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Abstract. In this paper, we investigate the logarithmic Kirchhoff-type equation

−
(

a + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = |u|p−2u log |u|, x ∈ R3,

where a, b > 0 are constants, and V : R3 → R is continuous and may change sign.
Using Nehari manifold method and the concentration-compactness principle, we prove
the existence of nontrivial and nonnegative (weak) solutions under some assumptions
on the potential function V without radial symmetry or compactness hypotheses.
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1 Introduction and main result

In this paper, we consider the existence of nontrivial and nonnegative (weak) solutions for the
following Kirchhoff-type equation

−
(

a + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = |u|p−2u log |u|, x ∈ R3, (1.1)

where a, b > 0 are constants, 4 < p < 6. Meanwhile, we shall impose the following conditions
on potential function V:

(V1) V is continuous and lim|x|→+∞ V(x) = supx∈R3 V(x) =: α < +∞;

(V2) inf
u∈H1(R3),
∥u∥L2(R3)=1

∫
R3

[
a|∇u|2 + V(x)u2]dx > 0.
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The classical Kirchhoff model

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0
|∂u
∂x

|
2

dx

)
∂2u
∂x2 = 0,

was first proposed by Kirchhoff [8], where ρ means the mass density, P0 represents the initial
tension, h is the area of the cross-section, L means the length of the string and E means the
Young modulus of the material. When considering the effect of the transverse vibrations on
the length of the string, the model just mentioned is an extension of the D’Alembert wave
equation. After that, with the help of the functional analysis method, Lions [11] derived the
following Kirchhoff equation

utt −
(

a + b
∫

R3
|∇u|2dx

)
∆u = f (x, u).

In recent years, the following stationary Kirchhoff-type problem

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u + V(x)u = f (u), (1.2)

has been widely studied by many authors, where the potential function V ∈ C(RN , [0,+∞)),
and the nonlinear term f is subcritical. For instance, when V(x) = 1 and the nonlinear term is
Q(x)|u|p−2u with 2 < p < 2∗, Zhang, Sun, Wu [18], and Hu, Lu [6] obtained the multiplicity
of positive solutions by using the barycenter map. Sun and Wu [13] got the existence and
non-existence results under the following conditions on V:

(V3) There exists c > 0 such that the set {V < c} = {x ∈ RN | V(x) < c} is nonempty and
has finite measure;

(V4) Ω = intV−1(0) is nonempty and has smooth boundary with Ω̄ = V−1(0).

In 2015, by using Hardy inequality and Pohožaev identity, Guo [4] got a positive ground state
solution of equation (1.2) in R3 when V ∈ C1(R3, R) and satisfies the followings:

(V5) There exists a positive constant A < a such that |(∇V(x), x)| ≤ A
2|x|2 for all x ∈ R3\{0};

(V6) There exists a positive constant V∞ such that for all x ∈ R3, V(x) ≤ lim inf|y|→+∞ V(y) ≜
V∞ < +∞.

In 2017, Tang, Chen [14] proved that equation (1.2) has a ground state solution of Nehari–
Pohožaev type when V satisfies the followings:

(V7) For all x ∈ R3, 0 ≤ V(x) ≤ lim inf|y|→+∞ V(y) ≜ V∞;

(V8) V ∈ C1(R3, R) and there exists θ ∈ [0, 1) such that

4t4[V(x)− V(tx)]− (1 − t4)(∇V(x), x) ≥ − θa(1 − t2)2

2|x|2 , ∀t ≥ 0, x ∈ R3\{0},

and equation (1.2) has a least energy solution when V satisfies (V7) and the following:

(V9) V(x) is weakly differentiable and there exists θ ∈ [0, 1) such that (∇V(x), x) ≤ θa
2|x|2 a.e.

x ∈ R3\{0}.
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In addition, there are some relevant results for the critical or supercritical problems. When
V(x) = V > 0 and f has critical growth, Xu and Chen [16] obtained a radial ground state
solution in R3. By using a truncation argument, Gao, Chen and Zhu [3] proved the existence
of a sign-changing solution in R3 when V ∈ C(R3, (0, ∞)) satisfies (V3) and the nonlinearity
is critical or supercritical. In 2021, Shen [12] studied a N-laplacian equation of Kirchhoff type
with critical growth in RN , and obtained a least energy sign-changing solution with precisely
two nodal domains.

Recently, logarithmic nonlinearity frequently appeared in the Kirchhoff-type problem (1.2).
When f (u) = |u|p−2u log u2, Wen, Tang, Chen [15] proved that equation (1.2) in a smooth
bounded domain of R3 owns ground state solutions and ground state sign-changing solutions
with precisely two nodal domains by using some estimate inequalities, constrained variational
method and topological degree. Applying the truncation argument, Huang, Shang [7] showed
that a logarithmic fractional Kirchhoff equation with critical or supercritical nonlinearity has
a ground state solution and a sign-changing solution.

Some authors investigate the case where V can change sign. In 2020, by employing vari-
ational method and some new analytical techniques, He, Qin, Tang [5] got the existence of
ground state solution when V(x) meets (V2) with (V10) or with (V11):

(V10) V(x) is weakly differentiable, and there exist α ≥ 1
2 and θ ∈ [0, 1) such that

(2α − 1)V(x)−∇V(x) · x + θα(2α+1)
4|x|2 ≥ 0, a.e. x ∈ R3\{0};

(V11) V(x) is weakly differentiable, and ess supx∈R3 ∇V(x) · x < ∞.

With the help of a monotonicity trick and a new perspective of global compactness lemma,
Li and Ye [10] proved the equation (1.2) admits a positive ground state solution in R3 when
f (u) = |u|p−1u and V(x) satisfies (V2) and the following (V12)–(V13):

(V12) V(x) is weakly differentiable and satisfies (∇V(x), x) ∈ L∞(R3)
⋃

L
3
2 (R3) and V(x)−

(∇V(x), x) ≥ 0 a.e. x ∈ R3, where (·, ·) is the usual inner product in R3;

(V13) For almost every x ∈ R3, V(x) ≤ lim inf|y|→+∞ V(y) ≜ V∞ < +∞ and the inequality is
strict in a subset of positive Lebesgue measure.

