



Nonexistence and existence of solutions for a Choquard–Kirchhoff type equation involving mixed local and nonlocal operators

Wenjing Chen[✉] and Jingran Feng

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P.R. China

Received 23 June 2025, appeared 28 December 2025

Communicated by Patrizia Pucci

Abstract. In this paper, we study the following Choquard–Kirchhoff type equation

$$\left(a + b\|u\|^{p(\theta-1)}\right) \left(-\Delta_p u + (-\Delta)_p^s u\right) = \left(\int_{\mathbb{R}^N} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy\right) |u|^{p_\mu^*-2} u + \lambda f(x) \text{ in } \mathbb{R}^N,$$

where $a, b > 0$, $\theta > 1$, $\lambda \geq 0$, $0 < s < 1 < p < N$, and $0 < \mu < N$. Here $p_\mu^* = \frac{p(2N-\mu)}{2(N-p)}$ denotes the critical exponent associated with the Hardy–Littlewood–Sobolev inequality, and the norm

$$\|u\| = \left(\int_{\mathbb{R}^N} |\nabla u|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x-y|^{N+ps}} dx dy \right)^{\frac{1}{p}}.$$

The function $f \in L^{\frac{p^*}{p^*-1}}(\mathbb{R}^N) \setminus \{0\}$ is nonnegative, with $p^* = \frac{Np}{N-p}$ being the Sobolev critical exponent. For $\lambda = 0$, we establish the nonexistence of nontrivial solutions. For $\lambda > 0$, by developing a concentration compactness principle suited to the local-nonlocal setting and combining it with Ekeland’s variational principle and the mountain pass theorem, we obtain the existence of multiple nonnegative solutions.

Keywords: Kirchhoff-type equation, local-nonlocal operators, critical equation, Choquard nonlinearity, concentration compactness principle.

2020 Mathematics Subject Classification: 35A15, 35M10, 35J92, 35R11.

1 Introduction

In this paper, we investigate the following Choquard–Kirchhoff type problem that combines mixed local and non-local operators

$$\begin{cases} \left(a + b\|u\|^{p(\theta-1)}\right) \left(-\Delta_p u + (-\Delta)_p^s u\right) = \left(\int_{\mathbb{R}^N} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy\right) |u|^{p_\mu^*-2} u + \lambda f(x) \text{ in } \mathbb{R}^N, \\ u \in X^{1,p}(\mathbb{R}^N), \end{cases} \quad (1.1)$$

[✉]Corresponding author. Email: wjchen@swu.edu.cn

where $a > 0$, $b > 0$, $\theta > 1$, $\lambda \geq 0$ is a parameter. Here, $0 < s < 1 < p < N$, $0 < \mu < N$, and $p_\mu^* = \frac{p(2N-\mu)}{2(N-p)}$ is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. The left hand side of (1.1) involves the classical p -Laplace operator $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, and $(-\Delta)_p^s$ is the fractional p -Laplacian operator. Up to normalization factors, for any $x \in \mathbb{R}^N$ and $u \in C_0^\infty(\mathbb{R}^N)$, it can be defined as

$$(-\Delta)_p^s u(x) = \lim_{\varepsilon \rightarrow 0^+} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{|u(y) - u(x)|^{p-2}(u(y) - u(x))}{|x - y|^{N+ps}} dy,$$

where $B_\varepsilon(x)$ denotes the ball in \mathbb{R}^N centered at x with radius ε . For $s \in (0, 1)$ and a measurable function $u : \mathbb{R}^N \rightarrow \mathbb{R}$, we define the Gagliardo seminorm as

$$[u]_{s,p} = \left(\iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}}.$$

Moreover, the space $X^{1,p}(\mathbb{R}^N)$ is defined as the completion of $C_0^\infty(\mathbb{R}^N)$ with respect to the norm

$$\|u\| = \left(\int_{\mathbb{R}^N} |\nabla u|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}}.$$

In recent years, the research on partial differential equations incorporating a blend of local and non-local operators has witnessed substantial advancements in both theoretical exploration and practical implementations. These hybrid operators, constructed through the superposition of the p -Laplacian $(-\Delta)_p$ and the fractional p -Laplacian $(-\Delta)_p^s$, have emerged as significant mathematical models in diverse disciplines. For instance, they play a crucial role in population dynamics, where they can describe the movement and distribution of species, in biomathematics for modeling biological processes, and in optimal foraging strategies to understand how organisms search for food (see [19, 20, 37] and the references therein). Concurrently, these operators have spurred novel developments within the realm of mathematical analysis. This includes the generalization of classical inequalities such as the Hong–Krahn–Szegő inequality [10] and the Faber–Krahn inequality [9], as well as the in-depth investigation of non-local evolution equations, exemplified by the Cahn–Hilliard equation [14] and the porous medium equation [18].

The interplay between local and non-local diffusions has become a focal point of interest for numerous mathematicians. In the specific case of the fractional Laplacian ($p = 2$), variational techniques were employed in [5, 39, 40] to prove the existence and multiplicity of solutions for elliptic equations. When $p \neq 2$, the Brézis–Nirenberg problem associated with fractional p -Laplacian operators was explored in [35]. Moreover, in [30], Morse theory was applied to study the existence of solutions under general reaction terms. Fiscella and Pucci [23] delved into stationary Kirchhoff problems involving fractional operators, Hardy potentials, and critical nonlinearities, deriving results regarding the asymptotic behavior of solutions. The ground state solutions for fractional Choquard equations with sub-critical nonlinearities were also investigated in [7].

Kirchhoff-type equations that combine fractional Laplacians and critical Sobolev exponents have attracted considerable attention from the academic community. These studies cover both bounded domains [22, 36, 42] and the entire space [24, 29, 33], involving Kirchhoff models with critical-growth nonlinearities. Recent contributions in this area include fractional p -Laplacian Choquard–Kirchhoff equations [38], fractional Kirchhoff problems with a

combination of Choquard and singular terms [41], and Choquard–Kirchhoff equations featuring Hardy–Littlewood–Sobolev critical exponents [31]. In [43], nonhomogeneous p -Kirchhoff problems with convex-concave nonlinearities were analyzed. Additionally, Xiang et al. [44] studied the following fractional p -Kirchhoff problem:

$$\begin{cases} \left(a + b[u]_{s,p}^{p(\theta-1)} \right) (-\Delta)_p^s u = |u|^{p_s^*-2} u + \lambda f(x) & \text{in } \mathbb{R}^N, \\ u \in D^{s,p}(\mathbb{R}^N), \end{cases} \quad (1.2)$$

where $a \geq 0$, $b > 0$, $\theta > 1$, $1 < p < N/s$, $p_s^* = \frac{Np}{N-ps}$, $\lambda \geq 0$ is a parameter, $f \in L^{\frac{p_s^*}{p_s^*-1}}(\mathbb{R}^N) \setminus \{0\}$, and $D^{s,p}(\mathbb{R}^N)$ is defined as the completion of $C_0^\infty(\mathbb{R}^N)$ with respect to the Gagliardo seminorm $[u]_{s,p}$. For the case of $\lambda = 0$, Xiang et al. demonstrated that the non-existence of non-trivial solutions to (1.2) depends on the parameters N , θ , s , p , a and b . When $\lambda > 0$, they utilized Ekeland's variational principle and the mountain pass theorem to prove the existence of at least two non-negative solutions.

Driven by the extensive applications of mixed local-nonlocal operators, considerable research efforts have been devoted to the existence and qualitative analysis of solutions to equations of the form

$$-\Delta_p u + (-\Delta)_p^s u = f(x, u) \quad \text{in } \Omega,$$

where $\Omega \subset \mathbb{R}^N$ is a domain, $p \in (1, \infty)$, $s \in (0, 1)$ and f is a given function. For $p = 2$, symmetry properties of solutions to semilinear equations involving such hybrid operators were established in [11]. Fundamental contributions to existence theory, local boundedness, the strong maximum principle, Lipschitz regularity, and interior Sobolev regularity can be found in [1, 6, 8]. By combining variational techniques with a Pohožaev identity, Anthal et al. [4] derived existence and nonexistence results for Choquard-type equations with subcritical perturbations.

When $p \neq 2$, Garain and Kinnunen [27] investigated regularity properties-including local boundedness, Harnack estimates, local Hölder continuity, and semicontinuity-for weak solutions in the homogeneous case $f = 0$. In the nonhomogeneous case $f \neq 0$, Da Silva et al. [17] recently proved the existence and multiplicity of nontrivial solutions by integrating variational methods with topological tools such as the Krasnoselskii genus and Lusternik–Schnirelman category theories.

Define the optimal constants

$$S_{H,C} = \inf_{u \in C_0^\infty(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^p dx}{\left(\iint_{\mathbb{R}^{2N}} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \right)^{\frac{p}{2p_\mu^*}}}, \quad (1.3)$$

and

$$S_{H,M} = \inf_{u \in C_0^\infty(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}} dx dy}{\left(\iint_{\mathbb{R}^{2N}} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \right)^{\frac{p}{2p_\mu^*}}}, \quad (1.4)$$

well-posed via the classical Hardy–Littlewood–Sobolev inequality (cf. Proposition 2.1). Leveraging these definitions, we establish the following nonexistence result for trivial solutions when $\lambda = 0$.

Theorem 1.1. *Assume $\lambda = 0$ and $\theta > 1$. Then problem (1.1) admits no nontrivial solution.*

For the case $\lambda \neq 0$, we analyze problem (1.1). Owing to the lack of explicit expressions and asymptotic estimates for minimizers of $S_{H,M}$, we cannot directly characterize the threshold for nontrivial solutions as in [12, 26, 35]. To address the compactness deficit, we develop a specialized concentration-compactness principle for mixed local-nonlocal operators (see Section 4).

Henceforth, unless stated otherwise, we assume f satisfies

$$(f) \quad f \geq 0, \quad f \not\equiv 0 \quad \text{and} \quad f \in L^{\frac{p^*}{p^*-1}}(\mathbb{R}^N).$$

Theorem 1.2. *Suppose $a > 0$, $b > 0$, and either $\theta = \frac{3N-\mu-p}{2(N-p)}$ or $a > 0$, $0 < b < S_{H,M}^{-\frac{p}{2p^*}}$, $\theta = \frac{2N-\mu}{N-p}$. Under assumption (f), there exists $\lambda^* > 0$ such that for all $\lambda \in (0, \lambda^*)$, problem (1.1) possesses a nonnegative weak solution $u_1 \in X^{1,p}(\mathbb{R}^N)$ satisfying $I_\lambda(u_1) < 0$. Moreover, there exists $\lambda^{**} \in (0, \lambda^*]$ such that for all $\lambda \in (0, \lambda^{**})$, problem (1.1) admits another nonnegative weak solution $u_2 \in X^{1,p}(\mathbb{R}^N)$ with $I_\lambda(u_2) > 0$.*

The paper is organized as follows. Section 2 reviews essential preliminaries. In Section 3, we analyze the optimal constant $S_{H,M}$ and prove Theorem 1.1. Section 4 extends Lions' concentration-compactness principle [32] to the mixed operator framework. Finally, Section 5 employs Ekeland's variational principle and the mountain pass theorem to establish the existence of two nonnegative solutions for (1.1) within a suitable parameter range of λ .

Notations

- The standard norm on $L^q(\mathbb{R}^N)$ denotes by $|\cdot|_q$ for $q \in [1, \infty)$.
- We shall also use the notation $\|u\|_{HL}^p = \left(\iint_{\mathbb{R}^{2N}} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \right)^{\frac{p}{2p^*}}$ for $u \in X^{1,p}(\mathbb{R}^N)$.
- C denotes positive constant possibly different from line to line.

2 Preliminaries

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality). *Let $r, q > 1$ and $0 < \mu < N$ satisfy $\frac{1}{r} + \frac{1}{q} + \frac{\mu}{N} = 2$. For $g \in L^r(\mathbb{R}^N)$ and $h \in L^q(\mathbb{R}^N)$, there exists a constant $C(r, q, n, \mu)$ independent of g and h such that*

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{g(x)h(x)}{|x-y|^\mu} dx dy \leq C(r, q, N, \mu) |g|_r |h|_q.$$

In particular, setting $g = h = |u|^t$, the Hardy–Littlewood–Sobolev inequality ensures the integral

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^t |u(y)|^t}{|x-y|^\mu} dx dy$$

is well defined provided $|u|^t \in L^v(\mathbb{R}^N)$ with $v = \frac{2N}{2N-\mu}$. By the Sobolev embedding $X^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$, we deduce $t = \frac{p(2N-\mu)}{2(N-p)} := p_\mu^*$. Moreover, for $u \in X^{1,p}(\mathbb{R}^N)$, it holds that

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \leq C(N, \mu) |u|_{p^*}^{2p_\mu^*}.$$

Next, we introduce the concept of weak solutions for problem (1.1).

