, 19, 30, 36]. Ye, Gao and Ding [36] used the same
method as in [12] to extend this result, allowing the constant b to be a continuous non-
decreasing function. Webb [30] considered the cases with a double singularity and obtained
explicit L∞ bounds rather than L1 bounds by a completely different method.

Different from Henry, Medved’ [23] presented a new approach to solve integral inequalities
of Henry–Gronwall type and their Bihari version. Based on this work, Medved’ [24] researched
and obtained global solutions of semilinear evolution equations. Medved’’s study was also
developed by many scholars [20, 25, 35, 37].

In this paper, motivated by [13, 37], we first study the explicit bounds of the following
nonlinear Henry–Gronwall type inequality with time-varying delay:

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)xr(σ(s))] ds, (1.3)

where β ∈ (0, 1). Unlike conventional approaches such as Xu and Meng [33], in which the pa-
rameter β was partitioned into intervals (0, 0.5] and (0.5, 1), we employ inequality techniques
to allow β to uniformly take values across the entire range (0, 1). Then, we consider the non-
linear case of inequality (1.2) which was also studied by Foukrach and Meftah [8]. In contrast
to their approach, we employ a different method that utilizes the same inequality. Moreover,
as for the nonlinear case of inequality (1.2), we extend it with a time-varying delay term and
provide an explicit bound of it when β ≥ 1. Lastly, we consider a new nonlinear Bihari-type
inequality with time-varying delay:

xp(t) ≤ ρ(t) +
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)ϕ (x(σ(s)))] ds, β ∈ (0, 1). (1.4)

Using the inequality introduced in Li, Han and Meng [16], our bound depends on both
the parameter K and the independent variable t. Then we provide an example that demon-
strates how to obtain the optimal K, which yields a better bound that depends only on the
independent variable t.

As applications, by employing our results and Leray–Schauder alternative fixed point the-
orem, we ensure the existence of solutions to a certain class of fractional differential equations.
At last, we provide two examples to illustrate the validity of our theorems.



New Henry–Gronwall type inequality and applications to FDEs 3

2 Preliminaries

In this paper, R denotes the set of real numbers and R+ = [0,+∞) is the given subset of R.
In the following, some basic definitions and useful lemmas are given.

Definition 2.1 ([7]). The Riemann–Liouville (R–L) fractional integral of order α > 0 of a
function u ∈ L1[0, T] is defined by

Iα
0+u(t) :=

1
Γ(α)

∫ t

0
(t − s)α−1u(s) ds, a.e. t ∈ [0, T],

where Γ(·) denotes the Gamma function.

Definition 2.2 ([7]). For α ∈ (0, 1) and u ∈ L1[0, T], the R–L fractional derivative Dαu is defined
when I1−αu ∈ AC[0, T] by

Dαu(t) := DI1−αu(t), a.e. t ∈ [0, T].

Definition 2.3 ([7]). The Caputo differential operator for order α ∈ (0, 1) of function u ∈
L1[0, T] is defined by

Dα
∗u := Dα(u − u(0)) = DI1−α(u − u(0)), a.e. t ∈ [0, T],

whenever this R–L derivative exists, that is when u(0) exists and I1−αu ∈ AC.
Another often used definition of Caputo derivative is when the derivative and fractional

integral are taken in the reverse order to that taken in the R–L derivative. But that definition
has severe disadvantages when dealing with the equivalence of the solution u(t) of Dαu(t) =
f (t), u(0) = u0 and u(t) = u0 + Iα f (t). See [15] and [31] for a more detailed explanation.

Lemma 2.4 ([13]). Suppose that x(t), ρ(t), π(t), f (t), h(t) ∈ C(R+, R+). If ρ(t) and π(t) are
non-decreasing in R+, and x(t) satisfies the following form of delay integral inequality:

xp(t) ≤ ρ(t) + π(t)
∫ t

0

[
f (s)xq(s) + h(s)xr(σ(s))

]
ds, t ∈ R+,

with the initial condition
x(t) = ϕ(t), t ∈ [α, 0],

ϕ(σ(t)) ≤ (ρ(t))1/p for t ∈ R+ with σ(t) ≤ 0,

where p ̸= 0, p ≥ q ≥ 0, p ≥ r ≥ 0, p, q, r be constants, σ(t) ∈ C(R+, R), σ(t) ≤ t, −∞ < α =

inf{σ(t), t ∈ R+} < 0, and ϕ(t) ∈ C([α, 0], R+), then

x(t) ≤
[

ρ(t) + π(t)A(t) exp
(∫ t

0
B(s) ds

)]1/p

, t ∈ R+,

for any K > 0, where

A(t) =
∫ t

0

[
f (s)

(
p − q

p
Kq/p +

q
p

K(q−p)/pρ(s)
)
+ h(s)

(
p − r

p
Kr/p +

r
p

K(r−p)/pρ(s)
)]

ds,

B(t) =
[

q
p

K(q−p)/p f (t) +
r
p

K(r−p)/ph(t)
]

