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Abstract. In this paper, we study a class of partial functional differential equations with
infinite delay within an abstract phase space framework. By employing the a-norm,
we establish the existence and uniqueness of mild solutions under a more general con-
dition on the nonlinear term, which is weaker than the classical Lipschitz condition.
The linear part is governed by an unbounded operator that generates an analytic semi-
group. Furthermore, an averaging principle is established in this case. To illustrate the
applicability of the theoretical results, a concrete example is provided.
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1 Introduction

This work is concerned with the uniqueness existence of mild solutions and an averaging

principle in the case of finite interval, especially ¢ € [0, 4], of the following partial functional
differential equations with infinite delay of the form,

X(t) = —Ax(t)+ f(Lxe), t>0,

(Pe)

XOZGDEBQ,

where ¢ > 0 and —A generates an analytic semigroup (T(t))¢>o on a Banach space (X, || - ||).
The space B is a Banach space of functions mapping (—oo,0] to X defined axiomatically. For
0 < a <1, A* denotes the fractional power of A. We assume that f is defined on R x B,
with values in X, where B, is defined by

By ={p € B:¢0) c D(A*) for 0 <0and A%¢ € B},
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and the function A*¢ is defined by
(A%9)(6) = A*(p(6)) for 0 <.
For for every t > 0, the history function x; € B, is defined by
x¢(0) = x(t+6) for6 <O0.

The delay phenomenon is ubiquitous and extremely important in various engineering and
dynamic systems, playing a significant role in their evolution. Mathematical models with
delays are typically more suitable for practical problems than those without, and they have
a stronger application background. The development was initiated for equations with finite
delay by Travis and Webb in [23] and [24] and a book of Wu [25]. Concerning the case of
infinite delay, an extensive theory has been developed by many authors, including Hino et
al. [11], Hale and Kato [9], and Ezzinbi et al. [1] and [2].

However in many practical cases, the source function f may implicitly include spatial
derivatives, then the above established results become invalid. In this case, the problem
becomes more complicated, and to tackle this difficulty, Ezzinbi et al. in [6] examined the
following equation:

x'(t) = —Ax(t) + f(t,xt), t>0,
Xop =@ € B,.

In their work, they proved the existence of a mild solution without proving uniqueness, under
the assumption that — A generates an analytic semigroup and that the function f is continuous
with respect to both its time variable and its history function. As far as we know, no research
has been published on the unique existence of mild solutions and the averaging principle for
the problem (P;), when the source function involves implicit spatial derivatives, and the the
function f satisfies a condition weaker than the ordinary Lipschitz one as we can see in the
sequel.

The initial studies on the averaging principle originate from the problem of celestial me-
chanic, we refer the reader to [4,12,17], for more details about this topic. The authors provide
a justification of the averaging principle in the context of finite-dimensional differential equa-
tions. Subsequently, in [5,7,8,10,13-15,20,21], the authors extended the averaging principle to
both finite- and infinite-dimensional equations as well as to functional differential equations
with finite delay.

The approach here is to consider the following partial functional differential equations
with infinite delay in X and a small positive parameter ¢ of the (normal) form

{z’(’r) =¢[—Az(t) + f(T,20)], T=>0,
zo = 1.

Under the same hypotheses on the operator —A and the function f, and adding the following
condition on the phase space B,

(1.1)

1/](2) € B, foralle>0, (C1)

we can prove that problem (1.1) can be equivalently rewritten as (F).
The averaging principle is based on the replacement of the nonautonomous part of a partial
differential equation with small parameter ¢ > 0 by its time average fy : B — E defined by

t
fo(v) = lim 1/ f(s,v)ds, forve B,
0

t——4oo f
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and which figure in the parallel problem of (1.1) given by

{z’(r) = ¢[—Az(T) + fo(z)], T=0, (1.2)

Z():llJ.

Therefore, we conclude that under the additional condition (C;) on the phase space B and in

order to establish the averaging principle for problem (1.1) in the case of finite time interval,

it is necessary to show that, for any fixed time a > 0, the (unique) solution of the problem ()

can be approximated (in a certain sense) by the (unique) solution of the parallel problem
xX(t) = —Ax(t) + fo(xt), t€[0,a],

{ (Po)

X0 = @,

ase — 0.