Definition 2.2. A function $u \in X^{1,p}(\mathbb{R}^N)$ is a weak solution of (1.1) if for all $\varphi \in X^{1,p}(\mathbb{R}^N)$, it satisfies

$$\begin{aligned} & \left(a + b\|u\|^{(\theta-1)p} \right) \\ & \times \left(\int_{\mathbb{R}^N} |\nabla u|^{p-2} \nabla u \nabla \varphi \, dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y)) (\varphi(x) - \varphi(y))}{|x - y|^{N+ps}} \, dx \, dy \right) \\ & = \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*-2} u(x) \varphi(x)}{|x - y|^\mu} \, dx \, dy + \lambda \int_{\mathbb{R}^N} f(x) \varphi(x) \, dx \end{aligned} \quad (2.1)$$

We define the energy functional

$$I_\lambda(u) = \frac{a}{p} \|u\|^p + \frac{b}{\theta p} \|u\|^{\theta p} - \frac{1}{2p_\mu^*} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u^+(y)|^{p_\mu^*} |u^+(x)|^{p_\mu^*}}{|x - y|^\mu} \, dx \, dy - \lambda \int_{\mathbb{R}^N} f(x) u \, dx \quad (2.2)$$

for $u \in X^{1,p}(\mathbb{R}^N)$, where $u^+ = \max\{u, 0\}$. Since $f \in (X^{1,p}(\mathbb{R}^N))'$, the functional I_λ belongs to $C^1(X^{1,p}(\mathbb{R}^N))$. For all $u, \varphi \in X^{1,p}(\mathbb{R}^N)$, its derivative is given by

$$\begin{aligned} & \langle I'_\lambda(u), \varphi \rangle \\ & = \left(a + b\|u\|^{(\theta-1)p} \right) \\ & \times \left(\int_{\mathbb{R}^N} |\nabla u|^{p-2} \nabla u \nabla \varphi \, dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y)) (\varphi(x) - \varphi(y))}{|x - y|^{N+ps}} \, dx \, dy \right) \\ & - \iint_{\mathbb{R}^{2N}} \frac{|u^+(y)|^{p_\mu^*} |u^+(x)|^{p_\mu^*-2} u^+(x) \varphi(x)}{|x - y|^\mu} \, dx \, dy - \lambda \int_{\mathbb{R}^N} f(x) \varphi(x) \, dx. \end{aligned}$$

Consequently, u is a weak solution of (1.1) if and only if u is a critical point of the functional I_λ .

Remark 2.3. To verify the well-definedness of (2.2), we confirm the finiteness of all integrals in (2.1). For $u, \varphi \in X^{1,p}(\mathbb{R}^N)$, Hölder's inequality yields

$$\begin{aligned} & \int_{\mathbb{R}^N} |\nabla u|^{p-2} \nabla u \nabla \varphi \, dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y)) (\varphi(x) - \varphi(y))}{|x - y|^{N+ps}} \, dx \, dy \\ & \leq \|\nabla u\|_p^{p-1} \|\nabla \varphi\|_p + [u]_{s,p}^{p-1} [\varphi]_{s,p} < \infty. \end{aligned}$$

Additionally, leveraging the Sobolev embedding $X^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$ and the Hardy–Littlewood–Sobolev inequality, we estimate

$$\begin{aligned} & \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*-2} u(x) \varphi(x)}{|x - y|^\mu} \, dx \, dy + \lambda \int_{\mathbb{R}^N} f(x) \varphi(x) \, dx \\ & \leq C(N, \mu) |u|_{p^*}^{\frac{p(2N-\mu)+2Np}{2(N-p)-2N-\mu}} |\varphi|_{p^*}^{\frac{2N}{2N-\mu}} + \lambda |f|_{(p^*)'} |\varphi|_{p^*} < \infty. \end{aligned}$$

3 Proof of Theorem 1.1

We dedicate this section to prove Theorem 1.1 in the case $\lambda = 0$.

Lemma 3.1. Let $s \in (0, 1)$. For $S_{H,C}$ and $S_{H,M}$ defined in (1.3) and (1.4), it holds that $S_{H,M} = S_{H,C}$.

Proof. From the definitions of $S_{H,C}$ and $S_{H,M}$, the inequality $S_{H,M} \geq S_{H,C}$ is immediate. To prove the reverse inequality, consider any $u \in C_0^\infty(\mathbb{R}^N)$. There exists $k_0(u) \in \mathbb{N}$ such that

$$\text{supp}(u) \subseteq B_{k_0}(0), \quad \text{for all } k \geq k_0.$$

Define the scaled function $u_k := k^{\frac{N-p}{p}} u(kx)$ for $k \geq k_0$, which satisfies $\text{supp}(u_k) \subseteq B_r(0)$. By the definition of $S_{H,M}$, we have for every $k \geq k_0$,

$$S_{H,M} \leq \frac{\|u_k\|^p}{\|u_k\|_{HL}^p} = \frac{|\nabla u|_p^p}{\|u\|_{HL}^p} + k^{ps-p} \frac{[u]_{s,p}^p}{\|u\|_{HL}^p}.$$

Letting $k \rightarrow \infty$ and using $0 < s < 1$, the second term vanishes, yielding

$$S_{H,M} \leq \frac{|\nabla u|_p^p}{\|u\|_{HL}^p}.$$

By the arbitrariness of $u \in C_0^\infty(\mathbb{R}^N)$, we conclude

$$S_{H,M} \leq S_{H,C}.$$

Thus $S_{H,M} = S_{H,C}$. □

Lemma 3.2. *The optimal constant $S_{H,M}$ is never achieved.*

Proof. Assume for contradiction that there exists a nonzero function $v \in X^{1,p}(\mathbb{R}^N)$ such that $\|v\|_{HL} = 1$ and $\|v\|^p = S_{H,M} = S_{H,L}$, then

$$S_{H,L} \leq |\nabla v|_p^p \leq |\nabla v|_p^p + [v]_{s,p}^p = S_{H,L}.$$

This implies $[v]_{s,p} = 0$, meaning v is a constant in \mathbb{R}^N . However, a constant function v satisfies $\|v\| = 0$, contradicting $\|v\|_{HL} = 1$. Therefore, $S_{H,M}$ can not be achieved. □

Lemma 3.3. *Let $\alpha > 0$. The problem*

$$\begin{cases} -\Delta_p u + (-\Delta)_p^s u = \alpha \left(\int_{\mathbb{R}^N} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy \right) |u|^{p_\mu^*-2} u & \text{in } \mathbb{R}^N, \\ u \in X^{1,p}(\mathbb{R}^N), \end{cases} \quad (3.1)$$

admits no nontrivial solutions.

Proof. Suppose u is a solution to (3.1). Then u satisfies

$$\|u\|^p = \alpha \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \right).$$

Define $w = lu$ for some $l > 0$. Substituting into the equation gives

$$\frac{\|w\|^p}{l^p} = \alpha \cdot \frac{\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|w(x)|^{p_\mu^*} |w(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy}{l^{2p_\mu^*}}.$$

Setting $S_{H,M} = \alpha l^{p-2p_\mu^*}$, we obtain

$$\|w\|^p = S_{H,M} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|w(x)|^{p_\mu^*} |w(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy.$$

This implies w achieves $S_{H,M}$, contradicting Lemma 3.2. Hence, no nontrivial solutions exist. □

Proof of Theorem 1.1. Assume for contradiction that there exists a nonzero solution v to (1.1) with $\lambda = 0$. Then v satisfies

$$(a + b\|v\|^{p(\theta-1)}) (-\Delta_p v + (-\Delta)_p^s v) = \left(\int_{\mathbb{R}^N} \frac{|v(y)|^{p_\mu^*}}{|x-y|^\mu} dy \right) |v|^{p_\mu^*-2} v.$$

For any $\psi \in X^{1,p}(\mathbb{R}^N)$, testing the equation with ψ yields

$$\begin{aligned} & \int_{\mathbb{R}^N} |\nabla v|^{p-2} \nabla v \nabla \psi \, dx + \iint_{\mathbb{R}^{2N}} \frac{|v(x) - v(y)|^{p-2} (v(x) - v(y)) (\psi(x) - \psi(y))}{|x-y|^{N+ps}} \, dx \, dy \\ &= \frac{1}{a + b\|v\|^{(\theta-1)p}} \iint_{\mathbb{R}^{2N}} \frac{|v(y)|^{p_\mu^*} |v(x)|^{p_\mu^*-2} v(x) \psi(x)}{|x-y|^\mu} \, dx \, dy. \end{aligned}$$

Let $\alpha = \frac{1}{a+b\|v\|^{(\theta-1)p}} > 0$. The equation then reduces to

$$-\Delta_p v + (-\Delta)_p^s v = \alpha \left(\int_{\mathbb{R}^N} \frac{|v(y)|^{p_\mu^*}}{|x-y|^\mu} dy \right) |v|^{p_\mu^*-2} v,$$

which contradicts Lemma 3.3. Therefore, no nontrivial solutions exist when $\lambda = 0$. \square

4 The principle of concentration compactness

In [32], Lions established the celebrated concentration compactness principle in classical Sobolev spaces, which has since been widely applied to solve elliptic problems involving critical exponents. Xiang et al. [44] later extended this principle to fractional Sobolev spaces $D^{s,p}(\mathbb{R}^N)$, while Gao et al. [25] developed a concentration compactness framework for convolution nonlinearities to study critical Choquard equations. However, to the best of our knowledge, no existing results have formulated the concentration compactness principle for mixed local-nonlocal operators with Choquard-type nonlinearities. Motivated by these contributions, we establish such a principle in $X^{1,p}(\mathbb{R}^N)$, which will be pivotal in Section 5. Define

$$C_c(\mathbb{R}^N) = \{u \in C(\mathbb{R}^N) : \text{supp}(u) \text{ is a compact subset of } \mathbb{R}^N\}$$

and denote by $C_0(\mathbb{R}^N)$ the closure of $C_c(\mathbb{R}^N)$ with respect to the supremum norm $|\eta|_\infty = \sup_{x \in \mathbb{R}^N} |\eta(x)|$. Recall that a finite measure on \mathbb{R}^N corresponds to a continuous linear functional on $C_0(\mathbb{R}^N)$. For a measure ξ , its total variation norm is given by:

$$\|\xi\| = \sup_{\eta \in C_0(\mathbb{R}^N), |\eta|_\infty=1} |(\xi, \eta)|,$$

where $(\xi, \eta) = \int_{\mathbb{R}^N} \eta \, d\xi$.

Definition 4.1. Let $\mathcal{M}(\mathbb{R}^N)$ denote the space of finite nonnegative Borel measure space on \mathbb{R}^N . For $\xi \in \mathcal{M}(\mathbb{R}^N)$, we have $\xi(\mathbb{R}^N) = \|\xi\|$. A sequence $\{\xi_n\} \subset \mathcal{M}(\mathbb{R}^N)$ converges weak-* to $\xi \in \mathcal{M}(\mathbb{R}^N)$ (denoted $\xi_n \rightharpoonup \xi$) if $(\xi_n, \eta) \rightarrow (\xi, \eta)$ for all $\eta \in C_0(\mathbb{R}^N)$ as $n \rightarrow \infty$.

Theorem 4.2. Let $\{u_n\}_n \subset X^{1,p}(\mathbb{R}^N)$ be a sequence with $\|u_n\| \leq C$ for some constant $C > 0$, and suppose

$$\begin{cases} u_n \rightharpoonup u & \text{weakly in } X^{1,p}(\mathbb{R}^N), \\ |\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x-y|^{N+ps}} dy \rightharpoonup \xi & \text{weak-* in } \mathcal{M}(\mathbb{R}^N), \\ \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u_n(x)|^{p_\mu^*} \rightharpoonup v & \text{weak-* in } \mathcal{M}(\mathbb{R}^N). \end{cases}$$

Then the following hold

$$\xi(\mathbb{R}^N) \leq C^p, \quad \nu(\mathbb{R}^N) \leq S_{H,M}^{-\frac{2p^*}{p}} C^{2p^*}, \quad (4.1)$$

$$\xi = |\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy + \sum_{j \in J} \xi_j \delta_{x_j} + \tilde{\xi}, \quad (4.2)$$

$$\nu = \int_{\mathbb{R}^N} \frac{|u(y)|^{p^*}}{|x - y|^p} dy |u(x)|^{p^*} + \sum_{j \in J} \nu_j \delta_{x_j}. \quad (4.3)$$

where J is at most countable, sequence $\{\xi_j\}_j, \{\nu_j\}_j \subset \mathbb{R}_0^+, \{x_j\}_j \subset \mathbb{R}^N, \delta_{x_j}$ is the Dirac mass centered at x_j , $\tilde{\xi}$ is a nonnegative non-atomic measure. Moreover, we have

$$\nu(\mathbb{R}^N) \leq S_{H,M}^{-\frac{2p^*}{p}} \xi(\mathbb{R}^N)^{\frac{2p^*}{p}}, \quad \nu_j \leq S_{H,M}^{-\frac{2p^*}{p}} \xi_j^{\frac{2p^*}{p}}, \quad \text{for all } j \in J, \quad (4.4)$$

where $S_{H,M}$ is the optimal constant defined in (1.4).

Lemma 4.3. Let $\{u_n\}_n \subset X^{1,p}(\mathbb{R}^N)$ be the sequence given by Theorem 4.2. Fix $x_0 \in \mathbb{R}^N$ and let $\varphi \in C_0^\infty(\mathbb{R}^N)$ satisfy $0 \leq \varphi \leq 1$, $\varphi \equiv 1$ on $B_1(0)$, $\varphi \equiv 0$ in $\mathbb{R}^N \setminus B_2(0)$, and $|\nabla \varphi| \leq 2$. Define $\varphi_\varepsilon = \varphi((x - x_0)/\varepsilon)$ for all $x \in \mathbb{R}^N$. Then the following hold

$$\lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} |u_n|^p |\nabla \varphi_\varepsilon|^p dx = 0, \quad (4.5)$$

$$\lim_{\varepsilon \rightarrow 0} \limsup_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^p |\varphi_\varepsilon(x) - \varphi_\varepsilon(y)|^p}{|x - y|^{N+ps}} dx dy = 0. \quad (4.6)$$

Proof. We first prove (4.5). By the definition of φ_ε , we have:

$$\int_{\mathbb{R}^N} |u_n|^p |\nabla \varphi_\varepsilon|^p dx \leq \int_{B_{2\varepsilon}(x_0) \setminus B_\varepsilon(x_0)} \frac{2^p}{\varepsilon^p} |u_n|^p dx.$$

Scaling the variable $z = \frac{x - x_0}{\varepsilon}$, this becomes

$$\int_{B_2(0) \setminus B_1(0)} 2^p \varepsilon^{N-p} |u_n(x_0 + \varepsilon z)|^p dz.$$

For the bounded domain $\Omega = B_2(0) \setminus B_1(0)$, the Sobolev embedding $X^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ holds (cf. [13, Lemma 2.1]), where $X^{1,p}(\Omega)$ is the completion of $C_0^\infty(\Omega)$ with respect to the norm

$$\|u\|_{X^{1,p}(\Omega)} = \left(\int_{\Omega} |\nabla u|^p dx + \iint_{\Omega \times \Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}}.$$

Using the boundedness of $\{u_n\}$ in $X^{1,p}(\mathbb{R}^N)$ and $N > p$, we estimate

$$\int_{\mathbb{R}^N} |u_n|^p |\nabla \varphi_\varepsilon|^p dx \leq C \varepsilon^{N-p} \|u_n\|_{X^{1,p}(\Omega)}^p \leq C \varepsilon^{N-p} \|u_n\|^p \rightarrow 0$$

as $n \rightarrow \infty$ and $\varepsilon \rightarrow 0$, establishing (4.5). For (4.6), the proof follows similarly to [44, Lemma 2.3] by leveraging the fractional Sobolev seminorm properties and the decay of u_n at infinity. Details are omitted here for brevity. \square

Proof of Theorem 4.2. We divide the proof into four steps.