π(t),

for t ∈ R+.
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Lemma 2.5 ([36]). Suppose β > 0, a(t) is a non-negative function and locally integrable when
0 ≤ t < T ≤ +∞, g(t) is a non-negative, non-decreasing continuous function defined on 0 ≤ t < T,
g(t) ≤ M (constant), and u(t) is non-negative and locally integrable with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s) ds,

for a.e. t ∈ [0, T). Then

u(t) ≤ a(t) +
∫ t

0

[
∞

∑
n=1

(g(t)Γ(β))n

Γ(nβ)
(t − s)nβ−1a(s)

]
ds,

for a.e. t ∈ [0, T). Moreover, if a(t) is non-decreasing on [0, T), then u(t) ≤ a(t)Eβ

(
g(t)Γ(β)tβ

)
,

where Eβ is the Mittag-Leffler function defined by Eβ(z) = ∑∞
k=0

zk

Γ(kβ+1) .

Lemma 2.6. Let t > 0, 0 < α < β < 1, then we have

∫ t

0

(
(t − s)β−1sα−β

) 1
1−α ds = Γ

(
1 − β

1 − α

)
Γ
(

β − α

1 − α

)
.

Proof. Change the variable of integration from s to x = s
t and the integral becomes

∫ 1

0
t

β−1
1−α (1 − x)

β−1
1−α t

α−β
1−α x

α−β
1−α tdx =

∫ 1

0
(1 − x)

β−α
1−α −1x

1−β
1−α −1dx

= B
(

1 − β

1 − α
,

β − α

1 − α

)
= Γ

(
1 − β

1 − α

)
Γ
(

β − α

1 − α

)
.

Lemma 2.7 ([16]). Assume that a ≥ 0, p ≥ q ≥ 0 and p ̸= 0 , then

a
q
p ≤ q

p
K

q−p
p a +

p − q
p

K
q
p ,

for any K > 0.

Lemma 2.8 ([1]). Let E be a Banach space, C a closed, convex subset of E and 0 ∈ C. Let N : C → C be
a continuous and completely continuous map, and let the set {x ∈ E : x = λNx for some λ ∈ (0, 1)}
be bounded. Then N has at least one fixed point in E.

Lemma 2.9 ([31]). Let f be continuous on [0, T]× R, and 0 < α < 1. Then if u ∈ C[0, T] satisfies
u(t) = u0 + Iα f , then I1−α(u − u0) ∈ AC[0, T], Dα

∗u exists a.e. and satisfies Dα
∗u(t) = f (t), a.e. t ∈

[0, T], u(0) = u0. Conversely, if u ∈ C[0, T], I1−α(u − u0) ∈ AC[0, T] and u satisfies Dα
∗u(t) =

f (t), a.e. t ∈ [0, T], u(0) = u0, then u satisfies u(t) = u0 + Iα f (t) for all t ∈ [0, T].

3 Main results

In this section, we begin by considering a weakly singular version of inequality (1.1).
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Theorem 3.1. Suppose that x(t), ρ(t), g(t), f (t), h(t) ∈ C(R+, R+). If ρ(t) and g(t) are non-
decreasing in R+, and x(t) satisfies the following form of delay integral inequality:

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)xr(σ(s))] ds, t ∈ R+, (3.1)

with the initial condition:

x(t) = φ(t), t ∈ [a, 0],

φ(σ(t)) ≤ 3
1−α

p ρ
1
p (t) for t ∈ R+ with σ(t) ≤ 0,

(3.2)

where 0 < α < β < 1, p ̸= 0, p ≥ q ≥ 0, p ≥ r ≥ 0, p, q, r are constants, σ(t) ∈ C(R+, R),
σ(t) ≤ t, −∞ < a = inf{σ(t), t ∈ R+} < 0, and φ(t) ∈ C([a, 0], R+), then

x(t) ≤
[

a(t) + b(t)C(t) exp
(∫ t

0
D(s) ds

)] α
p

, t ∈ R+, (3.3)

for any K > 0, where

a(t) = 3
1
α−1ρ

1
α (t),

b(t) = 3
1
α−1g

1
α (t)

(
Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

)) 1−α
α

,

c(t) = t
β−α

α f
1
α (t),

d(t) = t
β−α

α h
1
α (t),

C(t) =
∫ t

0

[
c(s)

(
p − q

p
K

q
p +

q
p

K
q−p

p a(s)
)
+ d(s)

(
p − r

p
K

r
p +

r
p

K
r−p

p a(s)
)]

ds,

D(t) =
[

q
p

K
q−p

p c(t) +
r
p

K
r−p

p d(t)
]

b(t),

(3.4)

for t ∈ R+.

Proof. From inequality (3.1) and Hölder’s inequality [2], we have

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1 [ f (s)xq(s) + h(s)xr(σ(s))] ds

= ρ(t) + g(t)
∫ t

0
(t − s)β−1sα−βsβ−α [ f (s)xq(s) + h(s)xr(σ(s))] ds

≤ ρ(t) + g(t)
(∫ t

0

(
(t − s)β−1sα−β

) 1
1−α ds

)1−α

×
(∫ t

0

(
sβ−α ( f (s)xq(s) + h(s)xr(σ(s)))

) 1
α ds

)α

.

