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Abstract. In this paper, we investigate the logarithmic Kirchhoff-type equation
- (a +b/3 |Vu|2dx> Au+V(x)u = |ulP2ulog|u|, x€R?
R

where a,b > 0 are constants, and V : R® — R is continuous and may change sign.
Using Nehari manifold method and the concentration-compactness principle, we prove
the existence of nontrivial and nonnegative (weak) solutions under some assumptions
on the potential function V without radial symmetry or compactness hypotheses.
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1 Introduction and main result

In this paper, we consider the existence of nontrivial and nonnegative (weak) solutions for the
following Kirchhoff-type equation

- (a + b/3 |Vu]2dx) Au+V(x)u = |ulP"*ulog |ul, x € R, (1.1)
R

where a,b > 0 are constants, 4 < p < 6. Meanwhile, we shall impose the following conditions
on potential function V:

(V1) V is continuous and limyy|, o V(x) = sup, s V(x) =: & < +o0;

V- inf alVul?> + V(x)u?] dx > 0.
(Vo) inf Jrs [l Vul> +V (x)u?]
H””LZ(R3):1
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The classical Kirchhoff model

8271/[ PO /L au —0
Por tar ax2 Y

was first proposed by Kirchhoff [8], where p means the mass density, Py represents the initial
tension, / is the area of the cross-section, L means the length of the string and E means the
Young modulus of the material. When considering the effect of the transverse vibrations on
the length of the string, the model just mentioned is an extension of the D’Alembert wave
equation. After that, with the help of the functional analysis method, Lions [11] derived the
following Kirchhoff equation

U — <a+b/3 |Vu]2dx> Au = f(x,u).
R

In recent years, the following stationary Kirchhoff-type problem

- (a n b/Q \Vu\de) A+ V(x)u = f(u), (1.2)

has been widely studied by many authors, where the potential function V € C(RY, [0, +c0)),
and the nonlinear term f is subcritical. For instance, when V(x) = 1 and the nonlinear term is
Q(x)|u|P~2u with 2 < p < 2*, Zhang, Sun, Wu [18], and Hu, Lu [6] obtained the multiplicity
of positive solutions by using the barycenter map. Sun and Wu [13] got the existence and
non-existence results under the following conditions on V:

(V3) There exists ¢ > 0 such that the set {V < ¢} = {x € RN | V(x) < c} is nonempty and
has finite measure;

(Vy) Q =intV~1(0) is nonempty and has smooth boundary with Q = V~1(0).

In 2015, by using Hardy inequality and PohoZaev identity, Guo [4] got a positive ground state
solution of equation (1.2) in R?® when V € C!(R3,R) and satisfies the followings:

(V5) There exists a positive constant A < a such that [(VV(x), x)| < for all x € R*\{0};

2| 2[x]?

(V) There exists a positive constant Vi, such that for all x € R3, V(x) < lim inf, 100 V() =
Voo < +o00.

In 2017, Tang, Chen [14] proved that equation (1.2) has a ground state solution of Nehari-
PohoZzaev type when V satisfies the followings:

(V7) Forall x € R3, 0 < V(x) < liminfj, 0 V(y) 2 Veo;
(Vg) V € C(R3 R) and there exists 8 € [0,1) such that

Ba(1 — t2)?

4t4[V(x) - V(tx)] - (1 - t4)(VV(x),x) > - 2’x|2

7 Vt 2 0/ x e ]R3\{0}’

and equation (1.2) has a least energy solution when V satisfies (1) and the following:

(Vo) V(x) is weakly differentiable and there exists 6 € [0,1) such that (VV(x),x) < 2|63?\2 a.e.
x € R*\{0}.
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In addition, there are some relevant results for the critical or supercritical problems. When
V(x) = V > 0 and f has critical growth, Xu and Chen [16] obtained a radial ground state
solution in R3. By using a truncation argument, Gao, Chen and Zhu [3] proved the existence
of a sign-changing solution in R® when V € C(IR3, (0, )) satisfies (V3) and the nonlinearity
is critical or supercritical. In 2021, Shen [12] studied a N-laplacian equation of Kirchhoff type
with critical growth in RN, and obtained a least energy sign-changing solution with precisely
two nodal domains.

Recently, logarithmic nonlinearity frequently appeared in the Kirchhoff-type problem (1.2).
When f(u) = |u|~2ulogu?, Wen, Tang, Chen [15] proved that equation (1.2) in a smooth
bounded domain of R® owns ground state solutions and ground state sign-changing solutions
with precisely two nodal domains by using some estimate inequalities, constrained variational
method and topological degree. Applying the truncation argument, Huang, Shang [7] showed
that a logarithmic fractional Kirchhoff equation with critical or supercritical nonlinearity has
a ground state solution and a sign-changing solution.

