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1 Introduction

Let Ω ⊆ RN (N ≥ 2) represents a bounded domain with Lipschitz boundary ∂Ω. In this
paper, we study the following Kirchhoff-type double phase problem−M

[∫
Ω

(
|∇u|p(x)

p(x)
+ η(x)

|∇u|q(x)

q(x)

)
dx

] (
∆p(x)u + ∆η(x)

q(x)u
)
= λ f (x, u) + µg(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where 0 ≤ η(·) ∈ L∞(Ω), λ > 0 and µ ≥ 0 are two parameters, functions p, q ∈ C(Ω) obeying
the following relationship

1 < p(x) < N, p(x) < q(x) < p∗(x) for all x ∈ Ω, (1.2)
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with p∗(x) := Np(x)
N−p(x) for each x ∈ Ω. Here, ∆p(x)u+∆w

q(x)u denotes the double phase operator
given by the formula

∆p(x)u + ∆η(x)
q(x)u := div

(
|∇u|p(x)−2∇u + η(x)|∇u|q(x)−2∇u

)
.

We consider problem (1.1) when the nonlinear terms f , g : Ω × R → R are two
Carathéodory functions verifying an appropriate growth condition and the Kirchhoff func-
tion M satisfies the following condition:

(H0) M : [0, ∞) → R is supposed to be a continuous non-decreasing function satisfying
∃m0 > 0, such that

M(t) ≥ m0, ∀t ≥ 0.

In recent years, considerable attention has been devoted to problems involving the double
phase operator, primarily due to its applications in mathematical physics and engineering,
particularly in the modeling of strongly anisotropic materials and elasticity theory [10,27]. The
primary objective of this paper is to establish the existence of multiple solutions to problem
(1.1). We begin by recalling some relevant contributions that have motivated our study. In
[25], Liu and Dai considered the following double-phase problem−div

(
|∇u|p−2∇u + η(x)|∇u|q−2∇u

)
= f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where Ω is a bounded domain with Lipschitz boundary in RN , N ≥ 2 and 1 < p < q < N,
q
p < 1 + 1

N , η : Ω → [0, ∞) is a Lipschitz continuous function and f : Ω × R → R is a
Carathéodory function. Using variational methods, the authors investigated the existence
and multiplicity of solutions to problem (1.1) in the case where f is q-superlinear at infinity.
Since then, numerous works have explored this topic. We refer to [9, 15, 17] for studies on the
double-phase problem with constant exponents, and to [2, 6, 19, 23] for results in the variable
exponent setting.

Note that problem (1.1) involves integrals over the domain Ω, so the first two equations are
no longer pointwise identities. Consequently, the problem is often referred to as a nonlocal
problem. Such problems arise in the modeling of various physical and biological systems,
where the unknown function u represents a quantity that depends on its own average such as
population density, see [11]. Furthermore, problem (1.1) can be seen as a stationary version of
the Kirchhoff equation

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 = 0 (1.4)

presented by Kirchhoff in 1883, see [24]. Equation (1.4) extends the classical d’Alembert wave
equation by taking into account the effects of changes in the length of the string during vibra-
tion. In recent years, problems involving Kirchhoff-type operators have attracted considerable
attention and have been studied extensively; see, for example, [5, 12–14, 18, 20].

In addition to Kirchhoff-type problems involving the p-Laplacian and the p(x)-Laplacian,
several works have focused on Kirchhoff-double phase problems, see [1, 4, 16, 21, 28]. In [16],
Fiscella et al. studied Kirchhoff-double phase problems with superlinear nonlinearities and
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established existence and multiplicity results using the mountain pass theorem and the foun-
tain theorem. Some of these results were extended in [1] by Ahmadi et al., where the su-
perlinear terms no longer satisfy the Ambrosetti-–Rabinowitz condition. In [4], Arora et al.
addressed Kirchhoff-double phase problems involving singular nonlinearities, employing the
fibering method in the framework of the Nehari manifold. Furthermore, Ho et al. [21] in-
vestigated a class of elliptic equations driven by the variable exponent double phase operator
with a Kirchhoff-type term, under minimal assumptions on the locally defined right-hand
side. Using the method of sub- and supersolutions, Zuo et al. [28] established the existence of
solutions for Kirchhoff-double phase problems involving concave–convex nonlinearities. In a
recent 2025 study, Kefi and Al-Shomrani [22] explored a double-phase elliptic Dirichlet prob-
lem involving nonlocal interactions within a bounded domain Ω ⊂ RN (N ≥ 2), governed by
the operator

−div(|∇w|p−2∇w + η(x)|∇w|q−2∇w) = λ f (x, w)

(∫
Ω

F(x, w) dx
)γ

,

where γ > 0 is a positive constant, 1 ≤ β(γ + 1) < p < N, p < q < p∗ = Np
N−p , and f :

Ω ×R → R is a Carathéodory function satisfying the growth condition m1|w|α−1 ≤ f (x, w) ≤
m2|w|β−1 with 0 < α ≤ β. Employing variational methods and critical point theorems, they
establish the existence of at least one weak solution and, under specific conditions, three
distinct weak solutions in the Musielak–Orlicz–Sobolev space.

