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Abstract. This paper establishes the existence of positive weak solutions for a class
of semipositone Kirchhoff-type problems involving nonlocal operators and anisotropic
Φ-Laplacians. By combining variational methods with careful asymptotic analysis, we
prove that for sufficiently small a > 0, the problem admits a positive solution. Our re-
sults extend previous work on semipositone problems to the nonlocal Kirchhoff setting,
overcoming challenges arising from the interplay between the nonlocal term and the
indefinite nonlinearity.
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1 Introduction

Semipositone problems, where the nonlinearity satisfies h̄(0) < 0 (see (1.2)), arise naturally
in many physical and biological contexts, including population dynamics with harvesting
and chemical reaction processes. These problems present substantial mathematical challenges
compared to their positone counterparts, as the standard techniques based on sub-super so-
lutions often fail due to the lack of a natural subsolution at zero (see [2–5, 7–15, 19–23, 26, 30]).

In 2021, Figueiredo, Massa and Santos [16], proved the existence of positive solution for
the semipositone problem

−M(
∫

Υ |∇u|2dx)∆u = h̄(u)− a in Υ,

u(x) > 0 in Υ,

u = 0 on ∂Υ,

(1.1)
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where Υ ⊂ RN is a smooth bounded domain, M, f are continuous nonnegative functions and
a > 0 and small enough. They generalize the classical superlinear and sublinear problems.
Recently, Razani and Figueiredo [30] studied a Dirichlet semipositone anisotropic p-Laplacian
problem.

In this work, we investigate the existence of positive solutions for a class of nonlocal elliptic
problems of Kirchhoff type with semipositone nonlinearities. Specifically, we consider:

−Γ
(∫

Υ Φ(u)dx
)

∆Φu = h̄(u)− ε in Υ,

u > 0 in Υ,

u = 0 on ∂Υ,

(1.2)

where ∆Φ denotes the Φ-Laplacian operator, a generalization of the p-Laplacian that arises in
the study of non-Newtonian fluids and nonlinear elasticity. The term Γ(

∫
Φ(u)dx) introduces

a nonlocal dependence on the solution, modeling phenomena where the system’s behavior at
a point depends on its global state.

Here we assume Υ ⊂ RN is a smooth bounded domain, ε > 0 and h̄ : [0;+∞) → R is a
continuous function where

(h̄1) 0 = h̄(0) = mint∈0,+∞) h̄(t).

(h̄2) limt→0+
h̄(t)
ϕ(t)t = 0.

(h̄3) There is q ∈ (m, l⋆) such that

lim
|t|→+∞

|h̄(t)|
|t|q−1 < +∞.

(h̄4) There are θ > m and t0 > 0 such that

θH(t) ≤ h̄(t)t, for all t ≥ t0,

where H(t) =
∫ t

0 h̄(τ)dτ is the primitive of h̄.

Notice that
∆Φ(u) = div(ϕ(|∇u|)∇u)

where Φ(t) :=
∫ |t|

0 ϕ(s)sds and ϕ satisfies the following conditions:

(φ1) ϕ : R+ → R+ is a C1-function.

(φ2) ϕ(t), (ϕ(t)t)′ > 0, t > 0

(φ3) There exists l, m ∈ (1, N) with m ∈ [l, l⋆) and l⋆ = lN
N−l such that

l ≤ Φ′(t)t
Φ(t)

≤ m, ∀t > 0

(φ4) There exists l, m > 0 such that

l ≤ Φ′′(t)t
Φ′(t)

≤ m, for all t > 0.

Assume Γ : [0,+∞) → R+ is an increasing and continuous function and Γ(t) ≥ m0 > 0 for all
t ∈ [0,+∞). We set 𭟋(t) =

∫ t
0 Γ(τ)dτ and we assume
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(Γ0) lim inft→0
𭟋(t)

t > 0.

(Γ∞) There exists θ1 ∈ (1, θ) such that lim supt→+∞
𭟋(t)
tθ1

< ∞.