(3.5)

By Lemma 2.6 and Minkowski’s inequality [2], we obtain

xp(t) ≤ ρ(t) + g(t)
(

Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

))1−α

×
(∫ t

0

(
sβ−α ( f (s)xq(s) + h(s)xr(σ(s)))

) 1
α ds

)α

≤ ρ(t) + g(t)
(

Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

))1−α (∫ t

0

(
sβ−α f (s)xq(s)

) 1
α ds

)α

+ g(t)
(

Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

))1−α (∫ t

0

(
sβ−αh(s)xr(σ(s))

) 1
α ds

)α

, t ∈ R+.

(3.6)
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By Jensen’s inequality [22], one has

x
p
α (t) ≤ 3

1
α−1ρ

1
α (t) + 3

1
α−1g

1
α (t)

(
Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

)) 1−α
α
∫ t

0

(
sβ−α f (s)xq(s)

) 1
α ds

+ 3
1
α−1g

1
α (t)

(
Γ
(

1 − β

1 − α

)
Γ
(

β − α

1 − α

)) 1−α
α
∫ t

0

(
sβ−αh(s)xr(σ(s))

) 1
α ds

≤ a(t) + b(t)
∫ t

0

[
c(s)x

q
α (s) + d(s)x

r
α (σ(s))

]
ds, t ∈ R+,

(3.7)

where a(t), b(t), c(t), d(t) are defined as in condition (3.4), by Lemma 2.4

x(t) ≤
[

a(t) + b(t)C(t) exp
(∫ t

0
D(s) ds

)] α
p

, t ∈ R+, (3.8)

where C(t), D(t) are defined as in condition (3.4).

Remark 3.2. The hypothesis in initial condition (3.2) that φ(σ(t)) ≤ 3
1−α

p ρ
1
p (t) for t ∈ R+ with

σ(t) ≤ 0 is necessary to handle the case when the delay term σ(t) falls into the initial interval
[a, 0]. This allows us to control the term x(σ(s)) in the integral uniformly for all s ≥ 0, leading
to a single bound that works for the entire domain R+.

Remark 3.3. Different from [33, Theorem 3.1] where the authors employed conventional ap-
proaches, our method eliminates the requirement of dividing the range of parameter β into
two intervals (0, 0.5] and (0.5, 1), allowing β to directly take values in the entire range (0, 1)
and also provides an explicit bound.

Then, we consider the nonlinear inequality which is a generalization of inequality (1.2).

Theorem 3.4. Suppose that x(t), ρ(t), g(t), f (t) ∈ C(R+, R+). If g(t) and f (t) are non-decreasing
in R+, and x(t) satisfies the following form of integral inequality:

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1 f (s)xq(s) ds, t ∈ R+, (3.9)

where β > 0, p ̸= 0, p ≥ q ≥ 0, p, q are constants, then

x(t) ≤
(

ρ(t) + g(t)

(
m(t) +

∫ t

0

[
+∞

∑
n=1

(n(t)Γ(β))n

Γ (nβ)
(t − s)nβ−1m(s)

]
ds

)) 1
p

, t ∈ R+, (3.10)

where

m(t) =
∫ t

0
(t − s)β−1 f (s)

(
p − q

p
K

q
p +

q
p

K
q−p

p ρ(s)
)

ds,

n(t) =
q
p

K
q−p

p f (t)g(t),
(3.11)

for any K > 0.

Proof. Define a function by

u(t) =
∫ t

0
(t − s)β−1 f (s)xq(s) ds, t ∈ R+, (3.12)
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then inequality (3.9) can be restated as

xp(t) ≤ ρ(t) + g(t)u(t), t ∈ R+. (3.13)

By Lemma 2.7, for any K > 0, we have

xq(t) ≤ [ρ(t) + g(t)u(t)]
q
p

≤ q
p

K
q−p

p (ρ(t) + g(t)u(t)) +
p − q

p
K

q
p , t ∈ R+.

(3.14)

From equation (3.12) and inequality (3.14), we have

u(t) ≤
∫ t

0
(t − s)β−1 f (s)

[
q
p

K
q−p

p (ρ(s) + g(s)u(s)) +
p − q

p
K

q
p

]
ds

=
∫ t

0
(t − s)β−1 f (s)

(
p − q

p
K

q
p +

q
p

K
q−p

p ρ(s)
)

ds

+
∫ t

0
(t − s)β−1 q

p
K

q−p
p f (s)g(s)u(s) ds

= m(t) +
∫ t

0
(t − s)β−1n(s)u(s) ds

≤ m(t) + n(t)
∫ t

0
(t − s)β−1u(s) ds, t ∈ R+,

(3.15)

where m(t), n(t) are defined as in condition (3.11). By Lemma 2.5, we obtain

u(t) ≤ m(t) +
∫ t

0

[
+∞

∑
n=1

(n(t)Γ(β))n

Γ (nβ)
(t − s)nβ−1m(s)

]
ds, t ∈ R+. (3.16)

