



Differential inclusion systems with fractional competing operator and multi-valued fractional convection

 Jinxia Cen¹, **Salvatore A. Marano** ² and **Shengda Zeng**¹

¹National Center for Applied Mathematics in Chongqing and School of Mathematical Sciences,
Chongqing Normal University, Chongqing, 401331, P.R. China

²Dipartimento di Matematica e Informatica, Università degli Studi di Catania,
Viale A. Doria 6, Catania, 95125, Italy

Received 2 June 2025, appeared 23 December 2025

Communicated by Roberto Livrea

Abstract. The existence of solutions to a family of inclusion systems with fractional, possibly competing, elliptic operators, fractional convection, and homogeneous Dirichlet boundary conditions is established. The proof uses Galerkin's method, a surjectivity result for multifunctions in finite dimensional spaces, and approximation techniques.

Keywords: differential inclusion system, fractional competing operator, fractional convection, Dirichlet boundary condition, Galerkin's method.

2020 Mathematics Subject Classification: 35H30, 35J92, 35D30.

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$, with a smooth boundary $\partial\Omega$, let $\mu_1, \mu_2 \in \mathbb{R}$, and let $F_1, F_2 : \Omega \times \mathbb{R}^2 \times \mathbb{R}^{2N} \rightarrow 2^{\mathbb{R}}$ be two compact convex-valued multifunctions. Consider the differential inclusion system

$$\begin{cases} (-\Delta)^{s_1}_{p_1} u_1 + \mu_1 (-\Delta)^{t_1}_{q_1} u_1 \in F_1(x, u_1, u_2, D^{r_1} u_1, D^{r_2} u_2) & \text{in } \Omega, \\ (-\Delta)^{s_2}_{p_2} u_2 + \mu_2 (-\Delta)^{t_2}_{q_2} u_2 \in F_2(x, u_1, u_2, D^{r_1} u_1, D^{r_2} u_2) & \text{in } \Omega, \\ u_1 = u_2 = 0 & \text{in } \mathbb{R}^N \setminus \Omega, \end{cases} \quad (1.1)$$

where

$$(H_1) \quad 0 < t_i < r_i < s_i \leq 1 \text{ and } 1 < q_i < p_i < \frac{N}{s_i} \text{ for each } i = 1, 2.$$

The symbol $(-\Delta)_p^s$, with $p > 1$ and $0 < s < 1$, denotes the fractional p -Laplacian, defined by setting, provided u is smooth enough,

$$(-\Delta)_p^s u(x) := 2 \lim_{\varepsilon \rightarrow 0^+} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+ps}} dy, \quad x \in \mathbb{R}^N,$$

 Corresponding author. Email: samarano@unict.it

with $B_\varepsilon(x) := \{z \in \mathbb{R}^N : \|z - x\|_{\mathbb{R}^N} < \varepsilon\}$. When $s = 1$ it becomes the classical p -Laplacian, namely

$$-\Delta_p u := -\operatorname{div}(|\nabla u|^{p-2}\nabla u).$$

Moreover, $D^s u$ indicates the *distributional Riesz fractional gradient* of u in the sense of [19, 20]. If u appropriately decays and is sufficiently smooth then, setting

$$c_{N,s} := -\frac{2^s \Gamma\left(\frac{N+s+1}{2}\right)}{\pi^{\frac{N}{2}} \Gamma\left(\frac{1-s}{2}\right)},$$

one has [20, pp. 289 and 298]

$$D^s u(x) := c_{N,s} \lim_{\varepsilon \rightarrow 0^+} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{u(x) - u(y)}{|x - y|^{N+s}} \frac{x - y}{|x - y|} dy, \quad x \in \mathbb{R}^N.$$

The right-hand sides F_1 and F_2 satisfy the conditions below, where, to avoid cumbersome formulae, we shall write

$$y := (y_1, y_2), \quad z := (z_1, z_2), \quad p_i^* := \frac{Np_i}{N - s_i p_i}, \quad i = 1, 2. \quad (1.2)$$

(H₂) $x \mapsto F_i(x, y, z)$ is measurable on Ω for all $(y, z) \in \mathbb{R}^2 \times \mathbb{R}^{2N}$ and $(y, z) \mapsto F_i(x, y, z)$ is upper semi-continuous for almost every $x \in \Omega$.