(ΓAR) There exists θ > 1, D, β > 0 such that

θ𭟋(t)− Γ(t)t ≥ βt − D for every t ≥ 0,

Definition 1.1. A function u ∈ W1,Φ
0 (Υ) is called a weak solution of problem (1.2) if:

(i) u is continuous and positive in Υ;

(ii) For every test function φ ∈ W1,Φ
0 (Υ), the following identity holds:

Γ
(∫

Υ
Φ(u) dx

) ∫
Υ

ϕ(|∇u|)∇u · ∇φ dx =
∫

Υ

(
h̄(u)− ε

)
φ dx,

where h̄ and Γ satisfy the assumptions stated above.

The mathematical study of semipositone problems was initiated by Castro, Castro, and
Shivaji [13], who revealed fundamental differences from positone problems, including the
breakdown of symmetry properties and more complex solution structures. Subsequent works
[4, 5, 12] developed various techniques to handle these challenges, particularly for local oper-
ators. For problems of Kirchhoff type, recent progress has been made in [2, 16, 27, 29], but the
semipositone case with general Φ-Laplacian operators remains largely unexplored.

Our work makes several significant contributions:

• We extend the existence theory for semipositone problems to the nonlocal Kirchhoff
setting with anisotropic Φ-Laplacian operators.

• We develop new estimates to handle the interplay between the nonlocal coefficient Γ and
the semipositone nonlinearity.

• We establish precise threshold values for the parameter ε that guarantee existence of
positive solutions.

• Our framework accommodates both degenerate and non-degenerate cases of the Kirch-
hoff term.

The proof strategy combines variational methods in Orlicz–Sobolev spaces with careful
asymptotic analysis. Key challenges include:

• Establishing the mountain pass geometry despite the semipositone nature of the prob-
lem.

• Deriving uniform L∞ estimates independent of the parameter ε.

• Handling the nonlocal coefficient’s effect on the compactness properties.

• Ensuring positivity of solutions through delicate comparison arguments.
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Our results generalize and extend previous works in several directions, including [5] (local
Φ-Laplacian case), [16] (Kirchhoff Laplacian), and [30] (anisotropic semipositone problems).
The techniques developed here may be applicable to other nonlocal problems with indefinite
nonlinearities.

The paper is organized as follows: Section 2 introduces the necessary framework of Orlicz–
Sobolev spaces. Section 3 establishes existence for an auxiliary problem, while Section 4
completes the proof of our main result through careful asymptotic analysis and positivity
arguments.

2 Preliminaries on Orlicz–Sobolev spaces

This section provides the necessary background on Orlicz and Orlicz–Sobolev spaces, which
serve as the functional framework for our analysis. We recall fundamental definitions, key
properties, and essential embedding results that will be crucial for our subsequent arguments.
For a comprehensive treatment of these topics, we refer to the standard references [1] and [28].

We begin by recalling key properties of the Orlicz–Sobolev space W1,Φ(Υ), which becomes
a Banach space when equipped with the standard norm

∥u∥1,Φ = ∥u∥Φ + ∥∇u∥Φ. (2.1)

Its subspace W1,Φ
0 (Υ), defined as the completion of C∞

0 (Υ) under this norm, inherits these
Banach space properties. Crucially, both spaces are separable and reflexive when Φ and its
conjugate Φ̃ satisfy the ∆2-condition. This condition further characterizes convergence in
LΦ(Υ): a sequence {un} converges to u if and only if∫

Υ
Φ(|un − u|)dx → 0. (2.2)

Three fundamental inequalities govern these spaces:

1. Poincaré inequality: There exists Λ > 0 such that for all u ∈ W1,Φ
0 (Υ),∫

Υ
Φ(|u|)dx ≤ Λ

∫
Υ

Φ(|∇u|)dx. (2.3)

This implies ∥u∥ := ∥∇u∥Φ is an equivalent norm on W1,Φ
0 (Υ), which we adopt here-

after.

2. Sobolev embedding: There exists SN > 0 such that

∥u∥Φ∗ ≤ SN∥u∥, (2.4)

ensuring the continuous embedding W1,Φ
0 (Υ) ↪→ LΦ∗(Υ). For bounded domains, this

embedding becomes compact if the N-function B satisfies the growth condition

lim sup
|t|→∞

B(t)
Φ∗(t)

= 0. (2.5)

3. Structural assumptions: For our analysis, we assume ϕ(s) = φ(s)s and define

Φ(t) =
∫ |t|

0
φ(s)s ds, (2.6)

extended continuously at t = 0. Under conditions (φ1), (φ2), (φ3), both Φ and Φ̃ become
N-functions satisfying the ∆2-condition, as established in [17].
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Lemma 2.1 (Growth estimates). Under assumptions (φ1) and (φ2), define the comparison functions

ζ(t) = min{tl , tm} and κ(t) = max{tl , tm}, t ≥ 0.

