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Abstract. In this paper, we investigate the existence and uniqueness of crossing periodic
solutions for a class of mixed-type second order Duffing equations with discontinuity
and asymmetry. By the Poincaré–Bohl theorem, we obtain several existence criteria of
regular periodic solutions which are crossing. We also present a uniqueness result.
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1 Introduction

Second order Duffing equation
x′′ + g(x) = p(t), (1.1)

is one of the typical models both in ODE and forced vibrations, where g is an elastic force and
p is an external excitation. There have been many interesting results reported concerning the
existence of periodic solutions. The methods involve the Poincaré–Birkhoff twist theorem, the
Poincaré–Bohl theorem, averaging theory, variational method and the Leray–Schauder con-
tinuation method of topological degree etc., see for example [3–6, 9, 22–26] and the references
therein.

In the paper, we are concerned with Eq. (1.1) with discontinuous vector field, in which g
presents a discontinuity at α ∈ R and it satisfies asymmetric conditions, and then we called
it as discontinuous mixed-type Duffing equations. During the last decades, the amount of
publications on the discontinuous differential equations is vast. We refer readers to consult
classical monographs [8, 19] for the general theory, and literatures [7, 11, 12, 17, 18] for some
related research. In [8], the author extend discontinuous differential equations to differential
inclusions, he revealed many aspects of discontinuous differential equations and addressed
existence and uniqueness of solutions. More results on the differential inclusion can be found
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in [1]. Inspired by these, we consider the existence and uniqueness of periodic solutions for
the following second order Duffing equations allowing for discontinuities at 0

x′′ + g±(x) = p(t), x ̸= 0, (1.2)

where p(t) = p(t + 2π), g±(x) are of class C1 and satisfy the asymmetric growth condition

0 ≤ lim
x→−∞

g−(x)
x

< +∞, lim
x→+∞

g+(x)
x

= +∞. (1.3)

Many existing literatures, whether continuous or not, focused on periodic solution problem
of Duffing equations with symmetric growth condition. But there is no study about the dis-
continuous Duffing equation with the asymmetric condition. According to the relationship of
linear growth satisfied by the elastic force g, the Duffing equations can be divided into three
categories:

(Sp) Superlinear growth: lim|x|→∞
g(x)

x = +∞;

(Sm) Semilinear growth: 0 < lim inf|x|→∞
g(x)

x ≤ lim sup|x|→∞
g(x)

x < ∞;

(Sb) Sublinear growth: lim|x|→∞
g(x)

x = 0.

On the other hand, when g satisfies different linear growth conditions for x ∈ R, it means
that the processing method is also different from the one of symmetric Duffing equations.
Recently, there are a few papers on the periodic solution problem of discontinuous symmetric
Duffing equations (with impulsive perturbations or discontinuous vector field), in which the
elastic force g satisfies one of the above linear growth conditions, see [2,10,12–16,18,20,21] for
example and the references therein. However, in this paper we consider the existence criteria
of crossing periodic solutions of (1.2) when g±(x) satisfy different linear growth conditions
(1.3) for x ∈ R. And a uniqueness theorem is also presented.

To obtain the desirable results, we first assume that g± satisfy the following conditions.

(H1) Let g+ ∈ C1([0,+∞), R), g− ∈ C1((−∞, 0], R), and the behavior of g± at the disconti-
nuity point x = 0 satisfies that the left and right limits

g− = lim
x→0−

g−(x), g+ = lim
x→0+

g+(x)

exist and are finite, and satisfy g− < 0 < g+.

(H2) There are two real numbers d1 and d2 with d1 < 0 < d2 such that

x ≤ d1 ⇒ g−(x) < 0, x ≥ d2 ⇒ g+(x) > 0.

(H3) There are positive constants l−, l+, L− and A1 such that the asymptotic growth of g± is
controlled by

l− ≤ g−(x)
x

≤ L−, x ≤ −A1;
g+(x)

x
≥ l+, x ≥ A1. (1.4)

Moreover, there exists an integer m > 0 that satisfies

2
m + 1

<
1√
L−

≤ 1√
l−

+
1√
l+

<
2
m

. (1.5)
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Then by applying the Poincaré–Bohl theorem to the discontinuous Duffing equation (1.2) with
the asymmetric growth condition, we obtain several existence criteria of crossing periodic
solutions as follows.

Theorem 1.1. Assume that (H1)–(H3) hold. Then (1.2) has at least one 2π crossing periodic solution.

Note that (1.4) means that g− satisfies semilinear growth for x ≤ −A1, while g+ can satisfy
both semilinear growth and superlinear growth when x ≥ A1. Further we have that

lim
x→−∞

g−(x) = −∞, lim
x→+∞

g+(x) = +∞. (1.6)

Theorem 1.2. In Theorem 1.1, if (H3) is replaced as (1.6) and

(H3)′ There exist L− ∈ (0, 1
4 ) and A1 > 0 such that

g−(x)
x

≤ L−, x ≤ −A1.

Then (1.2) has at least one 2π crossing periodic solution.

Theorem 1.3. In Theorem 1.1, if (H3) is replaced as

(H3)∗ There are positive constants l−, L−, A and an integer m > 0 such that limx→+∞
g+(x)

x = +∞,
and

1
4

m2 < l− ≤ g−(x)
x

≤ L− <
1
4
(m + 1)2, x ≤ −A. (1.7)

Then (1.2) has at least one 2π crossing periodic solution.

