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Abstract. In this paper, we study the following Choquard—Kirchhoff type equation

() (v ) = (o 0 ) s )

N x—yl*

wherea,b > 0,0 >1,A>0,0<s<1<p<N,and0 < pu < N. Herep;:pz((zzf]\]:;))

denotes the critical exponent associated with the Hardy-Littlewood-Sobolev inequality,

and the norm
u| = V Pd + )|p dxd %
|| || / | u| x //ZN ‘x |N+ps xay .

The function f € Ll”]‘g*1 (RN)\ {0} is nonnegative, with p* = N bemg the Sobolev
critical exponent. For A = 0, we establish the nonexistence of nontr1v1al solutions. For
A > 0, by developing a concentration compactness principle suited to the local-nonlocal
setting and combining it with Ekeland’s variational principle and the mountain pass
theorem, we obtain the existence of multiple nonnegative solutions.
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1 Introduction

In this paper, we investigate the following Choquard-Kirchhoff type problem that combines
mixed local and non-local operators

o) (- ) = (o B ) 500 e,
u € XLr(RN),

(1.1)
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wherea > 0,0 > 0,6 > 1, A > 0is a parameter. Here, 0 <s <1< p < N,0<u <N, and

p(2N—p)
Pie = 2(N=)
The left hand side of (1.1) involves the classical p-Laplace operator A,u = div(|Vu|P~2Vu),
and (—A)j, is the fractional p-Laplacian operator. Up to normalization factors, for any x € RN

and u € CP(RY), it can be defined as

is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.

S0 |u(y) —u()[P~*(u(y) — u(x))
(Z8)pulx) = B i [x — y|NFre w

where B;(x) denotes the ball in RN centered at x with radius ¢. For s € (0,1) and a measurable
function u : RN — R, we define the Gagliardo seminorm as

()| y
Sp_(//}RZN |N+ps dxdy> .

Moreover, the space X?(RY) is defined as the completion of C°(RN) with respect to the

norm )
P
llu|| = </ |Vu|”dx+//]RZN X — |N+p)s’ dxdy) .

In recent years, the research on partial differential equations incorporating a blend of
local and non-local operators has witnessed substantial advancements in both theoretical ex-
ploration and practical implementations. These hybrid operators, constructed through the
superposition of the p-Laplacian (—A), and the fractional p-Laplacian (—A)j, have emerged
as significant mathematical models in diverse disciplines. For instance, they play a crucial role
in population dynamics, where they can describe the movement and distribution of species,
in biomathematics for modeling biological processes, and in optimal foraging strategies to
understand how organisms search for food (see [19,20,37] and the references therein). Con-
currently, these operators have spurred novel developments within the realm of mathematical
analysis. This includes the generalization of classical inequalities such as the Hong—Krahn-
Szegd inequality [10] and the Faber—Krahn inequality [9], as well as the in-depth investigation
of non-local evolution equations, exemplified by the Cahn-Hilliard equation [14] and the
porous medium equation [18].

The interplay between local and non-local diffusions has become a focal point of inter-
est for numerous mathematicians. In the specific case of the fractional Laplacian (p = 2),
variational techniques were employed in [5,39,40] to prove the existence and multiplicity of
solutions for elliptic equations. When p # 2, the Brézis—Nirenberg problem associated with
fractional p-Laplacian operators was explored in [35]. Moreover, in [30], Morse theory was ap-
plied to study the existence of solutions under general reaction terms. Fiscella and Pucci [23]
delved into stationary Kirchhoff problems involving fractional operators, Hardy potentials,
and critical nonlinearities, deriving results regarding the asymptotic behavior of solutions.
The ground state solutions for fractional Choquard equations with sub-critical nonlinearities
were also investigated in [7].

Kirchhoff-type equations that combine fractional Laplacians and critical Sobolev expo-
nents have attracted considerable attention from the academic community. These studies
cover both bounded domains [22,36,42] and the entire space [24,29,33], involving Kirchhoff
models with critical-growth nonlinearities. Recent contributions in this area include frac-
tional p-Laplacian Choquard-Kirchhoff equations [38], fractional Kirchhoff problems with a
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combination of Choquard and singular terms [41], and Choquard-Kirchhoff equations featur-
ing Hardy-Littlewood-Sobolev critical exponents [31]. In [43], nonhomogeneous p-Kirchhoff
problems with convex-concave nonlinearities were analyzed. Additionally, Xiang et al. [44]
studied the following fractional p-Kirchhoff problem:

(1.2)

(a+blulfy ™) (~A)5u = uf# 2u+Af(x) nRY,
u € D¥P(RN),

wherea >0,b>0,0>1,1<p < N/s, p; = 3~ ps,/\>013aparameterf€LPs (RN)\ {0},

and D% (RYN) is defined as the completion of C§°(RY) with respect to the Gagliardo seminorm
[u]s,p. For the case of A = 0, Xiang et al. demonstrated that the non - existence of non-trivial
solutions to (1.2) depends on the parameters N, 6, s, p, a and b. When A > 0, they utilized
Ekeland’s variational principle and the mountain pass theorem to prove the existence of at
least two non-negative solutions.

Driven by the extensive applications of mixed local-nonlocal operators, considerable re-
search efforts have been devoted to the existence and qualitative analysis of solutions to equa-
tions of the form

—Apu+ (—=A)u = f(x,u) inQ,

p
where QO C RV is a domain, p € (1,00), s € (0,1) and f is a given function. For p = 2,
symmetry properties of solutions to semilinear equations involving such hybrid operators
were established in [11]. Fundamental contributions to existence theory, local boundedness,
the strong maximum principle, Lipschitz regularity, and interior Sobolev regularity can be
found in [1,6,8]. By combining variational techniques with a PohoZaev identity, Anthal et al.
[4] derived existence and nonexistence results for Choquard-type equations with subcritical
perturbations.

When p # 2, Garain and Kinnunen [27] investigated regularity properties-including local
boundedness, Harnack estimates, local Holder continuity, and semicontinuity-for weak solu-
tions in the homogeneous case f = 0. In the nonhomogeneous case f # 0, Da Silva et al. [17]
recently proved the existence and multiplicity of nontrivial solutions by integrating variational
methods with topological tools such as the Krasnoselskii genus and Lusternik-Schnirelman
category theories.

Define the optimal constants

Jry [Vu|P dx

S HC = inf

, 13
ueCy(RN)\ {0} < ; (1.3)

2 2 2p
o MO vy )
and

|VulP dx + G —uW)l” gy gy
Sym= _inf Jre e e , (1.4)

) ; =
uecy (RN)\ (0} < o P dxdy) "
xX—y

well-posed via the classical Hardy-Littlewood—Sobolev inequality (cf. Proposition 2.1). Lever-
aging these definitions, we establish the following nonexistence result for trivial solutions
when A = 0.
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Theorem 1.1. Assume A = 0 and 6 > 1. Then problem (1.1) admits no nontrivial solution.