The paper is organized as follows: In Section 2, we recall some necessary preliminaries. In
Section 3, we establish a uniqueness existence result of mild solutions in a Banach space with
infinite delay in an abstract phase space B, where the linear part —A generates an analytic
semigroup which will be denoted by (T(t));>0 on a Banach space X, and the nonlinear part f
satisfies a condition with respect to the second argument, which is weaker than the ordinary
Lipschitz condition. In Section 4, we consider the problem (P;) and its corresponding parallel
problem (Pp). we establish the averaging principle result for the problem (7). Finally we
illustrate our results in the third and the last section by showing how they can be applied to a
parabolic partial differential equation with infinite delay.

2 Preliminaries

Consider the following partial functional differential equation in X of the form:

{x/(t) = —Ax(t)+ f(t,xt), te[0,a], (2.1)

X0 =@ € By,
In the whole of this work, we assume that

(Hp) —A is the infinitesimal generator of a compact analytic semigroup (T(t))¢>0o on a Banach
space X and 0 € p(A), where p(A) is the resolvent set of A.

Then, there exist constants M > 1 and w € R such that || T(¢)|| < Me“! for t > 0. Without
loss of generality, we assume that w > 0. If the assumption 0 € p(A) is not satisfied, one can
substitute the operator A by the operator (A — o) with ¢ large enough such that 0 € p(A —o1)
and so we can always assume that 0 € p(A).

For the fractional power (A% D(A%)), for 0 < a < 1, and its inverse A~*. One has the
following known result.

Theorem 2.1 ([16, Theorems 6.8-6.13, pp. 72-74]]). Let 0 < a < 1 and assume that (Hy) holds.
Then

(i) D(A") is a Banach space with the norm |x|, = |A%x| for x € D(A"),

(ii) T(t): X — D(A%) fort >0,
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(iii) A*T(t)x = T(t)A%x for x € D(A%) and t > 0,
(iv) for every t > 0, A*T(t) is bounded on X and there exists M, > 0 such that

wt
|AT ()] < M,XetTfor t>0, 2.2)

(v) A™*is a bounded linear operator on X with D(A*) = Im(A™%),
(vi) if0 < a < B <1, then D(AP) — D(A%),
(vii) there exists N, > 0 such that

[(T(t) = I)A™"| < Nut*  fort > 0. (2.3)

In the sequel, we denote by X, the Banach space (D(A"), |- |«). Recall that A=* is given by the
following formulas
_ sin(7ta)
o

A—(X

/ (4 A)~ldt,
0
or 1 o

A% = —/ LT () de.

We denote by C, := Cp((—0o0,0]; X,) the space of continuous bounded functions from
(—o0,0] into X, endowed with the norm

[@lla :=sup [@(0)|e, ¢ € Ca.
0<0

Remark that (C,, || - ||«) is also a Banach space.

From now on, we adopt the axiomatic definition of the phase space B, originally intro-
duced by Hale and Kato in [9]. We denote its norm by || - ||3. The space B consists of all
functions mapping (—oo,0] into X and satisfying the following fundamental axioms:

(A) there exist a positive constant N, a locally bounded function M(-) on [0,+o0) and a
continuous function K(+) on [0, +00), such that if x : (—o0,a] — X is continuous on [0, 4]
with x, € B, for some ¢ < a, then for all t € [c,a],

(1) Xt € B/
(ii) t +— x; is continuous with respect to || - || on [, a],
(i) NJx(t)] < [[xill < K(t — 0) sup,,; [x(s)| + M(t — &) x|
(B) B is a Banach space.
We suppose that

(H;) A=%¢ € B for ¢ € B, where the function A™*¢ is defined by
(A™%¢)(0) = A™*(¢(0)) for 6 < 0.
Consequently, we get the following result.

Proposition 2.2 ([6]). Assume that (Ho) and (Hy) hold. If B satisfies axioms (A) and (B). Then B,
satisfies axioms (A) and (B).
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(A) if x : (—o0,a] — X, is continuous on |0, a] with x, € B, for some o < a, then for all t € [0, 4],

(i) xt € B,
(ii) t — xy is continuous with respect to || - ||, on [o, a,
(i) NJx(8)]a < 1], < K(t — @) 5p, oy [¥()|a + M(t — )12,
(B) B, is a Banach space.
We have the following definition.