(H₃) There exist $m_i > 0, \delta_i \in L^{(p_i^*)'}(\Omega)$, $i = 1, 2$, such that

$$\sup_{w_i \in F_i(x, y, z)} |w_i| \leq m_i \left(|y_1|^{\frac{p_1^*}{(p_i^*)'}} + |y_2|^{\frac{p_2^*}{(p_i^*)'}} + |z_1|^{\frac{p_1}{(p_i^*)'}} + |z_2|^{\frac{p_2}{(p_i^*)'}} \right) + \delta_i(x)$$

a.e. in Ω and for all $(y, z) \in \mathbb{R}^2 \times \mathbb{R}^{2N}$.

(H₄) There are $M_i, M'_i > 0, \sigma_i \in L^1(\Omega)_+$, $i = 1, 2$, fulfilling

$$w_i y_i \leq M_i (|y_1|^{p_1} + |y_2|^{p_2}) + M'_i (|z_1|^{p_1} + |z_2|^{p_2}) + \sigma_i(x)$$

a.e. in Ω and for all $(y, z) \in \mathbb{R}^2 \times \mathbb{R}^{2N}, w_i \in F_i(x, y, z)$.

The involved differential operators are of the type

$$A_\mu(u) := (-\Delta)_p^s u + \mu(-\Delta)_q^t u, \quad u \in W_0^{s,p}(\Omega),$$

where $\mu \in \mathbb{R}$, $0 < t \leq r \leq s \leq 1$, $1 < q < p < \frac{N}{s}$, while convection comes from the presence of fractional gradients $D^r u$ at right-hand sides. A_μ exhibits different behaviors depending on the values of $t, s \in (0, 1]$. Precisely, if $t = 1$, then $t = r = s = 1$. Problem (1.1) falls inside the local framework, which has already been investigated in some recent works; see, e.g., [9] for single-valued reactions and [4, 18] as regards multi-valued ones. Moreover, the nature of A_μ drastically changes depending on μ . When $\mu > 0$, the operator A_μ is basically patterned after the (possibly) fractional (p, q) -Laplacian, which is non-homogeneous because $p \neq q$. If $\mu = 0$ it coincides with the fractional p -Laplacian. Both cases have been widely studied, and meaningful results are by now available in the literature. On the other hand, for $\mu < 0$ the operator A_μ contains the *difference* between the fractional p - and q -Laplacians. It is usually called competitive and, as already pointed out in [14, 17], does not satisfy any ellipticity or

monotonicity condition. In fact, given $u_0 \in W_0^{s,p}(\Omega) \setminus \{0\}$ and chosen $u := \tau u_0$, $\tau > 0$, the expression

$$\langle A_\mu(u), u \rangle = \tau^p \langle (-\Delta)_p^s u_0, u_0 \rangle + \mu \tau^q \langle (-\Delta)_q^t u_0, u_0 \rangle$$

turns out negative for τ small and positive when τ is large, because

$$u_0 \neq 0 \implies \langle (-\Delta)_p^s u_0, u_0 \rangle > 0, \langle (-\Delta)_q^t u_0, u_0 \rangle > 0;$$

cf. Section 2. Hence, nonlinear regularity theory, comparison principles, as well as existence theorems for pseudo-monotone maps cannot be employed. Moreover, since the reactions are multi-valued and contain the fractional gradient of the solutions, also variational techniques are no longer directly usable. To overcome these difficulties we first exploit Galerkin's method, thus working with a sequence $\{E_n\}$ of finite dimensional functional spaces. For each integer $n \geq 1$, an *approximate solution* $(u_{1,n}, u_{2,n}) \in E_n$ to (1.1) is obtained via a suitable version (see Proposition 2.3) of a classical surjectivity result. Next, letting $n \rightarrow +\infty$ yields a solution in a generalized sense (cf. Definitions 3.3 and 3.5), which turns out weak sense once $\min\{\mu_1, \mu_2\} \geq 0$.