From inequality (3.13), for t ∈ R+, we have

x(t) ≤
(

ρ(t) + g(t)

(
m(t) +

∫ t

0

[
+∞

∑
n=1

(n(t)Γ(β))n

Γ (nβ)
(t − s)nβ−1m(s)

]
ds

)) 1
p

. (3.17)

Corollary 3.5. Under the hypothesis of Theorem 3.4, let ρ(t) be a non-decreasing function in R+, then

x(t) ≤
(

ρ(t) + g(t)m(t)Eβ

(
n(t)Γ(β)tβ

)) 1
p

, t ∈ R+. (3.18)

Proof. Let h(t) = f (t)
(

p−q
p K

q
p + q

p K
q−p

p ρ(t)
)

, so h(t) is a non-decreasing function in R+. Then

m(t) can be restated as m(t) =
∫ t

0 (t − s)β−1h(s) ds. By changing the variable of integration,
we get

m(t) =
∫ t

0
(t − s)β−1h(s) ds = tβ

∫ 1

0
(1 − σ)β−1h(tσ) dσ, t ∈ R+. (3.19)

So m(t) is non-decreasing in R+. Using Lemma 2.5 and inequality (3.16), we have

u(t) ≤ m(t)Eβ

(
n(t)Γ(β)tβ

)
, t ∈ R+. (3.20)

From inequality (3.13), we get

x(t) ≤
(

ρ(t) + g(t)m(t)Eβ

(
n(t)Γ(β)tβ

)) 1
p

, t ∈ R+. (3.21)
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By the similar techniques as in Theorem 3.4, we obtain the following corollary.

Corollary 3.6. Suppose that x(t), ρ(t), g(t) satisfy the assumptions in Theorem 3.4, fi(t) ∈
C(R+, R+) and fi(t) are non-decreasing in R+, i = 1, 2 . . . n, if x(t) satisfies the following form
of integral inequality:

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1

(
n

∑
i=1

fi(s)xqi(s)

)
ds, t ∈ R+, (3.22)

where a sequence of non-negative real numbers q1, q2, . . . , qn satisfying p ≥ qi ≥ 0, and p ̸= 0. Then
for t ∈ R+, we can get

x(t) ≤
(

ρ(t) + g(t)

(
m∗(t) +

∫ t

0

[
+∞

∑
n=1

(n∗(t)Γ(β))n

Γ (nβ)
(t − s)nβ−1m∗(s)

]
ds

)) 1
p

, (3.23)

where

m∗(t) =
∫ t

0
(t − s)β−1

n

∑
i=1

fi(s)
(

p − qi

p
K

qi
p +

qi

p
K

qi−p
p ρ(s)

)
ds,

n∗(t) =
n

∑
i=1

qi

p
K

qi−p
p fi(t)g(t),

(3.24)

for any K > 0.

Then under the framework of Theorem 3.4, we extend it with a time-varying delay term.

Theorem 3.7. Suppose that x(t), ρ(t), g(t), f (t), h(t) ∈ C(R+, R+). If ρ(t), g(t), f (t), h(t) are
non-decreasing in R+, and x(t) satisfies the following form of delay integral inequality:

xp(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)xr(σ(s))] ds, t ∈ R+, (3.25)

with the initial condition:

x(t) = φ(t), t ∈ [a, 0],

φ(σ(t)) ≤ ρ
1
p (t) for t ∈ R+ with σ(t) ≤ 0,

(3.26)

where β ≥ 1, p ̸= 0, p ≥ q ≥ 0, p ≥ r ≥ 0, p, q, r are constants, σ(t) ∈ C(R+, R), σ(t) ≤ t,
−∞ < a = inf{σ(t), t ∈ R+} < 0, and φ(t) ∈ C([a, 0], R+), then

x(t) ≤
(

ρ(t) + g(t)m1(t)Eβ

(
n1(t)Γ(β)tβ

)) 1
p

, t ∈ R+, (3.27)

where

m1(t) =
∫ t

0
(t − s)β−1

[
f (s)

(
p − q

p
K

q
p +

q
p

K
q−p

p ρ(s)
)
+ h(s)

(
p − r

p
K

r
p +

r
p

K
r−p

p ρ(s)
)]

ds,

n1(t) =
(

q
p

K
q−p

p f (t) +
r
p

K
r−p

p h(t)
)

g(t), (3.28)

for any K > 0.
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Proof. Define a function u(t) by

up(t) = ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)xr(σ(s))] ds, t ∈ R+. (3.29)

Since ρ(t), g(t) are non-decreasing in R+, β − 1 ≥ 0, f (s)xq(s) + h(s)xr(σ(s)) > 0, from the
procedure of Theorem 3.4, u(t) is non-decreasing in R+. By inequality (3.25), we obtain

x(t) ≤ u(t), t ∈ R+. (3.30)

For t ∈ R+ with σ(t) > 0, since σ(t) ≤ t, from inequality (3.30), we have

x(σ(t)) ≤ u(σ(t)) ≤ u(t). (3.31)

For t ∈ R+ with σ(t) ≤ 0, by the initial condition (3.26), we have

x(σ(t)) = φ(σ(t)) ≤ ρ
1
p (t) ≤ u(t). (3.32)

So we obtain

up(t) ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)uq(s) + h(s)ur(s)] ds, t ∈ R+. (3.33)

From Corollary 3.5, we have

x(t) ≤ u(t) ≤
(

ρ(t) + g(t)m1(t)Eβ

(
n1(t)Γ(β)tβ

)) 1
p

, t ∈ R+, (3.34)

where m1(t), n1(t) are defined as in condition (3.28).