Inspired by the aforementioned studies, we investigate the existence of at least three solu-
tions to problem (1.1), which involves sublinear nonlinearities f and g, by employing a critical
point theorem developed by Bonanno et al. in [8]. To the best of our knowledge, there are only
a limited number of results addressing Kirchhoff-type double phase problems with sublinear
terms and variable exponents depending on two parameters. It is worth noting that the result
established here remains new even in the particular case when M(t) = 1 or the functions p(·)
and q(·) are constants, we refer to [7,13,14,18,22]. Our contribution can thus be seen as a nat-
ural complement to the papers [1,2,16,17,23], where the double phase problem was explored
in a superlinear framework, even under the assumption of constant exponents.We believe that
the results presented in this paper can be extended to the Kirchhoff-type multi-phase problem
with variable exponents, as recently introduced by Vetro in [26].

Furthermore, we point out that the variable exponents p(·) and q(·) are not required to
satisfy the condition

q(x)
p(x)

< 1 +
1
N

for all x ∈ Ω (1.5)

which has been a necessary assumption in many previous works, such as [21,23,28], or [9,17,
25] in the constant exponent case. This relaxation is justified by a recent result in [6], where
the authors showed that the functional space W1,H

0 (Ω) can be equipped with the equivalent
norm ∥∇ · ∥ without assuming (1.5).

The remainder of this paper is organized as follows: Section 2 outlines the fundamental
properties of the working space and reviews several preliminary lemmas that will be used
in subsequent sections. Section 3 states the main theorem, while Section 4 and Section 5 are
dedicated to its proof.
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2 Musielak–Orlicz–Sobolev spaces and variational principles

To study double phase systems, we need to introduce our working space and recalling some
facts about it. Let

C+(Ω) :=
{

s ∈ C(Ω), s(x) > 1 for all x ∈ Ω
}

.

For any s ∈ C+(Ω), we put

s+ := max
x∈Ω̄

s(x), s− := min
x∈Ω̄

s(x).

The variable exponent Lebesgue space is described as

Ls(x)(Ω) =

{
u | u : Ω → R is measurable,

∫
Ω
|u(x)|s(x) dx < ∞

}
with the norm

|u|s := inf

{
ξ > 0 :

∫
Ω

∣∣∣∣u(x)
ξ

∣∣∣∣s(x)

dx ≤ 1

}
.

Furthermore, one has

Proposition 2.1 (see [3]). Let p, q, θ ≥ 1 be measurable functions defined on Ω and satisfy the
condition

1
θ(x)

=
1

p(x)
+

1
q(x)

, for a.e. x ∈ Ω.

If f ∈ Lp(x)(Ω) and g ∈ Lq(x)(Ω), then we have f g ∈ Lθ(x)(Ω) and the following Hölder
inequality holds

| f g|θ(x) ≤ 2| f |p(x)|g|q(x).

Define the function H : Ω × [0, ∞) → [0, ∞) by

H(x, t) = tp(x) + η(x)tq(x),

where 1 < p(x) < N, p(x) < q(x) < p∗(x) = Np(x)
N−p(x) and η : Ω → [0, ∞) is measurable

function such that η ∈ L∞(Ω).
Consider

ρH(u) :=
∫

Ω
H(x, |u|)dx.

The Musielak–Orlicz–Lebesgue space is described as

LH(Ω) = {u | u : Ω → R is measurable, ρH(u) < ∞} ,

endowed with the norm

|u|H := inf
{

ξ > 0 : ρH
(u

ξ

)
≤ 1

}
.

By [6, Proposition 2.13] we arrive at the following relation between ∥u∥H and ρH.

Proposition 2.2. If u ∈ LH(Ω), then we have

(i) min
{
|u|p

−

H , |u|q
+

H

}
≤ ρH(u) ≤ max

{
|u|p

−

H , |u|q
+

H

}
;

(ii) |u|H → 0 ⇐⇒ ρH(u) → 0;
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(iii) |u|H → ∞ ⇐⇒ ρH(u) → ∞;

The Musielak–Orlicz–Sobolev space is described as

W1,H(Ω) :=
{

u ∈ LH(Ω) : |∇u| ∈ LH(Ω)
}

including the norm
∥u∥1,H := |∇u|H + |u|H

in which |∇u|H =
∣∣∣|∇u|

∣∣∣
H

.