Inspired mainly by the literature mentioned above, we consider the existence of solutions
for the logarithmic Kirchhoff equation without compactness condition in R3. We believe that
there are at least two fundamental difficulties that need to be addressed regarding equation
(1.1). The first one is caused by the space R3 and the potential function V, since the embedding
H1(R3) ↪→ Lq(R3), q ∈ [2, 6) is not compact, and we cannot use the compact embedding of
X = {u ∈ H1(RN)|

∫
R3 V(x)u2dx < +∞} into Lp(R3) anymore. The second difficulty arises

from the logarithmic nonlinear term, which does not satisfy both the monotonicity condition
and the Ambrosetti–Rabinowitz condition. And we cannot use Schwarz symmetrization di-
rectly when facing the logarithmic nonlinear term. We will attempt to categorize the possible
behaviors of minimizing sequences. From this, we will exclude some possibilities and then in-
dicate that there is enough compactness in the remaining cases to derive the proof. Moreover,
we note here that the potential function V in our results may change sign.

The main result of our work is the following.

Theorem 1.1. Let p ∈ (4, 6), and assume that (V1) and (V2) hold. The Problem (1.1) admits at least
one nontrivial and nonnegative (weak) solution.
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Remark 1.2. Under the above assumptions with condition (V2) replaced by infx∈R3 V(x) > 0,
Theorem 1.1 also holds.

Notations. We use the following notations:

• Denote

∥u∥k =

(∫
R3

|u|kdx
) 1

k

the norm of u ∈ Lk(R3) for 1 ≤ k < +∞.

• Define

(u, v) =
∫

R3
a∇u · ∇vdx +

∫
R3

V(x)uvdx,

∥u∥2 = (u, u) =
∫

R3
a|∇u|2dx +

∫
R3

V(x)u2dx.

Thanks to (V1) and (V2), these are equivalent to the standard scalar product and norm
of H1(R3).

• Let D(R3) be the set of infinitely differentiable functions whose support is compact in
R3. Denote Ep,q the closure of D(R3) in the norm

∥∇u∥2 + ∥u∥p + ∥u∥q, 1 ≤ p ≤ q < ∞,

Ep,p = Ep, in particular, E2 = H1(R3).

• C, C1, C2, . . . represent several different positive constants.

2 Preliminaries

A weak solution of Equation (1.1) is a function u ∈ H1(R3) such that

a
∫

R3
∇u∇φdx + b

∫
R3

|∇u|2
∫

R3
∇u∇φdx +

∫
R3

V(x)uφdx

=
∫

R3
|u|p−2uφ log |u|dx, ∀φ ∈ H1(R3).

Define functional I : H1(R3) → R by

I(u) =
a
2

∫
R3

|∇u|2dx +
b
4

(∫
R3

|∇u|2dx
)2

+
1
2

∫
R3

V(x)u2dx

− 1
p

∫
R3

|u|p log |u|dx +
1
p2

∫
R3

|u|pdx

=
1
2
∥u∥2 +

b
4
∥∇u∥4

2 −
1
p

∫
R3

|u|p log |u|dx +
1
p2 ∥u∥p

p.

(2.1)

Due to the fact that for 4 < p < q < 6 and arbitrarily ε > 0, there exists Cε > 0 such that

|tp−1 log |t|| ≤ ε|t|2 + Cε|t|q−1, ∀t ∈ R\{0}, (2.2)

we can derive that I ∈ C1(H1(R3)) and a critical point of I is a weak solution of Equation
(1.1).
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We will consider the following minimization problem:

m = inf
u∈N

I(u), (2.3)

where the Nehari manifold

N = {u ∈ H1(R3) | u ̸= 0, I′(u)u = 0}

=

{
u ∈ H1(R3) | u ̸= 0, ∥u∥2 + b∥∇u∥4

2 =
∫

R3
|u|p log |u|dx

}
.

Furthermore, if u ∈ N ,

I(u) =
1
2
∥u∥2 +

b
4
∥∇u∥4

2 −
1
p

∫
R3

|u|p log |u|dx +
1
p2 ∥u∥p

p

=
1
2
∥u∥2 +

b
4
∥∇u∥4

2 −
1
p
(∥u∥2 + b∥∇u∥4

2) +
1
p2 ∥u∥p

p

=

(
1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p,

(2.4)

and since 4 < p < 6, then

I(u) >
(

1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 > 0

for all u ∈ N .

Lemma 2.1 ([17, Lemma 2.1]). The following inequalities hold:

(1 − xs) + sxs log x > 0, ∀x ∈ (0, 1) ∪ (1,+∞), s > 0; (2.5)

log x ≤ 1
eσ

xσ, ∀x ∈ (0,+∞), σ > 0. (2.6)

3 Proof of the main result

Using Nehari manifold method and concentration-compactness principle, this section is de-
voted to the proof of Theorem 1.1, and the proof is composed of the following series of
lemmas.

Lemma 3.1. The Nehari manifold N is not empty, infu∈N ∥u∥ > 0 and m > 0.

Proof. We fix u ∈ H1(R3) with u ̸= 0, and for t ∈ R we define the function

Γ1(t) = I′(tu)tu = t2∥u∥2 + bt4∥∇u∥4
2 −

∫
R3

|tu|p log |tu|dx.

From (2.2) and 4 < p < q < 6 we know that

Γ1(t) ≥ t2∥u∥2 + bt4∥∇u∥4
2 −

∫
R3
(ε|tu|3 + Cε|tu|q)dx

= t2∥u∥2 + bt4∥∇u∥4
2 − εt3∥u∥3

3 − Cεtq∥u∥q
q > 0
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for small t > 0. From (2.5), we obtain that

|tu|2 log |tu| ≥ 1
2
(|tu|2 − 1)

and

|tu|p log |tu| ≥ 1
2
(|tu|p − |tu|p−2).

Therefore,

lim
t→+∞

Γ1(t) ≤ lim
t→+∞

(
t2∥u∥2 + bt4∥∇u∥4

2 −
∫

R3

1
2
(|tu|p − |tu|p−2)dx

)
= lim

t→+∞

(
t2∥u∥2 + bt4∥∇u∥4

2 −
1
2

tp∥u∥p
p +

1
2

tp−2∥u∥p−2
p−2

)
= −∞.

Then there exists t > 0 such that I′(tu)tu = 0. Hence tu ∈ N and N is not empty.
If u ∈ N , from (2.6) and H1(R3) ↪→ Lq(R3), we obtain

∥u∥2 + b∥∇u∥4
2 =

∫
R3

|u|p log |u|dx ≤
∫

R3
|u|p 1

e(q − p)
|u|q−pdx =

1
e(q − p)

∥u∥q
q ≤ C∥u∥q,

namely

1 ≤ C∥u∥q−2.