Some authors investigate the case where V' can change sign. In 2020, by employing vari-
ational method and some new analytical techniques, He, Qin, Tang [5] got the existence of
ground state solution when V(x) meets (V,) with (Vip) or with (V47):

(Vip) V(x) is weakly differentiable, and there exist a > % and 0 € [0,1) such that

(2a —1)V(x) = VV(x)-x+ "“ﬁjgl) >0, ae. x € R3\{0};

(Vi1) V(x) is weakly differentiable, and esssup, s VV(x) - x < co.

With the help of a monotonicity trick and a new perspective of global compactness lemma,
Li and Ye [10] proved the equation (1.2) admits a positive ground state solution in R* when
f(u) = |u|P~'u and V (x) satisfies (V2) and the following (V12)—(V13):

(Vi2) V(x) is weakly differentiable and satisfies (VV(x),x) € L*(R®) L2 (R3) and V(x) —
(VV(x),x) > 0ae. x € R3 where (-,-) is the usual inner product in R3;

(Vi3) For almost every x € R3, V(x) < liminf|,_, ;o V(y) £ Veo < 400 and the inequality is
strict in a subset of positive Lebesgue measure.

Inspired mainly by the literature mentioned above, we consider the existence of solutions
for the logarithmic Kirchhoff equation without compactness condition in R3. We believe that
there are at least two fundamental difficulties that need to be addressed regarding equation
(1.1). The first one is caused by the space R? and the potential function V, since the embedding
H'(R®) — L(RR®), q € [2,6) is not compact, and we cannot use the compact embedding of
X = {u € H'(RN)| [gs V(x)u?dx < +oo} into LP(R?) anymore. The second difficulty arises
from the logarithmic nonlinear term, which does not satisfy both the monotonicity condition
and the Ambrosetti-Rabinowitz condition. And we cannot use Schwarz symmetrization di-
rectly when facing the logarithmic nonlinear term. We will attempt to categorize the possible
behaviors of minimizing sequences. From this, we will exclude some possibilities and then in-
dicate that there is enough compactness in the remaining cases to derive the proof. Moreover,
we note here that the potential function V' in our results may change sign.

The main result of our work is the following.

Theorem 1.1. Let p € (4,6), and assume that (V1) and (V,) hold. The Problem (1.1) admits at least
one nontrivial and nonnegative (weak) solution.
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Remark 1.2. Under the above assumptions with condition (V;) replaced by inf, s V(x) > 0,
Theorem 1.1 also holds.

Notations. We use the following notations:

e Denote )

k
Julle = ( [, ul‘ax)
R3

the norm of u € L¥(R3) for 1 < k < +co.

¢ Define
(u,v) :/ aVu-Vvdx—l—/ V(x)uvdx,
R3 R3
[l = (o) = [ alVuPdx+ [ V(xpulds.
R3 R3

Thanks to (V;) and (V2), these are equivalent to the standard scalar product and norm
of H'(IR3).

* Let D(IR?) be the set of infinitely differentiable functions whose support is compact in
IR3. Denote &, the closure of D(IR®) in the norm

IVull2 + [[ullp + [lully, 1<p<q<eo
Epp = &y, in particular, & = H'(R3).

* C,Cq,Cy,... represent several different positive constants.

2 Preliminaries

A weak solution of Equation (1.1) is a function u € H!(R3) such that

2
a/]RS VMV(pdqub/]R3 |Vl /1113 VquodJH—/]R3 V(x)updx

= /]R3 \u|p_2u(plog|u|dx, Vo € Hl(]RS).

Define functional I : H'(R%®) — R by

b S|
I(u) = %/IRS ‘Vu‘zdx—f— Z </]R3 ]Vu’de> + E/]RS V(x)u2dx

— ;19/3 ]u\”log\u|dx+}912/3 |u|Pdx (2.1)
R R

_ 1 2 b 4 1 14 1 p
= Sl J0vuli [l tog fuldx + 5 .
Due to the fact that for 4 < p < g < 6 and arbitrarily € > 0, there exists C; > 0 such that
[tP " og |t|] < e|t|* + Ce|t|11, Vit € R\{0}, (2.2)

we can derive that I € C!(H!(IR%)) and a critical point of I is a weak solution of Equation
(1.1).



Logarithmic Kirchhoff equation without compactness in IR 5

We will consider the following minimization problem:

m= ulélj{[[(bl), (2.3)

where the Nehari manifold
N={ucH@R® |u#0,I'(u)u=0}

= { € HUR) [ 2 0 [+ bVl = [ Jul” g uldr ).
R
Furthermore, if u € N,
_ 1 2 b 4 1 r 1 14
1) = P+ Il = [l o fulds-+ s ul}

— 1 2 b 4 1 2 4 1 14
= Sllull®+ 7 [ Vull2 p(llul\ +0[[Vul)3) + pZHqu (2.4)

I ESE ARG U A PR T
= (53 ) I+ (G =5 ) oIVl + sl

and since 4 < p < 6, then

1_1 2 1_1 4
10> (5= ) Il + (5= 5 ) 1wl > 0

forallu e N.