Moreover, for the completeness of the paper we further provide a uniqueness criterion.

Theorem 1.4. Assume that g± are Lipschitz continuous and satisfy 0 < g±(x)−g±(y)
x−y < 1 for any

x, y ∈ R \ {0}. Then (1.2) has at most one 2π crossing periodic solution.

This paper is organized as follows. In Section 2, we present some useful preliminaries.
In Sections 3–4, we give the behavior of solutions for the autonomous and non-autonomous
systems, respectively. Then by applying the Poincaré–Bohl theorem, we obtain several exis-
tence criteria of 2π crossing periodic solutions. And we also prove the uniqueness. Moreover,
to demonstrate the effectiveness of the obtained results, we further provide an example in
Section 5. Concluding remarks are outlined in Section 6.

2 Preliminaries

Consider the second order Duffing equation

x′′ + g(x) = p(t), (2.1)

where p : R → R is continuous and 2π-periodic, and denote by

E = max
t∈[0,2π]

{|p(t)|}, E = max
t∈[0,2π]

{p(t)}, E = min
t∈[0,2π]

{p(t)}. (2.2)
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While g : R → R is continuous except for a discontinuity point at x = 0. Assume that
Σ0 = {(x, y) ∈ R2 : x = 0} divide g(x) of the form

g(x) =

{
g+(x), x > 0,

g−(x), x < 0.
(2.3)

Here Σ0 is called as a discontinuity line on the plane, and we denote by

Σ+
0 = {(x, y) : x = 0, y > 0}, Σ−

0 = {(x, y) : x = 0, y < 0},

Σ+ = {(x, y) ∈ R2 : x > 0}, Σ− = {(x, y) ∈ R2 : x < 0}.

Then Σ0 = Σ+
0 ∪ {O} ∪ Σ−

0 , R2 = Σ+ ∪ Σ0 ∪ Σ−, and the unit normal vector perpendicular to
Σ0 is taken to be nT = (1, 0).

We recall an existence result of periodic solutions from the Poincaré–Bohl theorem.

Theorem 2.1 ([26, Theorem 1.2 of Chapter VI]). Suppose that F : D → R2 is a continuous
mapping, where D(⊂ R2) is a closed bounded region including the origin as an interior point, the
boundary ∂D is a piecewise smooth simple closed curve. For any p ∈ ∂D then the image q = F (p)
satisfies

−→
Oq ̸= λ

−→
Op, where λ ≥ 1 is a constant. Then F has at least one fixed point in D.

It is sufficient to prove that any orbit which starts from p = (x(0), x′(0)) ∈ ∂D and moves
to q = (x(2π), x′(2π)) ∈ R2 \D, then the points p and q are not on the same ray starting from
the origin.

In what follows, we consider the equivalent system of (2.1) and (2.3){
x′ = y,

y′ = −g+(x) + p(t), x > 0;

{
x′ = y,

y′ = −g−(x) + p(t), x < 0.
(2.4)

Let V±(t; x, y) = (y,−g±(x) + p(t))T denote the vector field of (2.4). The second compo-
nent of V± is discontinuous on Σ0, so by using Filippov theory to define orbits of (2.4) when
they intersect with Σ0 such that the orbits can be concatenated in a natural way. Concretely,
the set-valued extension as follows

z′(t) ∈ V(t; x, y) =


V+(t; x, y), x > 0,

co{V+(t; x, y), V−(t; x, y)}, x = 0,

V−(t; x, y), x < 0,

(2.5)

where z(t) .
= (x(t), y(t))T, V(t; x, y) .

= V(t; x(t), y(t)), and co(A) denotes the smallest closed
convex set containing A. The convex set with V− and V+ is of the form

co{V+, V−} = {(1 − q)V− + qV+, ∀q ∈ [0, 1]},

here q is a parameter which defines the convex combination. The extension of (2.4) into the
convex differential inclusion (2.5) is known as the Filippov’s convex method. The existence
of solutions of (2.5) is guaranteed with an upper semi-continuity of set-valued functions, and
the existence of solutions of an initial value problem (IVP for short)

z′(t) ∈ V(t; x, y), z(0) = (x0, y0)
T

combines with Filippov’s convex method define the solutions of (2.4). For more details, we
refer readers to consult [1, 8] and the references therein.
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In this paper, we deal with the periodic solutions that appear when the discontinuity line
Σ0 is considered, and the solution t → (x(t), x′(t)) vanishes twice per period. These solutions
are built piecewise, from restrictions to some subintervals of solutions of x′′ + g+(x) = p(t)
(resp. x′′ + g−(x) = p(t)) vanishing at the bounds of the corresponding subinterval. Now we
give the following definitions concerning what kind of solutions we are looking for.

Definition 2.2 ([12]). Let I be an interval of R and x : I → R be any solution of (2.4). We say
that x is singular if there exists t∗ ∈ I such that x(t∗) = x′(t∗) = 0. A non-singular solution is
said to be regular.

Definition 2.3. We say that x : R → R is a regular solution of (2.4) if it is continuous to t,
and there exists a strictly increasing sequence (tj)j∈Z, with no accumulation points, such that
x(tj) = 0, x′(tj) ̸= 0 and the restriction of x on each interval [tj−1, tj] is twice continuously
differentiable. Moreover, the limits limt→t−j

x′′(t) and limt→t+j
x′′(t) exist and are finite.