We define our working space X := W1,H
0 (Ω) as the closure of C∞

0 (Ω) with respect to the
norm ∥u∥X = |∇u|H. This space is a separable and reflexive Banach space (see [6, Proposition
2.12]). In the spirit of Proposition 2.16 in [6], we obtain the following embedding lemma.

Proposition 2.3. For any s ∈ C+(Ω) with s(x) ≤ p∗(x) for all x ∈ Ω, the embedding X ↪→ Ls(x)(Ω)

is continuous; the embedding is compact if s(x) < p∗(x).

Invoking the forenamed Sobolev embedding theorem, we denote by cs the best constant
obeying the following relationship

|u|s ≤ cs∥u∥X, ∀u ∈ X, (2.1)

and for any s ∈ C(Ω), we denote

c̃s := max
{

cs+
s , cs−

s

}
. (2.2)

Proposition 2.4 (see [6]). Assume that condition (1.2) holds, and define the operator A : X → X∗ by
the formula

⟨A(u), φ⟩ =
∫

Ω

(
|∇u|p(x)−2∇u + η(x)|∇u|q(x)−2∇u

)
∇φ dx

for all u, φ ∈ X, where ⟨·, ·⟩ denotes the duality pairing between X and its dual X∗. Then, the operator
A satisfies the following properties:

(i) A is continuous, bounded, and strictly monotone;

(ii) A is of type (S)+, namely, if un ⇀ u weakly in X as n → ∞ and lim sup
n→∞

⟨A(un), un − u⟩ ≤ 0,

then un → u strongly in X as n → ∞;

(iii) A is coercive and a homeomorphism.

Eventually, we recall the folowing theorem, obtained in [8] which plays an essential role in
the proof of our main result.

Proposition 2.5. Assume that Φ : X → R is a coercive, continuously Gâteaux differentiable, and
sequentially weakly lower semicontinuous functional defined on a real Banach space X, whose Gâteaux
derivative admits a continuous inverse on X∗. Let Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Moreover, assume that Φ(0) = Ψ(0) = 0.

Assume that there exist a constant γ > 0 and u0 ∈ X, with Φ(u0) > γ such that

(T1)
supu∈Φ−1(−∞,γ] Ψ(u)

γ < Ψ(u0)
Φ(u0)

;

(T2) for each λ ∈ Λγ :=
(

Φ(u0)
Ψ(u0)

, γ
supu∈Φ−1(−∞,γ] Ψ(u)

)
, the functional Φ − λΨ is coercive on X.

Then, for every λ ∈ Λγ, the functional Φ − λΨ admits at least three distinct critical points in the
space X.
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3 Existence of three weak solutions

In this section, we will present some notations and the main result of the paper.

Definition 3.1. By a weak solution of problem (1.1) we mean u ∈ X obeying the following
relationship

M

[∫
Ω

(
|∇u|p(x)

p(x)
+ η(x)

|∇u|q(x)

q(x)

)
dx

] ∫
Ω

(
|∇u|p(x)−2∇u + η(x)|∇u|q(x)−2∇u

)
∇φ dx

−λ
∫

Ω
f (x, u)φ dx − µ

∫
Ω

g(x, u)φ dx = 0,

for all φ ∈ X.

For the sake of describing a result on the existence of three nontrivial solutions for (1.1),
we introduce the functionals Φ, Ψ, Jλ : X → R by

Φ(u) = M̂

[∫
Ω

(
|∇u|p(x)

p(x)
+ η(x)

|∇u|q(x)

q(x)

)
dx

]
,

Ψ(u) =
∫

Ω

[
F(x, u) +

µ

λ
G(x, u)

]
dx

and

Jλ(u) = Φ(u)− λΨ(u), ∀u ∈ X,

where M̂(t) =
∫ t

0 M(τ)dτ, F(x, t) =
∫ t

0 f (x, τ)dτ, G(x, t) =
∫ t

0 g(x, τ)dτ and Jλ represents the
so-called energy functional. We know that Φ, Ψ and Jλ are continuously Gâteaux differentiable
whose Gâteaux derivative are characterized by

⟨Φ′(u), φ⟩ = M

[∫
Ω

(
|∇u|p(x)

p(x)
+ η(x)

|∇u|q(x)

q(x)

)
dx

]
×
∫

Ω

(
|∇u|p(x)−2∇u + η(x)|∇u|q(x)−2∇u

)
∇φ dx,

⟨Ψ′(u), φ⟩ =
∫

Ω

[
f (x, u) +

µ

λ
g(x, u)

]
φ dx

and
⟨J′λ(u), φ⟩ = ⟨Φ′(u), φ⟩ − λ⟨Ψ′(u), φ⟩

for every φ ∈ X.
Invoking Definition 3.1, the weak solutions of problem (1.1) correspond exactly to the crit-

ical points of the functional Jλ. To present our main result, we first introduce some necessary
notations.