Lemma 2.1 ([17, Lemma 2.1]). The following inequalities hold:

(1—x°)+sx’logx >0, Vxe(0,1)U(1,+00),s>0; (2.5)

1
logx < gx”, Vx € (0, +00),0 > 0. (2.6)

3 Proof of the main result

Using Nehari manifold method and concentration-compactness principle, this section is de-
voted to the proof of Theorem 1.1, and the proof is composed of the following series of
lemmas.

Lemma 3.1. The Nehari manifold N is not empty, inf, ez ||u|| > 0 and m > 0.

Proof. We fix u € H'(IR3) with u # 0, and for t € R we define the function
Ti(t) = I'(tu)tu = t||lu))® + bt*||Vu|)5 — /3 |tu|? log |tu|dx.
R
From (2.2) and 4 < p < q < 6 we know that

T (t) > ||ul® + bt*|| Vull; — /]Rs(s|tu|3 + Celtu|)dx

= ul® + bt*| Va3 — et?|[ull3 — Cet[Jull > 0
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for small t > 0. From (2.5), we obtain that
P log tu] > 3 (|l ~1)
and
ul? log ] > 2 (Jful? — [1ul~2).
Therefore,

1
: < 1 20,112 4 bt 4_/ S (lful? — |tulP2
lim Ty(t) < tginoo <t llu||” + bt* || Vu||3 ]RBZ(\tu\ |tu| )dx>

t—-+oo

) 1 1, 2
= lim (t2|\u\|2+bt4||VuH§—2tp||u|\§+2t” ZH”HZ—Z) = —o0.

t—+o0

Then there exists t > 0 such that I’(tu)tu = 0. Hence tu € N and N is not empty.
If u € N, from (2.6) and H'(IR?) — L7(IR%), we obtain

1 ,
Jul? bVl = [ Jul?hogluldx < [ ful? ot = Jull < Clul,

e(q —p)
namely
1< Cllufr 2

Hence inf,cp ||u|| > 0.
Therefore, if u € N, from (2.4), we have

1 1 , (1 1 s 1, (1 1 o (1 1\ 2
= _— — _— — —_ _ — — > _— = -2
1) = (5= ) Il (5= 5 ) IVl sl > (5= ) Il = (55 ) €™,

and the lemma is proved. O

Now, we consider a minimizing sequence {u;} C N. Of course, we can assume u;(x) > 0
almost everywhere in IR®. From (2.4), the sequence {u;} is bounded in H!(IR?), and therefore,
up to subsequences, there exists u € H!(R3) such that

up —u in H(R®), LP(R®), L1(R?),
we —u in L] (R%),

u, —u ae. xR
The last property tells us that u > 0. By extracting a further subsequence, if necessary, we can

define B,¢ > 0 as

= 1i l u,|7dx,
p= lim ]R3| |

g = lim |uk|”dx.
R3

k—+o0
We let
l:/ |u|7dx,
]RS
L= / lu|Pdx.
R3

By weak convergence, it is obvious that I € [0, f].
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Lemma 3.2. It holds that B > 0.

Proof. If B = 0, we have

lim = 0.
k 1 Huk”q
Since u; € N, it follows from (2.6) that

1

2 4 -
ugl|* +b||Vu —/ ug|? lo udx</ M ug1Pdx =
ot [Vl 3| k|" log [ug|dx < 3’ | p)’ |

e(q

and then we obtain u; — 0 in H!(R®) and m = 0, a contradiction. ]

1 q
—||U ,

Lemma 3.3. Ifl = B, then u € N and I(u) =

Proof. If 1 = B, we have ||ug||; — ||u]|y, this fact together with u; — 1 in L7(IR®) implies 1y — u
in L1(IR%) (see [2, Proposition 3.32]). Let t € (0,1) be such that p = 2t + (1 — t). Then by the
Holder’s inequality,

_ 1t
/ Iuk—ulpdx:/ g = g — 10D dx < [l — 203 — ae]§.
JR3 RR3

As {||ux — ul|2}x is a bounded sequence, we see that

lim ||y — u|, = 0.
o ([ —

This yields also u; — u in L¥(R3).
Since u; — u in L1(R3), using Theorem 1.2.7 in [1], there exists a subsequence {uk}j and
a function v € L(IR?) such that
ug(x) = u(x) ae.in R? as j — oo;
ug,(x)| < o(x) ae.in R? for all j.
We take {uy,} as a new minimizing sequence still named by {u;}. It is easy to know that

|ug|P log |ux| — |u|P log|u| a.e. in R® as k — co. Meanwhile, from (2.6), there exists ( |v|
L'(RR®) such that

ugl? <~ Jof

™= S )

[11|P Log fuug| < k] 2

1
—p)

a.e. in IR3 for all k. By the Dominated convergence theorem, we have

i Pl d :/ P log [u|dx.
Jm o el Plog |ugdx = | ful”log uldx

Hence, by weak convergence (see [9, Lemma 2.4]), we obtain
1, 0, b , 1 )
1) = g0l + SIVal 5 [ uplog fuldx + 5 ul; < timinti(uy) = m,
while the relation

ol + b1V 3 = [l hog e
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implies
||u||2 b” ;uH% < lilllinf(HMkHZ b” ;ukH%)
k—+o0
= liminf P1 d ——/ P1 dx.
;mj?o ]R3|”k| og [ux|dx IR3|”| og |u[dx