Hence infu∈N ∥u∥ > 0.
Therefore, if u ∈ N , from (2.4), we have

I(u) =
(

1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p >

(
1
2
− 1

p

)
∥u∥2 ≥

(
1
2
− 1

p

)
C− 2

q−2 ,

and the lemma is proved.

Now, we consider a minimizing sequence {uk} ⊂ N . Of course, we can assume uk(x) ≥ 0
almost everywhere in R3. From (2.4), the sequence {uk} is bounded in H1(R3), and therefore,
up to subsequences, there exists u ∈ H1(R3) such that

uk ⇀ u in H1(R3), Lp(R3), Lq(R3),

uk → u in Lq
loc(R

3),

uk → u a.e. x ∈ R3.

The last property tells us that u ≥ 0. By extracting a further subsequence, if necessary, we can
define β, ξ ≥ 0 as

β = lim
k→+∞

∫
R3

|uk|qdx,

ξ = lim
k→+∞

∫
R3

|uk|pdx.

We let

l =
∫

R3
|u|qdx,

l1 =
∫

R3
|u|pdx.

By weak convergence, it is obvious that l ∈ [0, β].
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Lemma 3.2. It holds that β > 0.

Proof. If β = 0, we have

lim
k→+∞

∥uk∥q = 0.

Since uk ∈ N , it follows from (2.6) that

∥uk∥2 + b∥∇uk∥4
2 =

∫
R3

|uk|p log |uk|dx ≤
∫

R3
|uk|p

1
e(q − p)

|uk|q−pdx =
1

e(q − p)
∥uk∥

q
q,

and then we obtain uk → 0 in H1(R3) and m = 0, a contradiction.

Lemma 3.3. If l = β, then u ∈ N and I(u) = m.

Proof. If l = β, we have ∥uk∥q → ∥u∥q, this fact together with uk ⇀ u in Lq(R3) implies uk → u
in Lq(R3) (see [2, Proposition 3.32]). Let t ∈ (0, 1) be such that p = 2t + q(1 − t). Then by the
Hölder’s inequality,∫

R3
|uk − u|pdx =

∫
R3

|uk − u|2t|uk − u|q(1−t)dx ≤ ∥uk − u∥2t
2 ∥uk − u∥q(1−t)

q .

As {∥uk − u∥2}k is a bounded sequence, we see that

lim
k→∞

∥uk − u∥p = 0.

This yields also uk → u in Lp(R3).
Since uk → u in Lq(R3), using Theorem 1.2.7 in [1], there exists a subsequence {uk j}j and

a function v ∈ Lq(R3) such that

uk j(x) → u(x) a.e. in R3 as j → ∞;

|uk j(x)| ≤ v(x) a.e. in R3 for all j.

We take {uk j} as a new minimizing sequence still named by {uk}. It is easy to know that
|uk|p log |uk| → |u|p log |u| a.e. in R3 as k → ∞. Meanwhile, from (2.6), there exists 1

e(q−p) |v|
q ∈

L1(R3) such that

|uk|p log |uk| ≤ |uk|p
1

e(q − p)
|uk|q−p =

1
e(q − p)

|uk|q ≤
1

e(q − p)
|v|q

a.e. in R3 for all k. By the Dominated convergence theorem, we have

lim
k→+∞

∫
R3

|uk|p log |uk|dx =
∫

R3
|u|p log |u|dx.

Hence, by weak convergence (see [9, Lemma 2.4]), we obtain

I(u) =
1
2
∥u∥2 +

b
4
∥∇u∥4

2 −
1
p

∫
R3

|u|p log |u|dx +
1
p2 ∥u∥p

p ≤ lim inf
k

I(uk) = m,

while the relation

∥uk∥2 + b∥∇uk∥4
2 =

∫
R3

|uk|p log |uk|dx
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implies

∥u∥2 + b∥∇u∥4
2 ≤ lim inf

k→+∞
(∥uk∥2 + b∥∇uk∥4

2)

= lim inf
k→+∞

∫
R3

|uk|p log |uk|dx =
∫

R3
|u|p log |u|dx.

If equality holds, then u ∈ N (recall that l = β > 0, so u ̸= 0) and the lemma is proved.
Next, we prove that the case

∥u∥2 + b∥∇u∥4
2 <

∫
R3

|u|p log |u|dx

cannot occur. Arguing as Lemma 3.1, Γ1(t) > 0 for small t > 0. Assume by contradiction that

Γ1(1) = ∥u∥2 + b∥∇u∥4
2 −

∫
R3

|u|p log |u|dx < 0.

Then there exists t ∈ (0, 1) such that tu ∈ N , it follows from (2.4) that

m ≤ I(tu) =
1
2

t2∥u∥2 +
b
4

t4∥∇u∥4
2 −

1
p

∫
R3

|tu|p log |tu|dx +
1
p2 ∥tu∥p

p

=
1
2

t2∥u∥2 +
b
4

t4∥∇u∥4
2 −

1
p
(t2∥u∥2 + bt4∥∇u∥4

2) +
1
p2 ∥tu∥p

p

=

(
1
2
− 1

p

)
t2∥u∥2 +

(
1
4
− 1

p

)
bt4∥∇u∥4

2 +
1
p2 tp∥u∥p

p

<

(
1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p

≤ lim inf
k→+∞

I(uk) = m,

a contradiction.

Define

∥u∥2
α =

∫
R3

a|∇u|2dx + α
∫

R3
|u|2dx,

where α is the positive number defined in (V1). Of course ∥u∥α is an Hilbertian norm equiva-
lent to ∥u∥. We define a functional Iα : H1(R3) → R as

Iα(u) =
1
2
∥u∥2

α +
b
4
∥∇u∥4

2 −
1
p

∫
R3

|u|p log |u|dx +
1
p2 ∥u∥p

p,

and the associated Nehari manifold

Nα = {u ∈ H1(R3) | u ̸= 0, I′α(u)u = 0}

=

{
u ∈ H1(R3) | u ̸= 0, ∥u∥2

α + b∥∇u∥4
2 =

∫
R3

|u|p log |u|dx
}

,

mα = inf
u∈Nα

Iα(u).