For the case A # 0, we analyze problem (1.1). Owing to the lack of explicit expressions and
asymptotic estimates for minimizers of Sy 1, we cannot directly characterize the threshold for
nontrivial solutions as in [12,26,35]. To address the compactness deficit, we develop a spe-
cialized concentration-compactness principle for mixed local-nonlocal operators (see Section
4).

Henceforth, unless stated otherwise, we assume f satisfies

(f) f>0, f £0and f € LF T (RV).

ZP;I
3N—u—p T 2N—u
7_mora>0,0<b<5HM,9—r.

Theorem 1.2. Suppose a > 0, b > 0, and either 6 = AN ”

Under assumption (f), there exists A* > 0 such that for all A € (0,A*), problem (1.1) possesses a
nonnegative weak solution u; € XP(RN) satisfying I) (u1) < 0. Moreover, there exists A** € (0, A*]
such that for all A € (0, A**), problem (1.1) admits another nonnegative weak solution u, € XP(RN)

with I/\(MZ) > 0.

The paper is organized as follows. Section 2 reviews essential preliminaries. In Section
3, we analyze the optimal constant Sy and prove Theorem 1.1. Section 4 extends Lions’
concentration-compactness principle [32] to the mixed operator framework. Finally, Section 5
employs Ekeland’s variational principle and the mountain pass theorem to establish the exis-
tence of two nonnegative solutions for (1.1) within a suitable parameter range of A.

Notations
¢ The standard norm on L7(IRN) denotes by | - |, for g € [1,00).

)P u(y) Ph

_pP_
S dx dy) i for u € XUP(RN).

e We shall also use the notation ||u]|/ =1/ f]RZN

¢ C denotes positive constant possibly different from line to line.

2 Preliminaries

Proposition 2.1 (Hardy-Littlewood-Sobolev inequality). Let r,q > 1 and 0 < u < N satisfy
y+ o+ & =2 Forge L'(RN) and hh € L1(RN), there exists a constant C(r,q,n, ) independent
of g and h such that

(x)
/]RN RN |x—y|14 dxdy < C(r,q, N, p)|glr|hlq-

In particular, setting ¢ = h = |u|’, the Hardy-Littlewood-Sobolev inequality ensures the

integral
Ju()[ Juy)l
d
/]RN /]RN |x — y|H xdy
is well defined provided |u|' € LY(RN) with v = % By the Sobolev embedding
XVP(RN) «— L' (RVN), we deduce t = pz((ZIi]\f:pﬂ)) := p;. Moreover, for u € X' (RY), it holds
that .
x) [P |u(y) P 2p;
< L
o O <o

Next, we introduce the concept of weak solutions for problem (1.1).
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Definition 2.2. A function u € X'7(R") is a weak solution of (1.1) if for all ¢ € X'P(RV), it
satisfies

(a -+ blluf®1r)
o [ 19 rvurgas [ 1= u(y) P2 (u(x) —u(y) (9(x) ~ 9()) iy
R2N

‘x_y‘N-}—ps

12 ;*2
//]RZN ) |Pr ()P 2u(x) @(x) dXdy“L)‘/RNf(x)q’(x) dx 2.1)

lx — y|"

We define the energy functional

a
“Nlu P_|_ bp _
Ii(u) = pH | H | 2

/]RN /]RN Pl () dxdy—)»/]RNf(x)udx (2.2)

lx — y|*

for u € X'P(RYN), where u™ = max{u,0}. Since f € (X?(R"N))’, the functional I, belongs to
CHXVP(RN)). For all u, ¢ € XP(RN), its derivative is given by

(I (u), 9)
- <a+b|\u\|(9_1)P)

X (/}RN VP2V uV g dx + //IRZN lu(x) — u(y)|P2(u(x) — u(y))(e(x) — ¢(v)) dxdy)

|x_y|N+ps

[t ()P | () [P 2ut () (%)
- //]RZN lx —y| dxdy — A/]RN f(x)p(x) dx

Consequently, u is a weak solution of (1.1) if and only if u is a critical point of the functional
I).

Remark 2.3. To verify the well-definedness of (2.2), we confirm the finiteness of all integrals
in (2.1). For u, ¢ € X?(RN), Holder’s inequality yields

_ -2 _ _
[T [ =) —u))9) = 0(8) g

|x_y|N+ps

< [Vuly [Vl + [y [plsp < oo

Additionally, leveraging the Sobolev embedding X'7(RN) < LF (RN) and the Hardy-
Littlewood-Sobolev inequality, we estimate

PP @) u(x)g(x)
//}RZN x —yF = dXdy+A/ f(x)gp(x) dx

p@N—p)+2Np _ 2N

C(N, ) ul . ™0 5 "\90!” '

|§0p*<00

3 Proof of Theorem 1.1

We dedicate this section to prove Theorem 1.1 in the case A = 0.

Lemma 3.1. Let s € (0,1). For Sy ¢ and Sy defined in (1.3) and (1.4), it holds that Sgp = Sy c.
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Proof. From the definitions of Sy and Sy M, the inequality Sym > Suc is immediate. To
prove the reverse inequality, consider any u € C{(RYN). There exists ko(u) € IN such that

supp(u) C B, (0), for all k > k.

N—
Define the scaled function uy := kTpu(kx) for k > ko, which satisfies supp(uy) C B,(0). By
the definition of Sy )1, we have for every k > ko,

P P
ol [l (Al
Letting k — o0 and using 0 < s < 1, the second term vanishes, yielding

V!
SHM S

[
By the arbitrariness of u € CP(RYN), we conclude
Sum < Shc.
Thus Sy ym = SHc- O
Lemma 3.2. The optimal constant Sy is never achieved.

Proof. Assume for contradiction that there exists a nonzero function v € X7 (RN) such that
HZ)HHL =1and HZJHP = SH,M = SH,L/ then

Spr < \VU|Z < ’VU’Z + [v]f,p =SHL-

This implies [v];, = 0, meaning v is a constant in RN. However, a constant function v satisfies
|lv]| = 0, contradicting ||v||gr = 1. Therefore, Sy p can not be achieved. O

Lemma 3.3. Let « > 0. The problem

P .
At (~AYu=a (/ Fet dy) WP inRY,

RN |X

(3.1)
u € XYP(RY),
admits no nontrivial solutions.

Proof. Suppose u is a solution to (3.1). Then u satisfies

)|Pr Py,
Hﬂwza</ [ |4u)lgu@>.
RN JRN |x— |V

Define w = [u for some | > 0. Substituting into the equation gives

P;; Pft
ol Jr S [l W x dy
I 2P '
Setting Sy pm = alP~2Pu we obtain
)P ()
P —
[wl]|” = Shm / /}RN P dx dy.