Then the following estimates hold:

(i) Scaling property: For all ρ, t ≥ 0,

ζ(ρ)Φ(t) ≤ Φ(ρt) ≤ κ(ρ)Φ(t).

(ii) Norm control: For any u ∈ LΦ(Υ),

ζ(∥u∥Φ) ≤
∫

Υ
Φ(|u|)dx ≤ κ(∥u∥Φ).

Lemma 2.2 (Convergence criterion). Assume (φ1), (φ2), (φ3) hold and Υ ⊂ RN is a smooth bounded
domain. Let u ∈ W1,Φ

0 (Υ) and {un} be a bounded sequence in W1,Φ
0 (Υ) satisfying

∫
Υ

(
Γ
(∫

Υ
Φ(un)dx

)
ϕ(|∇un|)∇un

− Γ
(∫

Υ
Φ(u)dx

)
ϕ(|∇u|)∇u

)
·∇(un − u) dx → 0.

(2.7)

Then un → u strongly in W1,Φ
0 (Υ).

The proof follows from [5, Lemma 2.2].

Lemma 2.3 (Regularity result). Under assumptions (φ1), (φ2), (φ3), (φ4), let h ∈ L∞(Υ) and
u ∈ W1,Φ

0 (Υ) be a weak solution of{
−Γ

(∫
Υ Φ(u)dx

)
div(ϕ(|∇u|)∇u) = h in Υ,

u = 0 on ∂Υ.

Then:

• u ∈ C1,α(Υ) for some α > 0 depending on l and m

• There exists K = K(∥h∥∞, l, m, Υ) > 0 such that |u|1,α ≤ K

• K → 0 as ∥h∥∞ → 0

The proof follows from the regularity results in [24, 25].

Definition 2.4 (Differential inequality). For u, v ∈ W1,Φ
0 (Υ), we say that

−Γ
(∫

Υ
Φ(u)dx

)
∆Φu ≤ −Γ

(∫
Υ

Φ(v)dx
)

∆Φv in Υ

if for all w ∈ W1,Φ
0 (Υ) with w ≥ 0,

Γ
(∫

Υ
Φ(u)dx

) ∫
Υ

ϕ(|∇u|)∇u · ∇w dx ≤ Γ
(∫

Υ
Φ(v)dx

) ∫
Υ

ϕ(|∇v|)∇v · ∇w dx.
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Lemma 2.5 (Comparison principle). Let u, v ∈ W1,Φ
0 (Υ) satisfy

Γ
(∫

Υ
Φ(u)dx

) ∫
Υ

ϕ(|∇u|)∇u · ∇w dx ≤ Γ
(∫

Υ
Φ(v)dx

) ∫
Υ

ϕ(|∇v|)∇v · ∇w dx

for all nonnegative w ∈ W1,Φ
0 (Υ). Then u ≤ v in Υ.

Proof. Consider (u − v)+ ∈ W1,Φ
0 (Υ). On the set Υ1 = {x ∈ Υ : u(x)− v(x) ≥ 0}, we have:

∫
Υ1

⟨Γ
(∫

Υ
Φ(u)dx

)
ϕ(|∇u|)∇u − Γ

(∫
Υ

Φ(v)dx
)

ϕ(|∇v|)∇v,∇(v − u)⟩dx ≤ 0.

By strict convexity of Φ, this implies ∇(u − v) = 0 a.e. in Υ1. Since (u − v)+ = 0 on ∂Υ, we
conclude u ≤ v in Υ.

The following maximum principle was established by Guedda et al. [18]:

Theorem 2.6 (Maximum principle). Let Υ ⊂ RN be a smooth bounded domain and u ∈ C1(Υ) a
nonnegative function satisfying

−∆Φu ≥ 0 in Υ. (2.8)

Then

• If u ̸= 0, then u > 0 in Υ

• For u ∈ C1(Υ∪{x0}) with u(x0) = 0 at x0 ∈ ∂Υ, the normal derivative satisfies ∂u
∂ν (y) ≥ c > 0

for all y ∈ ∂Υ.