Fractional gradients were first introduced more than sixty years ago by Horváth [12], but they garnered significant interest especially after the works of Shieh and Spector [5, 19, 20]. The operator $D^s u$ appears as a natural non-local version of ∇u , to which $D^s u$ formally converges when $s \rightarrow 1^-$. It possesses favorable geometric and physical properties [2, 21], like invariance under translations or rotations, homogeneity of order s , continuity, etc.

Section 2 contains some auxiliary results and the functional framework needed for handling both fractional gradients and the fractional p -Laplacian. The existence of (generalized, strong generalized, or weak) solutions to (1.1) is established in Section 3.

2 Preliminaries

Let X, Y be two nonempty sets. A multifunction $\Phi : X \rightarrow 2^Y$ is a map from X into the family of all nonempty subsets of Y . A function $\varphi : X \rightarrow Y$ is called a selection of Φ when $\varphi(x) \in \Phi(x)$ for every $x \in X$. Given $B \subseteq Y$, put $\Phi^-(B) := \{x \in X \mid \Phi(x) \cap B \neq \emptyset\}$. If X, Y are topological spaces and $\Phi^-(B)$ turns out closed in X for all closed sets $B \subseteq Y$ then we say that Φ is upper semi-continuous. Suppose (X, \mathcal{F}) is a measurable space and Y is a topological space. The multifunction Φ is called measurable when $\Phi^-(B) \in \mathcal{F}$ for every open set $B \subseteq Y$. The result below, stated in [1, p. 215], will be repeatedly useful.

Proposition 2.1. *Let $F : \Omega \times \mathbb{R}^h \rightarrow 2^{\mathbb{R}}$ be a closed-valued multifunction such that:*

- $x \mapsto F(x, \xi)$ is measurable for all $\xi \in \mathbb{R}^h$;
- $\xi \mapsto F(x, \xi)$ is upper semi-continuous for almost every $x \in \Omega$.

Let $w : \Omega \rightarrow \mathbb{R}^h$ be measurable. Then the multifunction $x \mapsto F(x, w(x))$ admits a measurable selection.

Let $(X, \|\cdot\|)$ be a real normed space with topological dual X^* and duality brackets $\langle \cdot, \cdot \rangle$. Given a nonempty set $A \subseteq X$, define $|A| := \sup_{x \in A} \|x\|$. We say that $\varphi : X \rightarrow X^*$ is *monotone* when

$$\langle \varphi(x) - \varphi(z), x - z \rangle \geq 0 \quad \forall x, z \in X,$$

and of type $(S)_+$ provided

$$x_n \rightharpoonup x \quad \text{in } X, \quad \limsup_{n \rightarrow +\infty} \langle \varphi(x_n), x_n - x \rangle \leq 0 \implies x_n \rightarrow x \quad \text{in } X.$$

The next elementary result [8, Proposition 2.1] will ensure that condition $(S)_+$ holds true for the differential operators we deal with.

Proposition 2.2. *Let $\varphi : X \rightarrow X^*$ be of type $(S)_+$ and let $\psi : X \rightarrow X^*$ be monotone. Then $\varphi + \psi$ satisfies condition $(S)_+$.*

A multifunction $\Phi : X \rightarrow 2^{X^*}$ is called coercive provided

$$\lim_{\|x\| \rightarrow \infty} \frac{\inf\{\langle x^*, x \rangle \mid x \in X, x^* \in \Phi(x)\}}{\|x\|} = +\infty.$$

The following result is a direct consequence of [11, Proposition 3.2.33].