If equality holds, then u € N (recall that [l = B > 0, so u # 0) and the lemma is proved.
Next, we prove that the case

HMZ+WVM%<iéjﬂpbgwmx
cannot occur. Arguing as Lemma 3.1, I'; (#) > 0 for small > 0. Assume by contradiction that
FﬂUZHMV+WVME—A;WngWMx<0
Then there exists t € (0,1) such that tu € N, it follows from (2.4) that
m < 1(tw) = 220l + SVl — [ el log ruldx + |l
- 2 4 p JRr3 pz p
—EIWH+ZI|ME—# [[u]|” + b7 Mﬁ+;ﬂum
L1\ o2 L1\ 4 g, 1 p
= (5 PlulP+ (5= ) veIVal+ o7l

LY e (22D ot Ll
< (53 W+ (G =) Ivuli+ Szl

< liminfl(u;) = m,
k—+o0

a contradiction. O
Define
HuHi :/ a]Vu\zdx—i—a/ \u]zdx,
R3 R3

where « is the positive number defined in (V;). Of course ||u||, is an Hilbertian norm equiva-
lent to ||u||. We define a functional I, : H!(R?®) — R as

_ 1 2 b 4 1 14 1 P
L) = g 2+ IVl = [ ultog uldx + - ul,
and the associated Nehari manifold
Ny ={uec H(R®) | u #0,I,(u)u =0}

= { € HUR) 2 0, Jull + bVl = [ Jullog ulds |,

My = Mier}\f/ala(u).

Let 1 < p < g < +00, denote Carathéodory function f: (3 x R — R belongs to the class
K4 (Q)) if there exist a positive constant C and functions f; € Lt (Q), f» € Lit (Q)) such that

fl )l < CUHPH+ 1177 + filx) + fa(x)
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holds for almost all x € Q) and for all t € R. Denote K,(Q) = K, ,(Q). If O = R?, we omit it
in the notation.
Next, we will work in the spaces of radial functions, define

D2(R3) = {u € L5(R) | g;‘ c L*(R%), i = 1,2,3},
i

D, = {u € D"*(R®) | u is radial},
H, = {u € HY(R%) | u is radial}.

According to Schwarz symmetrization, we can find a way to pass from functions in H'(IR%)
to functions in H,. Let u € D"?(IR%) be such that u(x) > 0 a.e. in R®>. We denote, for t > 0,

{u>t}={xcR®|u(x) >t}

Notice that since u € L°(IR®), we have |{u > t}| < +oo for all t > 0. The Schwarz symmetriza-
tion constructs a radial function u* : R> — R such that

{u” >t} = {u > t}].

Lemma 3.4. For every u € H! (]R3), u > 0, it holds that u* € H,, u* > 0,

/3|u |P log |u |dx—/3|u| log |u|dx.
Proof. Define

G(x) = |x[Plog ],
(x) ;= max{G(x),0},
G~ (x) := max{—G(x),0},

then
G(x) =G"(x) -G (x)
Since
p—1
limit log 1] =0,
t—0 t
p—1
im 108t _
t—ro0 tqfl

where 4 < p < g < 6. Therefore, for arbitrarily €; > 0, there exists C¢; > 0 such that
(P L log [t|| < er|t| + Ce [t|77!, Wt € R\{0}
and
G(x)| = [|x]P log |x[| < ex|x|* + Cey [x]7 < max{er, Ce, }(|x[* + |x]7).

It is easy to see that GT,G™ : R — R is a continuous even nonnegative function, GT,G €
Ks,q+1 with 4 < g < 6. Since u € H'(R?)(= &,), according to the embedding relationship in
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[9], it can be inferred that u € & ;. Then from Theorem D.1. in [9], there exists u* € H, such
that

/ |u*|plog|u*|dx:/ G+(u*)dx:/ G+(u)dx:/ |u|? log |u|dx
| >1 R? R? u|>1

and

Pl *d:/G**d:/G*d:/—pl dx.
J o Plogltldx = [ G )dx = [ G (w)dx ul? log u[dx

lu|<1
Therefore,
/ ]u*\plog\u*\dx:/ G(u*)dx:/ (G () — G~ (u*))dx
R3 R3 R3
= Gﬂu*)dx—/ G~ (u*)dx
R3 RR3
- \u*\vlog\u*\dx—/ [P log |u*|dx

ur[>1 lu|<1

= |u|p10g\u|dx—/ —|u|? log |u|dx

S lu<1
— P
/R3]u\ log |u]dx. 0
Lemma 3.5. There exists u > 0, u € N, such that I,(u) = m,.

Proof. We first show that we can take a minimizing sequence for m, in N, | H,. As the same
argument as Lemma 3.1, we know that Ny # @D, my > 0. Let {vy} C N, be a minimizing
sequence. As usual, we can assume v, > 0 and let wy = v] € H, be the nonnegative radial
function.