This implies w achieves Sy 1, contradicting Lemma 3.2. Hence, no nontrivial solutions exist.
O
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Proof of Theorem 1.1. Assume for contradiction that there exists a nonzero solution v to (1.1)
with A = 0. Then v satisfies

- s o(y)|Pr .
o 02) oy o) = () s

For any i € X'P(RYN), testing the equation with ¢ yields
[ 190 25avyae s [ 1202000 o) p(0) = H)

|x_ |N+ps

[o(y) [P |o(x) |Pr2o(x)p(x)
dxdy.
a+by|v|y 2+ bl[o|[@—Dp //sz x — y¥ ray

Leta = W > 0. The equation then reduces to
_ AV — )] W
APU+< A)Pv -4 </1RN |x — y|# dy | |v|P o,
which contradicts Lemma 3.3. Therefore, no nontrivial solutions exist when A = 0. O

4 The principle of concentration compactness

In [32], Lions established the celebrated concentration compactness principle in classical
Sobolev spaces, which has since been widely applied to solve elliptic problems involving
critical exponents. Xiang et al. [44] later extended this principle to fractional Sobolev spaces
DsP(RYN), while Gao et al. [25] developed a concentration compactness framework for con-
volution nonlinearities to study critical Choquard equations. However, to the best of our
knowledge, no existing results have formulated the concentration compactness principle for
mixed local-nonlocal operators with Choquard-type nonlinearities. Motivated by these contri-
butions, we establish such a principle in X?(IRN), which will be pivotal in Section 5. Define

C.(RN) = {u € C(RN) : supp(u) is a compact subset of RN}

and denote by Co(IRN) the closure of C.(RN) with respect to the supremum norm |1/ =
sup,cgrn [7(x)|. Recall that a finite measure on RM corresponds to a continuous linear func-
tional on Cy(RRY). For a measure ¢, its total variation norm is given by:

Iglf=" sup |G n)l,

n€CH(RY),[1]e=1

where (&,17) = [pn17dE.

Definition 4.1. Let M(IRN) denote the space of finite nonnegative Borel measure space on
RN. For & € M(RV), we have ¢(RN) = ||¢||. A sequence {&,} C M(RRVN) converges weak-*
to & € M(RN) (denoted &, — &) if (&u,17) — (&, 1) for all € Co(RN) as n — .

Theorem 4.2. Let {u,}, C XVP(RN) be a sequence with ||u,| < C for some constant C > 0, and
suppose
(11, — u weakly in X' (RN),

|Vu,|? +/ ‘”n |L]f]'jr(pys)| dy — & weak-+ in M(RV),

/mw‘dy!un( )P v weak-s in M(RY).
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Then the following hold

2!’;«

E(RN) < 7, v(RN) < Sy fy CP, (4.1)
Iu(x)— W)l
_ [ lu) ;
- /RN oy Wl ) [P +]€Z];v] » 4.3)

where! is at most countable, sequence {Z;};, {v;}; C Ry, {xj}; C RV, Ox; is the Dirac mass centered
at xj, ¢ is a nonnegative non-atomic measure. Moreover, we have

2p}; “Pu 2p}; “Pu

v(RN) < Sy by g(IRN) . v <Syh ¢’ forallje], (4.4)
where Sy pp is the optimal constant defined in (1.4).

Lemma 4.3. Let {u,}, C XY (RN) be the sequence given by Theorem 4.2. Fix xo € RN and let
@ € CP(RN) satisfy 0 < ¢ <1, ¢ = 1 0n B1(0), ¢ = 0 in RN\ By(0), and |V¢| < 2. Define
@e = ¢((x — x0)/¢) for all x € RN. Then the following hold

lim lim \un\p\qug\p dx =0, (4.5)
e—0n—oo
[0 ()| | e (x ) e(y)|” _
hm 1121_)301:p //leN = y NP dxdy = 0. (4.6)

Proof. We first prove (4.5). By the definition of ¢,, we have:

2P
unpvg”dxé/ = |u,|P dx.
/IRN| FIV el Bae(x0)\Be(x0) ‘C'p’ |

X—Xp

Scaling the variable z = , this becomes

/ 2PeN=P|u,, (xo + €2)|F dz.
B2(0)\B1(0)

For the bounded domain Q = B,(0) \ B1(0), the Sobolev embedding X7 (Q) < L*(Q) holds
(cf. [13, Lemma 2.1]), where X'?(Q)) is the completion of CF°(Q)) with respect to the norm

1
p v
lullxooey = ( [, IValras [[ 15 |N+;35' dxdy)".

Using the boundedness of {u,} in X'*(RN) and N > p, we estimate
LTl 19 9ul? dx < CeN Pl ) < CEN [P = 0
as n — oo and ¢ — 0, establishing (4.5). For (4.6), the proof follows similarly to [44, Lemma

2.3] by leveraging the fractional Sobolev seminorm properties and the decay of u,, at infinity.
Details are omitted here for brevity. O
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Proof of Theorem 4.2. We divide the proof into four steps.

Step 1. Proof of (4.1).

Fix R > 0 and let 7 € C(Bar(0)) satisfy 0 < # < 1 and # = 1 on Bg(0). By weak-x
convergence,

RN

|tn(x) — un(y) 1P

p

fo (19 + [, e 0y ) oy = [ () az
as n — oo. Since ||u,|| < C, we have

|t (x) — ()|
/IRN <|Vunyp+ s n]x—y|Nif’s dy | n(x)dx
[t (x) — un(y)|”
P P
< /]RN]Vun\ dx—l—//RZN Xy dydx < CPF.

Taking R — oo, we conclude ¢(RN) < CP. For v(IRN), by the definition of Sg » and ||u,|| < C,

Zpy Zp

10 0) 7 1 3 :
//Rm DI vy < 5, | < 5,5, O,

yielding v(RN) < S, CZPH
Step 2. Proof of (4.2).
Define the functional

kw = [, (1vur+ [, SO 0y ) ax

for 1 € Co(RN). Since K is continuously differentiable and convex on X*(RYN), it is weakly
lower semicontinuous. Thus,

liminf <’vun|l7_’_/ |un un(y)| dy) W(x) dx

n—co |N+P5

> /]RN <\Vu]i7—|—/]RNWdy> n(x) dx.

By weak-* convergence, the left-hand side equals f]RN n d¢. Therefore,

/IRNWZ@E/ <|Vu\P+/ |N+ps‘p d.‘/) n(x) dx.