Theorem 2.3. *Let X be a finite-dimensional normed space and let $\Phi : X \rightarrow 2^{X^*}$ be a convex compact-valued multifunction. Suppose Φ is upper semi-continuous and coercive. Then there exists $\hat{x} \in X$ satisfying $0 \in \Phi(\hat{x})$.*

Hereafter, if X and Y are two topological spaces, the symbol $X \hookrightarrow Y$ means that X continuously embeds in Y . Given $p > 1$, put $p' := \frac{p}{p-1}$, denote by $\|\cdot\|_p$ the usual norm of $L^p(\Omega)$, and indicate with $\|\cdot\|_{1,p}$ the norm on $W_0^{1,p}(\Omega)$ arising from Poincaré's inequality, namely

$$\|u\|_{1,p} := \|\nabla u\|_p, \quad u \in W_0^{1,p}(\Omega).$$

If $u \in W_0^{1,p}(\Omega)$, we set $u(x) = 0$ on $\mathbb{R}^N \setminus \Omega$; cf. [6, Section 5]. Fix $s \in (0, 1)$. The Gagliardo seminorm of a measurable function $u : \mathbb{R}^N \rightarrow \mathbb{R}$ is

$$[u]_{s,p} := \left(\int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+ps}} dx dy \right)^{\frac{1}{p}},$$

while $W^{s,p}(\mathbb{R}^N)$ denotes the fractional Sobolev space

$$W^{s,p}(\mathbb{R}^N) := \left\{ u \in L^p(\mathbb{R}^N) : [u]_{s,p} < \infty \right\},$$

endowed with the norm

$$\|u\|_{W^{s,p}(\mathbb{R}^N)} := \left(\|u\|_{L^p(\mathbb{R}^N)}^p + [u]_{s,p}^p \right)^{\frac{1}{p}}.$$

As usual, on the space

$$W_0^{s,p}(\Omega) := \{u \in W^{s,p}(\mathbb{R}^N) : u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega\}$$

we will consider the equivalent norm

$$\|u\|_{s,p} := [u]_{s,p}, \quad u \in W_0^{s,p}(\Omega).$$

Let $W^{-s,p'}(\Omega) := (W_0^{s,p}(\Omega))^*$ and let p_s^* be the fractional Sobolev critical exponent, i.e., $p_s^* = \frac{Np}{N-sp}$ when $sp < N$, $p_s^* = +\infty$ otherwise. Thanks to Propositions 2.1–2.2, Theorem 6.7, and Corollary 7.2 of [6] one has

Proposition 2.4. *If $1 \leq p < +\infty$ then:*

- (a) $0 < s' \leq s'' \leq 1 \implies W_0^{s'',p}(\Omega) \hookrightarrow W_0^{s',p}(\Omega)$.
- (b) $sp < N \implies W_0^{s,p}(\Omega) \hookrightarrow L^r(\Omega)$ for all $r \in [1, p_s^*]$.
- (c) *The embedding in (b) is also compact once $r \in [1, p_s^*]$.*

However, contrary to the non-fractional case, we know [15] that

$$1 \leq q < p \leq +\infty \implies W_0^{s,p}(\Omega) \subseteq W_0^{s,q}(\Omega).$$

Define, for every $u, v \in W_0^{s,p}(\Omega)$,

$$\langle (-\Delta)_p^s u, v \rangle := \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N+ps}} dx dy.$$

The operator $(-\Delta)_p^s$ is called (negative) s -fractional p -Laplacian. It possesses the following properties.

- (p₁) $(-\Delta)_p^s : W_0^{s,p}(\Omega) \rightarrow W^{-s,p'}(\Omega)$ turns out monotone, continuous, and of type $(S)_+$; vide, e.g., [7, Lemma 2.1].
- (p₂) One has

$$\|(-\Delta)_p^s u\|_{W^{-s,p'}(\Omega)} \leq \|u\|_{s,p}^{p-1} \quad \forall u \in W_0^{s,p}(\Omega).$$

Hence, $(-\Delta)_p^s$ maps bounded sets into bounded sets.