By (H1), we assume the existence of solutions to the IVP of (2.4) with z(0) = (x0, y0)T.
And from the above statements, any solution of IVP with the initial condition (x0, y0) /∈ Σ0 is
locally unique, because V+(t; x, y) and V−(t; x, y) are of class C1. While for the uniqueness
problem of IVP with the initial condition on Σ0, there are three basic ways in which the vector
field around Σ0 can behave as follows.

(1) Transversal intersection.

Any solution of IVP with the initial condition (x0, y0) ∈ Σ+/or (x0, y0) ∈ Σ−, exists
and is unique. A necessary condition for the transversal intersection at Σ0 is

[nTV−(t; x, y)] · [nTV+(t; x, y)] > 0, (x, y) ∈ Σ0,

where nTV− and nTV+ are projections of V− and V+ on the normal vector to Σ0.

(2) Attraction sliding mode (i.e. Σ0 attracts the solution). Here the solution will hit Σ0 but
cannot leave it and then move along Σ0.

Any solution of IVP exists and is unique in the forward time. During the sliding
mode, the solution will continue along Σ0 with the vector field Ṽ being given by

Ṽ = αV+ + (1 − α)V−, α =
nTV−

nT(V− − V+)
,

where the parameter α is chosen such that the vector field Ṽ lies along Σ0. An attraction
sliding mode at Σ0 occurs if

nTV−(t; x, y) > 0, nTV+(t; x, y) < 0, (x, y) ∈ Σ0.

(3) Repulsion sliding mode (i.e. the vector field is repulsing from Σ0). Here the solution is
diverging from Σ0.

The IVP with the initial condition on Σ0 has three possible solutions. In fact, a
solution which starts close to Σ0 will move away from it, but a solution emanating on
Σ0 can stay on Σ0, obeying Filippov’s solution, or leave Σ0 by entering either Σ+ or Σ−.
Hence the solution exists but is not unique in forward time.
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Remark 2.4. Note that the solution of (2.4) passing through the origin is not unique. For
example, we consider

g+(0)− p(t) < 0, g−(0)− p(t) > 0.

A qualitative sketch of the dynamics is as shown in Figure 2.1. There are two orbits passing
through the origin: one is contained in Σ+ involving the system with g+, the other is contained
in Σ− involving the system with g−, but it is not clear that which one should be the unique
solution.

Figure 2.1: Schematic diagram

Definition 2.5. For any given (0, y) ∈ Σ0, if

[nTV−(t; 0−, y)] · [nTV+(t; 0+, y)] ≤ 0,

(0, y) is called to be a sliding point. A set of sliding points is called as a sliding set. We say
(0, y) a crossing point, if

[nTV−(t; 0−, y)] · [nTV+(t; 0+, y)] > 0.

Then the origin is the unique possible sliding point on Σ0, and it is an isolated and singular
sliding point.

Definition 2.6. A crossing periodic orbit is defined as a closed orbit with no points in common
with the sliding set.

In conclusion, any regular orbit of (2.4) not passing through the origin on the phase plane
exists and is unique. In the next text, we focus on the crossing solutions (or orbits) of (2.4) ex-
ception for the origin. To be precise, we discuss large-amplitude crossing periodic orbits of (2.4).
They intersect with Σ0 transversally, i.e. the transversal intersection case. For more informa-
tion about the existence and uniqueness of solutions of discontinuous differential equations,
please see [8, 11, 17] for example and the references therein.

3 Autonomous system

The autonomous equation
x′′ + g±(x) = 0, x ̸= 0, (3.1)

which is equivalent to the system{
x′ = y,

y′ = −g+(x), x > 0;

{
x′ = y,

y′ = −g−(x), x < 0.
(3.2)
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Let G(x) =
∫ x

0 g±(u)du with G(0) = 0, it follows from (H3) that

lim
x→−∞

G(x) = lim
x→+∞

G(x) = +∞. (3.3)

Then the function G has a minimum on R, by adding a suitable constant we can assume
without loss of generality that G(x) ≥ 0 for every x ∈ R.

For the system (3.2) we have a Hamiltonian function H : R × R → R defined as

H(x, y) =
1
2

y2 + G(x).

Note that H is not of class C1 in R2, since G is continuous but not differentiable at x = 0. The
orbits of the crossing solutions are symmetric with respect to the horizontal axis, and they lie
on the level sets of the Hamiltonian function, i.e.,

Lc = {(x, y) ∈ R2 : H(x, y) = c}.

The level sets Lc are compact, and consequently the crossing solutions of (3.1) are globally
defined.

We are now concentrate on the dynamics both near the origin O(0, 0).

Lemma 3.1. The origin is a local center for (3.2); if c > 0 is small sufficiently, the level set Lc is a
closed curve, star-shaped with respect to the origin, corresponding to the crossing periodic solution of
(3.2). The same is true for c > 0 being large enough.

Proof. By (H1), there exists a δ > 0 such that for every x ∈ [−δ, 0) ∪ (0, δ] we have that

xg±(x) > x2.

Let z(t) = (x(t), y(t)) be a crossing solution of (3.2) with x(t) ∈ [−δ, 0)∪ (0, δ] for some t ∈ R.
Making the following polar coordinates transformation

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t), (3.4)

where r : [0, 2π] → (0,+∞) and θ : [0, 2π] → R are continuous functions, we have that

−θ′(t) =
x′(t)y(t)− x(t)y′(t)

x2(t) + y2(t)
=

x(t)g±(x(t)) + y2(t)
x2(t) + y2(t)

≥ 1. (3.5)

We observe that for x ∈ [−δ, 0) ∪ (0, δ],

∇H(x, y) · (x, y)T = xg±(x) + y2 > 0.