Definition 2.3. Let ¢ € B,. We say that x € C(] — o0, a]; X,) is a mild solution to problem (2.1)
if xo = ¢ and,

x(t) = T(t)e(0) + /Ot T(t—s)f(s,xs)ds for0 <t <a.

3 Existence results

In the whole of this work we suppose that B satisfies (A) and (B).
For the existence result we suppose that the function f : (¢t,u) — f(t,u) acts from [0, a] x
B, into X and continuous with respect to t and u. Then we have the following theorem,

Theorem 3.1 ([6]). Assume that (Hy) and (Hy) hold. Then for ¢ € B, problem (2.1) has a mild
solution on [0, a), for a small enough.

In order to prove a uniqueness result, we suppose that the function f satisfies a condition
weaker than the ordinary Lipschitz condition, which is given as follows

(Hy) For all (u,v) € By x By, and t >0
1f(tu) = f(£,0)|| < Lt [lu—olla),
where L : [0,a] x [0, +00[— [0, +-oo] satisfies:

(i) continuous, nondecreasing with respect to the first and the second argument, and
L(t,0) =0, for all t € [0,a],
(ii) for any ¢ > 0 and for all continuous mapping h : [0, a] — [0, +oco], such that:

h(t) < §/Ot(t—s)_”‘L(s,h(s))ds, for all t € [0, al,

then h(t) =0 for all ¢ € [0, al.

We have the following theorem.
Theorem 3.2. Assume that (Hy)—(Hy) are satisfied, then problem (2.1) has a unique mild solution.

Proof. The existence is ensured by Theorem 3.1. To attend for a uniqueness result we suppose
that problem (2.1) has two solutions x; and x; in X,. Let s € [0, f], by using the fact that the
mapping L is nondecreasing with respect to the second argument and A-(iii), we get

(s = (sl = | [ 160 (7 (r51) = f(r,) e

S
< M,xe“’”/ (s—1)™*
0

o

f(T, x%) —f(T,x‘Z;) dt

< Mye® / (s —7)“L (r,Ka sup |x1(0) — xz<9>la> dt.
0

0<o<t
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We claim that the function s — [J(s — 7)"*L(t, K, SUpg g, |¥1(0) — x2(0)[2)d7 is nonde-
creasing on [0,#]. In fact let us denote g(7) = L(T, Kysupy_g |x1(8) — x2(8)s), which is a
nondecreasing function by (Hy)-(i). Then for s,s’ € [0, t] be such that s < s’ we have

/ !/

/Os(s — 1) *g(1)dt = /Os T (s —T1)dt < /OS T (s — 1)dt = /Os (s — 1) *g(1)dr.

Then sup,c |y Jo(s—1)*g(r)dt = fot(t — 1) "%g(7)dt. Thus,
t
sup |x1(s) — x2(s)]a < Mae“’“/ (t—1)" "L (T, K, sup |x1(0) — x2(9)|a> ar.
0<s<t 0 0<6<t
Consequently,
t
K, sup |x1(s) — x2(s)|a < QW/ (t— T)""L(T, K, sup |x1(0) — x2(9)\,x> dr.
0<s<t 0 0<6<7
Using (H)-(ii), we get

sup |x1(s) —x2(s)|« =0 forall t € [0,a].
0<s<t

Thus, problem (2.1) has a unique mild solution. O

Corollary 3.3. Let k a positive constant. If the mapping L(t,u) = ku for all + > 0, then our
assumption (H) becomes the ordinary Lipschitz condition and (Hy)-(ii) still hold.

Proof. Let h : [0,a] — [0, +o0[ a continuous function then by taking L(f,u) = ku, for all t > 0,
we can see that

h(t) < C/Ot(t—s)"‘L(s,h(s))ds, forall f € [0,4],

becomes

h(t) < ./Ot (th_(sz)ads, forall t € [0, 4], (3.1)

for ' > 0. To complete to proof we need the following lemma.