By the arbitrariness of 7 > 0 in Co(IRY), we deduce

p
¢=> \Vu!’“r/ ‘N(-l-p)s’dy'

The decomposition

= Valr+ [ Iy g0 +

|x jer

follows from the structure of nonnegative Radon measures.
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Step 3. Proof of (4.3).
For 17 € Co(IRVN), using [34, Equation (3.6)], we have

tim [ (/H'{ Wy (o1~ | Wdyrwn%)n(x)dx

n—sco N |x—y|l4 N |x—y|V

_ |u(y)|"" ;
- /IRN /IRN |x_y|y dy|u(x)‘p 77(3() dx

|P;t

dy |u(x)|P*. By weak-* convergence,

where i, = 1, — u. Define 7 = v — f]RN e y\"

u *
Jondr=tim [] '|x” . " dy 1 (P (x)

To analyze the atomic part, fix xp € RN and let ¢ € CP(RY) satisfy 0 < ¢ <1, ¢ =1 on
B1(0), ¢ = 0 outside By(0), and |V¢| < 2. Define ¢.(x) = ¢((x — x0)/¢). Using [25, Equation
(2.8)], we derive

)P Pr
lim lim //IRW [9ettn () ¥ | eten () dydx = v({xo})

£—30 n—>00 |x — y|H

o Uy (x u P
lim lim (/IRN |Vu,|F o dx+//]RZN | e - |§l\’[ipz(]/)| dydx) — ¢({x0}).

e—0n—oo

and

Recall the following Young inequality
G+ 2" < @+p) Gl + 1 +1/8) (4.7)
where (1,0> € R and g > 0. Applying (4.7) and Lemma 4.3, we find
2;7#

v({x0}) < Sp iy E({xo)) T

Thus, the atoms of v are contained in those of ¢. For the non-atomic part, we use the Radon-
Nikodym theorem and Lebesgue’s differentiation theorem to show 7 = 0.

Step 4. Proof of (4.4).

Fix 1 € C§(B2r(0)) with 0 < # <1, =1 on Bg(0), and |V#| < 2/R. By Young's inequality
and Lemma 4.3,

)P 2
[ ) I
IR2N |x—y|#

2p#

wh (0487 [ Pz @ gyt |

RN

<S

Letting R — oo and B — co, we obtain

*

277]4

20 B b2 P
/IRNW "dVSSH,M </]RN;7 d§>

Taking R — oo and using the atomic decomposition, we conclude

2l 2pj;

Zf’y 2y 2pp
and ngsHlAq (f].” forallje J.

v(RY) < Sy i G(RY)

v
J
p

This completes the proof. O
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Theorem 4.4. Let {u,}, C X'P(RN) be a bounded sequence such that

|Vun|P+/ |u" — tn(y)|” dy — & weak-x in M(RN),

’N+ps
/ M dy|u, (x)|Pr — v weak-+ in M(RN),
RV [x —yl
and set )
b= B o (704 o )

P .
Voo = lim limsup/ / Mdymn(x)\”ﬂ dx,
R {xeRN:|x|>R}

—%  peo RN |x_y’]4

where the quantities Coo and ve, are well defined. Then the following hold

i Uy(x) —uy(y)|P
hr;ljol:p/IRN <|Vun]p+ . | ’( ) y‘N+(;z)| dy> dx = E(RN) 4 &,

. Uy (y .
hmsup/]RN /IRN ‘\x o7 dy|un( )[Prdx = v(RY) + Ve,

n—00

11

Proof. Fix x € C*(RN) with0 < x <1, x = 0in B1(0), x = 1 in RN\ By(0), and |Vy| < 2.

Define xr(x) = x(x/R) for all x € RN and R > 0. Then

Vi P / |Mn ) un ()| ) p

/{xEIRN |x|>2R} <| i | * |N+ps 4 *
Uy (x) — uy

/ (’v“n’p"’/ | ‘N-l—(pys)‘ dy) Xﬁdx

< / <|Vun|l’_|_/ |u" un(y)]? dy) dx,
T J{x€RN:|x|>R} ’N—&-ps

which means

T |1n(x) — un(y)|? p
Coo = lim limsup (Vunp + / [N dy | xg dx.
N

R—o00 n—oo

Similarly,

Voo = lim limsu/ / 14 (y |p}ld |14 () P 2P iy
= . y | () P dx.

R—o0 n—oo X — ]/|V

By the definition of weak-* convergence, we have

— p
[ (wuaps [ O ) (i [ az

as n — c0. So we get

R—oon—oo JRN

ér(RN) — lim lim (‘Vun’p_'_ |un(x) —Mn(y)fpdy> (1 _Xlz) dx.

RV |x —y[Neps
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Then the following decomposition
|1n (x) — un(y)|?
P
N <|wn| F o e ey ) dx
|4 (%) — un (y)[7 p
e n 14 d
/IRN <‘V” L x — y NS dy | Xk 4x

[t (x) = un(y)|” p
p —
+/]RN <!wn| T g dy | (1— xf)dx

gives that

lim sup <|Vun]”+/ |un —un ()| dy> dx = Eu + E(RV).

n—>co —y|Ntps

Similarly, we can conclude that

. |u p} *
11msup/]RN /]RN |x" }/’|“ Ay |1, (x)|Prdx = v(RN) 4 veo.

n—oo

To prove the last inequality

we first claim that

o . P —
R}1_r>1r0101111_r>101o |un|P|VxRr|Pdx =0, (4.8)
s |tn ()P | xR (% ) Xr(®)[P
dxdy = 0. 4.
Jimtimsup [ S e drdy =0 “9)

By the same argument as equation (4.5) in Lemma 4.3, we can derive (4.8). For (4.9), the proof
follows similarly to [44, Equation (2.15)]. Details are omitted here for brevity.
By Young’s inequality, (4.8) and (4.9), we deduce

tim [ [ g o) 7

n—o00 ]RN ‘x ‘

—ylr
<s, <<1+ﬁ [ Sl (5t B )

\x—y\N”S

Py .
_// |un XRMdylun(X)le””dx
RN JRN
ZpV

Letting R — oo and 8 — oo, we conclude

Therefore, the proof is complete. O

5 Proof of Theorem 1.2

Throughout this section, we consistently assume that 1 < 6 < Zﬁlf;, without additional

mention.
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Definition 5.1. Let ¢ € R, suppose X"7(IR") is a Banach space and I, € C'(X'?(RVN),R). We
say {un}n is a (PS) sequence in X'P(RN) if I, (u,) — c and I} (uy) — 0.

Lemma 5.2. If {uy}, is a (PS). sequence, then {uy,}, is bounded in X'P(RN) and {u;;}, is also a
(PS), sequence.

Proof. Since {u,}, is a (PS). sequence, there exists C > 0 such that

u
|hw@|gc,<uwwwwgp‘gc
Then we obtain
1
I (uy) — Zﬁ(lg(un),u,ﬁ < C+ Clluy]l. (5.1)
Pu
When 06 < 215\,]:; and a > 0, b > 0, we have
1, 1 1 11 .
_ — — p _ p
1) = g (1 ) ) = ( : m) Juall? 4+ (ep sz> ]
1
+A <2PZ§ - 1> IRNf(x)un dx

11 o 1) .1
>p|—— p_ - |-
_b<9p zp:l)nunu A(l 2p;>swfr(p)||unu

When 0 = zﬁl*;‘ and a > 0, b > 0, we have

1 1 1 1 1
Ta(t) = {15 ), 1) = a (p - M) Jaen 1P+ (gp 3 ) a7

*
K I3

Sa( 2o I e —a (1= 22 ) S TE Al

By invoking 1 < p < p and (5.1), we conclude that {u, }, is bounded in X**(RN).

Next, we aim to demonstrate that {u;} }, is also a (PS). sequence, the proof is divided into
two steps.

Step 1. We prove I, (1)) — c.