To outline the main ideas and tools, we first introduce some notations related to our as-
sumptions. Let ρ := supx∈Ω dist(x, ∂Ω). Then, there exists a point x0 ∈ Ω such that the ball
Bρ(x0) ⊆ Ω, where Bρ(x0) denotes the ball centered at x0 with radius ρ. We indicate with Vρ

the Lebesgue measure of Bρ(x0) in RN given by

Vρ :=
∣∣∣Bρ(x0)

∣∣∣ = π
N
2

Γ(1 + N
2 )

ρN ,
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where Γ denotes the Gamma function.
Besides, for any σ ∈ R+ and α ∈ C+(Ω), we put

Kσ,α := c1 max


(

q+

m0σp−−1

) 1
p−

,

(
q+

m0σq+−1

) 1
q+


+ c̃α max


(

q+

m0σ
p−−α+

α+

) α+

p−

,

(
q+

m0σ
q+−α−

α−

) α−
q+

 ,

where c1 and c̃α are the same values defined by (2.1) and (2.2).
Now, we state our main result.

Theorem 3.2. Assume that the hypotheses (1.2) and (H0) hold and there exist two positive constants
σ1 and σ2 verifying

δ1σ1 < min
{

σ
p−
2 , σ

p+
2

}
, (3.1)

with

δ1 :=
p+ max{ρp− , ρp+}

m02p−−N(2N − 1)Vρ
,

such that

(H1) there exist A1 > 0 and α1 ∈ C+(Ω) with α+
1 < p− such that

| f (x, t)| ≤ A1(1 + |t|α1(x)−1)

for a.e. x ∈ Ω and for all t ∈ R;

(H2) F(x, t) ≥ 0 for a.e. x ∈ Ω and for all t ∈ [0, σ2];

(H3) A1Kσ1,α1 <
δ2
∫

Bρ/2(x0) F(x,σ2)dx

max{σ
p−
2 ,σq+

2 }
with

δ2 :=
p− min{ρp− , ρq+}

m12q++1−N(2N − 1)max{1, |η|∞}Vρ
,

and

m1 := M

(
2q++1−N(2N − 1)max{1, |η|∞}. max{σ

p−
2 , σ

q+
2 }Vρ

p− min{ρp− , ρq+}

)
.

Moreover, for every parameter

λ ∈ Λσ1,σ2 :=

 max{σ
p−
2 , σ

q+
2 }

δ2
∫

B ρ
2
(x0) F(x, σ2) dx

,
1

A1Kσ1,α1


and for all Carathéodory function g : Ω × R → R verifying

(H4) there exist A2 > 0 and α2 ∈ C+(Ω) with α+
2 < p− such that

|g(x, t)| ≤ A2(1 + |t|α2(x)−1)

for a.e. x ∈ Ω and for all t ∈ R;



8 Z. Naghizadeh, K. Kefi and N. T. Chung

(H5) G(x, t) ≥ 0 for a.e. x ∈ Ω and for all t ∈ R+.

Then, there is a positive constant µ∗
λ,g given by

µ∗
λ,g :=

1 − λA1Kσ1,α1

A2Kσ1,α2

,

such that, for each µ ∈ [0, µ∗
λ,g), problem (1.1) possesses at least three distinct weak solutions in the

space X.

4 Regularity assumptions of Φ and Ψ

Our goal is to prove Theorem 3.2 by applying Proposition 2.5. To this end, we aim to verify
that the functionals Φ and Ψ satisfy all the regularity assumptions required by Proposition 2.5.

Lemma 4.1. The functional Φ′ : X → X⋆ is both coercive and strictly monotone in X∗.

Proof. Let u ∈ X \ {0} be such that ∥u∥X > 1. By the hypothesis (H0) and Proposition 2.2, we
observe that

⟨Φ′(u), u⟩ = m0ρH(∇u) ≥ m0 min
{
∥u∥p−

X , ∥u∥q+

X

}
= m0∥u∥p−

X ,

which, together with the fact that p− > 1, implies that

lim
∥u∥X→∞

⟨Φ′(u), u⟩
∥u∥X

= ∞.

Hence, the Gâteaux derivative Φ′ is coercive.
Now, to prove that Φ′ is strictly monotone in X∗, for any u, v ∈ X with u ̸= v, we may

assume, without loss of generality, that

L(u) :=
∫

Ω

(
|∇u|p(x)

p(x)
+ η(x)

|∇u|q(x)

q(x)

)
dx

≥
∫

Ω

(
|∇v|p(x)

p(x)
+ η(x)

|∇v|q(x)

q(x)

)
dx =: L(v).