Step 1. Proof of (4.1).

Fix $R > 0$ and let $\eta \in C_0^\infty(B_{2R}(0))$ satisfy $0 \leq \eta \leq 1$ and $\eta \equiv 1$ on $B_R(0)$. By weak-* convergence,

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx \rightarrow \int_{\mathbb{R}^N} \eta(x) d\xi$$

as $n \rightarrow \infty$. Since $\|u_n\| \leq C$, we have

$$\begin{aligned} & \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx \\ & \leq \int_{\mathbb{R}^N} |\nabla u_n|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy dx \leq C^p. \end{aligned}$$

Taking $R \rightarrow \infty$, we conclude $\xi(\mathbb{R}^N) \leq C^p$. For $\nu(\mathbb{R}^N)$, by the definition of $S_{H,M}$ and $\|u_n\| \leq C$,

$$\iint_{\mathbb{R}^{2N}} \frac{|u_n(x)|^{p_\mu^*} |u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dx dy \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \|u_n\|^{2p_\mu^*} \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} C^{2p_\mu^*},$$

yielding $\nu(\mathbb{R}^N) \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} C^{2p_\mu^*}$.

Step 2. Proof of (4.2).

Define the functional

$$K(u) = \int_{\mathbb{R}^N} \left(|\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx$$

for $\eta \in C_0(\mathbb{R}^N)$. Since K is continuously differentiable and convex on $X^{1,p}(\mathbb{R}^N)$, it is weakly lower semicontinuous. Thus,

$$\begin{aligned} & \liminf_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx \\ & \geq \int_{\mathbb{R}^N} \left(|\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx. \end{aligned}$$

By weak-* convergence, the left-hand side equals $\int_{\mathbb{R}^N} \eta d\xi$. Therefore,

$$\int_{\mathbb{R}^N} \eta d\xi \geq \int_{\mathbb{R}^N} \left(|\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy \right) \eta(x) dx.$$

By the arbitrariness of $\eta \geq 0$ in $C_0(\mathbb{R}^N)$, we deduce

$$\xi \geq |\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy.$$

The decomposition

$$\xi = |\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy + \sum_{j \in J} \xi_j \delta_{x_j} + \tilde{\xi}$$

follows from the structure of nonnegative Radon measures.

Step 3. Proof of (4.3).

For $\eta \in C_0(\mathbb{R}^N)$, using [34, Equation (3.6)], we have

$$\begin{aligned} & \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u_n(x)|^{p_\mu^*} - \int_{\mathbb{R}^N} \frac{|\bar{u}_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |\bar{u}_n(x)|^{p_\mu^*} \right) \eta(x) dx \\ &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u(x)|^{p_\mu^*} \eta(x) dx, \end{aligned}$$

where $\bar{u}_n = u_n - u$. Define $\bar{\nu} = \nu - \int_{\mathbb{R}^N} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u(x)|^{p_\mu^*}$. By weak-* convergence,

$$\int_{\mathbb{R}^N} \eta d\bar{\nu} = \lim_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|\bar{u}_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |\bar{u}_n(x)|^{p_\mu^*} \eta(x) dx.$$

To analyze the atomic part, fix $x_0 \in \mathbb{R}^N$ and let $\varphi \in C_0^\infty(\mathbb{R}^N)$ satisfy $0 \leq \varphi \leq 1$, $\varphi \equiv 1$ on $B_1(0)$, $\varphi \equiv 0$ outside $B_2(0)$, and $|\nabla \varphi| \leq 2$. Define $\varphi_\varepsilon(x) = \varphi((x - x_0)/\varepsilon)$. Using [25, Equation (2.8)], we derive

$$\lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|\varphi_\varepsilon u_n(y)|^{p_\mu^*} |\varphi_\varepsilon u_n(x)|^{p_\mu^*}}{|x-y|^\mu} dy dx = \nu(\{x_0\})$$

and

$$\lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(\int_{\mathbb{R}^N} |\nabla u_n|^p \varphi_\varepsilon^p dx + \iint_{\mathbb{R}^{2N}} \frac{|\varphi_\varepsilon u_n(x) - \varphi_\varepsilon u_n(y)|^p}{|x-y|^{N+ps}} dy dx \right) = \xi(\{x_0\}).$$

Recall the following Young inequality

$$|\zeta_1 + \zeta_2|^p \leq (1 + \beta)^{p-1} |\zeta_1|^p + (1 + 1/\beta)^{p-1} |\zeta_2|^p, \quad (4.7)$$

where $\zeta_1, \zeta_2 \in \mathbb{R}$ and $\beta > 0$. Applying (4.7) and Lemma 4.3, we find

$$\nu(\{x_0\}) \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi(\{x_0\})^{\frac{2p_\mu^*}{p}}.$$

Thus, the atoms of ν are contained in those of ξ . For the non-atomic part, we use the Radon–Nikodym theorem and Lebesgue’s differentiation theorem to show $\tilde{\nu} = 0$.

Step 4. Proof of (4.4).

Fix $\eta \in C_0^\infty(B_{2R}(0))$ with $0 \leq \eta \leq 1$, $\eta \equiv 1$ on $B_R(0)$, and $|\nabla \eta| \leq 2/R$. By Young’s inequality and Lemma 4.3,

$$\begin{aligned} & \iint_{\mathbb{R}^{2N}} \frac{|\eta u_n(y)|^{p_\mu^*} |\eta u_n(x)|^{p_\mu^*}}{|x-y|^\mu} dy dx \\ & \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \left((1 + \beta)^{p-1} \int_{\mathbb{R}^N} |u_n \nabla \eta|^p dx + (1 + \beta^{-1})^{p-1} \int_{\mathbb{R}^N} \eta^p d\xi \right)^{\frac{2p_\mu^*}{p}}. \end{aligned}$$

Letting $R \rightarrow \infty$ and $\beta \rightarrow \infty$, we obtain

$$\int_{\mathbb{R}^N} \eta^{2p_\mu^*} d\nu \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \left(\int_{\mathbb{R}^N} \eta^p d\xi \right)^{\frac{2p_\mu^*}{p}}.$$

Taking $R \rightarrow \infty$ and using the atomic decomposition, we conclude

$$\nu(\mathbb{R}^N) \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi(\mathbb{R}^N)^{\frac{2p_\mu^*}{p}} \quad \text{and} \quad \nu_j \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi_j^{\frac{2p_\mu^*}{p}} \quad \text{for all } j \in J.$$

This completes the proof. \square

Theorem 4.4. Let $\{u_n\}_n \subset X^{1,p}(\mathbb{R}^N)$ be a bounded sequence such that

$$\begin{cases} |\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \rightharpoonup \xi & \text{weak-* in } \mathcal{M}(\mathbb{R}^N), \\ \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} \rightharpoonup \nu & \text{weak-* in } \mathcal{M}(\mathbb{R}^N), \end{cases}$$

and set

$$\begin{aligned} \xi_\infty &= \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\{x \in \mathbb{R}^N : |x| > R\}} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx, \\ \nu_\infty &= \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\{x \in \mathbb{R}^N : |x| > R\}} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} dx, \end{aligned}$$

where the quantities ξ_∞ and ν_∞ are well defined. Then the following hold

$$\begin{aligned} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx &= \xi(\mathbb{R}^N) + \xi_\infty, \\ \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} dx &= \nu(\mathbb{R}^N) + \nu_\infty, \\ \nu_\infty &\leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi_\infty^{\frac{2p_\mu^*}{p}}. \end{aligned}$$

Proof. Fix $\chi \in C^\infty(\mathbb{R}^N)$ with $0 \leq \chi \leq 1$, $\chi = 0$ in $B_1(0)$, $\chi = 1$ in $\mathbb{R}^N \setminus B_2(0)$, and $|\nabla \chi| \leq 2$. Define $\chi_R(x) = \chi(x/R)$ for all $x \in \mathbb{R}^N$ and $R > 0$. Then

$$\begin{aligned} &\int_{\{x \in \mathbb{R}^N : |x| > 2R\}} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx \\ &\leq \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \chi_R^p dx \\ &\leq \int_{\{x \in \mathbb{R}^N : |x| > R\}} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx, \end{aligned}$$

which means

$$\xi_\infty = \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \chi_R^p dx.$$

Similarly,

$$\nu_\infty = \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} \chi_R^{2p_\mu^*} dx.$$

By the definition of weak-* convergence, we have

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) (1 - \chi_R^p) dx \rightarrow \int_{\mathbb{R}^N} (1 - \chi_R^p) d\xi$$

as $n \rightarrow \infty$. So we get

$$\xi(\mathbb{R}^N) = \lim_{R \rightarrow \infty} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) (1 - \chi_R^p) dx.$$

Then the following decomposition

$$\begin{aligned} & \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx \\ &= \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \chi_R^p dx \\ &+ \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) (1 - \chi_R^p) dx \end{aligned}$$

gives that

$$\limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) dx = \xi_\infty + \xi(\mathbb{R}^N).$$

Similarly, we can conclude that

$$\limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} dx = \nu(\mathbb{R}^N) + \nu_\infty.$$

To prove the last inequality

$$\nu_\infty \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi_\infty^{\frac{2p_\mu^*}{p}},$$

we first claim that

$$\lim_{R \rightarrow \infty} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} |u_n|^p |\nabla \chi_R|^p dx = 0, \quad (4.8)$$

$$\lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^p |\chi_R(x) - \chi_R(y)|^p}{|x - y|^{N+ps}} dx dy = 0. \quad (4.9)$$

By the same argument as equation (4.5) in Lemma 4.3, we can derive (4.8). For (4.9), the proof follows similarly to [44, Equation (2.15)]. Details are omitted here for brevity.

By Young's inequality, (4.8) and (4.9), we deduce

$$\begin{aligned} & \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} |\chi_R|^{2p_\mu^*} dx \\ &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y) \chi_R|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x) \chi_R|^{p_\mu^*} dx \\ &\leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \left((1 + \beta^{-1})^{p-1} \int_{\mathbb{R}^N} |\nabla u_n \chi_R|^p dx + (1 + \beta^{-1})^{p-1} \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^p |\chi_R(x)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{2p_\mu^*}{p}} \end{aligned}$$

Letting $R \rightarrow \infty$ and $\beta \rightarrow \infty$, we conclude

$$\nu_\infty \leq S_{H,M}^{-\frac{2p_\mu^*}{p}} \xi_\infty^{\frac{2p_\mu^*}{p}}.$$

Therefore, the proof is complete. \square

5 Proof of Theorem 1.2

Throughout this section, we consistently assume that $1 < \theta \leq \frac{2N-\mu}{N-p}$, without additional mention.

Definition 5.1. Let $c \in \mathbb{R}$, suppose $X^{1,p}(\mathbb{R}^N)$ is a Banach space and $I_\lambda \in C^1(X^{1,p}(\mathbb{R}^N), \mathbb{R})$. We say $\{u_n\}_n$ is a $(PS)_c$ sequence in $X^{1,p}(\mathbb{R}^N)$ if $I_\lambda(u_n) \rightarrow c$ and $I'_\lambda(u_n) \rightarrow 0$.

Lemma 5.2. If $\{u_n\}_n$ is a $(PS)_c$ sequence, then $\{u_n\}_n$ is bounded in $X^{1,p}(\mathbb{R}^N)$ and $\{u_n^+\}_n$ is also a $(PS)_c$ sequence.