Let 1 < p ≤ q < +∞, denote Carathéodory function f : Ω × R → R belongs to the class
Kp,q(Ω) if there exist a positive constant C and functions f1 ∈ L

p
p−1 (Ω), f2 ∈ L

q
q−1 (Ω) such that

| f (x, t)| ≤ C(|t|p−1 + |t|q−1) + f1(x) + f2(x)
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holds for almost all x ∈ Ω and for all t ∈ R. Denote Kp(Ω) = Kp,p(Ω). If Ω = R3, we omit it
in the notation.

Next, we will work in the spaces of radial functions, define

D1,2(R3) =

{
u ∈ L6(R3) | ∂u

∂xi
∈ L2(R3), i = 1, 2, 3

}
,

Dr = {u ∈ D1,2(R3) | u is radial},

Hr = {u ∈ H1(R3) | u is radial}.

According to Schwarz symmetrization, we can find a way to pass from functions in H1(R3)

to functions in Hr. Let u ∈ D1,2(R3) be such that u(x) ≥ 0 a.e. in R3. We denote, for t > 0,

{u > t} = {x ∈ R3 | u(x) > t}.

Notice that since u ∈ L6(R3), we have |{u > t}| < +∞ for all t > 0. The Schwarz symmetriza-
tion constructs a radial function u∗ : R3 → R such that

|{u∗ > t}| = |{u > t}|.

Lemma 3.4. For every u ∈ H1(R3), u ≥ 0, it holds that u∗ ∈ Hr, u∗ ≥ 0,∫
R3

|u∗|p log |u∗|dx =
∫

R3
|u|p log |u|dx.

Proof. Define

G(x) = |x|p log |x|,
G+(x) := max{G(x), 0},

G−(x) := max{−G(x), 0},

then

G(x) = G+(x)− G−(x).

Since

lim
t→0

tp−1 log |t|
t

= 0,

lim
t→∞

tp−1 log |t|
tq−1 = 0,

where 4 < p < q < 6. Therefore, for arbitrarily ε1 > 0, there exists Cε1 > 0 such that

|tp−1 log |t|| ≤ ε1|t|+ Cε1 |t|q−1, ∀t ∈ R\{0}

and

|G(x)| = ||x|p log |x|| ≤ ε1|x|2 + Cε1 |x|q ≤ max{ε1, Cε1}(|x|2 + |x|q).

It is easy to see that G+, G− : R → R is a continuous even nonnegative function, G+, G− ∈
K3,q+1 with 4 < q < 6. Since u ∈ H1(R3)(= E2), according to the embedding relationship in
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[9], it can be inferred that u ∈ E2,q. Then from Theorem D.1. in [9], there exists u∗ ∈ Hr such
that ∫

|u∗|>1
|u∗|p log |u∗|dx =

∫
R3

G+(u∗)dx =
∫

R3
G+(u)dx =

∫
|u|>1

|u|p log |u|dx

and ∫
|u∗|≤1

−|u∗|p log |u∗|dx =
∫

R3
G−(u∗)dx =

∫
R3

G−(u)dx =
∫
|u|≤1

−|u|p log |u|dx.

Therefore, ∫
R3

|u∗|p log |u∗|dx =
∫

R3
G(u∗)dx =

∫
R3
(G+(u∗)− G−(u∗))dx

=
∫

R3
G+(u∗)dx −

∫
R3

G−(u∗)dx

=
∫
|u∗|>1

|u∗|p log |u∗|dx −
∫
|u∗|≤1

−|u∗|p log |u∗|dx

=
∫
|u|>1

|u|p log |u|dx −
∫
|u|≤1

−|u|p log |u|dx

=
∫

R3
|u|p log |u|dx.

Lemma 3.5. There exists u ≥ 0, u ∈ Nα such that Iα(u) = mα.

Proof. We first show that we can take a minimizing sequence for mα in Nα
⋂

Hr. As the same
argument as Lemma 3.1, we know that Nα ̸= ∅, mα > 0. Let {vk} ⊆ Nα be a minimizing
sequence. As usual, we can assume vk ≥ 0 and let ωk = v∗k ∈ Hr be the nonnegative radial
function.

From Lemma 3.4 and Theorem 3.1.5 in [1], we have

∥ωk∥2
α =

∫
R3

a|∇v∗k |2dx + α
∫

R3
|v∗k |2dx ≤

∫
R3

a|∇vk|2dx + α
∫

R3
|vk|2dx

=
∫

R3
|vk|p log |vk|dx − b∥∇vk∥4

2 ≤
∫

R3
|v∗k |p log |v∗k |dx − b∥∇v∗k∥4

2

=
∫

R3
|ωk|p log |ωk|dx − b∥∇ωk∥4

2.

Therefore,

∥ωk∥2
α + b∥∇ωk∥4

2 −
∫

R3
|ωk|p log |ωk|dx ≤ 0.

Set

Γ2(t) = I′α(tωk)tωk = t2∥ωk∥2
α + bt4∥∇ωk∥4

2 −
∫

R3
|tωk|p log |tωk|dx.

From (2.2), we obtain

Γ2(t) ≥ t2∥ωk∥2
α + bt4∥∇ωk∥4

2 − εt3∥ωk∥3
3 − Cεtq∥ωk∥

q
q > 0

for small t > 0. Meanwhile,

Γ2(1) = ∥ωk∥2
α + b∥∇ωk∥4

2 −
∫

R3
|ωk|p log |ωk|dx ≤ 0.
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Therefore there exists tk ∈ (0, 1] such that Γ2(tk) = 0, that is, tkωk ∈ Nα. Hence from Theorem
3.1.5 in [1], we obtain

mα ≤ Iα(tkωk) =

(
1
2
− 1

p

)
t2
k∥ωk∥2

α +

(
1
4
− 1

p

)
bt4

k∥∇ωk∥4
2 +

1
p2 tp

k∥ωk∥
p
p

≤
(

1
2
− 1

p

)
∥ωk∥2

α +

(
1
4
− 1

p

)
b∥∇ωk∥4

2 +
1
p2 ∥ωk∥

p
p

=

(
1
2
− 1

p

)(∫
R3

a|∇v∗k |2dx + α
∫

R3
|v∗k |2dx

)
+

(
1
4
− 1

p

)
b
(∫

R3
|∇v∗k |2dx

)2

+
1
p2

∫
R3

|v∗k |pdx

≤
(

1
2
− 1

p

)(∫
R3

a|∇vk|2dx + α
∫

R3
|vk|2dx

)
+

(
1
4
− 1

p

)
b
(∫

R3
|∇vk|2dx

)2

+
1
p2

∫
R3

|vk|pdx

=

(
1
2
− 1

p

)
∥vk∥2

α +

(
1
4
− 1

p

)
b∥∇vk∥4

2 +
1
p2 ∥vk∥

p
p

= Iα(vk).