(4.1)

Note that the functional L is convex, see for example [6], and its Gâteaux derivative is
given by the formula

⟨L′(u), v⟩ = ⟨A(u), v⟩,

where A denotes the strictly monotone operator introduced in Proposition 2.4. Furthermore,
for all u, v ∈ X, the derivative of Φ satisfies

⟨Φ′(u), v⟩ = M(L(u))⟨A(u), v⟩,

and thus,

⟨Φ′(u)− Φ′(v), u − v⟩ = ⟨M(L(u))A(u)− M(L(v))A(v), u − v⟩
= (M(L(u))− M(L(v))) ⟨A(u), u − v⟩

+M(L(v))⟨A(u)−A(v), u − v⟩.
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By the convexity of L, we have

L(v) ≥ L(u) + ⟨A(u), v − u⟩,

which implies by (4.1) that

⟨A(u), u − v⟩ ≥ L(u)−L(v) ≥ 0.

Since M is a non-decreasing function, and under the assumption that condition (H0) holds,
we deduce that M(L(u)) ≥ M(L(v) ≥ m0, it follows that

⟨Φ′(u)− Φ′(v), u − v⟩ ≥ 0.

Therefore, the operator Φ′ is monotone on X∗. Moreover, the strict monotonicity of A and
the properties of M imply that Φ′ is strictly monotone on X∗.

Lemma 4.2. The functional Φ′ is a mapping of (S)+-type in X∗.

Proof. Let (un) ⊂ X be a sequence such that un ⇀ u in X as n → ∞, and it satisfies the
following condition

lim sup
n→∞

⟨Φ′(un), un − u⟩ ≤ 0. (4.2)

Clearly, limn→∞⟨Φ′(u), un − u⟩ = 0 due to the fact that un ⇀ u in X as n → ∞. By the
strict monotonicity of Φ′ in X∗, we obtain

0 ≤ lim
n→∞

⟨Φ′(un)−Φ′(u), un − u⟩ = lim
n→∞

⟨Φ′(un), un − u⟩ = lim
n→∞

M(L(un))⟨A(un), un − u⟩ ≤ 0.

Since M(t) ≥ m0, for any t ≥ 0, ones has limn→∞⟨A(un), un − u⟩ = 0. The proof is achieved
by (ii) of Proposition 2.4.

Lemma 4.3. The operator Φ′ is an homeomorphism.

Proof. The strict monotonicity of Φ′ ensures that it is injective. Given that Φ′ is also coercive,
it follows that Φ′ is surjective. Consequently, Φ′ possesses an inverse mapping. We now
demonstrate that the inverse mapping (Φ′)−1 is continuous.

Let θ̃n, θ̃ ∈ X∗ be such that θ̃n → θ̃ as n → ∞. Our objective is to prove that

lim
n→∞

(Φ′)−1(θ̃n) = (Φ′)−1(θ̃).

Let us define wn = (Φ′)−1(θ̃n), n = 1, 2, . . . and w = (Φ′)−1(θ̃), so that

Φ′(wn) = θ̃n and Φ′(w) = θ̃.

Due to the coercivity of Φ′, the sequence (wn) is bounded. Without loss of generality,
assume that wn ⇀ w as n → ∞, which leads to the following

lim
n→∞

⟨Φ′(wn)− Φ′(w), wn − w⟩ = lim
n→∞

⟨θ̃n − θ̃, wn − w⟩ = 0.

Since Φ′ is of (S)+-type, it follows that wn → w in X as n → ∞, which ensures that

lim
n→∞

Φ′(wn) = Φ′(w).
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Combining this with Φ′(wn) → Φ′(w), as n → ∞, we deduce that

Φ′(w) = Φ′(w).

Since Φ′ is injective, it follows that w = w, and hence wn → w as n → ∞. Therefore, we
have

(Φ′)−1(θ̃n) → (Φ′)−1(θ̃),

proving that (Φ′)−1 is continuous.

Moreover, one has

Lemma 4.4. The operator Ψ′ : X → X∗ is compact.

Proof. In what follows, consider Ψ′
1 and Ψ′

2 such that

⟨Ψ′(u), v⟩ = ⟨Ψ′
1(u), v⟩+ µ

λ
⟨Ψ′

2(u), v⟩.

Condition (H1) and the compact embedding X ↪→ Lα1(x)(Ω), 1 < α+
1 < p− implies the

compactness of Ψ′
1(u).

In fact, let (un)n ⊂ X be a sequence such that un ⇀ u as n → ∞. Noting that the
embedding X ↪→ Lα1(x)(Ω), 1 < α+

1 < p− is compact, thus there is a subsequence, still
denoted by (un)n, such that un → u strongly in Lα1(x)(Ω) as n → ∞.