• In particular, for u ∈ C1(Υ) with u = 0 on ∂Υ, there exists c > 0 such that ∂u
∂ν (y) ≥ c for all

y ∈ ∂Υ.

3 Auxiliary problem and functional framework

We begin by defining the modified nonlinearity h̄ε : R → R:

h̄ε(t) =


h̄(t)− ε if t ≥ 0,

−ε(t + 1) if t ∈ [−1, 0],

0 if t ≤ −1,

where 0 < ε < 1 and −ε = mint∈R h̄ε(t). This leads us to study the auxiliary problem:
−Γ

(∫
Υ Φ(u)dx

)
∆Φu = h̄ε(u) in Υ,

u > 0 in Υ,

u = 0 on ∂Υ.

(3.1)

The corresponding energy functional Iε : W1,Φ
0 (Υ) → R is defined by:

Iε(u) = 𭟋
(∫

Υ
Φ(|∇u|)dx

)
−

∫
Υ

Hε(u)dx,
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where Hε is the primitive of h̄ε:

Hε(t) =


H(t)− εt if t ≥ 0,

− ε
2 (1 − (t + 1)2) if t ∈ [−1, 0],

ε
2 if t ≤ −1.

The functional Iε is Fréchet differentiable and I′ε is given by

⟨I′ε(u), v⟩ = Γ
(∫

Υ
Φ(|∇u|)dx

) ∫
Υ

ϕ(|∇u|)∇u∇vdx −
∫

Υ
h̄ε(u)vdx,

for all v ∈ W1,Φ
0 (Υ).

Lemma 3.1 (Mountain Pass Geometry). There exist constants r, ε1 > 0 such that for any ρ ∈ (0, r)
and ∥u∥ = ρ, we have:

• Iε(u) ≥ α(ρ) > 0 for all ε ∈ (0, ε1).

• The constants r and ρ are independent of ε ∈ (0, ε1).

Proof. Notice that Hε(t) ≤ 1
Λ Φ(t) + C |t|q

q + ε
2 for all t ∈ R and some C > 0. Also by (Γ0) one

can have 𭟋(t) ≥ C2t. Therefore

Iε(u) = 𭟋
(∫

Υ
Φ(|∇u|)dx

)
−

∫
Υ

Hε(u)dx

≥ 𭟋
(∫

Υ
Φ(|∇u|)dx

)
− C

q

∫
Υ
|u|qdx − ε

2
|Υ|

≥ ζ(∥u∥)− C
q

∫
Υ
|u|qdx − ε

2
|Υ|,

where ζ was given in Lemma 2.1. Thus, there is C1 > 0 verifying

Iε(u) ≥ ζ(∥u∥)− C
q

∫
Υ
|u|qdx − ε

2
|Υ|.

Taking ∥u∥ = ρ with ρ small enough and using Lemma 2.1, we get

Iε(u) ≥ ρm(1 − C1ρq−m)− ε

2
|Υ|.

Now, we fix ε1 = ε1(ρ, q, m) > 0 and r > 0 such that

ρm(1 − C1ρq−m)− ε

2
|Υ| ≥ ρm(1 − C1ρq−m)

2
> 0,

for all ε ∈ (0, ε1) and ρ ∈ (0, r).
From this, Iε(u) ≥ α > 0 if ∥u∥ = ρ where α := ρm(1−C1ρq−m)

2 .

Lemma 3.2 (Mountain Pass Condition). For each ε ∈ (0, ε1), there exists v ∈ W1,Φ
0 (Υ) with

∥v∥ > ρ and Iε(v) < 0.
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Proof. Let φ ∈ C∞
0 (Υ) be a function verifying

φ > 0, in Υ and ∥φ∥ = 1.

Note that for all t > 1,

Iε(tφ) = 𭟋
(∫

Υ
Φ(|∇tφ|)dx

)
−

∫
Υ

Hε(tφ)dx

= 𭟋
(∫

Υ
Φ(|∇tφ|)dx

)
−

∫
Υ

Hε(tφ)dx + ε
∫

Υ
tφdx.