Since {uy}, is a (PS). sequence, we have I, (u,) — ¢ and (I} (1ts), un) — 0. So (I} (1), u;f) —
0. From the definition of I, we have

(D () i) = (T (), 0,)

= (a+ b 700 ( [Vl 2V (V)
R

|x —y[NtP

] )= ) ) 1)+ 050 dy) 2
IRN

—A/RNf(x)undx%—/\/lRNf(x)u,de—>0
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as n — oo. Based on the fact that
[ N I e (R NI )
we obtain
[t (%) = n (Y) P72 (i (x) = () (=1t (x) + 105, (y)) = Juy (x) =z ()P 2 0. (5.3)
Besides,
/]RN VP2V, (—Vu, ) dx
= /RN |Vu, [P~ (Vu — Vuy, ) (—Vuy, ) dx = /RN |Vu, |Fdx > 0. (5.4)

Moreover, f > 0 and A > 0 implies

A - fx) () —uy) dx = /\/IRN f(x)u, dx>0. (5.5)

By (5.2)—(5.5), we derive

[u,;]f,p — 0, /]RN |Vu, |Fdx — 0, /RNfu,; dx — 0 (5.6)

as n — oo. By

1y ]s,p - [”;]s,p < [”n]s,p = [”: - ”;]s,p < [”:]s,p + [”ﬂs,p/

we eventually obtain [1}]}, — [u,]},. Similarly, we can get [n |Vil|Pdx — [pn [Vun|? dx.
It is also easy to deduce [py fiu;} dx — [pn fity dx. Hence we conclude I, (1) — ¢ since
I (uy) — c.

Step 2. We prove (I} (u;7),v) — 0 for all v € X7 (RN).

Note that
(I3 (), 0) = (I 155),0) = (a+ bllual P97 ) (1 + 1) +0(1), (5.7)
where
L = / (IVun P2V, — |Vuy; |P2Vuy}) v dx
RN
and

L = //N (1 () =t () P2 (o0 () =14 () =10 (x) =207 () P2 (a1 (%) =15 ()) ) (0(x) 0 (y)) dx dy.
R

‘x,y‘Ners

Next we are going to estimate I; and I,.
For I;:

Case 1. When u,, > 0, we have I; = 0.
Case 2. When u,, < 0,

L =/ |Vitn P2V iy 0 dx s/ |W,;|de/ 0]P dx — 0
{x: 1n(x) <0} RV RN

as n — oo by (5.6).
For I,:
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Case 1. When uy,(x) > 0, u,(y) > 0, it’s obvious that I, = 0.
Case 2. When u,(x) >0, u,(y) <0,

_ [(n (%) — un(y))P ™" = (un(x))""'] (0(x) — v(y))
L= /{x un (x)>0} /{y u(y)<0} ax dy.

|x — y[NFPe

_ (Sijeze, g, o1 002 (0 (1)) (0(2) — o))
= Ax Uy (x)>0} /{y uy (y)<0} |x _ y|N+ps dx dy

- (1 (%)) (0(x) = (1)) 7T (—tta(y)) (0(x) — U(y))'%1
= L /{x e >0}/{y () <0} dx dy

|x_y’N+ps

ijez "
i+j=p—1
j>1
L[ _”+( i) ST ()=t ot U(y)\j]dxdy

(N+ps)- 51 (N+
| - y| NP

IN

ijez* -y
i+j=p-1
j=1

i

L (ff, o ZQ;@ o0 gy

j

U5 ”F_x@ 'TXL’;’S” la)”

g () 1t W D 4gy)
/~/]RZN |x y|N+ps xay //]RZN ’x_y‘Nﬂos xay
p=1 1
Iz ’P‘i P P
//]R2N |x _ y’N+ps xay

IN

ijez*
i+j=p—1
j21

IN

Z]EZ+
i+j=p-1
j=1

(//}RZN i |x1y|blirigs/ dxdy>

Y. Cllu, | =0
jez*
1<j<p-1

IN

as n — oo by (5.6).

Case 3. When u,(x) <0, u,(y) > 0, we can obtain I, — 0 as n — oo through a discussion
similar to Case 2.

Case 4. When u,(x) < 0, u,(y) < 0, we have

_ |1 (%) — () [P 2 (14 (x) — tn(y)) (0(x) — 0(y))
b= /{ i (x ><0} /{y un )<0} Ix —y|Nts dxdy

)P )P
//]RZN ’x_ ‘N-i—ps dx y//IRzN ‘x_ |N+ps dxdy

Cllu, || =0

IN

IN

as n — oo by (5.6).
By virtue of (5.7) and the fact that (I} (u,),v) — 0, we derive that (I (u,;),v) — 0 for all
v € XVP(RN). Consequently, we conclude that {u; }, is a (PS). sequence. O
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Zpy
Lemma 5.3. Suppose a > 0, b > 0 and either 8 < N p ora>00<0b< SHM,G = 2#:;.
Then there exist Ag > 0, p > 0 and a > 0 such that for any A € (0, Ag), Ir(u) > a holds for every
u € XVP(RN) satisfying ||u|| = p.

Proof. For any u € XUP (IRN ), by the Sobolev inequality, we have

a |t (x |P,¢|u+( )|P;§
s p ullfr — _
=z a” 17 *H 1 ! _2Z#|| HZP* - 1| | [
> —lu|lP + u S ul|“fr —AS r o llul],
p op 2p;§ H,M f(p)

where S is the optimal constant for the Sobolev embedding X#(RN) < LP" (RN).
Casel.24>0,b>0and 0 < 21{]\’%;. We have

b 1 —ﬂ * _1
D) 2 | ol = oSy Il = ASTF| flpey | Null
<9p 2p;, DM flp
Define -
k(t) := b oy _ is;{ﬁtzp%l
91? 2p
for all t > 0. Since 2p;, > 6p by ¢ < 2 we obtain that max;q k(t) = k(p) > 0, where
1
i\ Wi
_ 2bp; (0p —1)Sy m
op(2p; — 1)
Set ko)
AO = 1 P ’
S flp

then for any A € (0,A¢) we have

_1
I(u) > (k(p) —AS ”|f|(p*)’> p=:a>0 forall|u| =p.

ZpV
Case2.0>0,0<b<S Mand@- . We have
L) = | Zfu)?? ! S_ZZV b )P = AS 77| f] ]
A fl - - * — - * )/
p 2p;, 1M gp .

with 2py, = 0p. Define

a 1 -Tp
I(t) := —tP1 — S P

for all t > 0. Then max;>oI(t) = I(p) > 0, where

2p)i—p

B 2a(p —1)py,
o= 2p},

p(2p; —1)(Sy 4 —b)
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Set

then for all A € (0,Ag) we deduce

Iﬂu)z(wpy—Asﬁ () = > 0 for all luf| = p.

Thus, the proof is completed. O

2?’;4
Lemma 5.4. Suppose a > 0, b > 0, and either 6 < N ;’ora >0,0<b< SHM,G— 2N"E Then
for any A > 0, there exists e € XVP(RN) such that |le|| > p and I)(e) < 0, where p is the number
given in Lemma 5.3.