Remark 3.8. When β ≥ 1, the kernel in inequality (3.25) does not possess a singularity, then we
get a different bound that is expressed via the Mittag-Leffler function compared to Lemma 2.4.

Remark 3.9. Comparing with Theorem 3.1, which deals with the case when β ∈ (0, 1), we
have established the bound when β ≥ 1. This extension allows us to address the nonlinear
integral inequality with delay (3.1) for all β > 0.

Lastly, inspired by the technique of Theorem 1 in Medved’ [23], we consider the Bihari-type
for Theorem 3.1.

Theorem 3.10. Let x(t), ρ(t), f (t), h(t) be non-negative functions that are continuous on [0, T),
ϕ : [0,+∞) → (0,+∞) be a continuous, non-decreasing function, if ρ(t) is non-decreasing in R+

and x(t) satisfies the following form of delay integral inequality:

xp(t) ≤ ρ(t) +
∫ t

0
(t − s)β−1[ f (s)xq(s) + h(s)ϕ (x(σ(s)))] ds, t ∈ [0, T), (3.35)

with the initial condition:

x(t) = φ(t), t ∈ [a, 0],

φ(σ(t)) ≤ 3
1−α

p ρ
1
p (t) for t ∈ [0, T) with σ(t) ≤ 0,

(3.36)

where 0 < α < β < 1, p ̸= 0, p ≥ q ≥ 0, p, q are constants, σ(t) ∈ C([0, T), R), σ(t) ≤ t,
−∞ < a = inf{σ(t), t ∈ [0, T)} < 0, and φ(t) ∈ C([a, 0], R+), then

x(t) ≤
(

ψ−1(ψ(ã(t)) +
∫ t

0
b(s) ds)

) α
p

, t ∈ [0, T1], (3.37)
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where ã(t) = 3
1
α−1ρ

1
α (t) +

∫ t
0

p−q
p K

q
p c(s) ds, b(t) = max

{
p−q

p K
q
p t

β−α
α f

1
α (t), t

β−α
α h

1
α (t)

}
, ψ(t) =∫ t

t0

1
ϕ̃(s) ds, ϕ̃(t) = t+ ϕ

1
α (t

α
p ), t0 > 0, ψ−1 is the inverse of ψ, T1 ∈ (0, T) and ψ(ã(t)) +

∫ t
0 b(s) ds ∈

Dom(ψ−1) for all t ∈ [0, T1].

Proof. From the procedure of Theorem 3.1, we have

x
p
α (t) ≤ a(t) +

∫ t

0

[
c(s)x

q
α (s) + d(s)ϕ

1
α (x(σ(s)))

]
ds, t ∈ [0, T), (3.38)

where a(t), c(t), d(t) are defined as in condition (3.4). Let x
1
α (t) = u(t), then

up(t) ≤ a(t) +
∫ t

0

[
c(s)uq(s) + d(s)ϕ

1
α (uα(σ(s)))

]
ds, t ∈ [0, T). (3.39)

Define a function y(t) by

yp(t) = a(t) +
∫ t

0

[
c(s)uq(s) + d(s)ϕ

1
α (uα(σ(s)))

]
ds, t ∈ [0, T). (3.40)

From the procedure of Theorem 3.7, let g(t) = 1, we have

yp(t) ≤ a(t) +
∫ t

0

[
c(s)yq(s) + d(s)ϕ

1
α (yα(s))

]
ds, t ∈ [0, T). (3.41)

Set m(t) = a(t) +
∫ t

0

[
c(s)yq(s) + d(s)ϕ

1
α (yα(s))

]
ds, then y(t) ≤ m

1
p (t).

By Lemma 2.7, we have

yq(t) ≤ m
q
p (t) ≤ q

p
K

q−p
p m(t) +

p − q
p

K
q
p , t ∈ [0, T). (3.42)

Then

m(t) ≤ a(t) +
∫ t

0

[
c(s)

(
q
p

K
q−p

p m(s) +
p − q

p
K

q
p

)
+ d(s)ϕ

1
α (m

α
p (s))

]
ds

= a(t) +
∫ t

0

p − q
p

K
q
p c(s) ds

+
∫ t

0

[
q
p

K
q−p

p c(s)m(s) + d(s)ϕ
1
α (m

α
p (s))

]
ds, t ∈ [0, T).