Hence near the origin, H(x, y) is strictly increasing along the rays emanating from the origin,
at least in a small neighborhood of the origin. Then a solution starting with initial point
(x(0), y(0)) ̸= (0, 0) sufficiently near the origin, on a given ray, will remain in the strip {(x, y) :
|x| < δ} for every t ∈ [0, 2π], and during this time it will perform an entire rotation, returning
to the initial ray, by (3.5). Since H(x, y) is constant along the orbit, it must indeed return to the
same initial point. This proves that the small-amplitude crossing solutions of (3.2) are periodic
and from (3.5) they have star-shaped orbits with respect to the origin.
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We next consider a large-amplitude crossing solutions of (3.2). From (H2) and set M =

max{|xg±(x)| : x ∈ [d1, d2]}. Let (x(t), y(t)) be a crossing solution of (3.2) with (x(t), y(t)) ̸=
[d1, d2]× [−

√
M,

√
M] and x(t) ̸= 0 for some t ∈ R. Then it follows from (3.4) that

−θ′(t)

≥ −M+y2(t)
x2(t)+y2(t) > 0, x(t) ∈ [d1, d2],

> y2(t)
x2(t)+y2(t) ≥ 0, x(t) /∈ [d1, d2].

The same argument shows that far from the origin then H(x, y) is strictly increasing along the
rays emanating from the origin. Let

S = max{H(x, y) : (x, y) ∈ [d1, d2]× [−
√

M,
√

M]},

and set K =
√

2S. By (H3) there exist d̂1, d̂2 with d̂1 ≤ d1 < 0 < d2 ≤ d̂2 such that

x /∈ [d̂1, d̂2] ⇒ G(x) > S.

We claim that if (x, y) is a crossing solution of (3.2) with (x(0), y(0)) /∈ [d̂1, d̂2]× [−K, K],
then (x(t), y(t)) /∈ [d1, d2]× [−

√
M,

√
M] for every t ∈ R. Once the claim is proved, the above

argument used for the small-amplitude crossing solutions can be applied, and consequently
the large-amplitude crossing solutions of (3.2) are periodic and have star-shaped orbits with
respect to the origin.

We let (x, y) be a crossing solution of (3.2) such that (x(0), y(0)) /∈ [d̂1, d̂2]× [−K, K]. There
are two cases. Either x(0) /∈ [d̂1, d̂2], in which case G(x(0)) > S, hence

H(x(t), y(t)) = H(x(0), y(0)) ≥ G(x(0)) > S, t ∈ R;

or x(0) ∈ [d̂1, d̂2] and y(0) /∈ [−K, K], in which case 1
2 y2(0) > S, hence

H(x(t), y(t)) = H(x(0), y(0)) ≥ 1
2

y2(0) > S, t ∈ R.

By the definition S, in both cases then (x(t), y(t)) /∈ [d1, d2]× [−
√

M,
√

M] for every t ∈ R.

For every positive numbers c1 < c2, define the set

A(c1, c2) =

{
(x, y) ∈ R2 : c1 ≤ 1

2
y2 + G(x) ≤ c2

}
.

Then it follows from Lemma 3.1 that when c1 > 0 is small enough and c2 > c1 is large
enough, the set A(c1, c2) is an annulus with strictly star-shaped boundary curves. Moreover,
all crossing solutions of (3.2) with the associated initial value

(x(0), y(0)) = (x0, y0) ∈ R × R

are regular, with the only exception for (x0, y0) = (0, 0), in which case the solution is not
defined. Further we agree that the origin will be considered as a singular point defined as in
Definition 2.2.

Remark 3.2. If we consider c1 and c2 satisfying the above properties as fixed in Lemma 3.1. It
is easy to see that we can choose a constant ρ > 1 such that for every (x, y) ∈ R2

1
2

y2 + G(x) ≥ c1 ⇒ x2 + y2 > ρ−1,

1
2

y2 + G(x) ≤ c2 ⇒ x2 + y2 < ρ.
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Lemma 3.1 implies that all regular solutions (or regular orbits) of (3.1), exception for the
origin, cross Σ0 transversally in a clockwise fashion. For example see Figure 3.1: crossing pe-
riodic orbits of x′′ + x + sgn(x) = 0. It shows that the crossing periodic orbits are nonsmooth
but continuous at the intersection points of the orbits and Σ0.
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Figure 3.1: Crossing periodic orbits of x′′ + x + sgn(x) = 0. Red dashed line
denotes Σ0.

4 Perturbed system

We rewrite the equivalent system associated to (2.1) and (2.3) as follows{
x′ = y,

y′ = −g+(x) + p(t), x > 0;

{
x′ = y,

y′ = −g−(x) + p(t), x < 0.
(4.1)

Any function z(t) = (x(t), y(t)) : [0, 2π] → R × R such that (x(t), y(t)) ̸= (0, 0) for every
t ∈ [0, 2π]. By the polar coordinates transformation (3.4), the resulting equation of (4.1) for
r(t) > 0 and θ(t) ̸= π

2 + kπ, k ∈ Z is of the form
dr(t)

dt
= r cos θ sin θ + [p(t)− g±(r cos θ)] sin θ,

dθ(t)
dt

= − sin2 θ +
1
r
[p(t)− g±(r cos θ)] cos θ.