Proof. Since $\{u_n\}_n$ is a $(PS)_c$ sequence, there exists $C > 0$ such that

$$|I_\lambda(u_n)| \leq C, \quad \left| \left\langle I'_\lambda(u_n), \frac{u_n}{\|u_n\|} \right\rangle \right| \leq C.$$

Then we obtain

$$I_\lambda(u_n) - \frac{1}{2p_\mu^*} \langle I'_\lambda(u_n), u_n \rangle \leq C + C\|u_n\|. \quad (5.1)$$

When $\theta < \frac{2N-\mu}{N-p}$ and $a > 0, b > 0$, we have

$$\begin{aligned} I_\lambda(u_n) - \frac{1}{2p_\mu^*} \langle I'_\lambda(u_n), u_n \rangle &= a \left(\frac{1}{p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^p + b \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^{\theta p} \\ &\quad + \lambda \left(\frac{1}{2p_\mu^*} - 1 \right) \int_{\mathbb{R}^N} f(x) u_n \, dx \\ &\geq b \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^{\theta p} - \lambda \left(1 - \frac{1}{2p_\mu^*} \right) S^{-\frac{1}{p}} |f|_{(p^*)'} \|u_n\|. \end{aligned}$$

When $\theta = \frac{2N-\mu}{N-p}$ and $a > 0, b > 0$, we have

$$\begin{aligned} I_\lambda(u_n) - \frac{1}{2p_\mu^*} \langle I'_\lambda(u_n), u_n \rangle &= a \left(\frac{1}{p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^p + b \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^{\theta p} \\ &\quad + \lambda \left(\frac{1}{2p_\mu^*} - 1 \right) \int_{\mathbb{R}^N} f(x) u_n \, dx \\ &\geq a \left(\frac{1}{p} - \frac{1}{2p_\mu^*} \right) \|u_n\|^p - \lambda \left(1 - \frac{1}{2p_\mu^*} \right) S^{-\frac{1}{p}} |f|_{(p^*)'} \|u_n\|. \end{aligned}$$

By invoking $1 < p < \theta p$ and (5.1), we conclude that $\{u_n\}_n$ is bounded in $X^{1,p}(\mathbb{R}^N)$. Next, we aim to demonstrate that $\{u_n^+\}_n$ is also a $(PS)_c$ sequence, the proof is divided into two steps.

Step 1. We prove $I_\lambda(u_n^+) \rightarrow c$.

Since $\{u_n\}_n$ is a $(PS)_c$ sequence, we have $I_\lambda(u_n) \rightarrow c$ and $\langle I'_\lambda(u_n), u_n \rangle \rightarrow 0$. So $\langle I'_\lambda(u_n), u_n^+ \rangle \rightarrow 0$. From the definition of I_λ , we have

$$\begin{aligned} &\langle I'_\lambda(u_n), u_n \rangle - \langle I'_\lambda(u_n), u_n^+ \rangle \\ &= \left(a + b\|u_n\|^{p(\theta-1)} \right) \left(\int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n (-\nabla u_n^-) \, dx \right. \\ &\quad \left. + \iint_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^{p-2} (u_n(x) - u_n(y)) (-u_n^-(x) + u_n^-(y))}{|x-y|^{N+ps}} \, dx \, dy \right) \\ &\quad - \lambda \int_{\mathbb{R}^N} f(x) u_n \, dx + \lambda \int_{\mathbb{R}^N} f(x) u_n^+ \, dx \rightarrow 0 \end{aligned} \quad (5.2)$$

as $n \rightarrow \infty$. Based on the fact that

$$|\xi^- - \eta^-|^p \leq |\xi - \eta|^{p-2}(\xi - \eta)(-\xi^- + \eta^-),$$

we obtain

$$|u_n(x) - u_n(y)|^{p-2} (u_n(x) - u_n(y)) (-u_n^-(x) + u_n^-(y)) \geq |u_n^-(x) - u_n^-(y)|^p \geq 0. \quad (5.3)$$

Besides,

$$\begin{aligned} & \int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n (-\nabla u_n^-) \, dx \\ &= \int_{\mathbb{R}^N} |\nabla u_n|^{p-2} (\nabla u_n^+ - \nabla u_n^-) (-\nabla u_n^-) \, dx = \int_{\mathbb{R}^N} |\nabla u_n^-|^p \, dx \geq 0. \end{aligned} \quad (5.4)$$

Moreover, $f \geq 0$ and $\lambda \geq 0$ implies

$$\lambda \int_{\mathbb{R}^N} f(x) (u_n^+ - u_n^-) \, dx = \lambda \int_{\mathbb{R}^N} f(x) u_n^- \, dx \geq 0. \quad (5.5)$$

By (5.2)–(5.5), we derive

$$[u_n^-]_{s,p}^p \rightarrow 0, \quad \int_{\mathbb{R}^N} |\nabla u_n^-|^p \, dx \rightarrow 0, \quad \int_{\mathbb{R}^N} f u_n^- \, dx \rightarrow 0 \quad (5.6)$$

as $n \rightarrow \infty$. By

$$[u_n^+]_{s,p} - [u_n^-]_{s,p} \leq [u_n]_{s,p} = [u_n^+ - u_n^-]_{s,p} \leq [u_n^+]_{s,p} + [u_n^-]_{s,p},$$

we eventually obtain $[u_n^+]_{s,p}^p \rightarrow [u_n]_{s,p}^p$. Similarly, we can get $\int_{\mathbb{R}^N} |\nabla u_n^+|^p \, dx \rightarrow \int_{\mathbb{R}^N} |\nabla u_n|^p \, dx$. It is also easy to deduce $\int_{\mathbb{R}^N} f u_n^+ \, dx \rightarrow \int_{\mathbb{R}^N} f u_n \, dx$. Hence we conclude $I_\lambda(u_n^+) \rightarrow c$ since $I_\lambda(u_n) \rightarrow c$.

Step 2. We prove $\langle I'_\lambda(u_n^+), v \rangle \rightarrow 0$ **for all** $v \in X^{1,p}(\mathbb{R}^N)$.

Note that

$$\langle I'_\lambda(u_n), v \rangle - \langle I'_\lambda(u_n^+), v \rangle = \left(a + b \|u_n\|^{p(\theta-1)} \right) (I_1 + I_2) + o(1), \quad (5.7)$$

where

$$I_1 = \int_{\mathbb{R}^N} (|\nabla u_n|^{p-2} \nabla u_n - |\nabla u_n^+|^{p-2} \nabla u_n^+) v \, dx$$

and

$$I_2 = \iint_{\mathbb{R}^N} \frac{(|u_n(x) - u_n(y)|^{p-2}(u_n(x) - u_n(y)) - |u_n^+(x) - u_n^+(y)|^{p-2}(u_n^+(x) - u_n^+(y))) (v(x) - v(y))}{|x - y|^{N+ps}} \, dx \, dy.$$

Next we are going to estimate I_1 and I_2 .

For I_1 :

Case 1. When $u_n \geq 0$, we have $I_1 = 0$.

Case 2. When $u_n < 0$,

$$I_1 = \int_{\{x: u_n(x) < 0\}} |\nabla u_n|^{p-2} \nabla u_n v \, dx \leq \int_{\mathbb{R}^N} |\nabla u_n^-|^p \, dx \int_{\mathbb{R}^N} |v|^p \, dx \rightarrow 0$$

as $n \rightarrow \infty$ by (5.6).

For I_2 :

Case 1. When $u_n(x) \geq 0$, $u_n(y) \geq 0$, it's obvious that $I_2 = 0$.

Case 2. When $u_n(x) \geq 0$, $u_n(y) < 0$,

$$\begin{aligned}
I_2 &= \int_{\{x: u_n(x) \geq 0\}} \int_{\{y: u_n(y) < 0\}} \frac{[(u_n(x) - u_n(y))^{p-1} - (u_n(x))^{p-1}] (v(x) - v(y))}{|x - y|^{N+ps}} dx dy \\
&= \int_{\{x: u_n(x) \geq 0\}} \int_{\{y: u_n(y) < 0\}} \frac{\left(\sum_{i,j \in \mathbb{Z}^+, i+j=p-1, j \geq 1} (u_n(x))^i (-u_n(y))^j \right) (v(x) - v(y))}{|x - y|^{N+ps}} dx dy \\
&= \sum_{\substack{i,j \in \mathbb{Z}^+ \\ i+j=p-1 \\ j \geq 1}} \int_{\{x: u_n(x) \geq 0\}} \int_{\{y: u_n(y) < 0\}} \frac{(u_n(x))^i (v(x) - v(y))^{\frac{i}{p-1}} (-u_n(y))^j (v(x) - v(y))^{\frac{j}{p-1}}}{|x - y|^{N+ps}} dx dy \\
&\leq \sum_{\substack{i,j \in \mathbb{Z}^+ \\ i+j=p-1 \\ j \geq 1}} \iint_{\mathbb{R}^{2N}} \frac{|u_n^+(x) - u_n^+(y)|^i |v(x) - v(y)|^{\frac{i}{p-1}}}{|x - y|^{(N+ps) \cdot \frac{i}{p-1}}} \cdot \frac{|u_n^-(x) - u_n^-(y)|^j |v(x) - v(y)|^{\frac{j}{p-1}}}{|x - y|^{(N+ps) \cdot \frac{j}{p-1}}} dx dy \\
&\leq \sum_{\substack{i,j \in \mathbb{Z}^+ \\ i+j=p-1 \\ j \geq 1}} \left(\iint_{\mathbb{R}^{2N}} \frac{|u_n^+(x) - u_n^+(y)|^{p-1} |v(x) - v(y)|}{|x - y|^{N+ps}} dx dy \right)^{\frac{i}{p-1}} \\
&\quad \left(\iint_{\mathbb{R}^{2N}} \frac{|u_n^-(x) - u_n^-(y)|^{p-1} |v(x) - v(y)|}{|x - y|^{N+ps}} dx dy \right)^{\frac{j}{p-1}} \\
&\leq \sum_{\substack{i,j \in \mathbb{Z}^+ \\ i+j=p-1 \\ j \geq 1}} \left(\iint_{\mathbb{R}^{2N}} \frac{|u_n^+(x) - u_n^+(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{p-1}{p}} \left(\iint_{\mathbb{R}^{2N}} \frac{|v(x) - v(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}} \\
&\quad \left(\iint_{\mathbb{R}^{2N}} \frac{|u_n^-(x) - u_n^-(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{p-1}{p}} \left(\iint_{\mathbb{R}^{2N}} \frac{|v(x) - v(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}} \\
&\leq \sum_{\substack{j \in \mathbb{Z}^+ \\ 1 \leq j \leq p-1}} C \|u_n^-\|^{j/p} \rightarrow 0
\end{aligned}$$

as $n \rightarrow \infty$ by (5.6).

Case 3. When $u_n(x) < 0$, $u_n(y) \geq 0$, we can obtain $I_2 \rightarrow 0$ as $n \rightarrow \infty$ through a discussion similar to Case 2.

Case 4. When $u_n(x) < 0$, $u_n(y) < 0$, we have

$$\begin{aligned}
I_2 &= \int_{\{x: u_n(x) < 0\}} \int_{\{y: u_n(y) < 0\}} \frac{|u_n(x) - u_n(y)|^{p-2} (u_n(x) - u_n(y)) (v(x) - v(y))}{|x - y|^{N+ps}} dx dy \\
&\leq \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dx dy \iint_{\mathbb{R}^{2N}} \frac{|v(x) - v(y)|^p}{|x - y|^{N+ps}} dx dy \\
&\leq C \|u_n^-\| \rightarrow 0
\end{aligned}$$

as $n \rightarrow \infty$ by (5.6).

By virtue of (5.7) and the fact that $\langle I'_\lambda(u_n), v \rangle \rightarrow 0$, we derive that $\langle I'_\lambda(u_n^+), v \rangle \rightarrow 0$ for all $v \in X^{1,p}(\mathbb{R}^N)$. Consequently, we conclude that $\{u_n^+\}_n$ is a $(PS)_c$ sequence. \square

Lemma 5.3. Suppose $a > 0$, $b > 0$ and either $\theta < \frac{2N-\mu}{N-p}$, or $a > 0$, $0 < b < S_{H,M}^{-\frac{2p_\mu^*}{p}}$, $\theta = \frac{2N-\mu}{N-p}$. Then there exist $\lambda_0 > 0$, $\rho > 0$ and $\alpha > 0$ such that for any $\lambda \in (0, \lambda_0)$, $I_\lambda(u) \geq \alpha$ holds for every $u \in X^{1,p}(\mathbb{R}^N)$ satisfying $\|u\| = \rho$.

Proof. For any $u \in X^{1,p}(\mathbb{R}^N)$, by the Sobolev inequality, we have

$$\begin{aligned} I_\lambda(u) &= \frac{a}{p}\|u\|^p + \frac{b}{\theta p}\|u\|^{\theta p} - \frac{1}{2p_\mu^*} \iint_{\mathbb{R}^{2N}} \frac{|u^+(x)|^{p_\mu^*} |u^+(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy - \lambda \int_{\mathbb{R}^N} f(x)u dx \\ &\geq \frac{a}{p}\|u\|^p + \frac{b}{\theta p}\|u\|^{\theta p} - \frac{1}{2p_\mu^*} S_{H,M}^{-\frac{2p_\mu^*}{p}} \|u\|^{2p_\mu^*} - \lambda S^{-\frac{1}{p}} |f|_{(p^*)'} \|u\|, \end{aligned}$$

where S is the optimal constant for the Sobolev embedding $X^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$.