Lemma 3.4 ([16, Lemma 6.7, p. 159]). Let ¢ : [0,a] — [0, 00[ be continuous. If there are positive
constants A, B and 0 < « < 1 such that

t
@(s)
< <t <
p(t) < A+B/O (t—s)“ds’ for0<t<a,
then there exist A’ > 0, B’ > 0, such that

t
o(t) < A+ B [ g(s)ds,
0

where A’ = A ;7:_01 (Ba"*Y, and B = %a”(““)*l. In particular there exists C' > 0 such

that ¢(t) < C', forall t > 0.
Proof. By taking A =0, B = ¢’ in (3.1), we can deduce that

h(t) < B /Oth(s)ds.

Gronwall’s inequality leads to h(t) = 0 for all + > 0. O
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Another example of a mapping with the Assumption (H,), we give the following:

Example 3.5. [22] We take L(t,u) = g(t)r(u), forallt € [0,a] and u € [0, +co], where g :
[0,a] — [0, +oo] is a continuous function, and 7 : [0, +o0[— [0, +-o0[, is a continuous nonde-
creasing function with 7(0) = 0, such that

/()+r(1u)du:oo.

Remark 3.6. To establish the existence of global solutions, we assume the same conditions on
f as in Theorem 3.2, and we introduce the following additional assumption:

(H3) There exists a continuous function ¢ defined on R™ such that,

IF(tu)|| < g()(1 + ||ulla) forall t € RY, u € By

The proof is similar to that of Corollary 6 in [6].

4 Averaging result

In order to prove an averaging principle result, we choose the phase space B = Cw (see [11]).
The space Ce is formed by all the continuous functions ¢ : R~ — X, such that limy_, _ ¢(6)
exists in X. Endowed with the following norm

lolls = sup [@(0)].
0€]—00,0]

Consider the partial functional differential equation in X with a small positive parameter & of
the form

xX'(t) = Ax(t) + f (L, xe), te€l0,a],
(Pe)
X0 = @.
Further, parallel to the problem (P), ¢ > 0, we consider the averaged problem
"(t) = Ax(t
{x (B) = Ax(t) + fo(xr), ()
X0 = @.

Remark 4.1. When the delay is infinite the choice of the phase space is crucial to establish the
averaging principle result associate to problem (). To guarantee the equivalence between

{aﬂ(r) = e[Aw(T) + f(Tt,we)], T€[0,%], 1)
wo = l[J
and (P:). Also between
{w’m = e[ Aw(t) + fo(wr) w
wo = lP

and (P)), we have to suppose that the condition (C;) is satisfied. Clearly, this condition is
not satisfied for any choice of the space B introduced by Hale and Kato [9], as shown by the
following phase space examples:



8 Z. Elhafiane and K. Ezzinbi

Let E = C([0,1];R) be the space of continuous functions endowed with the uniform norm
topology. Let ¥ > 0 and L, be the space of measurable functions ¢ : (—c0,0] — X such that
e’ ¢(0) is integrable on (—o0,0 ]. We consider the phase space B = E x L,. The space of
functions ¢ € £, which is uniquely defined at 0 and endowed with the following norm

0
ol =19(@)1+ [_e*lp(®)lde for g € B.

Let the function ¢ be defined on (—oo,0] by ¢(8) = e~ 26.
Since, for 6 = 0, we have ¢(0) =1, and

0 0 0
/ 679\¢(9)\d9=/ ewe*%‘)de:/ 03040 — i

it follows, ¢ € B.
Now, for 0 < € < 1, we consider the scaled function go(é), given by:

go<z> — ¢ %% forall 6 < 0.

We can easily check that the integral condition is not satisfied.

In fact, we have
0 0
¢<9> ’d@ = / Ve %b40 — / e(1-2)78 49,
€ —0 —co

0 0
—o0

For ¢ < 3, the integral diverges, and ¢ () does not belong to 5.

Another example of phase space given in [9], where the condition (Cy) fails, is the phase
space B = C,, where C, is the space of continuous functions ¢ : R~ — R such ¢"%y(0) has
the limit in R as § — —oco endowed with the following norm:

l9ls = sup{e™|p(6)| : 0 €] —e0,0] }.

It is clear that the function ¥(0) = e~?% belongs to B but, for every 0 < e < 1,

H¢<E> HB = 9;115,0] o0 1(0/¢) — 9;1}3/0} e0(1-17e) — 4 oo

Now, in problem (4.1), we consider the change of variables

o t
0= —, T=-, 6<0, T>0,
3 €

o(L) =), w(t) =0

Then we have the following proposition.