(3.43)

Let ã(t) = a(t) +
∫ t

0
p−q

p K
q
p c(s) ds, b(t) = max

{
q
p K

q−p
p c(t), d(t)

}
, ϕ̃(t) = t + ϕ

1
α (t

α
p ). So we

have

m(t) ≤ ã(t) +
∫ t

0
b(s)ϕ̃(m(s)) ds, t ∈ [0, T). (3.44)

Then inequality (3.44) is in the form of the known Bihari inequality [4]. So we have

m(t) ≤ ψ−1(ψ(ã(t)) +
∫ t

0
b(s) ds), t ∈ [0, T1]. (3.45)

At last, by inequalities (3.38), (3.39), (3.41) and (3.45), we get

x
1
α (t) = u(t) ≤ y(t) ≤ m

1
p (t), t ∈ [0, T). (3.46)

x(t) ≤ m
α
p (t) ≤

(
ψ−1(ψ(ã(t)) +

∫ t

0
b(s) ds)

) α
p

, t ∈ [0, T1]. (3.47)
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Remark 3.11. Looking closely at Theorem 3.10, we establish a new nonlinear Bihari-type in-
equality with time-varying delay and obtain the explicit bound which is a generalization of
theorems in [23] and [37]. Additionally, Lan and Webb [15] generalized the classical Bihari
inequality using a novel approach, where the nonlinearity and time-varying delay term ad-
dressed in our work are not covered in [15].

Remark 3.12. Hamlat, Graef and Ouahab [9] considered a generalized Bihari inequality that
imposes stricter requirements on ϕ. In contrast, our theorem imposes weaker requirements
on ϕ. Furthermore, by employing Lemma 2.7 and the initial condition (3.36), we account for
both nonlinearity and time-varying delay term in our theorem which are not considered in
[9], ultimately yielding a bound of the similar explicit form.

A key novelty of our results, is the introduction of the free parameter K > 0, which
allows for the optimization of the bound. To clearly show how to choose the optimal K and
the improvements offered by our approach, we present the following example with explicit
functions satisfying all hypotheses of Theorem 3.1.

Example 3.13. Let ρ(t) = t, g(t) = 1, f (t) = t, h(t) = t, p = 2, q = r = 1, β = 2
3 , α = 1

3 ,
inequality (3.1) becomes

x2 ≤ t +
∫ t

0
(t − s)−

1
3 [sx(s) + sx(σ(s))] ds, t ∈ R+, (3.48)

From Theorem 3.1, we have a(t) = 9t3, b(t) = 9(Γ(1/2)Γ(1/2))2 = 9π2, c(t) = t4, d(t) = t4,
C(t) = 1

5 t5K
1
2 + 9

8 t8K− 1
2 , D(t) = 9π2t4K− 1

2 ,
∫ t

0 D(s) ds = 9
5 π2t5K− 1

2 , then we have the bound of
inequality (3.48)

x(t) ≤
[

9t3 +

(
9π2t5

5
K

1
2 +

81π2t8

8
K− 1

2

)
exp

(
9π2t5

5
K− 1

2

)] 1
6

, t ∈ R+. (3.49)

Define a function F(t, K) by

F(t, K) = 9t3 +
9π2

5
K

1
2 t5 exp

(
9π2

5
K− 1

2 t5
)
+

81π2

8
K− 1

2 t8 exp
(

9π2

5
K− 1

2 t5
)

. (3.50)

We now only need to minimize F(t, K) to find the optimal K. Let z = At5K− 1
2 , A = 9π2

5 ,
B = 81π2

8 , we have

F(t, z) = 9t3 +
A2t10

z
ez +

B
A

t3zez = 9t3 +
A2t10

z
ez +

45
8

t3zez. (3.51)

Taking the partial derivative with respect to z,

∂F
∂z

= −A2t10

z2 ez +
A2t10

z
ez +

45
8

t3ez +
45
8

t3zez

=
t3ez

z2 (
45
8

z3 +
45
8

z2 + A2t7z − A2t7).
(3.52)

Let P(z) = 45
8 z3 + 45

8 z2 + A2t7z − A2t7, t > 0. By Vièta’s formulas, for the three roots z1,
z2, z3 of the polynomial P(z), we have z1 + z2 + z3 = −1 < 0, z1z2z3 = 8A2t7

45 > 0, so when
z > 0, P(z) has only one real root. This means that the function F(t, z) first decreases and then
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increases with respect to z. To find the optimal K, we now only need to find the positive root
of the polynomial P(z). By usual techniques, we can get the positive root

z1 =
3

√√√√2k
3

− 1
27

+

√(
1
27

− 2k
3

)2

+

(
k
3
− 1

9

)3

+
3

√√√√2k
3

− 1
27

−

√(
1

27
− 2k

3

)2

+

(
k
3
− 1

9

)3

− 1
3

,

(3.53)

where k = 8A2t7

45 . Finally, we can get the optimal K = A2t10

z2
1

, A and z1 are determined as
described in the preceding analysis. With this K (depending on t) being optimal for each t, we
obtain the corresponding best bound for any given t.