By (h̄4), there are A1, B1 > 0 verifying

H(t) ≥ A1|t|θ − B1, for all t ∈ R. (3.2)

and By (Γ∞) there exists C, D > 0 such that 𭟋(t) ≤ Ctθ1 + D for t ≥ 0. The last inequality
together with Lemma 2.1 leads to

Iε(tφ) ≤ Cκ(t)κ(∥φ∥)− ε1tθ
∫

Υ
φθdx + ta∥φ∥1 + (D + B1)|Υ|

≤ Ctm − ε1tθ∥φ∥θ
θ + ta∥φ∥1 + (D + B1)|Υ|.

where κ was given in Lemma 2.1. Since θ > m and ε ∈ (0, ε1), we can fix t0 > 1 large enough
so that Iε(v) < 0, where v = t0φ ∈ W1,Φ

0 (Υ).

3.1 Compactness and existence results

Lemma 3.3 (Palais–Smale Condition). The functional Iε satisfies the Palais–Smale condition for all
a > 0.

Proof. Let {un} be a sequence in W1,Φ
0 (Υ) such that {Iε(un)} is bounded and I′ε(un) → 0.

Hence, there exists n0 ∈ N such that |⟨I′ε(un), un⟩| ≤ ∥un∥ for n > n0. Thus,

−∥un∥ ≤ ⟨I′ε(un), un⟩

= Γ
(∫

Υ
Φ(|∇un|)dx

) ∫
Υ

ϕ(|∇un|)∇un∇undx −
∫

Υ
h̄ε(un)undx

≤ θ𭟋
(∫

Υ
Φ(|∇un|)dx

)
+ β

(∫
Υ

Φ(|∇un|)dx
)
− D −

∫
Υ

h̄ε(un)undx,

so

−∥un∥ − θ𭟋
(∫

Υ
Φ(|∇un|)dx

)
− β

(∫
Υ

Φ(|∇un|)dx
)
+ D ≤ −

∫
Υ

h̄ε(un)undx. (3.3)

On the other hand, as there exists K > 0 such that |Iε(un)| ≤ K for all n = 1, 2, . . . , it follows
that

𭟋
(∫

Υ
Φ(|∇un|)dx

)
−

∫
Υ

Hε(un)dx ≤ K, for all n ∈ N. (3.4)

This implies that

𭟋
(∫

Υ
Φ(|∇u|)dx

)
− 1

θ

∫
Υ

h̄ε(un)undx +
1
θ

M|Υ| ≤ K, for all n ∈ N. (3.5)
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This shows

𭟋
(∫

Υ
Φ(|∇u|)dx

)
− 1 + β

θ
∥un∥ ≤ K − 1

θ
(M|Υ|+ D) ,

for n large enough, which is a contradiction. This shows that {un} is bounded in W1,Φ
0 (Υ).

Thus, without loss of generality, we may assume that un ⇀ u in W1,Φ
0 (Υ) and since that

B(t) = |t|q verifies (2.5), we get un → u in Lq(Υ), m < q < l∗. By conditions of h̄,∫
Υ

h̄ε(un)(un − u)dx → 0.

Since

on = I′ε(un)(un − u)

= Γ
(∫

Υ
Φ(|∇un|)dx

) ∫
Υ

ϕ(|∇un|)∇un∇(un − u)dx −
∫

Υ
h̄ε(un)(un − u)dx

we have

Γ
(∫

Υ
Φ(|∇un|)dx

) ∫
Υ

ϕ(|∇un|)∇un∇(un − u)dx → 0. (3.6)

The weak convergence un ⇀ u in W1,Φ
0 (Υ) yields

Γ
(∫

Υ
Φ(|∇u|)dx

) ∫
Υ

ϕ(|∇u|)∇u∇(un − u)dx → 0. (3.7)

This implies that∫
Υ

{
Γ
(∫

Υ
Φ(|∇un|)dx

)
ϕ(|∇un|)∇un − Γ

(∫
Υ

Φ(|∇u|)dx
)

ϕ(|∇u|)∇u
}
∇(un − u)dx → 0.

This shows un → u in W1,Φ
0 (Υ) by Lemma 2.2.

Lemma 3.4 (Existence of solutions). For ε ∈ (0, ε1), problem (1.2) has a solution uε ∈ W1,Φ
0 (Υ)

with Iε(uε) ≤ C(ε1, θ, m, |Υ|).