Proposition 4.2 ([7]). For the choice B = Cs, the condition (Cy) is satisfied and the problems (4.1)
and (4.2) can be equivalently rewritten as (P;) and (Py), respectively.

We suppose the following hypotheses:
Hypotheses. Suppose that the unbounded linear operator A satisfies the condition (Hy), (H;)
and the function f acts from [0,a] x B, into X. We consider the following hypotheses:
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(f1) f is continuous with respect to the first and the second argument,
(f2) forall (u,v) € By X By,
1f(tu) = f(&0)[| <L(lu —oll«) forall te][0,a],

where IL : [0, +o00[— [0, +o0[ is such that:

(i) L(-) is continuous, nondecreasing, and IL(0) = 0,

(ii) for every nonnegative continuous mapping h : [0,a] — [0, +oco[ and every constant ,
we have,

t
h(t) < g/ (t—s)"“L(h(s))ds forall t € [0,a],
0
then h(t) =
(f3) there exists a constant C > 0 such that,

If(t,u)|]| < C(A+ ||lully) forallt € R", and u € B,

(Af) there exist Ag > 0 and a function fp : B, — X satisfying (f2) and (f3) and, for all u € B,
and t1,t, € [0,a] with 0 < t; < t; < t; + Ag < a, we have

lim fz T(t, — 6) [f<2u> _ fo(u)} d9 = 0.

e—0t Jt

The function fo : u +— limr_ e + fOT f(t,u)dt satisfies a condition similar to (f2) and (f3),
which is

(f) forall (u,v) € By X By,
Ifo(u) = fo(@)|| < L(Jlu —olla),

(f) there exists a constant C > 0 such that, for all u € B,,
[ fow) | < C(1+ [Jul)-

In fact, for (u,v) € B? we have

I fo(u)]| =

Tli_r)rgol/Tf(t,u)dtH
< lim T/ (¢, ) || dt

< hm T/ (11 + fJulla)
< C(Hl+ 4[] )

and

1 fo(x) = fo(y)]l =

gim 1 [ st = 0,00
ghmT/ LF(t u) — f(t,0)||dt

< lim T/ (Il — v]la)dt
< lL(HM—UIIa)-

By (f{) we can easily deduce the continuity of the function fy.
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Theorem 4.3. Assume that the hypotheses (Hy), (H1), (f1)—(f3), and (Af) are satisfied. For ¢ € By,
the unique mild solution of the problem (P;), converges uniformly in each set [0, a] to the mild solution
x® of the problem (Py), as e — 0.

Proof. According to Theorem 3.2, for each € > 0 there exists a unique mild solution x* of the
problem (P:) and there exists a unique mild solution x* of the problem (F;). Moreover, for
each ¢ > 0, x* is defined by

x*(t) = T(+)p(0) + /Ot T(t —s)f(%,xﬁ)ds, 0<t<a,

and x* is defined by

¥(t) = T(H)9(0) + /(: T(t—s)fo(xX)ds, 0<t<a.

By axiom (A)-(iii) if x* — x® in C([0,a]; X,), then x{ — x{° in C(] —o0,a];B,) as ¢ — 0.
Therefore, in order to prove Theorem 4.3, it remains to show that

lim sup |[x(t) — x®(¢)], = 0.

o
e—0* t€[0,a]

First, we prove that the sequence (x°),., is bounded. Let ¢ > 0, by using (f3) and Axiom
(A)-(iii) and let M := sup,, [|T(¢)||. Then for every t € [0,a], we have

0l = [T + [ =972 n)as

o

<rwatg)] + | [ a7 (5 x)as

t ew(tfs) .
< MIg(O)|e+ M [ G C+ ).
t pw(t—s)
SMHHq)Ha—FMa/ £ (14K, sup [x*(6)], + Nall @]l | ds.
0o (t—s) 0<6<s
Therefore,
t 1
()] < A+B/ = sup [x(0)]uds, 4.3)
0 (t—8)" g<pes
where s
e
A = MH|lp|ls + M[C(1+ Nollgll)] [ s,
and

B = M,CK_,e“".