(4.2)

Correspondingly, we let r(t) = r(t; r0, θ0), θ(t) = θ(t; r0, θ0) be the solution of (4.2), which
satisfies (r(0), θ(0)) .

= (r0, θ0) ̸= (0, 0), and x0 = r0 cos θ0, y0 = r0 sin θ0.
Denote by D(R0)

.
= {(x, y) ∈ R2 : x2 + y2 < R2

0} and D[R0]
.
= {(x, y) ∈ R2 : x2 + y2 ≤

R2
0} are, respectively, the open and closed discs in the plane (i.e. two-dimensional balls), and

SR0 = {(x, y) ∈ R2 : x2 + y2 = R2
0}, with center the origin O(0, 0) and radius R0 > 0.

Note that any solution function z(t) = (x(t), y(t)) of (4.1) is supposed to be defined on a
maximal interval of existence. By (1.6) and the boundedness of p(t), it is easy to show that
global existence occurs that z(t) is defined for all t ∈ R.

Lemma 4.1. The solution z(t) = (x(t), y(t)) of (4.1) is defined on the whole t-axis.
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Proof. Define a function W(x, y) : R × R → R as

W(x, y) =
1
2

y2 + G(x)− Gmin + 1,

where Gmin = min{G(x) : x ∈ R}. It follows that W(x, y) > 1
2 y2 + 1

2 > 0 for every (x, y) ∈ R2,
and

lim
x2+y2→+∞

W(x, y) = +∞. (4.3)

We set W(t) .
= W(z(t)) = W(x(t), y(t)) with W(t0) = W0 = W(z0) = W(x0, y0). When

x(t) ̸= 0 for every t ∈ R, consider the derivative of W along the solution z(t) = (x(t), y(t)) of
(4.1) one has that ∣∣∣∣dW(t)

dt

∣∣∣∣ = |y(t)p(t)| ≤ E|y(t)| ≤ EW(t).

Using the elementary differential inequalities we have that

W(t) ≤ W0eE|t−t0|,

for t in a maximal interval containing t0. Further we have proved that W(z(t)) is bounded for
t in any bounded interval. And then there is no blow-up at finite time and the global existence
is proved.

Lemma 4.2. There exists R0 > 0 such that when r > R0, we have that dθ(t)
dt < 0 for all t ∈ [0, 2π].

Proof. By (1.6), there exists N > 0 sufficiently large such that

g+(x) > E, x ≥ N, g−(x) < E, x ≤ −N,

where E and E come from (2.2). Let R0 > N. When r > R0 and |r cos θ| ≥ N one has that

dθ(t)
dt

= − sin2 θ − [g±(r cos θ)− p(t)] cos2 θ

r cos θ
< 0.

While for r > R0 and |r cos θ| < N with r cos θ ̸= 0, one has that

dθ(t)
dt

< − sin2 θ +
|p(t)− g±(r cos θ)|

r
< −R2

0 − N2 − R0δ

R2
0

,

where δ = E + max|x|≤N |g±(x)| with E being from (2.2). Further, dθ(t)
dt < 0 for t ∈ [0, 2π] as

long as R0 > 1
2 (δ +

√
4N2 + δ2).

Lemma 4.2 implies that there exists R0 > 0 sufficiently large such that the regular orbits of
(4.1) rotate clockwise outside of SR0 as t (∈ [0, 2π]) increases.

Let |w| = |(a, b)| .
=

√
a2 + b2, we denote the usual Euclidean norm of the point w =

(a, b) ∈ R2. Next we prove that any solution z(t) = (x(t), y(t)) of (4.1) possesses an elastic
property as follows.

Lemma 4.3. For each α > 0, there is β = β(α) > 0 such that |z(0)| ≥ β implies that

|z(t)| > α, t ∈ [0, 2π].
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Proof. Let W(x, y) = 1
2 y2 + G(x), where G(x) is shown as in (3.3). By (1.6), there exists X > 0

such that G(x) > 0 for |x| > X. Further, W(x, y) > 0 for |x| > X and (4.3) holds. We set
G = minx∈R{G(x)} ≤ 0. Consider any solution z(t; z0)

.
= (x(t; x0, y0), y(t; x0, y0)) of (4.1)

passing through z0 = (x0, y0), and we denote by W(t) .
= W(x(t; x0, y0), y(t; x0, y0)) satisfying

W(0) .
= W0 = W(x0, y0). When x(t) ̸= 0, along the solution of (4.1) one has that

dW(t)
dt

= y(t)p(t) ≥ −E
√

2(W(t)− G),

where E is from (2.2). Further√
2(W(t)− G) ≥

√
2(W0 − G)− Et, t ∈ [0, 2π].

Let γ(α) = max{W(x, y) : x2 + y2 ≤ α2}. By (4.3), there exists β = β(α)(> α) sufficiently large
such that for x2 + y2 ≥ β2 then

2(W(x, y)− G) > (
√

2(γ(α)− G) + 2Eπ)2.

Hence x2
0 + y2

0 ≥ β2, we have that√
2(W(x(t; x0, y0), y(t; x0, y0))− G) ≥

√
2(W0 − G)− Et

>
√

2(γ(α)− G) + 2Eπ − Et ≥
√

2(γ(α)− G), t∈ [0, 2π].