Remark 3.14. Generally, it can be observed that for different values of t, the parameter K that
minimizes the bound is different. It is challenging to find a constant K, independent of t, that
minimizes the bound. In this example, the optimal K → +∞ as t → +∞. If t ∈ [0, T], and the
goal is to find the optimal bound which can be used to prove existence (see Theorem 4.1), the
best t-independent constant K is given by the function K(t) evaluated at the endpoint t = T.

4 Applications

In this section, we will show that our results are useful in proving the existence of solutions
to certain fractional differential equations with time-varying delay. We consider the following
fractional differential equation:{

Dβ
∗x(t) = H(t, x(t), x(σ(t))), a.e. t ∈ [0, T],

x(t) = φ(t), t ∈ [a, 0],
(4.1)

where Dβ
∗ is the Caputo fractional derivative, H ∈ C(R+ ×R2, R), β ∈ (0, 1), σ(t) ∈ C(R+, R),

σ(t) ≤ t, −∞ < a = inf{σ(t), t ∈ R+} < 0, and φ(t) ∈ C([a, 0], R+).

Theorem 4.1. If there exist non-negative continuous functions k(t), f (t) and h(t) such that:

|H(t, x, y)| ≤ k(t) + f (t)|x|q + h(t)|y|r, (t, x, y) ∈ R+ × R2, (4.2)

where 0 ≤ q, r ≤ 1. Then equation (4.1) has at least one solution on the interval [a, T] for arbitrarily
large T when β ∈ (0, 1).

Proof. Transform the problem into a fixed point problem. Let N : C[a, T] → C[a, T] be the
operator defined by

N(x)(t) =

{
φ(0) + 1

Γ(β)

∫ t
0 (t − s)β−1H(s, x(s), x(σ(s))) ds, t ∈ [0, T],

φ(t), t ∈ [a, 0].
(4.3)

By Lemma 2.9, it is easy to know that the fixed points of operator N are solutions of equation
(4.1). We can show that the operator N is continuous and completely continuous by usual
techniques, see [32] and [29]. By Lemma 2.8, we now only need to prove the set {x ∈ E : x =
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λNx for some λ ∈ (0, 1)} is bounded. Let x(t) ∈ C[a, T] and x = λN(x) for some λ ∈ (0, 1),
then we have

x(t) =

λ
[

φ(0) + 1
Γ(β)

∫ t
0 (t − s)β−1H(s, x(s), x(σ(s))) ds

]
, t ∈ [0, T],

λφ(t), t ∈ [a, 0].
(4.4)

When t ∈ [a, 0], since φ(t) is continuous, let M1 = sup{|φ(t)| : t ∈ [a, 0]}, we have

|x(t)| ≤ |φ(t)| ≤ M1. (4.5)

When t ∈ [0, T],

|x(t)| ≤ |φ(0)|+ 1
Γ(β)

∫ t

0
(t − s)β−1|H(s, x(s), x(σ(s)))| ds

≤ |φ(0)|+ 1
Γ(β)

∫ t

0
(t − s)β−1k(s) ds

+
1

Γ(β)

∫ t

0
(t − s)β−1 [ f (s)|x(s)|q + h(s)|(x(σ(s))|r] ds.

(4.6)

If β ∈ (0, 1), let 0 < γ < β < 1, by Hölder inequality, we get

|x(t)| ≤ |φ(0)|+ tβ−γ

Γ(β)
(

β−γ
1−γ

)1−γ

(∫ t

0
k

1
γ (s) ds

)γ

ds

+
1

Γ(β)

∫ t

0
(t − s)β−1 [ f (s)|x(s)|q + h(s)|(x(σ(s))|r] ds.

(4.7)

Let ρ(t) = M1 + |φ(0)|+ tβ−γ

Γ(β)
(

β−γ
1−γ

)1−γ

(∫ t
0 k

1
γ (s) ds

)γ
ds, g(t) = 1

Γ(β)
, then inequality (4.7) can

be restated as

|x(t)| ≤ ρ(t) + g(t)
∫ t

0
(t − s)β−1[ f (s)|x(s)|q + h(s)|x(σ(s))|r] ds. (4.8)

By Theorem 3.1, we can get

|x(t)| ≤
[

a(t) + b(t)C(t) exp
(∫ t

0
D(s) ds

)]α

≤
[

a(T) + b(T)C(T) exp
(∫ T

0
D(s) ds

)]α

.
(4.9)

Consequently, from inequalities (4.5) and (4.9), the set {x ∈ E : x = λNx for some λ ∈ (0, 1)}
is bounded. Thus, the proof is completed.