Let z(0') = supy -, |¥*(7)|«. We claim that the function s — [; ﬁ
on [0,1].
In fact let s, s’ € [0,t] be such that s < s’. Then

/OS (s—la)“z(a)da = /OS %z(s —0)do < /OS/ %z(s’ —0)do < /OS/ (S,_la)az(a)da.

Then we obtain

z(0)do is nondecreasing

t 1
s < - s .
sup [¥(s)l < A+ B [ s sup (o)l

0<s<t 0<o<s
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Thus, by Lemma 3.4 there is a constant C’ such that

sup |x°(s)|a < C', foralle >0,
0<s<t

Which proves that the sequence (x),., is bounded.

Now by Axiom (A)-(iii), the function t — x{° is continuous on [0,a]. Let § > 0, then we
can find a partition 0 = typ < t; < ... < t,, = a of [0,a] such that, if maxj<j<p(t; —ti_1) <
min{J, Ap}, then

Hx?" — x?fH <¢é forallte[tiq,t], i=1,...,m, (4.4)

where Ay is from (Af).
We define a function t — x{°by
X =xp forteltiti, i=1,...,m 4.5)

Setting T(t) = max{i,t; < t} and t' = t,;, for every t € [0,a], we get

() =50 = [10-0)|7(L55) - o) | de
+/0tl T(t - 0) :f<£
[ ro-af() ()
o) re-als(

L /Ot T(t — 0)[fo(£F) — fo(x3)]d6
=hL+Db+1I+ 14+ Is.

Since the sequence (x°),., is bounded, by Axiom (A)-(iii), the sequence (x}),., is also
bounded in C([0, al; By), for all ¢ € [0,a]. Thus,

il = | [ 0= 0)[ (% 55) - o) |

t ew(tf())
< -
<M, /t -

t pw(t—0)
<M —
= o /t’ (t _ 9)1)(

< M, [C<1 —l—sup‘

e>0

o

dao

£(25) - o)
C <1 + sup||x{)

| >+C<1+maxfo°Ha> do
£>0 C([0,a];Bx) te[0,a]

(e'e] wa ! 1
‘C([O,ﬂ];&)) +C(1+trg[0ajz(]”xt Ha)]e /t’ (t—@)“de'

Then by a simple change of variable, we get to

x()

t 1 1 N1—«a 1 1—
- — = (+_ < - '3
/t’ (t—Q)“dG 1—1x(t ) _1—1x5

This leads to
|Il|0l S ﬁél_a/
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p= MO (1 suplt g, )+ (1 max )|

By axiom (A), and hypothesis (f2), we get

e [ o (2) (2,

< My /O (-0 L (K(G) up X(5) = 3(9 |,x> de.

where

Further, let g = =%, p = 2 — a. By using (f2), (4.4), (4.5) and Holder’s inequality we obtain
t pw(t=0) 0 0 .
‘13’0(—MD(/ (t—9)"‘ f<£,x9>_f<8’x9)Hd9
1
Eewrf) N7/t (6 0
< _ [o0] _ _ %
_MD(< 0 or d9> (/O f(81x0> f<£rx9>
1
< i/ fx (%) |'a0)
pS & 9 Yo
1
" - 9 d9 !
< —
(LI Es) )l

< C"IL(&)M,

1

P

where C" = Ma<f I d9) )
For the term Iy, we have

La], = ‘/Ot T(t—90) [f(z,xz") —fo(xg")]de a
> /t _t" 1 t1( - o) (L, ) - (s, ) | e

i=1
G (o] oo
B e/t ) tiq
Tti—0)|f(-,x folx de
where M = sup, [ , IT(t)]].

Bearing in mind hypothesis (Af), we can see

9 N7
de)

ewpo)

o

7
14

t .

e 0 - B
11;,2(” EIL%L - T(t;—6) [f(s,xt”> — fo <xti1)] de = 0.