This implies that x2(t; x0, y0) + y2(t; x0, y0) > α2 for t ∈ [0, 2π].

Lemmas 4.2–4.3 imply that there exists α > 0 sufficiently large such that the regular orbits
of (4.1) rotate clockwise in an annulus as t (∈ [0, 2π]) increases.

Consider any solution (x(t), y(t)) of (4.1) with the initial point (x(0), y(0)) = (x0, y0) ∈ Σ−.
In the polar coordinates, the solution is denoted by (r(t), θ(t)) satisfying (r0, θ0)

.
= (r(0), θ(0)).

By Lemma 4.2, the corresponding regular orbit rotates in a clockwise fashion in Σ−. Assume
that it reaches Σ+

0 at t = t0(> 0), that is (x(t0), y(t0)) = (0, yt0) ∈ Σ+
0 . Next we present a

result, and the discussion for (x0, y0) ∈ Σ+ is the same and so omitted here.

Lemma 4.4. There is ϵ0 > 0 such that the solution of (4.1) with (x(t0 + ϵ0), y(t0 + ϵ0)) ∈ Σ+

satisfies
lim

ϵ0→0+
(x(t0 + ϵ0), y(t0 + ϵ0)) = (0, yt0).

Proof. By (4.2), the solution (x(t0 + ϵ0), y(t0 + ϵ0)) ∈ Σ+ satisfies

∫ θ(t0+ϵ0)

π
2

dθ

− sin2 θ + 1
r [p(t)− g+(r cos θ)] cos θ

=
∫ t0+ϵ0

t0

dt = ϵ0, (4.4)

∫ r(t0+ϵ0)

yt0

dr
r cos θ sin θ + [p(t)− g+(r cos θ)] sin θ

=
∫ t0+ϵ0

t0

dt = ϵ0. (4.5)

We rewrite (4.4) as the form∫ θ(t0+ϵ0)

π
2

dθ

− sin2 θ + 1
r(θ) [p(t)− g+(r(θ) cos θ)] cos θ

= ϵ0.
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Further, when ϵ0 is small enough, (4.4) becomes

∫ θ(t0+ϵ0)

π
2

dθ

− sin2 θ
= ϵ0. (4.6)

It is easy to find θ∗(t0 + ϵ0) such that (4.6) holds. And on (r, θ) coordinate plane, θ∗(r, t0 + ϵ0)

is a continuous curve close to θ = π
2 for a given ϵ0.

Similarly, we can find the corresponding r∗(θ, t0 + ϵ0) such that (4.5) holds. And on (r, θ)

coordinate plane, r∗(θ) is a continuous curve near r = yt0 for a given ϵ0.
Put θ∗(r, t0 + ϵ0) and r∗(θ, t0 + ϵ0) into the (r, θ) coordinate plane for the same given ϵ0.

Then there is at least one intersection point (r∗(t0 + ϵ0), θ∗(t0 + ϵ0)). And the solution of
(4.4)–(4.5) with this intersection point as an initial value is the result.

The above lemmas prompt us to provide the following definition, which can be used to
define the Poincaré mapping of (4.1) on the plane.

Definition 4.5. For each (0, y) ∈ Σ+
0 , let (0,−pR(y)) ∈ Σ−

0 be the first intersection point of the
regular orbit starting from (0, y) and Σ0. Then the planar mapping PR : (0, y) → (0,−pR(y))
is called as a right Poincaré mapping. Similarly, for each (0,−y) ∈ Σ−

0 let (0, pL(y)) ∈ Σ+
0

be the first intersection point of the regular orbit starting from (0,−y) and Σ0, and we call
PL : (0,−y) → (0, pL(y)) as a left Poincaré mapping.

By the continuous dependence of solutions on the initial values, PL and PR are continuous.
Consequently, the component functions pL and pR are also continuous. For a regular orbit
of (4.1) starting from a given point (0, y) ∈ Σ+

0 , by Definition 4.5 it intersects with Σ−
0 at

(0,−pR(y)) and Σ+
0 then at (0, pL(pR(y))). Clearly the regular orbit is periodic if and only if

y = pL(pR(y)).
Further, the Poincaré mapping P of (4.1) is well defined as follows

P(
.
= PL ◦ PR) : R2 \ {O} → R2 \ {O},

(x0, y0) → (x(2π; x0, y0), y(2π; x0, y0)),

(r0, θ0) → (r(2π; r0, θ0), θ(2π; r0, θ0)),

where (x0, y0) ̸= (0, 0) and (r0, θ0) ̸= (0, 0). Moreover, note that P is continuous, and fixed
points of P correspond to the initial points of the regular periodic solutions.

Based on the above several lemmas, we now give the proofs of Theorems 1.1–1.4.

Proof of Theorem 1.1. By (H3), there exists A ≥ A1 such that

g+(x) > E, x ≥ A, g−(x) < E, x ≤ −A.