- (p₃) The first eigenvalue $\lambda_{1,p,s}$ of $(-\Delta)_p^s$ is given by (cf. [13])

$$\lambda_{1,p,s} = \inf_{u \in W_0^{s,p}(\Omega), u \neq 0} \frac{\|u\|_{s,p}^p}{\|u\|_p^p}.$$

To deal with distributional fractional gradients, we first introduce the Bessel potential spaces $L^{\alpha,p}(\mathbb{R}^N)$, where $\alpha > 0$. Set, for every $x \in \mathbb{R}^N$,

$$g_\alpha(x) := \frac{1}{(4\pi)^{\frac{\alpha}{2}} \Gamma(\frac{\alpha}{2})} \int_0^{+\infty} e^{\frac{-\pi|x|^2}{\delta}} e^{\frac{-\delta}{4\pi}} \delta^{\frac{\alpha-N}{2}} \frac{d\delta}{\delta}.$$

On account of [16, Section 7.1] one can assert that:

- 1) $g_\alpha \in L^1(\mathbb{R}^N)$ and $\|g_\alpha\|_{L^1(\mathbb{R}^N)} = 1$.
- 2) g_α enjoys the semi-group property, i.e., $g_\alpha * g_\beta = g_{\alpha+\beta}$ for any $\alpha, \beta > 0$, with $*$ being the convolution operator.

We consider

$$L^{\alpha,p}(\mathbb{R}^N) := \{u : u = g_\alpha * \tilde{u} \text{ for some } \tilde{u} \in L^p(\mathbb{R}^N)\}.$$

If $u = g_\alpha * \tilde{u} = g_\alpha * \bar{u}$, with $\tilde{u}, \bar{u} \in L^p(\mathbb{R}^N)$, then a standard argument ensures that $\tilde{u} = \bar{u}$ because $g_\alpha > 0$. So, we can define

$$\|u\|_{L^{\alpha,p}(\mathbb{R}^N)} = \|\tilde{u}\|_{L^p(\mathbb{R}^N)} \quad \text{whenever } u = g_\alpha * \tilde{u}.$$

Using 1) and 2) easily entails

$$0 < \alpha < \beta \implies L^{\beta,p}(\mathbb{R}^N) \subseteq L^{\alpha,p}(\mathbb{R}^N) \subseteq L^p(\mathbb{R}^N).$$

Moreover, by [19, Theorem 2.2], one has

Theorem 2.5. *If $1 < p < +\infty$ and $0 < \varepsilon < \alpha$ then*

$$L^{\alpha+\varepsilon,p}(\mathbb{R}^N) \hookrightarrow W^{\alpha,p}(\mathbb{R}^N) \hookrightarrow L^{\alpha-\varepsilon,p}(\mathbb{R}^N).$$

Finally, given $s \in (0,1)$, set

$$L_0^{s,p}(\Omega) := \{u \in L^{s,p}(\mathbb{R}^N) : u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega\}$$

and thanks to Theorem 2.5 we infer

$$L_0^{s+\varepsilon,p}(\Omega) \hookrightarrow W_0^{s,p}(\Omega) \hookrightarrow L_0^{s-\varepsilon,p}(\Omega) \quad \forall \varepsilon \in (0,s). \quad (2.1)$$

The next basic notion is taken from [19]. For $0 < \alpha < N$, let

$$\gamma(N, \alpha) := \frac{\Gamma\left(\frac{N-\alpha}{2}\right)}{\pi^{\frac{N}{2}} 2^\alpha \Gamma\left(\frac{\alpha}{2}\right)}, \quad I_\alpha(x) := \frac{\gamma(N, \alpha)}{|x|^{N-\alpha}}, \quad x \in \mathbb{R}^N \setminus \{0\}.$$