We claim that the Nemytskii operator N f (u)(x) := f (x, u(x)) is continuous since f :

Ω × R → R is a Carathéodory function satisfying (H1), thus, N f (un) → N f (u) in L
α1(x)

α1(x)−1 (Ω)

as n → ∞. In view of Hölder’s inequality mentioned in Proposition 2.1 and the compact
embedding X ↪→ Lα1(x)(Ω), 1 < α+

1 < p−, for all v ∈ X, one has

|Ψ′
1(un)(v)− Ψ′

1(u)(v)| =
∣∣∣∣∫Ω

f (x, un)vdx −
∫

Ω
f (x, u)v dx

∣∣∣∣
≤
∫

Ω
|( f (x, un)− f (x, u))v| dx

≤ 2
∣∣N f (un)−N f (u)

∣∣
α1(x)

α1(x)−1
|v|α1(x)

≤ 2cα1

∣∣N f (un)−N f (u)
∣∣

α1(x)
α1(x)−1

∥v∥X,

where cα1 is the embedding constant of the embedding X ↪→ Lα1(x)(Ω) as in (2.1). Thus,
Ψ′

1(un) → Ψ′
1(u) in X∗ as n → ∞, i.e. Ψ′

1 is completely continuous, so we conclude that Ψ′
1 is

compact. A similar argument can be made to prove that Ψ′
2 is compact, thereby completing

the proof.

5 Proof of Theorem 3.2

Let x0 ∈ Ω be such that Bρ(x0) ⊆ Ω. Now, for positive constant σ2 as in the statement of
Theorem 3.2, let us consider the function u∗ ∈ X given by

u∗(x) :=


0 if x ∈ Ω\Bρ(x0),

σ2 if x ∈ B ρ
2
(x0),

2σ2
ρ

(
ρ − |x − x0|

)
if x ∈ Bρ(x0)\B ρ

2
(x0).

(5.1)



Kirchhoff-type double phase problem involving variable exponents 11

From the definition of the function u∗ in (5.1) we have 0 ≤ u∗(x) ≤ σ2 for all x ∈ Ω and
thus, F(x, u∗(x)) ≥ 0 for all x ∈ Ω, due to the hypothesis (H2). Moreover, we then deduce for

each i = 1, 2, . . . , N that ∂xi u∗ = − 2σ2
ρ

(x−x0
i )

|x−x0| , so we get

|∇u∗| =
(

N

∑
i=1

|∂xi u∗(x)|2
) 1

2

=
2σ2

ρ
.

Hence,

|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)
=

1
p(x)

(
2σ2

ρ
)p(x) +

η(x)
q(x)

(
2σ2

ρ

)q(x)

≥ 1
p(x)

(
2σ2

ρ

)p(x)

≥ 2p−

p+
min

{(
σ2

ρ

)p−

,
(

σ2

ρ

)p+
}

.

Taking into account the condition (H0), we arrive at

Φ(u∗) = M̂

[∫
Ω

(
|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)

)
dx

]

≥ m0

∫
Ω

(
|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)

)
dx

≥ m02p−

p+
min

{
(

σ2

ρ
)p− , (

σ2

ρ
)p+
} ∫

Bρ(x0)\B ρ
2
(x0)

dx

≥ m02p−

p+
min{σ

p−
2 , σ

p+
2 }

max{ρp− , ρp+}
. (Vρ − Vρ

2
)

=
m02p−−N(2N − 1)min{σ

p−
2 , σ

p+
2 }.Vρ

p+ max{ρp− , ρp+}

=
1
δ1

min{σ
p−
2 , σ

p+
2 }. (5.2)

From (5.2), it implies by using the condition (3.1) that

Φ(u∗) > σ1.

On the other hand, since p(x) < q(x) for all x ∈ Ω, we also have

|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)
=

1
p(x)

(
2σ2

ρ

)p(x)

+
η(x)
q(x)

(
2σ2

ρ

)q(x)

≤ 2q+

p−
max{1, |η|∞}

((
σ2

ρ

)p(x)

+

(
σ2

ρ

)q(x)
)

≤ 2q+

p−
max{1, |η|∞}.2 max

{(
σ2

ρ

)p−

,
(

σ2

ρ

)q+
}

≤ 2q++1

p−
max{1, |η|∞}

max{σ
p−
2 , σ

q+
2 }

min{ρp− , ρq+}
.
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Due to the fact that M is a continuous nondecreasing function on [0, ∞), it implies that

M̂(t) =
∫ t

0
M(τ) dτ ≤ M(t)

∫ t

0
dτ = M(t)t, ∀t ≥ 0,

which helps us to get

Φ(u∗) = M̂

[∫
Ω

(
|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)

)
dx

]

≤ M

[∫
Ω

(
|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)

)
dx

] ∫
Ω

(
|∇u∗|p(x)

p(x)
+ η(x)

|∇u∗|q(x)

q(x)