This implies that {tkωk}k ⊂ Hr is a minimizing sequence for mα, as we had claimed. Next,
we set uk = tkωk. Of course, uk ≥ 0, and we can assume that, up to subsequences, uk ⇀ u in
H1(R3). By Lemma 3.1.4 in [1], we obtain

uk → u in Lp(R3) and in Lq(R3).

Again up to subsequences, uk(x) → u(x) almost everywhere, so that u(x) ≥ 0 a.e. in R3 and
u ∈ Hr. We now prove that the weak limit u belongs to Nα and Iα(u) = mα. Let us first check
that u ∈ Nα. Since

0 < C ≤ ∥uk∥2
α + b∥∇uk∥4

2 =
∫

R3
|uk|p log |uk|dx, (3.1)

passing to the limit,

0 < C ≤
∫

R3
|u|p log |u|dx,

this implies u ̸= 0. From Lemma 2.4 in [9] and uk ∈ Nα, we also get

∥u∥2
α + b∥∇u∥4

2 ≤ lim inf
k→∞

(∥uk∥2
α + b∥∇uk∥4

2)

= lim
k→∞

∫
R3

|uk|p log |uk|dx =
∫

R3
|u|p log |u|dx.

If

∥u∥2
α + b∥∇u∥4

2 =
∫

R3
|u|p log |u|dx,

then u ∈ Nα. Arguing by contradiction, we assume that

∥u∥2
α + b∥∇u∥4

2 <
∫

R3
|u|p log |u|dx.
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Then for t > 0,

Γ2(t) = I′α(tu)tu = t2∥u∥2
α + bt4∥∇u∥4

2 −
∫

R3
|tu|p log |tu|dx.

From (2.2), we see that

Γ2(t) ≥ t2∥u∥2
α + bt4∥∇u∥4

2 − εt3∥u∥3
3 − Cεtq∥u∥q

q > 0

for small t > 0, while

Γ2(1) = ∥u∥2
α + b∥∇u∥4

2 −
∫

R3
|u|p log |u|dx < 0.

So there exists t ∈ (0, 1) such that tu ∈ Nα. Hence,

0 < mα ≤ Iα(tu) =
(

1
2
− 1

p

)
∥tu∥2

α +

(
1
4
− 1

p

)
b∥∇(tu)∥4

2 +
1
p2 ∥tu∥p

p

=

(
1
2
− 1

p

)
t2∥u∥2

α +

(
1
4
− 1

p

)
bt4∥∇u∥4

2 +
1
p2 tp∥u∥p

p

<

(
1
2
− 1

p

)
∥u∥2

α +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p

≤ lim inf
k→+∞

((
1
2
− 1

p

)
∥uk∥2

α +

(
1
4
− 1

p

)
b∥∇uk∥4

2 +
1
p2 ∥uk∥

p
p

)
= lim inf

k→+∞
Iα(uk) = mα.

This is a contradiction. Hence

∥u∥2
α + b∥∇u∥4

2 =
∫

R3
|u|p log |u|dx,

that is, u ∈ Nα. By the weakly lower semi-continuity of the norm, it is straightforward to
deduce that Iα(u) ≤ lim infk→+∞ Iα(uk) = mα. Since u ∈ Nα, we have mα ≤ Iα(u). Therefore,
Iα(u) = mα.

Lemma 3.6. It holds that m < mα.

Proof. By the result of Lemma 3.5, we know that there exists u0 ∈ Nα such that Iα(u0) = mα

and u0 ≥ 0.
By (V1), we infer that there exists δ1 > 0 and a ball BR(x1) such that

V(x) ≤ α − δ1, ∀x ∈ BR(x1).

Since u0 does not vanish identically, there exists δ2 > 0, a ball BR(x2) and a set A ⊆ BR(x2) of
positive measure such that

u0(x) ≥ δ2 a.e. in A.

We now define a function u1 ∈ H1(R3) as

u1(x) = u0(x − x1 + x2).
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By the invariance of integrals with respect to translations we have

Iα(u1) =
α

2

∫
R3

|u1|2dx +
a
2

∫
R3

|∇u1|2dx +
b
4

(∫
R3

|∇u1|2dx
)2

− 1
p

∫
R3

|u1|p log |u1|dx +
1
p2

∫
R3

|u1|pdx

=
α

2

∫
R3

|u0|2dx +
a
2

∫
R3

|∇u0|2dx +
b
4

(∫
R3

|∇u0|2dx
)2

− 1
p

∫
R3

|u0|p log |u0|dx +
1
p2

∫
R3

|u0|pdx

= Iα(u0) = mα

and

I′α(u1)u1 = α
∫

R3
|u1|2dx +

∫
R3

a|∇u1|2dx + b
(∫

R3
|∇u1|2dx

)2

−
∫

R3
|u1|p log |u1|dx

= α
∫

R3
|u0|2dx +

∫
R3

a|∇u0|2dx + b
(∫

R3
|∇u0|2dx

)2

−
∫

R3
|u0|p log |u0|dx

= I′α(u0)u0 = 0.

Notice that if x ∈ BR(x1), then x − x1 + x2 ∈ BR(x2), therefore u1(x) ≥ δ2 a.e. in a set
A′ ⊆ BR(x1) of positive measure. Then∫

BR(x1)
(α − V(x))u2

1dx ≥
∫

A′
δ1δ2

2dx = Cδ1δ2
2 ,

where C is the measure of A′.
Since V(x) ≤ α for every x, we obtain the estimate∫

R3
(α − V(x))u2

1dx ≥
∫

BR(x1)
(α − V(x))u2

1dx ≥ Cδ1δ2
2 > 0.

Then ∫
R3

V(x)u2
1dx < α

∫
R3

u2
1dx,

which implies ∫
R3

a|∇u1|2dx +
∫

R3
V(x)u2

1dx <
∫

R3
a|∇u1|2dx + α

∫
R3

u2
1dx,

that is,

∥u1∥2 < ∥u1∥2
α.