From Lemma 3.4 and Theorem 3.1.5 in [1], we have

l|wi|? :/ a]vazdx—i—zx/ [0f|*dx §/ a\Vvklzdx—l—tx/ o |2dx
R3 R3 R3 R3
= [ Tox]" log oxldx = b][Voull§ < [ [oi " log o |dx — b]| Vo
= [ o] log e |dx — b Veoy
Therefore,
lorll2 + bl Veorll3 = | lorl? 1og |eoeldx < 0.
Set
(1) = i {teopteo = Pl + b1 Vel = [ el logrrldx.
From (2.2), we obtain
Ta(t) > Bllwellz + bt | Vel — ef?lewpl|3 — Cet? el > 0
for small t > 0. Meanwhile,

La(1) = flael2 + bl Veorl = [ leorl? 1og |eolex < 0.
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Therefore there exists t; € (0,1] such that T';(t;) = 0, that is, f,wy € N,. Hence from Theorem
3.1.5 in [1], we obtain

1 1 1
e < 1ot = (5= 5 ) Bl + (3 = 5 ) vl Vel + el

1 1 1 1 1

< ( ) leul + (5 = 5 ) eVl + ol
+
+

a\Vvk\zdx + oc/ ]v;|2dx>

IN

2
1
2
1 5 .
E \Vvk|dx —|— /\vk]dx
11 Voi|*d 2d
5 E a\ Uk x+zx/3|vk| x
1 1 1
L Vo d —/ rd
(i-5) ( Vol ) + s [ o
1 > (1 L1
2—) ol + (3~ 5 ) 1ol + ol
= Ln(0x

This implies that {tywy}x C H, is a minimizing sequence for m,, as we had claimed. Next,
we set uy = trwy. Of course, u; > 0, and we can assume that, up to subsequences, u; — u in
H'(R3). By Lemma 3.1.4 in [1], we obtain

ur — u in LP(R%) and in L1(R3).
Again up to subsequences, u;(x) — u(x) almost everywhere, so that u(x) > 0 a.e. in R and

u € H,. We now prove that the weak limit u belongs to N, and I,(u) = m,. Let us first check
that u € N,. Since

0.<C < ugl2+bIVul}$ = [ el log e, @)
passing to the limit,
0<C< / |u|? log |u]dx,
R3
this implies u # 0. From Lemma 2.4 in [9] and u; € N, we also get
a2+ Bl < Y inf(ue 2 + ][ Vo)
= lim [ il log [uldx = | [u]” log |uldx.
Lim J o lul?logluldx = | lul? log |u|dx
If
Jull2+ bl = [ [ul"1og Juldx,
then u € N,. Arguing by contradiction, we assume that

Jul}2+ bl ullf < [ |ul?1og Juldx.
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Then for t > 0,
To(t) = I(tu)tu = t2||ul|? + bt*||Vu|5 — /]R3 |tu|? log |tu|dx.
From (2.2), we see that
Ta(t) > £l|ullz + bt Vullz — et u]]3 — Cet?[|ullg > 0
for small £ > 0, while
Ta(1) = Jullg + bl Vulz - /]Rs |u[Plog |u|dx < 0.

So there exists t € (0,1) such that tu € N,. Hence,

1 1 , (1 1 L1
0 <y < 1) = (5= ) Il (=5 ) M (@l -+ el

— 1_1 2 2 1_1 4 4 lp P
= (55 PR+ (G = ) oIVl + o7l

L1 e (2 it Ll
< (35 M+ (G ) IVl + sl

. . 1 1 2 1 1 4 1
<timint (3= 1) Il + (3 - 3 ) oIVl + ol

= llirilj?ofla(uk) = M.

This is a contradiction. Hence
lJul|7 + b]|Vull3 = /]R3 |ul? log |u|dx,

that is, u € N,. By the weakly lower semi-continuity of the norm, it is straightforward to
deduce that I, (u) < liminfy_, o Ly(ux) = m,. Since u € N,, we have m, < I,(u). Therefore,
I (u) = my. O

Lemma 3.6. It holds that m < m,.

Proof. By the result of Lemma 3.5, we know that there exists uy € N, such that I,(ug) = m,
and ug > 0.
By (V1), we infer that there exists 4; > 0 and a ball Bg(x1) such that

V(x) <a—6;, Vx e Br(x).

Since uy does not vanish identically, there exists d, > 0, a ball Bg(x2) and a set A C Bg(x2) of
positive measure such that

up(x) > 6, a.e.in A.
We now define a function u; € H'(R®) as

uy(x) = up(x — x1 + x2).
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By the invariance of integrals with respect to translations we have

o a b 2
L(u) = E/W ]u1|2dx—|—§/]R3 Vs + 5 </IR3 ]Vu1’2dx>

1 1
_ p/]R3 |1,{1|F’log|ul\clx—}-pz/]R3 lup|Pdx

2
_ @ 2 a 2 b 2
_Z/RJuOI dx+2/]Rg!Vuo! dx + 7 (/]Rs|Vu0| dx)

1 1
_ p/]R3 |uo|Plog|uo\dx—i—pz/]R3 lup|Pdx

- Lx(uo) = mlx

and

2
I;(ul)ulzoc/ |u1]2dx+/ a|Vu1|2dx+b</ |Vu1]2dx> —/ 1] log |1 |dx
R3 R3 R3 R3

2
:oc/ \u0]2dx+/ a|Vu0|2dx—i—b</ ]Vu0]2dx) —/ |1|P log |uo|dx
R? R? R R?