/titi1 T(t;—0) [f(ix;"’1> — fo (x?fl>]d9

L], <M ()5<M(5 ase — 0%,

Thus,

max

ase — 0.
1<i<m

<

o
m

14
Therefore,
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Since the function fy satisfies a condition similar to (f2), the term I5 can be estimated as I3,
thus,

IIs|. < C"LL(8)as.

o

From the estimates obtained for the terms I; to I5, for every t € [0,a], we get
XE(£) — x°(H)|, < 710" + M5 + 2C"L(6)at

t
+ M,Xe“’”/ (t—0)*L (K(G) sup |x°(s) — x°°(s)|“> do, ase— 0.
0

0<s<0

By the same way as in the proof of Theorem 3.2, the last expression does not decrease, and if
we set )
r(8) = fis" ™% 4+ MS +2C"1L(8)a7, for every t € [0,4],

we get

K, sup [x%(s) — x*(s)]a

0<s<t

t
< Kar(6) + KaMge®" / (t—0)L (Ka sup |x°(s) — x“(s)]a> d0 ase— 0.
0

0<s<0

In view of (f2), the function § — K,r(¢) is continuous on [0, +oco[ and K,r(0) = 0. Thus, in
view of the arbitrariness of §, we necessarily conclude that

0<s<t 0<s<0

K, sup |x%(s) — xF(s)]a < Mye*” /Ot(t —0)*L <Ka sup |x°(s) — x”(s)\“> de

ase — 0.
By using (f2) once again, for every t € [0,a], we can write

K, sup [x°(s) —x®(s)|, =0 ase—0".
0<s<t

Since Kj is a positive constant, we conclude

sup |x%(s) —x®(s)[, =0 ase—0".
0<s<t

This completes the proof. O

Now we give the averaging principle with a more general form.
We denote by (Af)’ the following hypothesis :

lim % f(s,u)ds = fo(u), forallu € B,.

We have the following lemma.

Lemma 4.4 ([19]). Assume that the hypotheses (Hy), (f1)-(f3) and (Af)" are satisfied. Moreover,
suppose that X is reflexive. Then

lim [Tt — 0) [f(iu) —fo(u)]de —0.

e—=0T Jy



14 Z. Elhafiane and K. Ezzinbi

Corollary 4.5. Assume that the hypotheses (Hy), (H1), (f1)—(f3) and (Af)" are satisfied. Moreover,
suppose that X is reflexive. Then the unique mild solution x* of the problem (P;) converges to the
unique mild solution x* of the problem (Py), i.e.,

Hm 2 = 2% -amx,) = 0.

Proof. According to Lemma 4.4 all the hypotheses of Theorem 4.3 are satisfieded then the
result. O

5 Application

Example 5.1 (Existence result). We consider the following partial differential equation:

d 02 0 ¢ 9 toors
gv(t,é) = a—(,;zv(t,(f) —I—F(t,/oo al(f))/o gv(t —r,0)dodo, [w/() ay(6 — t)v(@,cr)dad@)
v(t,0) =o(t,1) =0, t>0,

v(0,8) =v9(0,8), 6<0, ¢e€][0,1],

(5.1)
where F : RT x R x R — R. The function vy : (—0c0,0] x [0,1] — R is continuous and it will
be described below.

In order to rewrite equation (5.1) in the abstract form, we choose X = LZ([O, 1];R) and we
define the operator A on X by

2

{D(A) — H2(0,1) N HX(0,1),
Ay = —y".

Then, by Theorem 2.7, page 211 in [16], we get that —A generates an analytic compact semi-
group (T(t))s=0 on X. From [24], the semigroup T(t) is explicitly given by

Tty =) e "y, e.)e, fory e X.
n=1

If we choose & = %, then

ArT(t)y = Y2 ne "ty e )e, fory e X,
Ay =1 Ly en)en fory € X, (5.2)
A%y = Y1 1{Y, en)en fory e D(A%),

Lemma 5.2 ([24]). Ify € D (A%), then y is absolutely continuous, y' € X and

Let v > 0, we consider the following phase space introduced in [9], which satisfies all the
axioms given in the first section

v/l = || A%y

B = {go € C((—00,0];X) : lim e"¢p(8) exists in X}.

0——c0
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We equip it with the following norm

lgllz = supe™||p(0)| for ¢ € B.
0<0

The norm in B 1 is given by

lolly = supe™®|[adp(o)] = supew\/ / ”(%(g»)(@(@))zda

0<0
Assume that
(Hy) e 27a;(-) € L2(R7), fori € {1,2}.