Proof. The verification of the Mountain Pass Geometry (Lemma 3.1), linking condition
(Lemma 3.2), and Palais–Smale condition (Lemma 3.3) allows us to apply the Mountain Pass
Theorem [6], yielding for each a ∈ (0, ε1) a critical point uε ∈ W1,Φ

0 (Υ) at level dε > 0, where
dε is the Mountain Pass level associated with Iε.

Now, letting ϕ ∈ C∞
0 (Υ), ϕ ≥ 0, t > 0 and using (3.2), we obtain

Iε(tϕ) = 𭟋
(∫

Υ
Φ(|∇tϕ|)dx

)
−

∫
Υ

Hε(tϕ)dx

≤ Cκ(t)κ(∥Φ∥)− ε1

∫
Υ
(tϕ)θdx + B1|Υ|+

∫
Υ

εtϕdx

for all ε ∈ (0, ε1). Then
Iε(tϕ) ≤ C1κ(t)− C2tθ + C3t + C4,

where C1 = κ(∥ϕ∥), C2 = A1∥ϕ∥θ
θ , C3 = ε1∥ϕ∥1 and C4 = B1|Υ|. Setting h(t) = C1κ(t)−C2tθ +

C3t + C4, we find

dε ≤ max{Iε(tϕ), t ≥ 0} ≤ max
t≥0

h(t) = C(ε1, m, θ, |Υ|) > 0.

Thus Iε(uε) ≤ C(ε1, m, θ, |Υ|).
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Lemma 3.5 (Uniform boundedness). There exists K = K(ε1, q, m, θ, |Υ|) > 0 such that ∥uε∥ ≤ K
for all ε ∈ (0, ε1).

Proof. Notice that

C(ε1, m, θ, |Υ|) ≥ Iε(uε)−
1
θ

I′ε(uε)uε

= 𭟋
(∫

Υ
Φ(|∇uε|)dx

)
−

∫
Υ

Hε(uε)dx

− 1
θ

(
Γ
(∫

Υ
Φ(|∇uε|)dx

) ∫
Υ

ϕ(|∇uε|)|∇uε|2dx −
∫

Υ
h̄ε(uε)uεdx

)
=

(
𭟋
(∫

Υ
Φ(|∇uε|)dx

)
− 1

θ
Γ
(∫

Υ
Φ(|∇uε|)dx

) ∫
Υ

ϕ(|∇uε|)|∇uε|2dx
)

−
(∫

Υ
Hε(uε)dx − 1

θ

∫
Υ

h̄ε(uε)uεdx
)

≥
(
𭟋
(∫

Υ
Φ(|∇uε|)dx

)
− m

θ
Γ
(∫

Υ
Φ(|∇uε|)dx

) ∫
Υ

Φ(|∇uε|)dx
)

−
(∫

Υ
Hε(uε)dx − 1

θ

∫
Υ

h̄ε(uε)uεdx
)

≥ 1
θ

∫
Υ

Φ(|∇uε|)dx − 1
θ

D − M
θ
|Υ|.

Now the ∆2-condition combines with the last inequality to gives

∥uε∥ ≤ K for all ε ∈ (0, ε1),

for some K = K(ε1, q, m, θ, |Υ|).

3.2 Regularity and positivity

Lemma 3.6 (L∞-regularity). There exists ε2 ∈ (0, ε1) such that:

• uε ∈ L∞(Υ) for all ε ∈ (0, ε2).

• ∥uε∥∞ ≤ C uniformly for ε ∈ (0, ε2).

Proof. To establish the uniform L∞ bound, consider any sequence ε j → 0+ with corresponding
solutions uj := uε j ∈ W1,Φ

0 (Υ). Our proof proceeds in three steps:

1. Compactness: Since {uj} is bounded in W1,Φ
0 (Υ) by Lemma 3.5, the subcritical growth

of h̄ and the compact embedding W1,Φ
0 (Υ) ↪→ Lq(Υ) (for q < l∗) yield a subsequence

(still denoted {uj}) converging strongly to some u ∈ W1,Φ
0 (Υ).

2. Regularity transfer: Each uj satisfies the equation

−Γ
(∫

Υ Φ(uj)
)

∆Φuj = h̄(uj)− ε j.