Case 1. $a > 0$, $b > 0$ and $\theta < \frac{2N-\mu}{N-p}$. We have

$$I_\lambda(u) \geq \left(\frac{b}{\theta p} \|u\|^{\theta p-1} - \frac{1}{2p_\mu^*} S_{H,M}^{-\frac{2p_\mu^*}{p}} \|u\|^{2p_\mu^*-1} - \lambda S^{-\frac{1}{p}} |f|_{(p^*)'} \|u\| \right) \|u\|.$$

Define

$$k(t) := \frac{b}{\theta p} t^{\theta p-1} - \frac{1}{2p_\mu^*} S_{H,M}^{-\frac{2p_\mu^*}{p}} t^{2p_\mu^*-1}$$

for all $t \geq 0$. Since $2p_\mu^* > \theta p$ by $\theta < \frac{2N-\mu}{N-p}$, we obtain that $\max_{t \geq 0} k(t) = k(\rho) > 0$, where

$$\rho = \left(\frac{2b p_\mu^* (\theta p - 1) S_{H,M}^{\frac{2p_\mu^*}{p}}}{\theta p (2p_\mu^* - 1)} \right)^{\frac{1}{2p_\mu^* - \theta p}}.$$

Set

$$\lambda_0 = \frac{k(\rho)}{S^{-\frac{1}{p}} |f|_{(p^*)'}},$$

then for any $\lambda \in (0, \lambda_0)$ we have

$$I_\lambda(u) \geq \left(k(\rho) - \lambda S^{-\frac{1}{p}} |f|_{(p^*)'} \right) \rho =: \alpha > 0 \quad \text{for all } \|u\| = \rho.$$

Case 2. $a > 0$, $0 < b < S_{H,M}^{-\frac{2p_\mu^*}{p}}$ and $\theta = \frac{2N-\mu}{N-p}$. We have

$$I_\lambda(u) \geq \left[\frac{a}{p} \|u\|^{p-1} - \left(\frac{1}{2p_\mu^*} S_{H,M}^{-\frac{2p_\mu^*}{p}} - \frac{b}{\theta p} \right) \|u\|^{\theta p-1} - \lambda S^{-\frac{1}{p}} |f|_{(p^*)'} \right] \|u\|$$

with $2p_\mu^* = \theta p$. Define

$$l(t) := \frac{a}{p} t^{p-1} - \left(\frac{1}{2p_\mu^*} S_{H,M}^{-\frac{2p_\mu^*}{p}} - \frac{b}{\theta p} \right) t^{\theta p-1}$$

for all $t \geq 0$. Then $\max_{t \geq 0} l(t) = l(\rho) > 0$, where

$$\rho = \left(\frac{2a(p-1)p_\mu^*}{p(2p_\mu^* - 1)(S_{H,M}^{-\frac{2p_\mu^*}{p}} - b)} \right)^{\frac{1}{2p_\mu^* - p}}.$$

Set

$$\lambda_0 = \frac{l(\rho)}{S^{-\frac{1}{p}} |f|_{(p^*)'}},$$

then for all $\lambda \in (0, \lambda_0)$ we deduce

$$I_\lambda(u) \geq \left(l(\rho) - \lambda S^{-\frac{1}{p}} |f|_{(p^*)'} \right) \rho =: \alpha > 0 \text{ for all } \|u\| = \rho.$$

Thus, the proof is completed. \square

Lemma 5.4. Suppose $a > 0$, $b > 0$, and either $\theta < \frac{2N-\mu}{N-p}$ or $a > 0$, $0 < b < S_{H,M}^{-\frac{2p_\mu^*}{p}}$, $\theta = \frac{2N-\mu}{N-p}$. Then for any $\lambda > 0$, there exists $e \in X^{1,p}(\mathbb{R}^N)$ such that $\|e\| \geq \rho$ and $I_\lambda(e) < 0$, where ρ is the number given in Lemma 5.3.

Proof. By the definition of $S_{H,M}$ as given in (1.4), for all $\varepsilon > 0$, there exists $u \in X^{1,p}(\mathbb{R}^N) \setminus \{0\}$ such that

$$\frac{\|u\|^p}{\left(\iint_{\mathbb{R}^{2N}} \frac{|u(x)|^{p_\mu^*} |u(y)|^{p_\mu^*}}{|x-y|^\mu} dx dy \right)^{\frac{p}{2p_\mu^*}}} \leq S_{H,M} + \varepsilon.$$

Then there exists a positive U satisfying $\|U\|_{HL} = 1$ such that

$$\|U\|^p = S_{H,M} + h(\varepsilon), \quad (5.8)$$

where $h(\varepsilon)$ is a nonnegative constant associated with ε and $h(\varepsilon) \leq \varepsilon$. Then for any $t > 0$, we have

$$\begin{aligned} I_\lambda(tU) &= \frac{a\|U\|^p}{p} t^p + \frac{b\|U\|^{\theta p}}{\theta p} t^{\theta p} - \frac{t^{2p_\mu^*}}{2p_\mu^*} - \lambda t \int_{\mathbb{R}^N} f(x)U dx \\ &\leq \frac{a\|U\|^p}{p} t^p + \frac{b\|U\|^{\theta p}}{\theta p} t^{\theta p} - \frac{t^{2p_\mu^*}}{2p_\mu^*}. \end{aligned}$$

When $\theta < \frac{2N-\mu}{N-p}$ (i.e. $\theta p < 2p_\mu^*$), there exists a sufficiently large $t > 0$ such that $\|tU\| \geq \rho$ and $I_\lambda(tU) < 0$.

When $\theta = \frac{2N-\mu}{N-p}$ (i.e. $\theta p = 2p_\mu^*$), we derive

$$I_\lambda(tU) \leq \frac{a\|U\|^p}{p} t^p - \left(\frac{1}{2p_\mu^*} - \frac{b\|U\|^{\theta p}}{\theta p} \right) t^{2p_\mu^*}.$$

Given $0 < b < S_{H,M}^{-\theta}$, there exists $t > 0$ such that $\|tU\| \geq \rho$ and $I_\lambda(tU) < 0$. Setting $e = tU$ completes the proof. \square

From Lemma 5.2, we have that any $(PS)_c$ sequence can be regarded as a sequence of non-negative functions. Thus, we may assume without loss of generality that all $(PS)_c$ sequences are nonnegative in the subsequent analysis.

Define

$$\Lambda = \begin{cases} \left(\frac{1}{p} - \frac{1}{\theta p} \right) (aS_{H,M})^{\frac{\theta}{\theta-1}} \left(\frac{1}{1-bS_{H,M}^{\theta}} \right)^{\frac{1}{\theta-1}}, & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, 0 < b < S_{H,M}^{-\theta}, \\ \left(\frac{a}{p} - \frac{a}{\theta p} \right) S_{H,M} \left(\frac{bS_{H,M}^{\theta} + \sqrt{b^2 S_{H,M}^{2\theta} + 4aS_{H,M}}}{2} \right)^{\frac{2\theta-1}{\theta-1} \cdot \frac{p}{2p_{\mu}^*}} \\ + \left(\frac{1}{\theta p} - \frac{1}{2p_{\mu}^*} \right) \left(\frac{bS_{H,M}^{\theta} + \sqrt{b^2 S_{H,M}^{2\theta} + 4aS_{H,M}}}{2} \right)^{\frac{2\theta-1}{\theta-1}}, & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0, \end{cases}$$

and

$$\Theta(\lambda) = \frac{p-1}{p} \left[\left(a - \frac{a}{\theta} \right) S \right]^{-\frac{1}{p-1}} \left(1 - \frac{1}{\theta p} \right)^{\frac{p}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)''}^{\frac{p}{p-1}},$$

where $(p^*)' = \frac{p^*}{p^*-1}$.

Lemma 5.5. Assume that $a > 0$, $b > 0$ and $\theta = \frac{3N-\mu-p}{2(N-p)}$, or $a > 0$, $0 < b < S_{H,M}^{-\frac{p}{p}}$ and $\theta = \frac{2N-\mu}{N-p}$, if $\{u_n\}_n \in X^{1,p}(\mathbb{R}^N)$ is a bounded and nonnegative sequence satisfying $I_{\lambda}(u_n) \rightarrow c < \Lambda - \Theta(\lambda)$ and $I'_{\lambda}(u_n) \rightarrow 0$ in $(X^{1,p}(\mathbb{R}^N))'$ as $n \rightarrow \infty$, then there exists a nonnegative function $u \in X^{1,p}(\mathbb{R}^N)$ such that, up to a subsequence, $u_n \rightarrow u$ in $X^{1,p}(\mathbb{R}^N)$ as $n \rightarrow \infty$.

Proof. As $\{u_n\}_n$ is bounded and nonnegative, then there exists a subsequence, still noted $\{u_n\}_n$, and a nonnegative function $u \in X^{1,p}(\mathbb{R}^N)$ such that $u_n \rightharpoonup u$ in $X^{1,p}(\mathbb{R}^N)$, $u_n \rightarrow u$ in L_{loc}^r for $r \in [1, p^*)$ and $u_n \rightarrow u$ a.e in \mathbb{R}^N . Applying Theorem 4.2, up to a further subsequence, there exists a (at most) countable set J , a non-atomic measure $\tilde{\xi}$ and points $\{x_j\}_{j \in J} \subset \mathbb{R}^N$ and $\{\xi_j\}_{j \in J}$, $\{\nu_j\}_{j \in J} \subset \mathbb{R}^+$ such that as $n \rightarrow \infty$ we have

$$|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \rightharpoonup \xi = |\nabla u|^p + \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy + \sum_{j \in J} \xi_j \delta_{x_j} + \tilde{\xi}, \quad (5.9)$$

$$\int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_{\mu}^*}}{|x - y|^{\mu}} dy |u_n(x)|^{p_{\mu}^*} \rightharpoonup \nu = \int_{\mathbb{R}^N} \frac{|u(y)|^{p_{\mu}^*}}{|x - y|^{\mu}} dy |u(x)|^{p_{\mu}^*} + \sum_{j \in J} \nu_j \delta_{x_j} \quad (5.10)$$

in the measure sense, where δ_{x_j} is the Dirac measure concentrated at x_j . Moreover,

$$\nu_j \leq S_{H,M}^{-\frac{2p_{\mu}^*}{p}} \xi_j^{\frac{2p_{\mu}^*}{p}} \quad (5.11)$$

for all $j \in J$, where $S_{H,M}$ is the optimal constant defined in (1.4). We now proceed with the proof in three steps.

Step 1. We claim that $J = \emptyset$. Suppose by contradiction that $J \neq \emptyset$. Fix $j \in J$. For any $\varepsilon > 0$, choose $\varphi_{\varepsilon,j} \in C_0^{\infty}(\mathbb{R}^N)$ such that

$$\varphi_{\varepsilon,j} = 1 \quad \text{in } B_{\varepsilon}(x_j), \quad \varphi_{\varepsilon,j} = 0 \quad \text{in } \mathbb{R}^N \setminus B_{2\varepsilon}(x_j), \quad |\nabla \varphi_{\varepsilon,j}| \leq 2/\varepsilon.$$

Evidently, $\varphi_{\varepsilon,j}u_n \in X^{1,p}(\mathbb{R}^N)$. It follows from $\langle I'_\lambda(u_n), \varphi_{\varepsilon,j}u_n \rangle \rightarrow 0$ that

$$\begin{aligned} & \left(a + b\|u_n\|^{(\theta-1)p} \right) \left(\int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n \nabla (\varphi_{\varepsilon,j}u_n) dx \right. \\ & \quad \left. + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^{p-2}(u_n(x) - u_n(y))(\varphi_{\varepsilon,j}(x)u_n(x) - \varphi_{\varepsilon,j}(y)u_n(y))}{|x - y|^{N+ps}} dx dy \right) \\ &= \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*} |u_n(x)|^{p_\mu^*-2} u_n(x) u_n(x) \varphi_{\varepsilon,j}(x)}{|x - y|^\mu} dx dy + \lambda \int_{\mathbb{R}^N} f(x) \varphi_{\varepsilon,j}(x) u_n dx + o(1). \end{aligned} \quad (5.12)$$

For the left-hand side of (5.12), applying Hölder's inequality and Lemma 4.3 yields

$$\begin{aligned} & \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n \nabla \varphi_{\varepsilon,j} u_n dx \\ & \leq \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(\int_{\mathbb{R}^N} |\nabla u_n|^p dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^N} |\nabla \varphi_{\varepsilon,j} u_n|^p dx \right)^{\frac{1}{p}} \\ & \leq C \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(\int_{\mathbb{R}^N} |\nabla \varphi_{\varepsilon,j} u_n|^p dx \right)^{\frac{1}{p}} = 0, \end{aligned} \quad (5.13)$$

and

$$\begin{aligned} & \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left| \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^{p-2}(u_n(x) - u_n(y))(\varphi_{\varepsilon,j}(x) - \varphi_{\varepsilon,j}(y))u_n(y)}{|x - y|^{N+ps}} dx dy \right| \\ & \leq C \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(\iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{p-1}{p}} \left(\iint_{\mathbb{R}^{2N}} \frac{|(\varphi_{\varepsilon,j}(x) - \varphi_{\varepsilon,j}(y))u_n(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}} \\ & \leq C \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(\frac{|(\varphi_{\varepsilon,j}(x) - \varphi_{\varepsilon,j}(y))u_n(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}} = 0. \end{aligned} \quad (5.14)$$

This together with equations (5.9) leads to

$$\begin{aligned} & \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \left(a + b\|u_n\|^{(\theta-1)p} \right) \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \varphi_{\varepsilon,j}(x) dx \\ & \geq \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} a \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \varphi_{\varepsilon,j}(x) dx \\ & \quad + \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} b \left(\int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} dy \right) \varphi_{\varepsilon,j}(x) dx \right)^\theta \\ & = a\zeta_j + b\zeta_j^\theta. \end{aligned} \quad (5.15)$$

For the first term on the right-hand side of (5.12), it follows from (5.10) that

$$\begin{aligned} & \lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u_n(x)|^{p_\mu^*} \varphi_{\varepsilon,j} dx \\ & = \lim_{\varepsilon \rightarrow 0} \left(\iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*}}{|x - y|^\mu} dy |u(x)|^{p_\mu^*} \varphi_{\varepsilon,j} dx + \sum_{j \in J} \nu_j \delta_{x_j} \right) = \nu_j. \end{aligned} \quad (5.16)$$

Moreover,

$$\lim_{\varepsilon \rightarrow 0} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} f \varphi_{\varepsilon,j} u_n dx = \lim_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^N} f \varphi_{\varepsilon,j} u dx = 0. \quad (5.17)$$