= I;(uo)uo =0.

Notice that if x € Bgr(x1), then x — x; + xp € Bgr(x2), therefore ui(x) > &, a.e. in a set
A’ C Br(x1) of positive measure. Then

/B e V(x))uddx > /A 5,83dx = C6182,
R\A1

where C is the measure of A’.
Since V(x) < a for every x, we obtain the estimate

/ (@ — V(x))ufdx > / (0 — V(x))uzdx > C6,63 > 0.
]R3 BR(X])

Then
/ V(x)uidx < oc/ uddx,
R? R

which implies

/]R3a]Vu1]2dx+/]R3 V(x)uidx < /]R3u]Vu1]2dx+zx/]R3 uddx,
that is,
o [|* < e Z-
So we have
I'(w)uy = Jug|* + bl Va1 — /]R3 |t1[P log |uz |dx
<+l = [ ] 0g | |dx

= I&(ul)ul = I(;(u())uo =0.
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Hence, by usual arguments, there exists t € (0,1) such that fu; € N. Thus from (2.4), we have

]‘> 2 2 1 1 4 4 1 14
1 HMH+<—>WHVMH+thH
p 4 p 20 p2 P

1

2

1 1 5 1 1

(2 p) i (5=
1 1 2 (1 1 4, 1

< (3-2) b+ (3 -2 ) ol + Sl
1
2

1 1
2 4 p
=2 ) Mol -+ (G =5 ) bIVsoll + ol

m < I(tuy) =

1
b||V”1H%+?H”1H£

Lemma 3.7. The case | = 0 cannot occur.
Proof. 1f | = 0, then u = 0, which implies in particular that 1y — 0 in L2 (R3).

loc
We first prove the following claim:

li V(x) — alu?dx = 0. 3.2
Jm [ V(x) —auidx (3.2)

To prove this, we fix ¢ > 0 and take R, > 0 such that
|[V(x) —a| <e Vx| >R,

this is possible by (V). We can then estimate

/]R3 |V (x) — aluzdx = / |V (x) — aluzdx + |V (x) — auzdx

|x| <R |x|>Re

<C u%dx + Me,

|x[ <R
where

C=sup|V(x)—a] and M= sup/au,%dx.
k R

x€R3

When k — +oc0 we obtain

limsup [ |V(x)— a|uidx < eM
k—+o00 ¥

for every € > 0, because u; — 0 in L (IR®). As this holds for every ¢ > 0, (3.2) is proved.
From (3.2), we deduce that

L [uilla = Him ]

We know that

ukllz + 0l Va2 > [luel® + bl Vi ||z = /]R3 || log [u|dx.
By usual arguments, we can prove that for each k there is #; > 1 such that fuy € N,, namely

1 1,2 -2
telluel|z + bEE Vg3 = /IR3 |tkug|P log |[ug|dx > §t£||uk||5 - Etzf luellP 5 (33)
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Since {u} is a minimizing sequence of N\, from (2.4) and H'(R?) < L1(RR?), we know that
the sequences {|uk||}, {||Vurl2}, {I|uklla} and {||uc]|7} are bounded.

Therefore from (3.3), we deduce that {t;} is bounded and, up to a subsequence, we can
assume t, — tg, of course, ty > 1. In addition, we have

.l 0g el dx = [l + ]| e 3
Substituting in (3.3), we get
tellulz + bEl V3 — 8 il * = bt [ Vg 12
= /1123 ’tk”k|p10g|tk”k|dx_/]m |tk |P log [y |dx.

We also have
luellz = Nkl +
with ¢ — 0. Hence,

(1 = ) P+ e+ b(tE — D)V ell3 = [ 1l Log el = £ e[ o .

Passing to the limit, and setting 71 = limy_, . [|ug[> > 0, 1712 = limy_, 1o || V]| > 0, we
obtain

(15 — th)m + b(ty — th)n2 = th ¢ log to.