The right-hand side remains bounded in Ls(Υ) for some s > 1 due to the growth condi-
tion on h̄ and the uniform W1,Φ

0 bounds.
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3. Bootstrap: Applying the regularity arguments from [31, Theorem 3.1], we obtain uni-
form L∞ estimates:

∥uj∥L∞(Υ) ≤ C(∥h̄(uj)∥Ls + ∥ε j∥∞ + 1) ≤ C′,

where C′ depends only on the structural constants and is independent of j.

Lemma 3.7 (Lower bound). There exist ε3 ∈ (0, ε2) and δ > 0 such that ∥uε∥∞ ≥ δ for all
ε ∈ (0, ε3).

Proof. If uε is a solution of (1.2), then

Γ
(∫

Υ
Φ(|∇uε|)dx

) ∫
Υ

ϕ(|∇uε|)∇uε∇ϕdx =
∫

Υ
h̄ε(uε)ϕdx

for all ϕ ∈ W1,Φ
0 (Υ). For ϕ = uε∫

Υ
h̄ε(uε)uεdx = Γ

(∫
Υ

Φ(|∇uε|)dx
) ∫

Υ
ϕ(|∇uε|)|∇uε|2dx ≥ ml

∫
Υ

Φ(|∇uε|)dx.

By ∆2-condition,∫
Υ

Φ(|∇uε|)dx → 0 as ε → 0 ⇐⇒ ∥uε∥ → 0 as ε → 0.

Since Iε(uε) ≥ α for all ε ∈ (0, ε2), there exists ε3 ∈ (0, ε2) and α0 > 0 such that∫
Υ

Φ(|∇uε|)dx ≥ α0, for all ε ∈ (0, ε3). (3.8)

Thus, ∫
Υ

h̄ε(uε)uεdx ≥ lmα =: A > 0, for all ε ∈ (0, ε3).

There exists C > 0 such that

|h̄ε(t)| ≤ C(|t|q + ϕ(|t|)|t|) + ε, for all t ∈ R and for all ε ∈ (0, ε3).

Therefore

A ≤
∫

Υ
(C(|uε|q + ϕ(|uε|)|uε|) + ε|uε|)dx

≤ (C(∥uε∥q
∞ + ϕ(∥uε∥∞)|uε|) + ε∥uε∥∞).

Thus ∥uε∥∞ ≥ δ for some δ > 0 for all ε ∈ (0, ε3), decreasing ε3 if necessary.

4 Existence of positive solution

The study of positive solutions for semipositone problems has long been challenging due to
the lack of natural subsolutions at zero. When combined with nonlocal Kirchhoff-type opera-
tors and anisotropic Φ-Laplacian nonlinearities, these problems present intricate mathematical
structures that require novel analytical approaches. In this section, we establish our principal
existence result, which not only extends classical semipositone theory but also provides new
insights into the interplay between nonlocal effects and anisotropic operators.
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Theorem 4.1 (Existence of positive solutions). Under the structural conditions:

(S1) Regularity and growth assumptions on ϕ ((φ1)–(φ4)),

(S2) Nonlocal term properties ((Γ0), (Γ∞), (ΓAR)),

(S3) Nonlinearity behavior ((h̄1)–(h̄4)),

there exists a critical threshold ε⋆ > 0 such that for all ε ∈ (0, ε⋆), the semipositone Kirchhoff-type
problem (1.2) admits at least one positive weak solution uε ∈ W1,Φ

0 (Υ). Moreover, the solution satisfies:

(i) uε ∈ C1,α(Υ) for some α > 0.

(ii) infK uε > 0 for any compact K ⊂ Υ,

(iii) Uniform bounds δ ≤ ∥uε∥∞ ≤ C independent of ε,

Proof. First, we prove that the solution uε is positive for ε ∈ (0, ε3), decreasing ε3 if necessary.
Indeed, let {εg} ∈ (0, ε3) be a sequence with ε j → 0 as j → ∞, and let uj be a solution of (1.2)
with ε = ε j. Setting h̄j(uj) = h̄ε j(uj), we have{

−Γ(
∫

Υ Φ(uj)dx)∆Φ(uj) = h̄j(uj) in Υ,

uj = 0 on ∂Υ.

By Lemma 3.6, there is C > 0 such that ∥uj∥∞ ≤ C for all j ∈ N, then ∥h̄j(uj)∥∞ ≤ C1 for all
jN and some C1 > 0. Thereby, by Lemma 2.3, uj ∈ C1,β(Υ) for some β ∈ (0, 1), and

|uj|1,β ≤ Γ(∥h̄j(uj)∥∞) ≤ M2, for all j ∈ N and for some M2 > 0.