Since

/_too ax(6 —t) /jv(@,a)dad(% = /_0 a(0) /év(t+9,g)dgd9

00 0
0 ¢
= / a,(6) / v(6, 0)dode.
—00 0

We introduce
x(t)(&) =o(t,&), t>0,0<¢<1,

¢(0)(5) =v0(6,8), —0<0<0,0<¢<1,

1,000 = (1 [ 00) [ @) n@ods, [ ax(o) [ plo)(crioas ).

—0o0

Then the problem (5.1) can be rewritten as follows

{x/(t) = Ax(t) + f(t,x;) fort >0, (5.3)

X = @ € By.
Let us consider the following hypotheses on the function F.
(@) F:[0,1] x R x R — R is continuous.

(b) There exists a constant C > 0, such that |F(¢, u,y) — F(t, 1/, y")| < CA(|p —u'| + [y — V'|),
where A(-) : [0, +00[— [0, 400 is a continuous, nondecreasing function with A(0) = 0.

As example of such function A, +o00[— [0, +o0[, one can write

0, z=0
AMz)=4¢ —zlnz, 0<z<1/e,
1/e, z>1/e.

The function A is continuous nondecreasing. For more example one can see [22].

Theorem 5.3. Assume that the hypotheses (a), (b) and (Hy) are satisfied. Then the problem (5.3) has
a unique mild solution in X.
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Proof. According to Theorem 3.2, we have to prove that f satisfies the hypotheses (H;). Define
in the space B}, an equivalent norm Il- \H% by

liglly =200l

with v is a positive constant chosen, such that

. rmax(He27(')111(')HL2(1R—)? le Va2 )-

Using hypothesis (b) and the fact that the function A(-) is nondecreasing, for ¢, ¥, € B Y and
for ¢ € [0,1], we have

| f(E 1) () = f(t42) (@)

< [A(( /_ e 4701 (9)%d0) % / e / = (1(r) = 2)*(—1)(0)dodd)

N =

< C? [A((/we“”ea (9)2d9>; 127 sgti%)e”%/o a5 (W1 = 92)7(=1)( )da>;
1 1 2

(o) g [ o)
1 2

<c? [A (vséglgﬂ@(ufx%wl —y2)@)l+( [ (2(0)(0) — pa(0)(0))dc) )]

Using formulas (5.2), one has

[ (n)(@) - p2(6 s/(aa (0) - w2<9><a>))2da
At (e

Then we get

| f(E 1)) — f(E2) (@) < C?

6<0

2
A(szupewﬂlpl — leII;)] ,

which implies that for all ¢, ¥ € B 1, we have

£ (8 1) = f(& $2)lr201) < CAll[g1 — 92l )- -

Example 5.4 (Averaging principle). Now, we present an example about the averaging principle
result.
Consider the following partial differential equation

{ (1) = —Ax(t) + f (L, x), (5.4)
:(PGBIX/
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such that, —A generates an analytic semigroup compact on a reflexive space X (as example
we can take A and X given in Example 5.1.

Concerning the phase space B is identically the phase space C« described in Section 4, and
which satisfies the condition (C;) (for more examples we refer the reader to a book by Hino,
Murakami and Naito [11]).

The function f : R™ x B, — R is defined as follows

st

Ltu

f(i,u>:sm(€t+ )+1, forallt >0, e >0 and u € B,.
ee

Since —A generates an analytic semigroup compact, then (Hy) is satisfied.
Due to the boundedness of f we can easily show that f meets all the conditions (f1)—(f3).
Taking fo(u) = 1, then we can verify that the averaging result condition is satisfied, in fact:

T .
WAEETI
T Jo et

1 (Tsin(t+u) 1 /T
'T/O e +1dt—T/0 dt‘

I T
< /
— T

1 /T,
[ et
T/o ¢

1—eT
= T —0, asT — oo.

7 Ftea = fow

sm(tt—{— u) it
e

IN

Based on the above discussion and the result in Corollary 4.5, we can deduce that the solution
of Equation (5.4) can be approximated as ¢ — 0, by the solution of the following autonomous
partial differential equation,

5.5
Xo =@ € B,. -5

{x’(t) = —Ax(t) + fo(xt),
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