So we have

I′(u1)u1 = ∥u1∥2 + b∥∇u1∥4
2 −

∫
R3

|u1|p log |u1|dx

< ∥u1∥2
α + b∥∇u1∥4

2 −
∫

R3
|u1|p log |u1|dx

= I′α(u1)u1 = I′α(u0)u0 = 0.
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Hence, by usual arguments, there exists t ∈ (0, 1) such that tu1 ∈ N . Thus from (2.4), we have

m ≤ I(tu1) =

(
1
2
− 1

p

)
t2∥u1∥2 +

(
1
4
− 1

p

)
bt4∥∇u1∥4

2 +
1
p2 tp∥u1∥

p
p

<

(
1
2
− 1

p

)
∥u1∥2 +

(
1
4
− 1

p

)
b∥∇u1∥4

2 +
1
p2 ∥u1∥

p
p

<

(
1
2
− 1

p

)
∥u1∥2

α +

(
1
4
− 1

p

)
b∥∇u1∥4

2 +
1
p2 ∥u1∥

p
p

=

(
1
2
− 1

p

)
∥u0∥2

α +

(
1
4
− 1

p

)
b∥∇u0∥4

2 +
1
p2 ∥u0∥p

p

= Iα(u0) = mα.

Lemma 3.7. The case l = 0 cannot occur.

Proof. If l = 0, then u = 0, which implies in particular that uk → 0 in L2
loc(R

3).
We first prove the following claim:

lim
k→+∞

∫
R3

|V(x)− α|u2
kdx = 0. (3.2)

To prove this, we fix ε > 0 and take Rε > 0 such that

|V(x)− α| ≤ ε, ∀ |x| ≥ Rε,

this is possible by (V1). We can then estimate∫
R3

|V(x)− α|u2
kdx =

∫
|x|≤Rε

|V(x)− α|u2
kdx +

∫
|x|>Rε

|V(x)− α|u2
kdx

≤ C
∫
|x|≤Rε

u2
kdx + Mε,

where

C = sup
x∈R3

|V(x)− α| and M = sup
k

∫
R3

u2
kdx.

When k → +∞ we obtain

lim sup
k→+∞

∫
R3

|V(x)− α|u2
kdx ≤ εM

for every ε > 0, because uk → 0 in L2
loc(R

3). As this holds for every ε > 0, (3.2) is proved.
From (3.2), we deduce that

lim
k→+∞

∥uk∥α = lim
k→+∞

∥uk∥.

We know that

∥uk∥2
α + b∥∇uk∥4

2 ≥ ∥uk∥2 + b∥∇uk∥4
2 =

∫
R3

|uk|p log |uk|dx.

By usual arguments, we can prove that for each k there is tk ≥ 1 such that tkuk ∈ Nα, namely

t2
k∥uk∥2

α + bt4
k∥∇uk∥4

2 =
∫

R3
|tkuk|p log |tkuk|dx ≥ 1

2
tp
k∥uk∥

p
p −

1
2

tp−2
k ∥uk∥

p−2
p−2. (3.3)
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Since {uk} is a minimizing sequence of N , from (2.4) and H1(R3) ↪→ Lq(R3), we know that
the sequences {∥uk∥}, {∥∇uk∥2}, {∥uk∥α} and {∥uk∥

q
q} are bounded.

Therefore from (3.3), we deduce that {tk}k is bounded and, up to a subsequence, we can
assume tk → t0, of course, t0 ≥ 1. In addition, we have∫

R3
|uk|p log |uk|dx = ∥uk∥2 + b∥∇uk∥4

2.

Substituting in (3.3), we get

t2
k∥uk∥2

α + bt4
k∥∇uk∥4

2 − tp
k∥uk∥2 − btp

k∥∇uk∥4
2

=
∫

R3
|tkuk|p log |tkuk|dx −

∫
R3

|tkuk|p log |uk|dx.

We also have
∥uk∥2

α = ∥uk∥2 + εk

with εk → 0. Hence,

(t2
k − tp

k )∥uk∥2 + t2
kεk + b(t4

k − tp
k )∥∇uk∥4

2 =
∫

R3
|tkuk|p log |tk|dx = tp

k∥uk∥
p
p log tk.

Passing to the limit, and setting η1 = limk→+∞ ∥uk∥2 > 0, η2 = limk→+∞ ∥∇uk∥4
2 ≥ 0, we

obtain

(t2
0 − tp

0)η1 + b(t4
0 − tp

0)η2 = tp
0 ξ log t0.

So t0 > 1 gives a contraction because 4 < p < 6, and then necessarily t0 = 1.
Since tkuk ∈ Nα and ∥uk∥2

α = ∥uk∥2 + εk, from (2.4), we have

mα ≤ Iα(tkuk) =

(
1
2
− 1

p

)
t2
k∥uk∥2

α +

(
1
4
− 1

p

)
bt4

k∥∇uk∥4
2 +

1
p2 tp

k∥uk∥
p
p

=

(
1
2
− 1

p

)
t2
k∥uk∥2 +

(
1
2
− 1

p

)
t2
kεk +

(
1
4
− 1

p

)
bt2

k∥∇uk∥4
2

+

(
1
4
− 1

p

)
b(t4

k − t2
k)∥∇uk∥4

2 +
1
p2 t2

k∥uk∥
p
p +

1
p2 (t

p
k − t2

k)∥uk∥
p
p

=

(
1
2
− 1

p

)
t2
k∥uk∥2 +

(
1
4
− 1

p

)
bt2

k∥∇uk∥4
2 +

1
p2 t2

k∥uk∥
p
p

+

(
1
2
− 1

p

)
t2
kεk +

(
1
4
− 1

p

)
b(t4

k − t2
k)∥∇uk∥4

2 +
1
p2 (t

p
k − t2

k)∥uk∥
p
p

= t2
k I(uk) + o(1).

Passing to the limit we obtain
mα ≤ m,

a contradiction of Lemma 3.6, so we conclude the proof.

Now, we choose an increasing sequence {Rj}j of positive numbers such that Rj+1 > Rj + 1,
so that in particular Rj → +∞, and the following properties hold:

l − 1
j
≤
∫

BRj

|u|qdx ≤ l, hence also
∫

Bc
Rj

|u|qdx ≤ 1
j
,

l1 −
1
j
≤
∫

BRj

|u|pdx ≤ l1, hence also
∫

Bc
Rj

|u|pdx ≤ 1
j
,

∫
Bc

Rj

u2dx ≤ 1
j
.
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Define
Cj = BRj+1\BRj = {x ∈ R3|Rj ≤ |x| < Rj + 1}.