N—

Proof. By the definition of Sy y as given in (1.4), for all € > 0, there exists u € X"7(RN) \ {0}
such that
]| 7

7~ < Sum+e.

by

P Pl 2p
<ffIRZN |u(x ‘\xﬂ\yu‘y y)|PH dxdy> W

Then there exists a positive U satisfying ||U|| gz = 1 such that
|U[[P = Sum + h(e), (5.8)

where h(e) is a nonnegative constant associated with ¢ and %(e) < €. Then for any t > 0, we
have

P
ey =

op 2py,
bl tep—t—y—/\t/ f(x)U dx
RN

Op 2p;

0 2p;
Sawwﬂp+bwwpﬁp_gé.
Op 2p;

When 0 < 23-F 5 (ie. Op < 2p;), there exists a sufficiently large ¢ > 0 such that |tU]|| > p and
IA(ﬂl)<:O
When 6 = zﬁr__; (ie. 0p = 2p;,), we derive

al|luj” 1 p|ufry op
L(tU) < —/—tF — 2P,
(1) 4 2py, Op

Given 0 < b < SE?M, there exists t > 0 such that ||tU|| > p and I, (tU) < 0. Setting e = tU
completes the proof. O

From Lemma 5.2, we have that any (PS). sequence can be regarded as a sequence of non-
negative functions. Thus, we may assume without loss of generality that all (PS). sequences
are nonnegative in the subsequent analysis.
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Define
=]
1 1 R 1 - e 2N—u —f
(5~ ap) tasua™ (wm) ;6= a>0,0<b< Sl
SR
a a bS?—LM + \/b2512L19,M +4aSpa)
A= ( - > SH,M
pop 2
\/ =
6 2G20 B
1 1 bSH,M +4/b SH,M +4aSH m . AN—p—
+(9P2P,i>( 5 , if0=5x5F a>0b0>0,
\
and
-1 a -1 1 Tﬁl v £
o =5 [(o=5) 5] 7 (1) A
where (p*) = pf,l
_ 2P
Lemma 5.5. Assume thata >0, b > 0and 6 = 321\&5)”, ora>0,0<b<Syy andf = —Zgj}f‘,

if {un}n € XYP(RN) is a bounded and nonnegative sequence satisfying I, (un) — ¢ < A — @(\) and
I} (uy) — 0in (XYP(RN))" as n — oo, then there exists a nonnegative function u € X'P(RN) such
that, up to a subsequence, u, — u in XLP(]RN) as n — oo,

Proof. As {u,}, is bounded and nonnegative, then there exists a subsequence, still noted
{u,}n, and a nonnegative function u € X'?(RN) such that u, — u in X'?(RN), u, — u in
L) forr € [1,p*) and u, — u a.e in RN. Applying Theorem 4.2, up to a further subsequence,
there exists a (at most) countable set ], a non-atomic measure ¢ and points {x;};c; C RN and

{¢i}ies, {vj}jey C R such that as n — oo we have

iy [ O W gy e gy [ OOy e, 48 69)

JRN  |x — y|NFPS RN |x — y|NFPs =
4 () P 2 / u(y)|"" P
Ay Jun (x) [P — v = O, 1
S T Ay a1 v = [ S dy u(x) Ty (5.10)

in the measure sense, where (5x], is the Dirac measure concentrated at x;. Moreover,

%k

v < sHlﬁg/ (5.11)

for all j € J, where Sy um is the optimal constant defined in (1.4). We now proceed with the
proof in three steps.

Step 1. We claim that | = @. Suppose by contradiction that | # @. Fix j € J. For any ¢ > 0,
choose ¢;; € C§’(RY) such that

Pej=1 in Bg(xj), @ej =0 in RN\ Bzg(xj), |Vq08,]-| < 2/e.
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Evidently, ¢ ju, € X' (IRN). It follows from (I} (1), @ jun) — 0 that

(o 0l 7Y ([ 19250, )

+//]sz |t () — wn () [P~ (1t (%) — 100 (y)) (@, (X)tn (%) — e, (y)1tn (y)) dxdy)

|x — y[Npe

_ 10 () [ [0 () 15210 (2 10 () e ()
- //]RZN Fp— ] dxdy+/\/1RNf(x)gog,j(x)undx+o(1(). |
5.12

For the left-hand side of (5.12), applying Holder’s inequality and Lemma 4.3 yields

lim lim |Vun [P 2V 1,V @ juty dx

e—0n—oo JRN
p=1 1

P P
. . [4 1, |P
= U </1RN'V””' d") </RN'V"’”””‘ dx) -

1
. . p
< Clim lim (/IRN |V @ jun|” dx> =0,

e—0n—oo

and

lim lim
e—0n—oo

// |14 (%) — 14 ()72 (1t (%) = 14 (Y)) (@, (%) = @ () ) 1tn (y)
R2N

‘x_y|N+ps

dx dy‘

- |14 (%) — ttn( (9ej(x) = @c,i(y))un(y)|” P
= Clg%nlgrolo <//1RzN ‘x —y|N+P5 dxdy //lez\l ‘x —y|N+P5 dXdy

< Clim lim (\(%j( X) = @ej(y))un(y)|? dxdy) _o. (5.14)

£—0 1—00 |x — y|N+Ps

This together with equations (5.9) leads to
lim lim <a+b|yun||(9‘””)/ <|Vun|”+/ [4n (x yﬁ(pys)'pdy) Pe,j(x) dx
>t iy [, (19 52 wfps)’pd@ SOk
i ([ ('Wn'”/ e St ae) oo )

= ag; + bg}.
For the first term on the right-hand side of (5.12), it follows from (5.10) that

(5.15)

e—0 n—oo

(5.16)
= li Pro. : , =y
lln(} (//sz = yl” dy [u(x)[Pr e, dx + E 1/](5xj> vj.

j€l

. . u :
S e

Moreover,

lim lim f@ejundx = lgr(} /]RN f@ejudx = 0. 5.17)

e—0 n—oo JRN
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Therefore, by substituting (5.13)—(5.17) into (5.12), we obtain

vj > aj + by, (5.18)
Combining (5.11) with (5.18) implies
( 0
aSum _ 2N- —0
v > ' o (5.19)
bSY, 1 + /D23 g + 4051
P , ’ . _ 3N—u—p
( 5 1f9—2(N7p),a>0,b>0.

For R > 0, assume that g € C3°(RY) satisfies g € [0,1], pr(x) = 1 for |x — x;| < R,
pr(x) = 0 for [x — x;| > 2R, and |Vyr| < %. By (5.9) and (5.10), we have

e = Jim (o) = g (13 )0 )

n—oo

n n p
=t (5 ) (o moromacs [, MR o )
|14 (y) [P [ (x) |Prepr (%) (1
<6p 279;!) //]RZN |x—y|y d]/dx <1 9P> )\/]RNfun dx>
5 a a ()|p a a

11 ()" (x) e (x)
(i) e R

> <—> (/ yvu|de+//]RZN |x ’Nm "y dx ) ( ”)g}.