If $u \in L^p(\mathbb{R}^N)$ and $I_{1-s} * u$ makes sense then the vector

$$D^s u := \left(\frac{\partial}{\partial x_1} (I_{1-s} * u), \dots, \frac{\partial}{\partial x_N} (I_{1-s} * u) \right),$$

where partial derivatives are understood in a distributional sense, is called distributional Riesz s -fractional gradient of u . Theorem 1.2 in [19] ensures that

$$D^s u = I_{1-s} * Du \quad \forall u \in C_c^\infty(\mathbb{R}^N).$$

Further, $D^s u$ looks like the natural extension of ∇u to the fractional framework, Indeed, it exhibits analogous properties and, roughly speaking, $D^s u \rightarrow \nabla u$ when $s \rightarrow 1^-$; see, e.g., [10, Section 2].

According to [19, Definition 1.5], $X^{s,p}(\mathbb{R}^N)$ denotes the completion of $C_c^\infty(\mathbb{R}^N)$ with respect to the norm

$$\|u\|_{X^{s,p}(\mathbb{R}^N)} := \left(\|u\|_{L^p(\mathbb{R}^N)}^p + \|D^s u\|_{L^p(\mathbb{R}^N)}^p \right)^{\frac{1}{p}}.$$

Since, by [19, Theorem 1.7], $X^{s,p}(\mathbb{R}^N) = L^{s,p}(\mathbb{R}^N)$ we can deduce many facts about $X^{s,p}(\mathbb{R}^N)$ from the existing literature on $L^{s,p}(\mathbb{R}^N)$. Moreover, if

$$X_0^{s,p}(\Omega) := \{u \in X^{s,p}(\mathbb{R}^N) : u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega\},$$

then $X_0^{s,p}(\Omega) = L_0^{s,p}(\Omega)$.

3 Existence results

To shorten notation, for $i = 1, 2$, we set $U_i := W_0^{s_i, p_i}(\Omega)$ and denote by $\langle \cdot, \cdot \rangle_i$ the duality brackets of U_i . Lemma 2.6 in [3] guarantees that

$$U_i \hookrightarrow W_0^{t_i, q_i}(\Omega). \quad (3.1)$$

Hence, the differential operator $u \mapsto (-\Delta)^{s_i}_{p_i} u + \mu_i (-\Delta)^{t_i}_{q_i} u$ turns out well-defined on U_i . Let $A_i : U_i \rightarrow U_i^*$ be given by

$$\begin{aligned} \langle A_i(u), v \rangle_i &:= \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|u(x) - u(y)|^{p_i-2} (u(x) - u(y)) (v(x) - v(y))}{|x - y|^{N+p_i s_i}} dx dy \\ &\quad + \mu_i \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|u(x) - u(y)|^{q_i-2} (u(x) - u(y)) (v(x) - v(y))}{|x - y|^{N+q_i t_i}} dx dy \end{aligned}$$

for every $u, v \in U_i$. Thanks to properties (p₁)–(p₂) stated in Section 2, A_i is bounded and continuous. Consequently,

Lemma 3.1. *Under (H₁), the operator $A : U_1 \times U_2 \rightarrow U_1^* \times U_2^*$ defined by*

$$A(u_1, u_2) := (A_1(u_1), A_2(u_2)) \quad \forall (u_1, u_2) \in U_1 \times U_2$$

maps bounded sets into bounded sets and is continuous.

Next, put, provided $(u_1, u_2) \in U_1 \times U_2$,

$$\begin{aligned} \mathcal{S}_{F_1, F_2}(u_1, u_2) := \{ (w_1, w_2) \in L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega) : \\ w_i(\cdot) \in F_i(\cdot, u_1, u_2, D^{r_1}u_1, D^{r_2}u_2) \text{ a.e. in } \Omega, i = 1, 2 \}, \end{aligned}$$

with p_i^* as in (1.2).