Noticing that BRj and Cj are bounded in R3, using the Rellich–Kondrachov Theorem, for every
j, it holds that

lim
k→+∞

∫
BRj

|uk|qdx =
∫

BRj

|u|qdx, lim
k→+∞

∫
Cj

|uk|qdx =
∫

Cj

|u|qdx,

lim
k→+∞

∫
BRj

|uk|pdx =
∫

BRj

|u|pdx, lim
k→+∞

∫
Cj

|uk|pdx =
∫

Cj

|u|pdx,

lim
k→+∞

∫
Cj

|uk|2dx =
∫

Cj

|u|2dx.

Moreover, since ∫
Cj

|u|qdx ≤
∫

BC
Rj

|u|qdx ≤ 1
j
,

∫
Cj

|u|pdx ≤
∫

BC
Rj

|u|pdx ≤ 1
j
,

∫
Cj

|u|2dx ≤
∫

BC
Rj

|u|2dx ≤ 1
j
,

we can extract a subsequence {uk j} such that, for every j ∈ N,

l − 2
j
≤
∫

BRj

|uk j |
qdx ≤ l +

1
j
,

∫
Cj

|uk j |
qdx ≤ 2

j
,

l1 −
2
j
≤
∫

BRj

|uk j |
pdx ≤ l1 +

1
j
,

∫
Cj

|uk j |
pdx ≤ 2

j
,

∫
Cj

|uk j |
2dx ≤ 2

j
.

We take {uk j} as a new minimizing sequence renaming it {uj}j.
We consider, for every j, a function ψj ∈ C∞(R3) such that

0 ≤ ψj(x) ≤ 1 for every x,

ψj(x) = 1 if |x| ≤ Rj,

ψj(x) = 0 if |x| ≥ Rj + 1,

|∇ψj(x)| ≤ C for every x,

and define auxiliary functions

u′
j = ψjuj and u′′

j = (1 − ψj)uj.

Of course, u′
j, u′′

j ≥ 0 and uj = u′
j + u′′

j for every j.

Lemma 3.8. The following properties hold as j → ∞:

(1) u′
j tends to u weakly in H1(R3) and strongly in Lq(R3) and in Lp(R3), while u′′

j tends to 0
weakly in H1(R3).
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(2)
∫

R3 |uj|qdx =
∫

R3 |u′
j|qdx +

∫
R3 |u′′

j |qdx + o(1).

(3)
∫

R3 |uj|pdx =
∫

R3 |u′
j|pdx +

∫
R3 |u′′

j |pdx + o(1).

(4) ∥uj∥2 ≥ ∥u′
j∥2 + ∥u′′

j ∥2 + o(1).

(5) ∥∇uj∥4
2 ≥ ∥∇u′

j∥4
2 + ∥∇u′′

j ∥4
2 + o(1).

Proof. The proof of (1)–(4) is similar to [1, Lemma 3.3.9], we omit it here. (5) follows from the
fact that ∫

R3
|∇uj|2dx ≥

∫
R3

|∇u′
j|2dx +

∫
R3

|∇u′′
j |2dx + o(1).

Lemma 3.9. It holds that(
1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p ≤ m.

Proof. Since uk ⇀ u in H1(R3) and in Lp(R3), by weak convergence (see [9, Lemma 2.4]), from
(2.4), we obtain(

1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p

≤
(

1
2
− 1

p

)
lim inf
k→+∞

∥u∥2 +

(
1
4
− 1

p

)
b lim inf

k→+∞
∥∇u∥4

2 +
1
p2 lim inf

k→+∞
∥u∥p

p

≤ lim inf
k→+∞

I(uk) = m.

Next, we will prove u ∈ N . From Lemma 3.7, u ̸= 0, so we only need to check ∥u∥2 +

b∥∇u∥4
2 =

∫
R3 |u|p log |u|dx.

Lemma 3.10. It cannot be

∥u∥2 + b∥∇u∥4
2 <

∫
R3

|u|p log |u|dx.

Proof. If ∥u∥2 + b∥∇u∥4
2 <

∫
R3 |u|p log |u|dx, then, by usual arguments, there is some t ∈ (0, 1)

such that tu ∈ N , then

m ≤ I(tu) = t2
(

1
2
− 1

p

)
∥u∥2 + bt4

(
1
4
− 1

p

)
∥∇u∥4

2 + tp 1
p2 ∥u∥p

p

<

(
1
2
− 1

p

)
∥u∥2 + b

(
1
4
− 1

p

)
∥∇u∥4

2 +
1
p2 ∥u∥p

p ≤ m,

a contradiction.

Lemma 3.11. Relation

∥u∥2 + b∥∇u∥4
2 >

∫
R3

|u|p log |u|dx

cannot hold.
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Proof. Using (2.6) and Lemma 3.8, we have

∥u′
j∥2 + ∥u′′

j ∥2 + b∥∇u′
j∥4

2 + b∥∇u′′
j ∥4

2 ≤ ∥uj∥2 + b∥∇uj∥4
2 + o(1)

=
∫

R3
|uj|p log |uj|dx + o(1) =

∫
R3

|u′
j + u′′

j |p log |u′
j + u′′

j |dx + o(1)

=
∫

BRj

|u′
j|p log |u′

j|dx +
∫

Cj

|u′
j + u′′

j |p log |u′
j + u′′

j |dx +
∫

Bc
Rj+1

|u′′
j |p log |u′′

j |dx + o(1)

=
∫

R3
|u′

j|p log |u′
j|dx +

∫
R3

|u′′
j |p log |u′′

j |dx +
∫

Cj

|uj|p log |uj|dx

−
∫

Cj

|u′
j|p log |u′

j|dx −
∫

Cj

|u′′
j |p log |u′′

j |dx + o(1)

≤
∫

R3
|u′

j|p log |u′
j|dx +

∫
R3

|u′′
j |p log |u′′

j |dx +
∫

Cj

|uj|p log |uj|dx

+
∫

Cj

∣∣|u′
j|p log |u′

j|
∣∣dx +

∫
Cj

∣∣|u′′
j |p log |u′′

j |
∣∣dx + o(1)

≤
∫

R3
|u′

j|p log |u′
j|dx +

∫
R3

|u′′
j |p log |u′′

j |dx +
∫

Cj

|uj|p
1

e(q − p)
|uj|q−pdx

+
∫

Cj

∣∣∣∣|u′
j|p

1
e(q − p)

|u′
j|q−p

∣∣∣∣dx +
∫

Cj

∣∣∣∣|u′′
j |p

1
e(q − p)

|u′′
j |q−p

∣∣∣∣dx + o(1)

≤
∫

R3
|u′

j|p log |u′
j|dx +

∫
R3

|u′′
j |p log |u′′

j |dx +
6

e(q − p)j
+ o(1)

=
∫

R3
|u′

j|p log |u′
j|dx +

∫
R3

|u′′
j |p log |u′′

j |dx + o(1). (3.4)

Assume for contradiction that

∥u∥2 + b∥∇u∥4
2 >

∫
R3

|u|p log |u|dx

and pick δ > 0 such that

∥u∥2 + b∥∇u∥4
2 >

∫
R3

|u|p log |u|dx + δ.