(9;7 ZPM) //]RZN ‘fi’u‘y)w dy dx + ( 2?;,) 1— — /IRNfu dx
(i) () (i ) Jlon 2 v
(g () o
which implies that

((a a p a a 1
() st (5 ) o (g ) 1 e
if0 ==L, a>0b>0,
- a a a a 1 1 1
<p 9P> ’u|”+<;ﬂ 9P>§]+<9P ZP;’Z)v] ( 9;9) o/

if 0 = St a>0,b>0.

v
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Then we apply the Holder inequality, the Sobolev embedding, and Young inequality to derive

(1_> /fudx=(1—)A|f| yulp:

By (5.20) we obtain

- r
a _a 1 1 - p-1 a = LN el
(8o (o )it [ ) ™ (- 55) T s

if 0 = S5t a>0,b0>0.

Combining (5.11) with (5.19), we arrive at ¢ > A — ®(A), which contradicts our initial assump-
tion. Thus the claim | = @ holds.

Step 2. We claim ve, = 0. Let R > 0. Set

. . [un(x) — ua(y)[? )
p
Coo = lim 11msup (reRN:Jx[>R) <|Vun| -|-/N |x y|N+pS dy dx,

R—o0 n—oo

/ DUy )t

Voo = lim limsup N F—r
R

R—o0  n—o0 /{XE]RN:|X|>R}

According to Theorem 4.4, we know that . and v, are well defined and we have

hmsup/ <|Vun|”+/ i16) y,bzlﬁ(pz)’ dy) dx = E(RN) + oo, (5.21)
n—oo
hrnn—?oljp /IRN /RN "L;” y|# dy |14 (2) [P dx = v(RN) + veo. (5.22)

To rule out the possibility of concentration for mass at infinity, we take a suitable cutoff func-
tion xg € C*(RYN) satisfying xr € [0,1] , xr(x) = 0 for |x| < R and xr(x) = 1 for |x| > 2R,
IVxr| < % Following a discussion analogous to that of Theorem 4.4, we derive

L up(x) —uuy(y)|?
foo = 11{13{1)0 llr;ljogp o | Vil xr()dx+ | | ”|EC)_ y|N+(pyS)| Xr(x)dy dx, (5.23)
and
N un(y \
Voo zlglin 11msup/]RN /]RN [ () xR ()1 ]x y\?‘ ol dy |y (x)xr(x)|Pr dx. (5.24)
o0 n—oo

Moreover, we have
p

SHMVl < Eno. (5.25)
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leen that ||un||? and || uy H 41 are bounded, up to subsequence, we can assume that ||u,||” and

|| 1n H 1 are both convergent. Then by (5.21) and (5.22) we obtain

. L
lim g |” = [ d2+ 8 (5.26)

[ ()P Pi _/
Jhe 12 yIF‘ (ol = [t (527)

The fact (I} (u4), xrUn) — 0 as n — oo entails that

(a+b||unH(9_1)p) </]RN |Vun|P2Vu,V (xrun) dx

[ ) =000 ) )05 ~ 000 ) (52

|x_y|N+ps

; 2
_ //]Rm 1t () | P51 () P 2003 (2 )10 () xR () dxdy+)\/]RNf(x)XRundero(l).

lx — y|"

y (4.8), (4.9) and the Holder inequality, we get

lim lim |Vun|P2Vu, Vxru, dx =0, (5.29)

R—ocon—o0 JRN

// [t (x) — 1t (Y) 172 (1t (%) — 1t () )1 () (XR (%) — XR(Y)) dxdy = 0. (5.30)
R2N

‘x_y|N+ps

lim limsup
R—00 n—oo

Hence, it follows from 6 > 1, (5.23), (5.26) and (5.28)—(5.30) that

lim limsup (a+ bfju, | *~"") < / Vit |P xR dx + // | (x ’x—_u;fNymm(x) iy dx)

R—o00 n—oo

0t </H{Nd§+§oo>91]
un(x) — un(y)[?

x lim limsu / Vi, |Pdx + / P dx>
R=e0 n—>oop( {xeRN:Ix\>R}| ol (xeRN:|x|>R} JRN  |x — y|N*Ps Y

> (a + bgg‘;l) Foo = o0 + bEL.. (5.31)

Besides, it is straightforward to observe that

lim hmsup f( )XRUn dx = lim / f(x)xru dx = 0. (5.32)
R—o0 JRN

=P neo
Therefore, we combine (5.28)-(5.32) with (5.24) and obtain that
0o + b2, < Veo.

In conjunction with (5.25), this leads to

p 917
aSy, Mvoo + bSH MVOO < Veo,
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indicating that v, = 0 or

0
aSym \ : 2N 9
<1_b5?_11\4> 1f9:N,;rﬂ>O/O<b<SH,M/
Voo > ; ' / 201 (5.33)
’ ’ ’ if — SN—p-p
( 5 if 0 = 51’5, a >0, b>0.

Suppose that (5.33) holds, then we have

e = Jim (1a() = g () ) )

n—oo

— 1 a_a p S |un (y |p"|”n( )’p’*‘

35510((19 9P> o +< 2py>//IIzZN PR
a a a a 1 1 1 1

—(5=m) e (5 ) e+ (g3 ) o v (5= 352 ) v
(P 9p>/N ¢ p Op . (910 2p;ﬁ) RN or  2p;
(1—) / fudx

a a y) [P fu(x) [P
e F’+< ) // dy dx
<P P)H I p Op bt <9P 2py> R2N !x—ylf‘ /
11 1
o) () s

Ultimately, from equations (5.20) and (5.33), we infer that c > A — ©(A), leading to a contra-
diction. Hence, v = 0. In view of | = @ and (5.27), we conclude that

. |un p // | p
tim [f e Syl = [ 10 Wyl s (53

Step 3. We are now in a position to prove that u, — u in X?(RN). Suppose d := inf,>1 ||u,]| >
0. For any w,v € X"P(RN), we define

(L(w),v) = /IRN |Vw,|P2Vw, Vodx
o |wa(x) —wy 2wy (x) — wy Un(X) — Uy
[ ) =) ) )00 = 1),

|x — y[N*Pe

Clearly, L(w) is a continuous linear functional in X7 (IRN). Then by the boundedness of {u, },
and u, — u in X'7(RN), we deduce

Jim, (g P ) (L (w), 10— 1) =0,

and
nh—I& (a + bHuH(e’l)p) (L(u), up —uy = 0.
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Therefore, as n — oo, there holds
Tim (@ bllun | @07 ) (L), 0y — 1) = (@ + b|ul| D7) (L(at), 1, — )
= Tlim (@4 bl O ) (L), 0 = 10) = (L(1), 1 = ))..
It follows from (I (u,) — I} (1), u, — u) — 0 that

(a+ buunHW*UP) (L)1) = (o -+ Bl 19 ) (L), = w)