By Lemmas 4.2–4.3, there exists R0 > 0 large enough such that regular orbits of (4.1) rotate
clockwise outside SR0(

.
= {(x, y) : x2 + y2 = R2

0}). We consider any regular orbit LM0(⊂
{(x, y) : x2 + y2 > R2

0}) which starts from M0(r0, θ0) at t = 0, where r0 = r(0) and θ0 = θ(0).
Assume that R0 > A, M0 ∈ {(x, y) : x > A}, and LM0 successively intersects with {x =

A}, Σ−
0 , {x = −A}, {x = −A}, Σ+

0 , {x = A} and {θ = θ0} at points M1, M2, M3, M4, M5, M6

and M7 (see Figure 4.1), and the corresponding moments and arguments are denoted by
θi = θ(ti) for i = 1, 2, 3, 4, 5, 6, 7. We next estimate the time of LM0 rotating clockwise a circle
around SR0 when R0 > 0 is sufficiently large.
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According to Lemmas 4.2–4.3, we choose ε > 0 small sufficiently and R0 = E
ε > A. Let

ψ± = sin2 θ + l± cos2 θ − ε,

φ− = sin2 θ + L− cos2 θ + ε.

Then ψ± > 0 and φ− > 0 when ε is sufficiently small. By the second equality of (4.2),

−φ− < θ′ < −ψ−, x ≤ −A,

θ′ < −ψ+, x ≥ A,

where θ′ = dθ(t)
dt . When x ≥ A, one has that

t1 =
∫ θ1

θ0

dθ

θ′
<

∫ θ0

θ1

dθ

ψ+
,

t7 − t6 =
∫ θ7

θ6

dθ

θ′
<

∫ θ6

θ7

dθ

ψ+
=

∫ θ6+2π

θ7+2π

dθ

ψ+
.

Since θ7 + 2π = θ0, it follows that

t7 − t6 + t1 <
∫ θ6+2π

θ1

dθ

ψ+
<

∫ π
2

− π
2

dθ

ψ+
=

π√
(l+ − ε)(1 − ε)

.

Similarly, for x ≤ −A then

t4 − t3 <
∫ − π

2

− 3π
2

dθ

ψ−
=

π√
(l− − ε)(1 − ε)

.

While for |x| ≤ A, it follows that

|θ′| ≥ sin2 θ − |g±(x)|+ |p(t)|
r

≥ R2
0 − A2

R2
0

− δ

R0
= 1 − δε

E
− A2ε

E2 ,

where δ = E + max|x|≤A |g±(x)|. Note that the time T that LM0 rotates a circle around SR0

satisfies

T <
π√

(l− − ε)(1 − ε)
+

π√
(l+ − ε)(1 − ε)

+

(∫ θ2

θ1

+
∫ θ3

θ2

+
∫ θ5

θ4

+
∫ θ6

θ5

)
dθ

θ′
.

It is obvious that 1 − δε
E − A2ε

E2 → 1 as ε → 0. So when 0 < ε is sufficiently small,∣∣∣∣(∫ θ2

θ1

+
∫ θ3

θ2

+
∫ θ5

θ4

+
∫ θ6

θ5

)
dθ

θ′

∣∣∣∣ ≤ (∫ θ2

θ1

+
∫ θ3

θ2

+
∫ θ5

θ4

+
∫ θ6

θ5

)
dθ

|θ′|

≤
(∫ θ2

θ1

+
∫ θ3

θ2

+
∫ θ5

θ4

+
∫ θ6

θ5

)
dθ

1 − δε
E − A2ε

E2

≤ 4σ

1 − δε
E − A2ε

E2

,

where σ is an angle shown as in Figure 4.1. Since R0 = E
ε → +∞ as ε → 0, and then σ → 0.

Hence when R0 is large sufficiently (i.e. ε → 0), it follows from (1.5) that

T <
2π

m
.
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On the other hand, when x ≤ −A it follows from θ′ ≥ −φ− that

T > t4 − t3 >
∫ θ4

θ3

dθ

θ′
>

∫ θ3

θ4

dθ

φ−
=

∫ − π
2

− 3π
2

dθ

φ−
−

(∫ θ4

− 3π
2

+
∫ − π

2

θ3

)
dθ

φ−

=
π√

(L− + ε)(1 + ε)
−

(∫ θ4

− 3π
2

+
∫ − π

2

θ3

)
dθ

φ−
,

and ∣∣∣∣(∫ θ4

− 3π
2

+
∫ − π

2

θ3

)
dθ

φ−

∣∣∣∣ ≤ 2σ

min{1, L−}
→ 0 as ε → 0.

In conclusion, when R0 > 0 is large sufficiently we have that

2π

m + 1
< T <

2π

m
.

This implies that the number of rotation of any regular orbit of (4.1) in [0, 2π] is greater than m
but less than m+ 1. Hence by Theorem 2.1, (4.1) has at least one 2π crossing periodic solution.
The proof is complete.

 

x

y

O

M7

M6M4

-A

M1
M3

A

M0(r0,θ0)

M2

R0

M5

Figure 4.1: Schematic diagram

Proof of Theorem 1.2. By (H3)′, there is A(> A1) large enough such that

θ′
.
=

dθ

dt
> −(sin2 θ + L− cos2 θ + ε), x ≤ −A.

Further, one has that

T >
∫ θ4

θ3

dθ

θ′
>

∫ θ3

θ4

dθ

sin2 θ + L− cos2 θ + ε

=
∫ − π

2

− 3π
2

dθ

sin2 θ + L− cos2 θ + ε
−

(∫ θ4

− 3π
2

+
∫ − π

2

θ3

)
dθ

sin2 θ + L− cos2 θ + ε
,
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and ∣∣∣∣(∫ θ4

− 3π
2

+
∫ − π

2

θ3

)
dθ

sin2 θ + L− cos2 θ + ε

∣∣∣∣ ≤ 2σ

L−
,

where σ is the same as in the proof of Theorem 1.1. Further, by 0 < L− < 1
4 , when R0 > 0 is

sufficiently large one has that

T >
π√

(L− + ε)(1 + ε)
> 2π.