Since u′
j ⇀ u in H1(R3),

lim inf
j→+∞

∥u′
j∥2 ≥ ∥u∥2,

lim inf
j→+∞

∥∇u′
j∥2 ≥ ∥∇u∥2,

while u′
j → u in Lp(R3) and in Lq(R3). Using Lebesgue’s dominated convergence theorem,

we deduce that, for large j’s and δ1 ∈ (0, δ
2 ),

∥u′
j∥2 + b∥∇u′

j∥4
2 > ∥u∥2 + b∥∇u∥4

2 −
δ

2
>
∫

R3
|u|p log |u|dx +

δ

2
>
∫

R3
|u′

j|p log |u′
j|dx + δ1.

This together with (3.4) implies

∥u′′
j ∥2 + b∥∇u′′

j ∥4
2 ≤

∫
R3

|u′′
j |p log |u′′

j |dx − δ2,
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for large j’s and some δ2 ∈ (0, δ1). Recalling that u′′
j ⇀ 0 in H1(R3) and H1(R3) ↪→↪→ L2

loc(R
3),

arguing as in Lemma 3.7, we obtain

lim
j→+∞

∥u′′
j ∥2 = lim

j→+∞
∥u′′

j ∥2
α,

so

∥u′′
j ∥2

α + b∥∇u′′
j ∥4

2 ≤
∫

R3
|u′′

j |p log |u′′
j |dx − δ3

for large j’s and for some δ3 ∈ (0, δ2). Hence, by usual arguments, we can find sj ∈ (0, 1) such
that sju′′

j ∈ Nα, from (2.4), we have

mα ≤ Iα(sju′′
j ) =

(
1
2
− 1

p

)
s2

j ∥u′′
j ∥2

α +

(
1
4
− 1

p

)
bs4

j ∥∇u′′
j ∥4

2 +
1
p2 sp

j ∥u′′
j ∥

p
p

≤
(

1
2
− 1

p

)
∥u′′

j ∥2 +

(
1
4
− 1

p

)
b∥∇u′′

j ∥4
2 +

1
p2 ∥u′′

j ∥
p
p + o(1)

≤
(

1
2
− 1

p

)
(∥u′′

j ∥2 + ∥u′
j∥2) +

(
1
4
− 1

p

)
b(∥∇u′′

j ∥4
2 + ∥∇u′

j∥4
2)

+
1
p2 (∥u′′

j ∥
p
p + ∥u′

j∥
p
p) + o(1)

≤
(

1
2
− 1

p

)
∥uj∥2 +

(
1
4
− 1

p

)
b∥∇uj∥4

2 +
1
p2 ∥uj∥

p
p + o(1)

= I(uj) + o(1).

Passing to the limit, we have
mα ≤ m,

a contradiction of Lemma 3.6.

The previous lemmas say that in any case the weak limit u satisfies u ̸= 0, u ≥ 0 and

∥u∥2 + b∥∇u∥4
2 =

∫
R3

|u|p log |u|dx.

Therefore u ∈ N and

I(u) =
(

1
2
− 1

p

)
∥u∥2 +

(
1
4
− 1

p

)
b∥∇u∥4

2 +
1
p2 ∥u∥p

p ≥ m.

From Lemma 3.9, we can get I(u) = m. So u is a minimum point of I on N .

Lemma 3.12. The minimum u is a critical point of I in H1(R3).

Proof. Fix v ∈ H1(R3) and ε > 0 such that u + sv ̸= 0 for all s ∈ (−ε, ε). Define a function
φ : (−ε, ε)× (0,+∞) → R by

φ(s, t) = I′(t(u + sv))t(u + sv)

= ∥t(u + sv)∥2 + b∥∇(t(u + sv))∥4
2 −

∫
R3

|t(u + sv)|p log |t(u + sv)|dx

= t2∥u + sv∥2 + bt4∥∇(u + sv)∥4
2 −

∫
R3

|t(u + sv)|p log |t(u + sv)|dx.
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Then

φ(0, 1) = ∥u∥2 + b∥∇u∥4
2 −

∫
R3

|u|p log |u|dx = 0

and

∂φ

∂t
(s, t) = 2t∥u + sv∥2 + 4bt3∥∇(u + sv)∥4

2

− ptp−1
∫

R3
|u + sv|p log |t(u + sv)|dx − tp−1

∫
R3

|u + sv|pdx.

Hence, from u ∈ N , we have

∂φ

∂t
(0, 1) = 2∥u∥2 + 4b∥∇u∥4

2 − p
∫

R3
|u|p log |u|dx −

∫
R3

|u|pdx

= 2∥u∥2 + 4b∥∇u∥4
2 − p(∥u∥2 + b∥∇u∥4

2)−
∫

R3
|u|pdx

= (2 − p)∥u∥2 + (4 − p)b∥∇u∥4
2 −

∫
R3

|u|pdx < 0.

By the Implicit Function Theorem, there exists ε0 ∈ (0, ε) such that C1 function t : (−ε0, ε0) →
R satisfies t(0) = 1 and

φ(s, t(s)) = 0

for all s ∈ (−ε0, ε0). Defining Γ3(s) : (−ε0, ε0) → R by

Γ3(s) = I(t(s)(u + sv)).

It is easy to see that the function Γ3 is differentiable. Noticing that I′(t(s)(u + sv))t(s)(u +

sv) = φ(s, t(s)) = 0, we have t(s)(u + sv) ∈ N and u is a minimum point for I on N , so Γ3

has a minimum point at s = 0. Therefore,

0 = Γ′
3(0) = I′(t(0)u)(t′(0)u + t(0)v) = t′(0)I′(u)u + I′(u)v = I′(u)v

for all v ∈ H1(R3), hence I′(u) = 0.
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