)
dx

≤ M

[∫
Bρ(x0)\B ρ

2
(x0)

(
2q++1

p−
max{1, |η|∞}

max{σ
p−
2 , σ

q+
2 }

min{ρp− , ρq+}

)
dx

]
×

×
∫

Bρ(x0)\B ρ
2
(x0)

(
2q++1

p−
max{1, |η|∞}

max{σ
p−
2 , σ

q+
2 }

min{ρp− , ρq+}

)
dx

≤
m12q++1−N(2N − 1)max{1, |η|∞}. max{σ

p−
2 , σ

q+
2 }Vρ

p− min{ρp− , ρq+}

=
1
δ2

max{σ
p−
2 , σ

q+
2 }. (5.3)

For every u ∈ X with Φ(u) ≤ σ1, due to Proposition 2.2, we infer that

q+σ1 ≥ q+Φ(u) ≥ m0ρH(∇u) ≥ m0 min
{
∥u∥p−

X , ∥u∥q+

X

}
,

which implies that

Φ−1(−∞, σ1] = {u ∈ X : Φ(u) ≤ σ1}

⊆
{

u ∈ X : ∥u∥X ≤ max
{(q+σ1

m0

) 1
p− ,
(q+σ1

m0

) 1
q+
}}

.

Using the conditions (H1), (H4) and the fact that αi ∈ C+(Ω), i = 1, 2, we obtain

|F(x, t)| ≤ A1|t|+
A1

α1(x)
|t|α1(x) ≤ A1(|t|+ |t|α1(x))

and

|G(x, t)| ≤ A2|t|+
A2

α2(x)
|t|α2(x) ≤ A2(|t|+ |t|α2(x))

for all (x, t) ∈ Ω × R.
Hence, by Proposition 2.2 and Proposition 2.3 and the definition of the functional Ψ, for
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all u ∈ Φ−1(−∞, σ1], we arrive at

Ψ(u) ≤ A1

∫
Ω
(|u|+ |u|α1(x)) dx +

µ

λ

∫
Ω

A2(|u|+ |u|α2(x)) dx

≤ A1c1∥u∥X + A1 max
{
|u|α−α(x), |u|

α+1
α1(x)

}
+

µ

λ

[
A2c1∥u∥X + A2 max

{
|u|α

−
2

α2(x), |u|
α+2
α2(x)

}]
≤ A1c1∥u∥X + A1 max

{
cα−1

α1 , cα+1
α1

}
max

{
∥u∥α−1

X , ∥u∥α+1
X

}
+

µ

λ

[
A2c1∥u∥X + A2 max

{
cα−2

α2 , cα+2
α2

}
max

{
∥u∥α−2

X , ∥u∥α+2
X

}]
≤ A1c1 max

{(q+σ1

m0

) 1
p− ,
(q+σ1

m0

) 1
q+
}
+ A1c̃α1 max

(q+σ1

m0

) α+1
p− ,
(q+σ1

m0

) α−1
q+


+

µ

λ

A2c1 max
{(q+σ1

m0

) 1
p− ,
(q+σ1

m0

) 1
q+
}
+ A2c̃α2 max

(q+σ1

m0

) α+2
p− ,
(q+σ1

m0

) α−2
q+


 .

Hence,

supu∈Φ−1(−∞,σ1]
Ψ(u)

σ1
≤ A1c1 max


(

q+

σ
p−−1
1 m0

) 1
p−

,

(
q+

σ
q+−1
1 m0

) 1
q+


+ A1c̃α1 max


 q+

m0σ

p−−α+1
α+1

1


α+1
p−

,

 q+

m0σ

q+−α−1
α−1

1


α−1
q+



+
µ

λ

A2c1 max


(

q+

σ
p−−1
1 m0

) 1
p−

,

(
q+

σ
q+−1
1 m0

) 1
q+


+ A2c̃α2 max


 q+

m0σ

p−−α+2
α+2

1


α+2
p−

,

 q+

m0σ

q+−α−2
α−2

1


α−2
q+




= A1Kσ1,α1 +

µ

λ
A2Kσ1,α2 . (5.4)

On the other hand, the conditions (H2) and (H5) yields

Ψ(u∗) =
∫

B ρ
2
(x0)

F(x, σ2)dx +
∫

Bρ(x0)\B ρ
2
(x0)

F
(

x,
2σ2

ρ
(ρ − |x − x0|)

)
dx +

µ

λ

∫
Ω

G(x, u(x)) dx

≥
∫

B ρ
2
(x0)

F(x, σ2)dx. (5.5)

Invoking (5.3) and (5.5), we get

Ψ(u∗)