Theorem 4.2. If there exist non-negative continuous functions k(t), f (t) and h(t) such that:

|H(t, x, y)| ≤ k(t) + f (t)|x|q + h(t)ϕ (|y|) , (t, x, y) ∈ R+ × R2, (4.10)

where 0 ≤ q ≤ 1, ϕ : [0,+∞) → (0,+∞) be a continuous, non-decreasing function. Then (4.1) has
at least one solution on [a, T1] when β ∈ (0, 1), T1 ∈ (0, T) and ψ(ã(t)) +

∫ t
0 b(s) ds ∈ Dom(ψ−1)

for all t ∈ [0, T1], ã(t), b(t), ψ(t) can be defined as in Theorem 3.10.
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Proof. By similar techniques in Theorem 4.1, we should only prove that the solution of equa-
tion (4.4) is bounded. When t ∈ [a, 0], since φ(t) is continuous, let M1 = sup{|φ(t)| : t ∈
[a, 0]}, we have

|x(t)| ≤ |φ(t)| ≤ M1. (4.11)

Let 0 < γ < β < 1, when t ∈ [0, T),

|x(t)| ≤ |φ(0)|+ 1
Γ(β)

∫ t

0
(t − s)β−1|H(s, x(s), x(σ(s)))| ds

≤ |φ(0)|+ 1
Γ(β)

∫ t

0
(t − s)β−1k(s) ds

+
1

Γ(β)

∫ t

0
(t − s)β−1 [ f (s)|x(s)|q + h(s)ϕ (|x(σ(s))|)] ds

≤ |φ(0)|+ tβ−γ

Γ(β)
(

β−γ
1−γ

)1−γ

(∫ t

0
k

1
γ (s) ds

)γ

ds

+
1

Γ(β)

∫ t

0
(t − s)β−1 [ f (s)|x(s)|q + h(s)ϕ (|x(σ(s))|)] ds.

(4.12)

Let ρ(t) = M1 + |φ(0)|+ tβ−γ

Γ(β)
(

β−γ
1−γ

)1−γ

(∫ t
0 k

1
γ (s) ds

)γ
ds, f1(t) = 1

Γ(β)
f (t), h1(t) = 1

Γ(β)
h(t), then

inequality (4.12) can be restated as

|x(t)| ≤ ρ(t) +
∫ t

0
(t − s)β−1[ f1(s)|x(s)|q + h1(s)ϕ (|x(σ(s))|)] ds. (4.13)

By Theorem 3.10, when t ∈ [0, T1], we can get

x(t) ≤
(

ψ−1(ψ(ã(t)) +
∫ t

0
b(s) ds)

)α

≤
(

ψ−1(ψ(ã(T1)) +
∫ T1

0
b(s) ds)

)α

. (4.14)

Consequently, from inequalities (4.11) and (4.14), we know the solutions of equation (4.4) is
bounded. Thus the proof is completed.

Corollary 4.3. Since ψ(t) =
∫ t

t0

1
ϕ̃(s) ds is a strictly increasing continuous function, if limt→∞ ψ(t) =

∞, we can let T1 = T. Then from Theorem 4.2, the solutions exist on the interval [a, T] for arbitrarily
large T.

Example 4.4. D
1
2∗ x(t) = t + et xm(t)+xn(σ(t))

x2c(t)+x2d(σ(t))+1 , a.e. t ∈ [0, T],

x(t) = φ(t), t ∈ [a, 0],
(4.15)

where σ(t) ∈ C(R+, R), σ(t) ≤ t, −∞ < a = inf{σ(t), t ∈ R+} < 0, and φ(t) ∈ C([a, 0], R+),
0 < m − 2c < 1, 0 < n − 2d < 1, β = 1/2. Since

|t + et xm(t) + xn(σ(t))
x2c(t) + x2d(σ(t))

| ≤ |t|+ et|xm−2c(t)|+ et|xn−2d(σ(t))|, (4.16)

by Theorem 4.1, equation (4.15) has at least one solution on [a, T] for arbitrarily large T.
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Example 4.5. D
2
3
∗ x(t) = t + et xm(t)+

√
(x2(σ(t))+k)(ln(x2(σ(t))+k)−1)

x2c(t)+1 , a.e. t ∈ [0, T],

x(t) = φ(t), t ∈ [a, 0],
(4.17)

where σ(t) ∈ C(R+, R), σ(t) ≤ t, −∞ < a = inf{σ(t), t ∈ R+} < 0, and φ(t) ∈ C([a, 0], R+),
0 < m − 2c < 1, k ≥ exp(1), β = 2/3, α = 1/2. Since

|D
2
3
∗ x(t)| = |t + et xm(t) +

√
(x2(σ(t)) + k)(ln(x2(σ(t)) + k)− 1)

x2c(t) + 1
|

≤ |t|+ et|xm−2c(t)|

+ et
√
(x2(σ(t)) + k)(ln(x2(σ(t)) + k)− 1),

(4.18)

we have ϕ(y) =
√
(y2 + k)(ln(y2 + k)− 1). ϕ̃(t) = t + ϕ

1
α (t

α
p ) = (t + k)(ln(t + k) − 1) + t,

where t ≥ 0. So we have

ψ(t) =
∫ t

t0

1
ϕ̃(s)

ds

=
∫ t

t0

1
(s + k)(ln(s + k)− 1) + s

ds

≥
∫ t

t0

1
(s + k) ln(s + k)

ds

= ln(ln(t + k))− ln(ln(t0 + k)).

(4.19)

Then limt→∞ ψ(t) = +∞, by Corollary 4.3, equation (4.17) has at least one solution on [a, T]
for arbitrarily large T.
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