So ty > 1 gives a contraction because 4 < p < 6, and then necessarily ty = 1.
Since tyux € Ny and ||ug||2 = ||ug|* + ek, from (2.4), we have

1 1 1 1 1
e < To(t) = (5 =5 ) Bl + (5= ) el Tl + Sl

1 1 1 1
+ <4 — p> b(tf — 1) | Vu|5 + ?tillukH? + p(fz'f — 1) kel

1 1 1 1 1
—(Z_2) 212 1) 2 4, L p
(2 p> il +<4 p> ellVudiz + ztilluelly

1 1\, 1 1 1
(37 ) et (5 ) et = BVl + o] = Dl
= 121(ux) +0(1).
Passing to the limit we obtain
my < m,
a contradiction of Lemma 3.6, so we conclude the proof. O

Now, we choose an increasing sequence {R;}; of positive numbers such that R;; > R; +1,
so that in particular R; — +o0, and the following properties hold:

1
I—=< / |u|7dx <1, hence also/ |u|7dx < 1_,
] Bg, B J
1 1
h—=< / |u|Pdx < Ij, hence also/ lulPdx < =,
] Bg; B ]
/ uldx < 1
Bg; ]
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Define
C]' = BR]'—H\BR]- = {x € IR3’R]' < |x| < R]' +1}.

Noticing that Bg; and C; are bounded in IR3, using the Rellich-Kondrachov Theorem, for every
j, it holds that

lim \uk|‘7dx:/ |u)9dx, lim / ]uk|‘7dx:/ |u|7dx,
j B; i i

k=00 JBg k—+o0 JC
lim \uk|7"dx—/ |u|Pdx, lim / ]uk|pdx:/ |u|Pdx,
k—+o0 BR k—rc0 JC; G
lim / |uk]2dx—/ ]u|2dx
k—+c0

Moreover, since

/ |u|7dx </ |u|7dx S;
/ |u|Pdx </ |u|Pdx S;
/ lu|?dx < / lu|2dx < ;

we can extract a subsequence {uk].} such that, for every j € N,

I — g < / lug, |7dx < I+ 1., / |1, |7dx < %
j = ey i o i’
zl—z.g/ |uk|”dx<ll—|— /|uk|pd x< 2,
) BR] ]

2
/ lug [2dx < =.
G ]

We take {uy, } as a new minimizing sequence renaming it {u;};.
We consider, for every j, a function ¢; € C*(IR?) such that

0<¢;(x) <1 forevery x,
pi(x) =1 if [x] <R;,
Pi(x) =0 if [x] > R;+1,
|Vpi(x)| < C for every x,

and define auxiliary functions
wi=u; and uf = (1—¢;)u;
u ) " .
Of course, u ], uj > 0and u; = uj + u; for every j.
Lemma 3.8. The following properties hold as j — oo:

(1) u; tends to u weakly in H'(R®) and strongly in L(IR%) and in LV (R®), while u} tends to 0
weakly in H'(IR®).
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(2) Jgo lujlidx = [ [u}|7dx + [ia [u7]7dx +0(1).
(3) Jro lujlPdx = [ga [ujPdx + [ia |1 |Pdx +o(1).
(4) [l = gl + [af [ + 0 (D).

(5) IVull3 = Vil + IVull3 + o(1).

Proof. The proof of (1)—(4) is similar to [1, Lemma 3.3.9], we omit it here. (5) follows from the
fact that

|Vuj|?dx > | |VullPdx+ [ |[Vu/]Pdx +o(1). O
] j ]

]R3 ]R3 ]R3

Lemma 3.9. It holds that

1 1 , (1 1 PR B
—__Z - _ = = < m.
(5 ) I+ (G = ) bIVul+ Szl < m

Proof. Since u; — uin H'(IR%) and in L?(IR%), by weak convergence (see [9, Lemma 2.4]), from
(2.4), we obtain

LUNE ARG U R PRI
(5 ) I+ (5= ) owut + Szl

p
1 1Y, . 1 1 o 1. .
< (27 3) minflel®+ (5 =5 ) o min vl + Zominfl ol
< liminfl(uy) = m. O
k—+c0

Next, we will prove u € N. From Lemma 3.7, u # 0, so we only need to check ||u||* +
b||Vul|3 = [gs |ul? log |uldx.

Lemma 3.10. It cannot be

2+ b Vullf < [ |ul? log]uldx.

Proof. If ||u* + b||Vul|3 < [gs |u|? log |u|dx, then, by usual arguments, there is some t € (0,1)
such that tu € N, then

1 1 1 1 1
m < I(tu :t2<—) u2+bt4<—) Vs + 7= |ul?
(tu) 27 ]| i [Vulj3 pzll I

< (53 b (=3 ) IVul+ Sl <m
a contradiction. O
Lemma 3.11. Relation
a2+ Vuli$ > [ Jullog uldx

cannot hold.
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Proof. Using (2.6) and Lemma 3.8, we have
3112 + Nl 112 + IV ujllz + b Vuf 13 < Nlugl|? + b] Vaggl|3 + (1)
= /]R3 luj|? log Juj|dx +0(1) = /]R3 |uj +u' | log |u; + u/|dx + o(1)
:/B |u;.|mog|u;|dx+/c_yu;+u;'\vlog\u;+u;'|dx+/BC [u "o |dx + o(1)
—/ |u’|”10g|u'|dx—|—/ |u/ |7 log [uf ]dx—l—/ |u;|P log |uj|dx
—/C‘ |u;.|mog|u;.|dx—/c /[P log [u/|dx + o(1)
] ]
g/ |u;-|plog|u;-|dx+/ |u;~'|plog|u}’|dx+/c\u]-\plog]u]-]dx
+/ 1 !’”log!u]!]dx+/ /17 1og |u!||dx + 0(1)
< [ I rplog|u]rdx+ [ 1071 10g [ + / O eI