* p* *
= o (B8 o5 2u) — PO ) 5200 ) (00— )
R2N |x — yl|#
+o(1).
Hence, we conclude from (5.34) that
Tim (a4 bl €7 ) (L(atn), 10 = ) = (L(1), 1 = ) = 0.
Since d := inf,>1 ||u,|| > 0 and b > 0, we have

lim ((L(up), up —u) — (L(u), u, —u)) = 0.

n—o0

Now recall the famous Simon inequalities:

(5.35)

[SIS]

o — BIP < {C? (lafP=2a — [BIP2B) - (a — B) iz,
— Gy (P2 — BIP2B) - (a— B)] 7 (Jaf? +|B[P) 2 if1<p <2

forall a, B € RN, where C;, and C;,’ are positive constants depending only on p.
If p > 2, from equation (5.35), we derive that

i o [ S
< C’ ({L(uy), un —(L(u),up —u)) =0

as n — co. Hence u, — u in X'P(RV).
For thecase1l < p < 2,1let A = u,(x) —uu(y), B=u(x) —u(y). Using (5.35) and concavity
we have

/ |V (un —u |pdx+// 4 () = tn(y) — u(x )+u(y)|pdxdy

|x_ |N+ps

14
2

2—
<Gy [ [(Vual? 2V — [Vul?2Vu) - (Vu, = V) ([ Vgl + [Vul?) = dx

+Cl // [(|A|P~2A — |B|P~2B) - (A — B)]

|x — y[N*Pe

N

2—p
(lA[F +[B)

dxdy

R2N

NI

< C((L(ttn),up —u) — (L(u),uy —u))? =0

as n — co. Hence u, — u in X?(RY). In conclusion, we get u, — u strongly in X'*(RY) as
n — oo.
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Finally, we consider infy [[ux | x1,(gv) = 0. Then either 0 is an accumulation point of the
sequence {u,}, and so there exists a subsequence of {u,}, strongly converging to u = 0, or 0
is an isolated point of the sequence {u,}, and so there exists a subsequence, still denoted by
{uy }n, such that inf, ||u,|| > 0. In the first case we are done, while in the latter case we can
process as above. O

Set B, (0) := {u € X'P(RN) : ||u]| < p}.

Theorem 5.6. There exists A* > 0 such that for all A € (0,A*), problem (1.1) admits a nonnegative
weak solution uy in X'P(RN) with I)(u1) < 0.

Proof. By Lemma 5.3, there exist Ay > 0 and y > 0 such that
IL(u)>v>0 forAe(0,A0) and u <€ X'P(RN) with ||lu| = p.

In the complete metric space B,(0) := {u € X"(RN) : |lu|| < p}, we apply Ekeland’s
variational principle [21] to prove that there exists a (PS), sequence {u,}, C B,(0) with

Ccop = il’lf{[)\(u) U E Ep(())}

Next, we aim to show that —oo < ¢g < 0. Choose ¢y € X'P(RN) such that [,y fgo dx > 0
and fix A € (0,A*). Then for any ¢ > 0, we have

L(tgo) = *nqoonubte ool 27 | = Lo W% gt () =t [ F(x) o
Zp‘u RN JRN y’]‘ RN

Then we can deduce that there exists a sufficiently small ¢+ > 0 such that |[tgo|| < p and
I (tgo) < 0. Hence, according to the definition of ¢y, it follows that ¢o < I, (t@o) < 0 and it’s
evident that ¢y > —oco.

Selecting A* € (0,Ag] such that 0 < A —©®(A) for all A € (0,A*). From Lemma 5.5 and
co < 0, we can obtain that there exist a subsequence of {u,}, and u; € X'?(RYN) such that
uy — uy strongly in X7 (RY). Therefore, I} (u1) = 0 and I, (u1) = ¢o < 0. Hence we complete
the proof of Theorem 1.2. O

Drawing on the ideas introduced by Chabrowski [16], Alves [2] and Goncalves and Alves
[28], we are going to explore that equation (1.1) has anther solution. Firstly we know that I
satisfies the mountain pass geometry by Lemmas 5.3 and 5.4. Hence applying the mountain
pass theorem [3], there exists a (PS). sequence {v,}, with

— inf I
c= #‘érf?[?’f] (v(t)),

I = {y€C([0,1], X""(RY)) : 7(0) = 0,7(1) = e}.

Lemma 5.7. Suppose a > 0, b > 0, and either 0 = 2(N”p)p ora>00<b< SHM, 0 = %.

Under the assumption (f), there exists A** € (0, A*), such that for any A € (0, A**), one has

c<sup)(tU) < A —O(A).
£>0
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Proof. Employing the function U in Lemma 5.4, we consider the funtions

a” ||P b” HGP 6 tZPf,
B =1, (1) = Y utP——M/m ud
g(t) := Ly(tU) ’ + op 297 ]RNf X

and

0 2p;,
Uy, U, £
P 2Py
for all t > 0. There exists t; > 0 such that §'(t;) = 0 and max;>0 §(t) = §(t1) = A+ h(e)
where t; satisfies

g(t):

IZHUHP oy . _ 2N—yu —9
<1_b||u||9p if 0 = N_p,a>0,0<b<SH’M,

a>0,b>0.

_1
DU + VR UIPP +4alU]P\ ™"y ANy
2 2(N-p)”’

>0,

When ¢ = 0, the proof is similar to Theorem 1.2. When ¢ > 0, we can choose A1 € (0, A*] such

that A — ©(Aq) > 0. It is easy to observe that

p Op
e (unuu bl W) o
=0+ p Op

So there exists t; € (0, t) such that for any A € (0,A;), we have

allur
p

Choosing A** € (0, A1] such that for any A € (0, A**), there holds

max g(t) < max
0<t<ty 0<t<t,

op
W+w$‘W>§A—®MQ<A—®M)

1 p
- Pl 8\ g 7 it
AbAQfU’dx> . [(a=5) 8] 7T AL+ ce).
Then, for any A € (0, A**), one can obtain

supg(t) <sup§(t) — Aty / NfU+ dx
R

t>ty t>ty
1 P

< gt -2 (o= g) S| T ARG - e
—A-O).

Therefore, for any A € (0, A**) we have

c<suph(tU) =supg(t) < A —O(A).
£>0 £>0

Hence, the proof is complete.

O]

Theorem 5.8. There exists A** € (0,A*] such that for all A € (0,A**), problem (1.1) has another

nonnegative weak solution uy in XV (RN) with I (u) > 0.
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Proof. Using Lemmas 5.5 and 5.7, there exist a subsequence of {v, },, still denoted by {v, },,
and a function u; € X' (RY) such that v, — u, strongly in X' (RN). Therefore,

Ii(u2) =0 and I(up) =c>0=1)(0),
indicating that u; is a nontrivial and nonnegative solution of (1.1). O

Proof of Theorem 1.2. Combining the proof of Theorem 5.6 with Theorem 5.8, we can obtain
Theorem 1.2. O
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