Therefore, by substituting (5.13)–(5.17) into (5.12), we obtain

$$\nu_j \geq a\xi_j + b\xi_j^\theta. \quad (5.18)$$

Combining (5.11) with (5.18) implies

$$\nu_j \geq \begin{cases} \left(\frac{aS_{H,M}}{1-bS_{H,M}^\theta} \right)^{\frac{\theta}{\theta-1}} & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, 0 < b < S_{H,M}^{-\theta}, \\ \left(\frac{bS_{H,M}^\theta + \sqrt{b^2S_{H,M}^{2\theta} + 4aS_{H,M}}}{2} \right)^{\frac{2\theta-1}{\theta-1}} & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0. \end{cases} \quad (5.19)$$

For $R > 0$, assume that $\psi_R \in C_0^\infty(\mathbb{R}^N)$ satisfies $\psi_R \in [0, 1]$, $\psi_R(x) = 1$ for $|x - x_j| \leq R$, $\psi_R(x) = 0$ for $|x - x_j| > 2R$, and $|\nabla \psi_R| \leq \frac{2}{R}$. By (5.9) and (5.10), we have

$$\begin{aligned} c &= \lim_{n \rightarrow \infty} \left(I_\lambda(u_n) - \frac{1}{\theta p} \langle I'_\lambda(u_n), u_n \rangle \right) \\ &= \lim_{R \rightarrow \infty} \lim_{n \rightarrow \infty} \left(\left(\frac{a}{p} - \frac{a}{\theta p} \right) \left(\int_{\mathbb{R}^N} |\nabla u_n|^p \psi_R dx + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} \psi_R(x) dy dx \right) \right. \\ &\quad \left. + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*} |u_n(x)|^{p_\mu^*} \psi_R(x)}{|x - y|^\mu} dy dx - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u_n dx \right) \\ &= \lim_{R \rightarrow \infty} \left(\left(\frac{a}{p} - \frac{a}{\theta p} \right) \left(\int_{\mathbb{R}^N} |\nabla u|^p \psi_R dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} \psi_R(x) dy dx \right) + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_j \right. \\ &\quad \left. + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*} \psi_R(x)}{|x - y|^\mu} dy dx \right. \\ &\quad \left. + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_j - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx \right) \\ &\geq \left(\frac{a}{p} - \frac{a}{\theta p} \right) \left(\int_{\mathbb{R}^N} |\nabla u|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dy dx \right) + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_j \\ &\quad + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*}}{|x - y|^\mu} dy dx + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_j - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx \\ &\geq \left(\frac{a}{p} - \frac{a}{\theta p} \right) S|u|_{p^*}^p + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_j + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*}}{|x - y|^\mu} dy dx \\ &\quad + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_j - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx, \end{aligned}$$

which implies that

$$c \geq \begin{cases} \left(\frac{a}{p} - \frac{a}{\theta p} \right) S|u|_{p^*}^p + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_j - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx, & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, b > 0, \\ \left(\frac{a}{p} - \frac{a}{\theta p} \right) S|u|_{p^*}^p + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_j + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_j - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx, & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0. \end{cases}$$

Then we apply the Hölder inequality, the Sobolev embedding, and Young inequality to derive

$$\begin{aligned} \left(1 - \frac{1}{\theta p}\right) \lambda \int_{\mathbb{R}^N} f u \, dx &= \left(1 - \frac{1}{\theta p}\right) \lambda |f|_{(p^*)'} |u|_{p^*} \\ &\leq \left(\frac{a}{p} - \frac{a}{\theta p}\right) S |u|_{p^*}^p + \frac{p-1}{p} \left[\left(a - \frac{a}{\theta}\right) S\right]^{-\frac{1}{p-1}} \left(1 - \frac{1}{\theta p}\right)^{\frac{p}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)'}^{\frac{p}{p-1}}. \end{aligned} \quad (5.20)$$

By (5.20) we obtain

$$c \geq \begin{cases} \left(\frac{a}{p} - \frac{a}{\theta p}\right) \xi_j - \frac{p-1}{p} \left[\left(a - \frac{a}{\theta}\right) S\right]^{-\frac{1}{p-1}} \left(1 - \frac{1}{\theta p}\right)^{\frac{p}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)'}^{\frac{p}{p-1}}, & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, b > 0, \\ \left(\frac{a}{p} - \frac{a}{\theta p}\right) \xi_j + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*}\right) \nu_j - \frac{p-1}{p} \left[\left(a - \frac{a}{\theta}\right) S\right]^{-\frac{1}{p-1}} \left(1 - \frac{1}{\theta p}\right)^{\frac{p}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)'}^{\frac{p}{p-1}}, & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0. \end{cases}$$

Combining (5.11) with (5.19), we arrive at $c \geq \Lambda - \Theta(\lambda)$, which contradicts our initial assumption. Thus the claim $J = \emptyset$ holds.

Step 2. We claim $\nu_\infty = 0$. Let $R > 0$. Set

$$\begin{aligned} \xi_\infty &= \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\{x \in \mathbb{R}^N : |x| > R\}} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} \, dy \right) \, dx, \\ \nu_\infty &= \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\{x \in \mathbb{R}^N : |x| > R\}} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} \, dy |u_n(x)|^{p_\mu^*} \, dx. \end{aligned}$$

According to Theorem 4.4, we know that ξ_∞ and ν_∞ are well defined and we have

$$\limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^p + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} \, dy \right) \, dx = \xi(\mathbb{R}^N) + \xi_\infty, \quad (5.21)$$

$$\limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y)|^{p_\mu^*}}{|x - y|^\mu} \, dy |u_n(x)|^{p_\mu^*} \, dx = \nu(\mathbb{R}^N) + \nu_\infty. \quad (5.22)$$

To rule out the possibility of concentration for mass at infinity, we take a suitable cutoff function $\chi_R \in C^\infty(\mathbb{R}^N)$ satisfying $\chi_R \in [0, 1]$, $\chi_R(x) = 0$ for $|x| < R$ and $\chi_R(x) = 1$ for $|x| > 2R$, $|\nabla \chi_R| < \frac{2}{R}$. Following a discussion analogous to that of Theorem 4.4, we derive

$$\xi_\infty = \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} |\nabla u_n|^p \chi_R(x) \, dx + \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x - y|^{N+ps}} \chi_R(x) \, dy \, dx, \quad (5.23)$$

and

$$\nu_\infty = \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u_n(y) \chi_R(y)|^{p_\mu^*}}{|x - y|^\mu} \, dy |u_n(x) \chi_R(x)|^{p_\mu^*} \, dx. \quad (5.24)$$

Moreover, we have

$$S_{H,M} \nu_\infty^{\frac{p}{2p_\mu^*}} < \xi_\infty. \quad (5.25)$$

Given that $\|u_n\|^p$ and $\|u_n\|_{HL}^{2p_\mu^*}$ are bounded, up to subsequence, we can assume that $\|u_n\|^p$ and $\|u_n\|_{HL}^{2p_\mu^*}$ are both convergent. Then by (5.21) and (5.22) we obtain

$$\lim_{n \rightarrow \infty} \|u_n\|^p = \int_{\mathbb{R}^N} d\xi + \xi_\infty, \quad (5.26)$$

$$\iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u_n(x)|^{p_\mu^*} dx = \int_{\mathbb{R}^N} dv + \nu_\infty. \quad (5.27)$$

The fact $\langle I'_\lambda(u_n), \chi_R u_n \rangle \rightarrow 0$ as $n \rightarrow \infty$ entails that

$$\begin{aligned} & \left(a + b \|u_n\|^{(\theta-1)p} \right) \left(\int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n \nabla (\chi_R u_n) dx \right. \\ & \quad \left. + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^{p-2} (u_n(x) - u_n(y)) (\chi_R(x) u_n(x) - \chi_R(y) u_n(y))}{|x-y|^{N+ps}} dx dy \right) \quad (5.28) \\ & = \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*} |u_n(x)|^{p_\mu^*-2} u_n(x) u_n(x) \chi_R(x)}{|x-y|^\mu} dx dy + \lambda \int_{\mathbb{R}^N} f(x) \chi_R u_n dx + o(1). \end{aligned}$$

By (4.8), (4.9) and the Hölder inequality, we get

$$\lim_{R \rightarrow \infty} \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n \nabla \chi_R u_n dx = 0, \quad (5.29)$$

$$\lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^{p-2} (u_n(x) - u_n(y)) u_n(y) (\chi_R(x) - \chi_R(y))}{|x-y|^{N+ps}} dx dy = 0. \quad (5.30)$$

Hence, it follows from $\theta > 1$, (5.23), (5.26) and (5.28)–(5.30) that

$$\begin{aligned} & \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \left(a + b \|u_n\|^{(\theta-1)p} \right) \left(\int_{\mathbb{R}^N} |\nabla u_n|^p \chi_R dx + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y)|^p \chi_R(x)}{|x-y|^{N+ps}} dy dx \right) \\ & = \left[a + \left(\int_{\mathbb{R}^N} d\xi + \xi_\infty \right)^{\theta-1} \right] \\ & \quad \times \lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \left(\int_{\{x \in \mathbb{R}^N : |x| > R\}} |\nabla u_n|^p dx + \int_{\{x \in \mathbb{R}^N : |x| > R\}} \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^p}{|x-y|^{N+ps}} dy dx \right) \\ & \geq \left(a + b \xi_\infty^{\theta-1} \right) \xi_\infty = a \xi_\infty + b \xi_\infty^\theta. \end{aligned} \quad (5.31)$$

Besides, it is straightforward to observe that

$$\lim_{R \rightarrow \infty} \limsup_{n \rightarrow \infty} \int_{\mathbb{R}^N} f(x) \chi_R u_n dx = \lim_{R \rightarrow \infty} \int_{\mathbb{R}^N} f(x) \chi_R u dx = 0. \quad (5.32)$$

Therefore, we combine (5.28)–(5.32) with (5.24) and obtain that

$$a \xi_\infty + b \xi_\infty^\theta \leq \nu_\infty.$$

In conjunction with (5.25), this leads to

$$a S_{H,M} \nu_\infty^{\frac{p}{2p_\mu^*}} + b S_{H,M}^\theta \nu_\infty^{\frac{\theta p}{2p_\mu^*}} \leq \nu_\infty,$$

indicating that $\nu_\infty = 0$ or

$$\nu_\infty \geq \begin{cases} \left(\frac{aS_{H,M}}{1-bS_{H,M}^\theta} \right)^{\frac{\theta}{\theta-1}} & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, 0 < b < S_{H,M}^{-\theta}, \\ \left(\frac{bS_{H,M}^\theta + \sqrt{b^2S_{H,M}^{2\theta} + 4aS_{H,M}}}{2} \right)^{\frac{2\theta-1}{\theta-1}} & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0. \end{cases} \quad (5.33)$$

Suppose that (5.33) holds, then we have

$$\begin{aligned} c &= \lim_{n \rightarrow \infty} \left(I_\lambda(u_n) - \frac{1}{\theta p} \langle I'_\lambda(u_n), u_n \rangle \right) \\ &= \lim_{n \rightarrow \infty} \left(\left(\frac{a}{p} - \frac{a}{\theta p} \right) \|u_n\|^p + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*} |u_n(x)|^{p_\mu^*}}{|x-y|^\mu} dy dx \right. \\ &\quad \left. - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u_n dx \right) \\ &= \left(\frac{a}{p} - \frac{a}{\theta p} \right) \int_{\mathbb{R}^N} d\xi + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_\infty + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \int_{\mathbb{R}^N} d\nu + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_\infty \\ &\quad - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx \\ &\geq \left(\frac{a}{p} - \frac{a}{\theta p} \right) \|u\|^p + \left(\frac{a}{p} - \frac{a}{\theta p} \right) \xi_\infty + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*} |u(x)|^{p_\mu^*}}{|x-y|^\mu} dy dx \\ &\quad + \left(\frac{1}{\theta p} - \frac{1}{2p_\mu^*} \right) \nu_\infty - \left(1 - \frac{1}{\theta p} \right) \lambda \int_{\mathbb{R}^N} f u dx. \end{aligned}$$

Ultimately, from equations (5.20) and (5.33), we infer that $c \geq \Lambda - \Theta(\lambda)$, leading to a contradiction. Hence, $\nu_\infty = 0$. In view of $J = \emptyset$ and (5.27), we conclude that

$$\lim_{n \rightarrow \infty} \iint_{\mathbb{R}^{2N}} \frac{|u_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u_n(x)|^{p_\mu^*} dx = \iint_{\mathbb{R}^{2N}} \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u(x)|^{p_\mu^*} dx. \quad (5.34)$$

Step 3. We are now in a position to prove that $u_n \rightarrow u$ in $X^{1,p}(\mathbb{R}^N)$. Suppose $d := \inf_{n \geq 1} \|u_n\| > 0$. For any $w, v \in X^{1,p}(\mathbb{R}^N)$, we define

$$\begin{aligned} \langle L(w), v \rangle &= \int_{\mathbb{R}^N} |\nabla w_n|^{p-2} \nabla w_n \nabla v dx \\ &\quad + \iint_{\mathbb{R}^{2N}} \frac{|w_n(x) - w_n(y)|^{p-2} (w_n(x) - w_n(y)) (v_n(x) - v_n(y))}{|x-y|^{N+ps}} dx dy. \end{aligned}$$

Clearly, $L(w)$ is a continuous linear functional in $X^{1,p}(\mathbb{R}^N)$. Then by the boundedness of $\{u_n\}_n$ and $u_n \rightharpoonup u$ in $X^{1,p}(\mathbb{R}^N)$, we deduce

$$\lim_{n \rightarrow \infty} \left(a + b \|u_n\|^{(\theta-1)p} \right) \langle L(u), u_n - u \rangle = 0,$$

and

$$\lim_{n \rightarrow \infty} \left(a + b \|u\|^{(\theta-1)p} \right) \langle L(u), u_n - u \rangle = 0.$$