Φ(u∗)
≥ δ2

∫
B ρ

2
(x0) F(x, σ2)dx

max{σ
p−
2 , σ

q+
2 }

. (5.6)
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Because µ < µ∗
λ,g, we infer that

µ <
1 − λA1Kσ1,α1

A2Kσ1,α2

,

that is,
1
λ
> A1Kσ1,α1 +

µ

λ
A2Kσ1,α2 ,

so by (5.4), we arrive at
supu∈Φ−1(−∞,σ1]

Ψ(u)

σ1
<

1
λ

. (5.7)

Furthermore, owing to the choice of the parameter λ, that is,

1
λ
< δ2

∫
B ρ

2
(x0) F(x, σ2) dx

max{σ
p−
2 , σ

q+
2 }

,

which implies by using (5.6) that
Ψ(u∗)

Φ(u∗)
>

1
λ

. (5.8)

Thanks to (5.7)–(5.8), it follows that the condition (T1) of Proposition 2.5 is fulfilled with
u0 = u∗ and γ = σ1.

Now, thanks to the conditions (H1), (H4), Proposition 2.2 and Proposition 2.3, for u ∈ X

with ∥u∥X > 1, we arrive at

Φ(u)− λΨ(u) ≥ m0

q+
min

{
∥u∥p−

X , ∥u∥q+

X

}
− λ

∫
Ω

[
F(x, u) +

µ

λ
G(x, u)

]
dx

≥ m0

q+
∥u∥p−

X − λA1

∫
Ω
|u| dx − λ

A1

α−
1

∫
Ω
|u|α1(x) dx − µA2

∫
Ω
|u| dx

− µ
A2

α−
2

∫
Ω
|u|α2(x) dx

≥ m0

q+
∥u∥p−

X − λA1c1∥u∥X − λ
A1

α−
1

c̃α1 max
{
∥u∥α−1

X , ∥u∥α+1
X

}
− µA2c1∥u∥X − µ

A2

α−
2

c̃α2 max
{
∥u∥α−2

X , ∥u∥α+2
X

}
=

m0

q+
∥u∥p−

X − (λA1 + µA2)c1∥u∥X − λ
A1

α−
1

c̃α1∥u∥α+1
X − µ

A2

α−
2

c̃α2∥u∥α+2
X .

Since 1 < α+
i < p− for i = 1, 2, the coercivity of Φ − λΨ is ensured, and the condition (T2)

in Proposition 2.5 is satisfied. Therefore, the application of Proposition 2.5 yields the desired
conclusion.

In the sequel, let us consider the following Kirchhoff-type double phase problem with
constant exponents and one parameter−M

[∫
Ω

(
|∇u|p

p
+ η(·) |∇u|q

q

)
dx
] (

∆pu + η∆η(·)
q u

)
= λ f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(5.9)
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where, Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω, 0 ≤ η(·) ∈
L∞(Ω), λ > 0 is a parameter, and p, q are constants satisfying

1 < p < N, p < q <
Np

N − p
, (5.10)

Assume that f : Ω × R → R is a Carathéodory function satisfying appropriate growth
conditions, and the Kirchhoff function M(t) = 1 + t with t ≥ 0. For any σ ∈ R+ and α > 1,
let us define the number Kσ,α as

Kσ,α := c1 max
{( q

σp−1

) 1
p

,
( q

σq−1

) 1
q
}
+ cα

α max

{(
q

σ
p−α

α

) α
p

,
(

q

σ
q−α

α

) α
q
}

,

we then deduce the following multiplicity result for problem (1.1).

Corollary 5.1. Assume that the hypothesis (5.10) holds and there exist two positive constants σ1 and
σ2 verifying

δ1σ1 < σ
p
2 ,

with
δ1 :=

pρp

2p−N(2N − 1)Vρ
,

such that

(H1) there exist A1 > 0 and α1 with 1 < α1 < p such that

| f (x, t)| ≤ A1(1 + |t|α1−1)

for a.e. x ∈ Ω and for all t ∈ R;

(H2) F(x, t) ≥ 0 for a.e. x ∈ Ω and for all t ∈ [0, σ2];

(H3) A1Kσ1,α1 <
δ2
∫

Bρ/2(x0) F(x,σ2)dx

max{σ
p
2 ,σq

2}
with

δ2 :=
p min{ρp, ρq}

m12q+1−N(2N − 1)max{1, |η|∞}Vρ
,

m1 := 1 +
2q+1−N(2N − 1)max{1, |η|∞}. max{σ

p
2 , σ

q
2}Vρ

p min{ρp, ρq} .

Then, for every parameter

λ ∈ Λσ1,σ2 :=

 max{σ
p
2 , σ

q
2}

δ2
∫

B ρ
2
(x0) F(x, σ2) dx

,
1

A1Kσ1,α1


problem (5.9) possesses at least three distinct weak solutions in the space X.
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