+/ dx+/
G e(q - P) G e(q - P)
6
g/ u‘plo u‘dx+/ u"’plo u!|dx + —— +0(1
|uj|P log [u;] || log [u7| T—7)] (1)

w7 ) |u;-'|‘f—*’ dx +o(1)

|uj|”

- / ]u]]plog|u’|dx—|—/ /[P log |u!|dx + o(1). (3.4)
Assume for contradiction that
2+ 0 Vull$ > [ Jul? log uldx
and pick 6 > 0 such that
][ + b]| Vull3 > /IR |ul” log [u]dx + 6.
Since u;- — u in H'(IR3),
ljigljgf\\u}Hz > [|ull?,

lim inf[| Valla > [|Vull,
J—+oo

while u;- — u in LP(R3) and in L9(R3). Using Lebesgue’s dominated convergence theorem,

we deduce that, for large j’s and d; € (0, %),
[ ]? + Bl V|3 > [[ul® + bl Va5 - 2> |ul?log | IdX+é > [ |uj|?log |ujldx + 0
u]' l/l]' 2 u u 2 2 R® u Og u 2 R® ] Og ] 1-
This together with (3.4) implies

I |2+ 6l [ < [ 17V 10g | — e,
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for large j's and some 0, € (0,41). Recalling that u/ — 0in H'(R3®)and H(R?®) << L2

( )’
(0]

/l||2 I/H

lim Hu

= lim Hu
jo+ j=+

SO
/|12 + b Va1 < /R 1P log u/dx — &

for large j’s and for some 3 € (0, J). Hence, by usual arguments, we can find sj € (0,1) such
that sju;-’ € N, from (2.4), we have

1 1 1 1
e < Ia(sf) = (5= ) S+ (G =5 ) b IVg I+ sl 1

1 1 i 2 1 ]‘ 1114 1 124 P
< (37 5) WP+ (G5 ) BIVal + Sl 1 +o(1)
< 1—7 a1+ 1) + (3 = 2) b val |3 + [ Vul )
2 Y 4 p jhz jiz
1
+;<||u"||*’+r|u]||> o(1)
1 1 1 1
<(3- )n w2+ (5= ) VITl+ Sl +o(1)
= I(uj) +
Passing to the limit, we have
my, < m,
a contradiction of Lemma 3.6. O

The previous lemmas say that in any case the weak limit u satisfies u # 0,u > 0 and
2+ 6 Vulls = | |ul? log]uldx.

Therefore u € N and

1 1 1
1) = (5= 3 ) Iul+ (G =5 ) oIVl + gl > m

From Lemma 3.9, we can get I(#) = m. So u is a minimum point of [ on N.
Lemma 3.12. The minimum u is a critical point of I in H'(IR3).

Proof. Fix v € H'(R%) and ¢ > 0 such that u +sv # 0 for all s € (—¢,¢). Define a function
¢:(—¢¢€) x (0,+00) - R by

@(s,t) = I'(t(u+ sv))t(u + sv)
= [|t(u + s0)||* + ||V (t(u + 50)) |3 — /]R3 |t(u + sv)|P log |t(u + sv)|dx

= 2|lu+ sv||* + bt*||V (u 4 s0)||3 — /]R3 |t(u + sv)|” log |#(u + sv)|dx.
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Then
9(0,1) = [lull* + b||Vull; - /IR3 ul? log [uldx =0
and
d¢ 2 3 4
a(s,t) = 2t||u + sv||” 4+ 4bt° ||V (u + sv)||5
—pt"_l/ |u+sv|plog|t(u+sv)|dx—tp_l/ lu + sv|Pdx.
R? RR3
Hence, from u € N, we have

0

(0,1) = 2>+ 46| Vullf —p [ [ullog uldx— [ lulrdx
= 2>+ 46 Vullf = p(Jul+ b VulH) — [ |uldx
= @=p)ulP + (&= p)bl| Vulf = [ julrdx <o.

By the Implicit Function Theorem, there exists ¢y € (0, ¢) such that C! function ¢ : (—e0,€0) —
R satisfies t(0) = 1 and

(s, t(s)) = 0
for all s € (—¢g, €0). Defining I'3(s) : (—éep,€0) — R by
[3(s) = I(¢(s)(u + sv)).

It is easy to see that the function I'; is differentiable. Noticing that I'(¢(s)(u + sv))t(s) (u +
sv) = ¢(s,t(s)) = 0, we have #(s)(u +sv) € N and u is a minimum point for [ on N, so I's
has a minimum point at s = 0. Therefore,

0=T5(0) = I'(t(0)u) (¥ (0)u + t(0)v) = ¥'(0)I'(u)u + I'(u)o = I'(u)v

for all v € H!(R®), hence I'(u) = 0. O
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