Therefore, as $n \rightarrow \infty$, there holds

$$\begin{aligned} & \lim_{n \rightarrow \infty} \left(a + b \|u_n\|^{(\theta-1)p} \right) \langle L(u_n), u_n - u \rangle - \left(a + b \|u\|^{(\theta-1)p} \right) \langle L(u), u_n - u \rangle \\ &= \lim_{n \rightarrow \infty} \left(a + b \|u_n\|^{(\theta-1)p} \right) (\langle L(u_n), u_n - u \rangle - \langle L(u), u_n - u \rangle). \end{aligned}$$

It follows from $\langle I'_\lambda(u_n) - I'_\lambda(u), u_n - u \rangle \rightarrow 0$ that

$$\begin{aligned} & \left(a + b \|u_n\|^{(\theta-1)p} \right) \langle L(u_n), u_n - u \rangle - \left(a + b \|u\|^{(\theta-1)p} \right) \langle L(u), u_n - u \rangle \\ &= \iint_{\mathbb{R}^{2N}} \left(\frac{|u_n(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u_n(x)|^{p_\mu^*-2} u_n(x) - \frac{|u(y)|^{p_\mu^*}}{|x-y|^\mu} dy |u(x)|^{p_\mu^*-2} u(x) \right) (u_n(x) - u(x)) dx \\ &+ o(1). \end{aligned}$$

Hence, we conclude from (5.34) that

$$\lim_{n \rightarrow \infty} \left(a + b \|u_n\|^{(\theta-1)p} \right) (\langle L(u_n), u_n - u \rangle - \langle L(u), u_n - u \rangle) = 0.$$

Since $d := \inf_{n \geq 1} \|u_n\| > 0$ and $b > 0$, we have

$$\lim_{n \rightarrow \infty} (\langle L(u_n), u_n - u \rangle - \langle L(u), u_n - u \rangle) = 0.$$

Now recall the famous Simon inequalities:

$$|\alpha - \beta|^p \leq \begin{cases} C'_p (|\alpha|^{p-2} \alpha - |\beta|^{p-2} \beta) \cdot (\alpha - \beta) & \text{if } p \geq 2, \\ C''_p [(|\alpha|^{p-2} \alpha - |\beta|^{p-2} \beta) \cdot (\alpha - \beta)]^{\frac{p}{2}} (|\alpha|^p + |\beta|^p)^{\frac{2-p}{2}} & \text{if } 1 < p < 2, \end{cases} \quad (5.35)$$

for all $\alpha, \beta \in \mathbb{R}^N$, where C'_p and C''_p are positive constants depending only on p .

If $p \geq 2$, from equation (5.35), we derive that

$$\begin{aligned} & \int_{\mathbb{R}^N} |\nabla(u_n - u)|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y) - u(x) + u(y)|^p}{|x-y|^{N+ps}} dx dy \\ & \leq C'_p (\langle L(u_n), u_n - u \rangle - \langle L(u), u_n - u \rangle) \rightarrow 0 \end{aligned}$$

as $n \rightarrow \infty$. Hence $u_n \rightarrow u$ in $X^{1,p}(\mathbb{R}^N)$.

For the case $1 < p < 2$, let $A = u_n(x) - u_n(y)$, $B = u(x) - u(y)$. Using (5.35) and concavity we have

$$\begin{aligned} & \int_{\mathbb{R}^N} |\nabla(u_n - u)|^p dx + \iint_{\mathbb{R}^{2N}} \frac{|u_n(x) - u_n(y) - u(x) + u(y)|^p}{|x-y|^{N+ps}} dx dy \\ & \leq C''_p \int_{\mathbb{R}^N} [(|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_n - \nabla u)]^{\frac{p}{2}} (|\nabla u_n|^p + |\nabla u|^p)^{\frac{2-p}{2}} dx \\ & \quad + C''_p \iint_{\mathbb{R}^{2N}} \frac{[|A|^{p-2} A - |B|^{p-2} B) \cdot (A - B)]^{\frac{p}{2}} (|A|^p + |B|^p)^{\frac{2-p}{2}}}{|x-y|^{N+ps}} dx dy \\ & \leq C (\langle L(u_n), u_n - u \rangle - \langle L(u), u_n - u \rangle)^{\frac{p}{2}} \rightarrow 0 \end{aligned}$$

as $n \rightarrow \infty$. Hence $u_n \rightarrow u$ in $X^{1,p}(\mathbb{R}^N)$. In conclusion, we get $u_n \rightarrow u$ strongly in $X^{1,p}(\mathbb{R}^N)$ as $n \rightarrow \infty$.

Finally, we consider $\inf_n \|u_n\|_{X^{1,p}(\mathbb{R}^N)} = 0$. Then either 0 is an accumulation point of the sequence $\{u_n\}_n$ and so there exists a subsequence of $\{u_n\}_n$ strongly converging to $u = 0$, or 0 is an isolated point of the sequence $\{u_n\}_n$ and so there exists a subsequence, still denoted by $\{u_n\}_n$, such that $\inf_n \|u_n\| > 0$. In the first case we are done, while in the latter case we can process as above. \square

Set $B_\rho(0) := \{u \in X^{1,p}(\mathbb{R}^N) : \|u\| < \rho\}$.

Theorem 5.6. *There exists $\lambda^* > 0$ such that for all $\lambda \in (0, \lambda^*)$, problem (1.1) admits a nonnegative weak solution u_1 in $X^{1,p}(\mathbb{R}^N)$ with $I_\lambda(u_1) < 0$.*

Proof. By Lemma 5.3, there exist $\lambda_0 > 0$ and $\gamma > 0$ such that

$$I_\lambda(u) \geq \gamma > 0 \quad \text{for } \lambda \in (0, \lambda_0) \quad \text{and} \quad u \in X^{1,p}(\mathbb{R}^N) \quad \text{with } \|u\| = \rho.$$

In the complete metric space $\bar{B}_\rho(0) := \{u \in X^{1,p}(\mathbb{R}^N) : \|u\| < \rho\}$, we apply Ekeland's variational principle [21] to prove that there exists a $(PS)_{c_0}$ sequence $\{u_n\}_n \subset B_\rho(0)$ with

$$c_0 = \inf\{I_\lambda(u) : u \in \bar{B}_\rho(0)\}.$$

Next, we aim to show that $-\infty < c_0 < 0$. Choose $\varphi_0 \in X^{1,p}(\mathbb{R}^N)$ such that $\int_{\mathbb{R}^N} f \varphi_0 \, dx > 0$ and fix $\lambda \in (0, \lambda^*)$. Then for any $t > 0$, we have

$$I_\lambda(t\varphi_0) = \frac{at^p}{p} \|\varphi_0\|^p + \frac{bt^{\theta p}}{\theta p} \|\varphi_0\|^{\theta p} - \frac{t^{2p^*_\mu}}{2p^*_\mu} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\varphi_0^+(y)|^{p^*_\mu}}{|x-y|^\mu} dy |\varphi_0^+(x)|^{p^*_\mu} dx - \lambda t \int_{\mathbb{R}^N} f(x) \varphi_0 \, dx.$$

Then we can deduce that there exists a sufficiently small $t > 0$ such that $\|t\varphi_0\| \leq \rho$ and $I_\lambda(t\varphi_0) < 0$. Hence, according to the definition of c_0 , it follows that $c_0 < I_\lambda(t\varphi_0) < 0$ and it's evident that $c_0 > -\infty$.

Selecting $\lambda^* \in (0, \lambda_0]$ such that $0 < \Lambda - \Theta(\lambda)$ for all $\lambda \in (0, \lambda^*)$. From Lemma 5.5 and $c_0 < 0$, we can obtain that there exist a subsequence of $\{u_n\}_n$ and $u_1 \in X^{1,p}(\mathbb{R}^N)$ such that $u_n \rightarrow u_1$ strongly in $X^{1,p}(\mathbb{R}^N)$. Therefore, $I'_\lambda(u_1) = 0$ and $I_\lambda(u_1) = c_0 < 0$. Hence we complete the proof of Theorem 1.2. \square

Drawing on the ideas introduced by Chabrowski [16], Alves [2] and Goncalves and Alves [28], we are going to explore that equation (1.1) has another solution. Firstly we know that I_λ satisfies the mountain pass geometry by Lemmas 5.3 and 5.4. Hence applying the mountain pass theorem [3], there exists a $(PS)_c$ sequence $\{v_n\}_n$ with

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_\lambda(\gamma(t)),$$

$$\Gamma = \{\gamma \in C([0,1], X^{1,p}(\mathbb{R}^N)) : \gamma(0) = 0, \gamma(1) = e\}.$$

Lemma 5.7. *Suppose $a > 0$, $b > 0$, and either $\theta = \frac{3N-\mu-p}{2(N-p)}$ or $a > 0$, $0 < b < S_{H,M}^{-\theta}$, $\theta = \frac{2N-\mu}{N-p}$. Under the assumption (f), there exists $\lambda^{**} \in (0, \lambda^*)$, such that for any $\lambda \in (0, \lambda^{**})$, one has*

$$c \leq \sup_{t \geq 0} I_\lambda(tU) < \Lambda - \Theta(\lambda).$$

Proof. Employing the function U in Lemma 5.4, we consider the funtions

$$g(t) := I_\lambda(tU) = \frac{a\|U\|^p}{p}t^p + \frac{b\|U\|^{\theta p}}{\theta p}t^{\theta p} - \frac{t^{2p^*}}{2p^*} - \lambda t \int_{\mathbb{R}^N} fU \, dx$$

and

$$\tilde{g}(t) := \frac{a\|U\|^p}{p}t^p + \frac{b\|U\|^{\theta p}}{\theta p}t^{\theta p} - \frac{t^{2p^*}}{2p^*}$$

for all $t \geq 0$. There exists $t_1 > 0$ such that $\tilde{g}'(t_1) = 0$ and $\max_{t \geq 0} \tilde{g}(t) = \tilde{g}(t_1) = \Lambda + h(\varepsilon) > 0$, where t_1 satisfies

$$t_1 = \begin{cases} \left(\frac{a\|U\|^p}{1-b\|U\|^{\theta p}} \right)^{\frac{1}{\theta p-p}} & \text{if } \theta = \frac{2N-\mu}{N-p}, a > 0, 0 < b < S_{H,M}^{-\theta}, \\ \left(\frac{b\|U\|^{\theta p} + \sqrt{b^2\|U\|^{2\theta p} + 4a\|U\|^p}}{2} \right)^{\frac{1}{\theta p-p}} & \text{if } \theta = \frac{3N-\mu-p}{2(N-p)}, a > 0, b > 0. \end{cases}$$

When $c = 0$, the proof is similar to Theorem 1.2. When $c > 0$, we can choose $\lambda_1 \in (0, \lambda^*]$ such that $\Lambda - \Theta(\lambda_1) > 0$. It is easy to observe that

$$\lim_{t \rightarrow 0^+} \left(\frac{a\|U\|^p}{p}t^p + \frac{b\|U\|^{\theta p}}{\theta p}t^{\theta p} \right) = 0.$$

So there exists $t_2 \in (0, t_1)$ such that for any $\lambda \in (0, \lambda_1)$, we have

$$\max_{0 \leq t \leq t_2} g(t) \leq \max_{0 \leq t \leq t_2} \left(\frac{a\|U\|^p}{p}t^p + \frac{b\|U\|^{\theta p}}{\theta p}t^{\theta p} \right) \leq \Lambda - \Theta(\lambda_1) < \Lambda - \Theta(\lambda).$$

Choosing $\lambda^{**} \in (0, \lambda_1]$ such that for any $\lambda \in (0, \lambda^{**})$, there holds

$$\lambda t_2 \int_{\mathbb{R}^N} fU^+ \, dx > \frac{p-1}{p} \left[\left(a - \frac{a}{\theta} \right) S \right]^{-\frac{1}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)'}^{\frac{p}{p-1}} + h(\varepsilon).$$

Then, for any $\lambda \in (0, \lambda^{**})$, one can obtain

$$\begin{aligned} \sup_{t \geq t_2} g(t) &\leq \sup_{t \geq t_2} \tilde{g}(t) - \lambda t_2 \int_{\mathbb{R}^N} fU^+ \, dx \\ &< \tilde{g}(t_1) - \frac{p-1}{p} \left[\left(a - \frac{a}{\theta} \right) S \right]^{-\frac{1}{p-1}} \lambda^{\frac{p}{p-1}} |f|_{(p^*)'}^{\frac{p}{p-1}} - h(\varepsilon) \\ &= \Lambda - \Theta(\lambda). \end{aligned}$$

Therefore, for any $\lambda \in (0, \lambda^{**})$ we have

$$c \leq \sup_{t \geq 0} I_\lambda(tU) = \sup_{t \geq 0} g(t) < \Lambda - \Theta(\lambda).$$

Hence, the proof is complete. \square

Theorem 5.8. *There exists $\lambda^{**} \in (0, \lambda^*]$ such that for all $\lambda \in (0, \lambda^{**})$, problem (1.1) has another nonnegative weak solution u_2 in $X^{1,p}(\mathbb{R}^N)$ with $I_\lambda(u_2) > 0$.*

Proof. Using Lemmas 5.5 and 5.7, there exist a subsequence of $\{v_n\}_n$, still denoted by $\{v_n\}_n$, and a function $u_2 \in X^{1,p}(\mathbb{R}^N)$ such that $v_n \rightarrow u_2$ strongly in $X^{1,p}(\mathbb{R}^N)$. Therefore,

$$I'_\lambda(u_2) = 0 \quad \text{and} \quad I_\lambda(u_2) = c > 0 = I_\lambda(0),$$

indicating that u_2 is a nontrivial and nonnegative solution of (1.1). \square

Proof of Theorem 1.2. Combining the proof of Theorem 5.6 with Theorem 5.8, we can obtain Theorem 1.2. \square

Statements and declarations

The authors declare that they have no conflict of interest.