From compactness embedding C1,β(Υ) ↪→ C1,τ(Υ) for τ ∈ (0, β), there exists a subsequence
for {uj}, still denoted by {uj}, and u ∈ C1,τ(Υ) such that uj → u in C1,τ(Υ).

Now we estimate

−∆Φuj =
h̄j(uj)

Γ(
∫

Υ Φ(vj)dx)
≥

−ε j

hε3

Assume vj is the solution of {
−∆Φ(vj) = k j := −ε j

hε3
in Υ,

vj = 0 on ∂Υ,

where k j = min{h̄j(t), t ∈ R} = −ε j → 0− as j → ∞. Then uj, vj ∈ W1,Φ
0 (Υ) and

−∆Φvj ≤ −∆Φuj

and by comparison principle

vj ≤ uj in Υ, for all j ∈ N. (4.1)

On the other hand, as k j → 0, the Lemma 2.3 gives

∥vj∥∞ → 0. (4.2)

Then, (4.1) combines with (4.2) to give u ≥ 0 in Υ. Notice that
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• ∇uj → ∇u uniformly in Υ,

•
∫

Υ Φ(|∇uj|)dx →
∫

Υ Φ(|∇u|)dx and then

Γ
(∫

Υ
Φ(|∇uj|)dx

)
→ Γ

(∫
Υ

Φ(|∇u|)dx
)

,

• {h̄j(uj)} is bounded in Ls(Υ), s > 1,

• h̄j(uj) ⇀ z in Ls(Υ),

• h̄j(uj(x)) → h̄0(u(x)) a.e. x ∈ Υ,

where h̄0(t) = h̄(t) if t ≥ 0, and h̄0(t) = 0 if t < 0. Thus z = h̄0(u), and for any ϕ ∈ C∞
0 (Υ),

Γ
(∫

Υ
Φ(|∇u|)dx

) ∫
Υ

ϕ(|∇u|)∇u∇ϕdx = lim
j→+∞

Γ
(∫

Υ
Φ(|∇uj|)dx

) ∫
Υ

ϕ(|∇uj|)∇uj∇ϕdx

= lim
j→+∞

∫
Υ

h̄j(uj)ϕdx

=
∫

Υ
zϕdx,

consequently 
−∆Φ(u) = z

Γ(
∫

Υ Φ(u)dx)
in Υ,

u ≥ 0 in Υ,

u = 0 on ∂Υ.

As ∥uj∥∞ ≥ C0 for all j ∈ N, we derive that ∥uj∥∞ ≥ C0, and so u ̸= 0. As z ≥ 0, by Theorem
2.6,

u > 0, in Υ and
∂u
∂η

< 0 on ∂Υ

and by
uj → u in C1,τ(Υ)

we have uj(x) > 0, x ∈ Υ, for j large enough. Decreasing ε3 if necessary, the above analysis
guarantee that uε is positive for ε ∈ (0, ε3).

Conclusion

In this work, we have established the existence of positive weak solutions for a class of semi-
positone Kirchhoff-type problems involving nonlocal operators and anisotropic Φ-Laplacians.
By employing variational methods in the framework of Orlicz–Sobolev spaces, we successfully
overcame the challenges posed by three key features of the problem:

• The semipositone nature of the nonlinearity (h̄(0) < 0).

• The nonlocal Kirchhoff term Γ(
∫

Φ(u)dx).

• The anisotropic behavior of the Φ-Laplacian operator.
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Our main result (Theorem 4.1) demonstrates that for sufficiently small positive values of the
parameter ε, the problem admits at least one positive solution. The proof combined moun-
tain pass techniques with careful asymptotic analysis and delicate estimates to handle the
interaction between the nonlocal term and the indefinite nonlinearity.

Several interesting directions for future research emerge from this work:

• Investigation of multiplicity results for positive solutions.

• Extension to more general nonlocal operators.

• Study of critical growth cases in this framework.

• Analysis of related parabolic versions of the problem.

The methods developed in this paper may be applicable to other classes of nonlocal problems
with indefinite nonlinearities, particularly those arising in mathematical physics and biology
where such structural features naturally occur.
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