This implies that the number of rotation for any regular orbit rotating clockwise outside SR0

in [0, 2π] is less than one. Hence by Theorem 2.1, the conclusion holds.

Proof of Theorem 1.3. By lim
x→+∞

g+(x)
x

= +∞, there are A1(> A) and l+ > 0 large enough such

that
g+(x)

x
≥ l+, x ≥ A1.

When m ≥ 1, by (1.7) we can find certain arbitrary large l+ such that

1√
l−

+
1√
l+

<
2
m

.

Hence all conditions in Theorem 1.1 hold, and when m = 0 it is Theorem 1.2.

Proof of Theorem 1.4. Let (x1(t), y1(t)) and (x2(t), y2(t)) be any two 2π crossing periodic solu-
tions, and denote by

u(t) = x1(t)− x2(t), v(t) = y1(t)− y2(t).

When xi(t) ̸= 0 for i = 1, 2, one has that

du(t)
dt

= v(t),

dv(t)
dt

= −[g±(x1(t))− g±(x2(t))],
(4.7)

where g±(x1(t))− g±(x2(t)) are 2π-periodic. Making a polar coordinates transformation

u(t) = r(t) cos θ(t), v(t) = r(t) sin θ(t),

then (4.7) is transformed into the form

dr(t)
dt

= r sin θ cos θ − [g±(x1(t))− g±(x2(t))] sin θ,

dθ(t)
dt

= − sin2 θ − 1
r
[g±(x1(t))− g±(x2(t))] cos θ.

(4.8)

Let (r(t; θ0, r0), θ(t; θ0, r0)) be any regular solution of (4.8) with the initial value condition
(θ0, r0) ̸= (0, 0). Then r(t) > 0 for t ∈ [0, 2π]. Note that

0 <
1
r
[g±(x1(t))− g±(x2(t))] cos θ =

g±(x1(t))− g±(x2(t))
x1(t)− x2(t)

cos2 θ < cos2 θ.

So we have that

−2π < θ(2π)− θ(0) =
∫ θ(2π)

θ(0)
θ′dt < 0.

Further (4.7) has no nontrivial 2π crossing periodic solution, and then u(t) ≡ 0.
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5 An example

Let g+(x) = ex + c1 and g−(x) = ax − c2 in (4.1), where c1 ≥ 0, c2 > 0, a ∈ ( 1
3 , 1

2 ). Choosing
l1 = 1

3 , L− = 1
2 and A1 > 0 sufficiently large. It is easy to verify (H1)–(H3) as follows.

(H1) g+ ∈ C1([0,+∞), R), g− ∈ C1((−∞, 0], R), and

lim
x→0−

(ax − c2) = −c2 < 0, lim
x→0+

(ex + c1) = 1 + c1 > 0.

(H2) g−(x) < 0 for x < 0 and g+(x) > 0 for x > 0, and limx→−∞(ax − c2) = −∞,
limx→+∞(ex + c1) = +∞.

(H3) When A1 > 0 is large sufficiently, there holds

1
3
< lim

x→−∞

g−(x)
x

<
1
2

, lim
x→+∞

g+(x)
x

= +∞.

Moreover, we can choose l+ large arbitrary such that when m = 1 we have that

1 <
1√
L−

≤ 1√
l−

+
1√
l+

< 2.

Hence by using Theorem 1.1, it follows that (4.1) has at least one 2π crossing periodic solution.

6 Concluding remarks

In this paper, we have studied the existence and uniqueness of crossing periodic solutions
for a mixed-type second order discontinuous Duffing equation (1.2), where g± satisfy some
asymmetric growth conditions for x ∈ R. However in the existing literatures [2, 10, 12, 13],
the authors considered the periodic solution problem of discontinuous symmetric Duffing
equation. In [2,12], the authors considered g± being some specific functions and obtained the
existence of periodic solutions. In [2], g± = x(1 − 1√

a2+x2 ) with a = 0 being a discontinuous
case; in [12] g± = η sgn(y) with η ∈ R, η > 0. While in [10, 13], by the Poincaré–Birkhoff
theorem, the authors studied the multiplicity of periodic solutions with large-amplitude. So
to some sense, our results are improvement and generalization of the ones in the literatures
[2, 10, 12, 13].

We first presented the definitions of regular solutions and crossing periodic solutions (or
orbits) of (1.2), and state the existence and uniqueness of any regular solution to initial value
problem of (1.2) exception for the origin. Next, we analyzed the behavior of regular solutions
(or orbits) for the autonomous and non-autonomous systems of (1.2), respectively. After some
technical lemmas, by giving the definition of left and right Poincaré mappings, we constructed
the Poincaré mapping of (1.2) on the whole plane. Then by using the Poincaré–Bohl theorem
(i.e, Theorem 2.1), we found a 2π crossing periodic solution. And several corollaries are
presented by giving different asymmetric linear growth conditions to g± as |x| → +∞. Next,
to demonstrate the effectiveness of the obtained results, we further provided an example.
Finally, a uniqueness criterion of the crossing periodic solution was also given when g± satisfy
a kind of Lipschitz condition on the pieces of the nonlinearity.
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