Data availability

Date sharing is not applicable to this article as no new data were created analyzed in this study.

Acknowledgements

The research has been supported by Natural Science Foundation of Chongqing, China CSTB2024 NSCQ-LZX0038.

References

- [1] N. ABATANGELO, M. COZZI, An elliptic boundary value problem with fractional nonlinearity, *SIAM J. Math. Anal.* **53**(2021), No. 3, 3577–3601. <https://doi.org/10.1137/20M1342641>; MR4275496; Zbl 1479.35443
- [2] C. O. ALVES, Multiple positive solutions for equations involving critical Sobolev exponent in \mathbb{R}^N , *Electron. J. Differential Equations* **1997**, No. 13, 1–10. MR1461975; Zbl 0886.35056
- [3] A. AMBROSETTI, P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, *J. Functional Analysis* **14**(1973), 349–381. [https://doi.org/10.1016/0022-1236\(73\)90051-7](https://doi.org/10.1016/0022-1236(73)90051-7); MR370183; Zbl 0273.49063
- [4] G. C. ANTHAL, J. GIACOMONI, K. SREENADH, A Choquard type equation involving mixed local and nonlocal operators, *J. Math. Anal. Appl.* **527**(2023), No. 2, 27 pp. <https://doi.org/10.1016/j.jmaa.2023.127440>; MR4597987; Zbl 1519.35352
- [5] G. AUTUORI, P. PUCCI, Elliptic problems involving the fractional Laplacian in \mathbb{R}^N , *J. Differential Equations* **255**(2013), No. 8, 2340–2362. <https://doi.org/10.1016/j.jde.2013.06.016>; MR3082464; Zbl 1284.35171
- [6] G. BARLES, E. CHASSEIGNE, A. CIOMAGA, C. IMBERT, Lipschitz regularity of solutions for mixed integro-differential equations, *J. Differential Equations* **252**(2012), No. 11, 6012–6060. <https://doi.org/10.1016/j.jde.2012.02.013>; MR2911421; Zbl 1298.35033

- [7] P. BELCHIOR, H. BUENO, O. H. MIYAGAKI, G. A. PEREIRA, Remarks about a fractional Choquard equation: ground state, regularity and polynomial decay. *Nonlinear Anal.* **164**(2017), 38–53. <https://doi.org/10.1016/j.na.2017.08.005>; MR3712018; Zbl 1373.35111
- [8] S. BIAGI, S. DIPIERRO, E. VALDINOCI, E. VECCHI, Mixed local and nonlocal elliptic operators: regularity and maximum principles, *Comm. Partial Differential Equations* **47**(2022), No. 3, 585–629. <https://doi.org/10.1080/03605302.2021.1998908>; MR4387204; Zbl 1486.35412
- [9] S. BIAGI, S. DIPIERRO, E. VALDINOCI, E. VECCHI, A Faber–Krahn inequality for mixed local and nonlocal operators, *J. Anal. Math.* **150**(2023), No. 2, 405–448. <https://doi.org/10.1007/s11854-023-0272-5>; MR4645045; Zbl 1523.35228
- [10] S. BIAGI, S. DIPIERRO, E. VALDINOCI, E. VECCHI, A Hong–Krahn–Szegö inequality for mixed local and nonlocal operators, *Math. Eng.* **5**(2023), No. 1, 25 pp. <https://doi.org/10.3934/mine.2023014>; MR4391102; Zbl 1553.35149
- [11] S. BIAGI, E. VECCHI, S. DIPIERRO, E. VALDINOCI, Semilinear elliptic equations involving mixed local and nonlocal operators. *Proc. Roy. Soc. Edinburgh Sect. A* **151**(2021), No. 5, 1611–1641. <https://doi.org/10.1017/prm.2020.75>; MR4313576; Zbl 1473.35622
- [12] H. BRÉZIS, L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, *Comm. Pure Appl. Math.* **36**(1983), No. 4, 437–477. <https://doi.org/10.1002/cpa.3160360405>; MR709644; Zbl 0541.35029
- [13] S. BUCCHERI, J.V. DA SILVA, L.H. DE MIRANDA, A system of local/nonlocal p -Laplacians: the eigenvalue problem and its asymptotic limit as $p \rightarrow \infty$, *Asymptot. Anal.* **128**(2022), No. 2, 149–181. <https://doi.org/10.3233/asy-211702>; MR4400914; Zbl 1507.35094
- [14] L. CAFFARELLI, E. VALDINOCI, *A priori bounds for solutions of a nonlocal evolution PDE*, Analysis and numerics of partial differential equations, Vol. 4, Springer, Milan, 2013. https://doi.org/10.1007/978-88-470-2592-9_10; MR3051400; Zbl 1273.35067
- [15] D. M. CAO, G. B. LI, H. S. ZHOU, Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent, *Proc. Roy. Soc. Edinburgh Sect. A* **124**(1994), No. 6, 1177–1191. <https://doi.org/10.1017/S0308210500030183>; MR1313196; Zbl 0814.35026
- [16] J. CHABROWSKI, On multiple solutions for the nonhomogeneous p -Laplacian with a critical Sobolev exponent, *Differential Integral Equations* **8**(1995), No. 4, 705–716. <https://doi.org/>; MR1306587; Zbl 0814.35033
- [17] J. V. DA SILVA, A. FISCELLA, V. A. B. VILORIA, Mixed local-nonlocal quasilinear problems with critical nonlinearities, *J. Differential Equations* **408**(2024), 494–536. <https://doi.org/10.1016/j.jde.2024.07.028>; MR4781052; Zbl 1551.35229
- [18] F. DEL TESO, J. ENDAL, E. R. JAKOBSEN, On distributional solutions of local and nonlocal problems of porous medium type, *C. R. Math. Acad. Sci. Paris* **355**(2017), No. 11, 1154–1160. <https://doi.org/10.1016/j.crma.2017.10.010>; MR3724879; Zbl 1382.35243

- [19] S. DIPIERRO, E. PROIETTI LIPPI, E. VALDINOI, (Non)local logistic equations with Neumann conditions, *Ann. Inst. H. Poincaré C Anal. Non Linéaire* **40**(2023), No. 5, 1093–1166. <https://doi.org/10.4171/aihpc/57>; MR4651677; Zbl 1527.35436
- [20] S. DIPIERRO, E. VALDINOI, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, *Phys. A* **575**(2021), 20 pp. <https://doi.org/10.1016/j.physa.2021.126052>; MR4249816; Zbl 1528.60037
- [21] I. EKELAND, On the variational principle, *J. Math. Anal. Appl.* **47**(1974), 324–353. [https://doi.org/10.1016/0022-247X\(74\)90025-0](https://doi.org/10.1016/0022-247X(74)90025-0); MR346619; Zbl 0286.49015
- [22] G. M. FIGUEIREDO, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, *J. Math. Anal. Appl.* **401**(2013), No. 2, 706–713. <https://doi.org/10.1016/j.jmaa.2012.12.053>; MR3018020; Zbl 1307.35110
- [23] A. FISCELLA, P. PUCCI, Kirchhoff–Hardy fractional problems with lack of compactness, *Adv. Nonlinear Stud.* **17**(2017), No. 3, 429–456. <https://doi.org/10.1515/ans-2017-6021>; MR3667053; Zbl 1375.35180
- [24] A. FISCELLA, P. PUCCI, p -fractional Kirchhoff equations involving critical nonlinearities, *Nonlinear Anal. Real World Appl.* **35**(2017), 350–378. <https://doi.org/10.1016/j.nonrwa.2016.11.004>; MR3595331; Zbl 1372.35335
- [25] F. S. GAO, E. D. DA SILVA, M. B. YANG, J. Z. ZHOU, Existence of solutions for critical Choquard equations via the concentration-compactness method, *Proc. Roy. Soc. Edinburgh Sect. A* **150**(2020), No. 2, 921–954. <https://doi.org/10.1017/prm.2018.131>; MR4080465; Zbl 1437.35213
- [26] F. S. GAO, M. B. YANG, The Brezis–Nirenberg type critical problem for the nonlinear Choquard equation, *Sci. China Math.* **61**(2018), No. 7, 1219–1242. <https://doi.org/10.1007/s11425-016-9067-5>; MR3817173; Zbl 1397.35087
- [27] P. GARAIN, J. KINNUNEN, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, *Trans. Amer. Math. Soc.* **375**(2022), No. 8, 5393–5423. <https://doi.org/10.1090/tran/8621>; MR4469224; Zbl 1496.35118
- [28] J. V. GONÇALVES, C. O. ALVES, Existence of positive solutions for m -Laplacian equations in \mathbb{R}^N involving critical Sobolev exponents, *Nonlinear Anal.* **32**(1998), No. 1, 53–70. [https://doi.org/10.1016/S0362-546X\(97\)00452-5](https://doi.org/10.1016/S0362-546X(97)00452-5); MR1491613; Zbl 0892.35062
- [29] Y. HE, G. B. LI, S. J. PENG, Concentrating bound states for Kirchhoff type problems in \mathbb{R}^3 involving critical Sobolev exponents. *Adv. Nonlinear Stud.* **14**(2014), No. 2, 483–510. <https://doi.org/10.1515/ans-2014-0214>; MR3194366; Zbl 1305.35033
- [30] A. IANNIZZOTTO, S. B. LIU, K. PERERA, M. SQUASSINA, Existence results for fractional p -Laplacian problems via Morse theory, *Adv. Calc. Var.* **9**(2016), No. 2, 101–125. <https://doi.org/10.1515/acv-2014-0024>; MR3483598; Zbl 1515.35318
- [31] S. H. LIANG, P. PUCCI, B. L. ZHANG, Multiple solutions for critical Choquard–Kirchhoff type equations, *Adv. Nonlinear Anal.* **10**(2021), No. 1, 400–419. <https://doi.org/10.1515/anona-2020-0119>; MR4141373; Zbl 1465.35215

- [32] P. L. LIONS, The concentration-compactness principle in the calculus of variations. The limit case. II, *Rev. Mat. Iberoamericana* **1**(1985), No. 2, 45–121. <https://doi.org/10.4171/RMI/12>; MR850686; Zbl 0704.49006
- [33] J. LIU, J.F. LIAO, C. L. TANG, Positive solutions for Kirchhoff-type equations with critical exponent in \mathbb{R}^N , *J. Math. Anal. Appl.* **429**(2015), No. 2, 1153–1172. <https://doi.org/10.1016/j.jmaa.2015.04.066>; MR3342510; Zbl 1319.35021
- [34] V. MOROZ, J. VAN SCHAFTINGEN, A guide to the Choquard equation. *J. Fixed Point Theory Appl.* **19**(2017), No. 1, 773–813. <https://doi.org/10.1007/s11784-016-0373-1>; MR3625092; Zbl 1360.35252
- [35] S. MOSCONI, K. PERERA, M. SQUASSINA, Y. YANG, The Brezis–Nirenberg problem for the fractional p -Laplacian, *Calc. Var. Partial Differential Equations* **55**(1993), No. 4, Art. 105, 25 pp. <https://doi.org/10.1007/s00526-016-1035-2>; MR3530213; Zbl 1361.35198
- [36] A. OURRAOUI, On a p -Kirchhoff problem involving a critical nonlinearity, *C. R. Math. Acad. Sci. Paris* **352**(2014), No. 4, 295–298. <https://doi.org/10.1016/j.crma.2014.01.015>; MR3186916; Zbl 1298.35096
- [37] B. PELLACCI, G. VERZINI, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, *J. Math. Biol.* **76**(2018), No. 6, 1357–1386. <https://doi.org/10.1007/s00285-017-1180-z>; MR3771424; Zbl 1390.35404
- [38] P. PUCCI, M. Q. XIANG, B. L. ZHANG, Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional p -Laplacian, *Adv. Calc. Var.* **12**(2019), No. 3, 253–275. <https://doi.org/10.1515/acv-2016-0049>; MR3975603; Zbl 1431.35233
- [39] R. SERVADEI, E. VALDINOI, Mountain pass solutions for non-local elliptic operators, *J. Math. Anal. Appl.* **389**(2012), No. 2, 887–898. <https://doi.org/10.1016/j.jmaa.2011.12.032>; MR2879266; Zbl 1234.35291
- [40] R. SERVADEI, E. VALDINOI, The Brezis–Nirenberg result for the fractional Laplacian, *Trans. Amer. Math. Soc.* **367**(2015), No. 1, 67–102. <https://doi.org/10.1090/S0002-9947-2014-05884-4>; MR3271254; Zbl 1323.35202
- [41] F. L. WANG, D. HU, M. Q. XIANG, Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems, *Adv. Nonlinear Anal.* **10**(2021), No. 1, 636–658. <https://doi.org/10.1515/anona-2020-0150>; MR4183189; Zbl 1467.35341
- [42] M. Q. XIANG, M. B. GIOVANNI, G. H. TIAN, B. L. ZHANG, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p -Laplacian, *Nonlinearity* **29**(2016), No. 2, 357–374. <https://doi.org/10.1088/0951-7715/29/2/357>; MR3461603; Zbl 1334.35406
- [43] M. Q. XIANG, B. L. ZHANG, M. FERRARA, Multiplicity results for the non-homogeneous fractional p -Kirchhoff equations with concave-convex nonlinearities, *Proc. A.* **471**(2015), No. 2177, 20150034, 14 pp. <https://doi.org/10.1098/rspa.2015.0034>; MR3348363; Zbl 1371.35332

[44] M. Q. XIANG, B. L. ZHANG, X. ZHANG, A nonhomogeneous fractional p -Kirchhoff type problem involving critical exponent in \mathbb{R}^N , *Adv. Nonlinear Stud.* **17**(2017), No. 3, 611–640.
<https://doi.org/10.1515/ans-2016-6002>; MR3667062; Zbl 1372.35348