Lemma 3.2. *Let (H₁)–(H₃) be satisfied. Then:*

- (a₁) $\mathcal{S}_{F_1, F_2}(u_1, u_2)$ turns out nonempty, convex, closed for all $(u_1, u_2) \in U_1 \times U_2$.
- (a₂) The multifunction $\mathcal{S}_{F_1, F_2} : U_1 \times U_2 \rightarrow 2^{L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega)}$ is bounded and strongly-weakly upper semi-continuous.

Proof. Since $r_i < s_i$, if $\varepsilon \in (0, s_i - r_i)$, combining Proposition 2.4 with (2.1) yields

$$U_i \hookrightarrow W_0^{r_i + \varepsilon, p_i}(\Omega) \hookrightarrow L_0^{r_i, p_i}(\Omega).$$

Thus,

$$(u_1, u_2) \in U_1 \times U_2 \implies (D^{r_1}u_1, D^{r_2}u_2) \in L^{p_1}(\Omega) \times L^{p_2}(\Omega).$$

Now, pick $(u_1, u_2) \in U_1 \times U_2$. Via (H₂) and Proposition 2.1 we see that $F_i(\cdot, u_1, u_2, D^{r_1}u_1, D^{r_2}u_2)$ admits a measurable selection $w_i : \Omega \rightarrow \mathbb{R}$. By (H₃) one has

$$\begin{aligned} \|w_1\|_{(p_1^*)'}^{(p_1^*)'} &\leq \int_{\Omega} \left[m_1 \left(|u_1|^{p_1^*-1} + |u_2|^{\frac{p_2^*}{(p_1^*)'}} + |D^{r_1}u_1|^{\frac{p_1}{(p_1^*)'}} + |D^{r_2}u_2|^{\frac{p_2}{(p_1^*)'}} \right) + \delta_1 \right]^{(p_1^*)'} dx \\ &\leq c \left(\|\delta_1\|_{(p_1^*)'}^{(p_1^*)'} + \|u_1\|_{p_1^*}^{p_1^*} + \|u_2\|_{p_2^*}^{p_2^*} + \|D^{r_1}u_1\|_{p_1}^{p_1} + \|D^{r_2}u_2\|_{p_2}^{p_2} \right) \end{aligned}$$

for some $c > 0$, whence $\|w_1\|_{(p_1^*)'} < \infty$. Similarly, $\|w_2\|_{(p_2^*)'} < \infty$. So, $\mathcal{S}_{F_1, F_2}(u_1, u_2) \neq \emptyset$. This proves (a₁), because convexity and closedness follow at once from the analogous properties of F_i . Let us next verify (a₂). The above inequalities also guarantee that \mathcal{S}_{F_1, F_2} maps bounded sets into bounded sets. If B is a nonempty weakly closed subset of $L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega)$ while $\{(u_{1,n}, u_{2,n})\} \subseteq \mathcal{S}_{F_1, F_2}^-(B)$ converges to (u_1, u_2) in $U_1 \times U_2$, then $\{(u_{1,n}, u_{2,n})\} \subseteq U_1 \times U_2$ turns out bounded. The same holds true concerning the set

$$\bigcup_{n \in \mathbb{N}} \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n}) \subseteq L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega).$$

Thus, up to sub-sequences, there exists $(w_{1,n}, w_{2,n}) \in \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n}) \cap B$, $n \in \mathbb{N}$, such that

$$(w_{1,n}, w_{2,n}) \rightharpoonup (w_1, w_2) \quad \text{in } L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega).$$

One evidently has $(w_1, w_2) \in B$, because B is weakly closed. Mazur's principle provides a sequence $\{(\tilde{w}_{1,n}, \tilde{w}_{2,n})\}$ of convex combinations of $\{(w_{1,n}, w_{2,n})\}$ satisfying

$$(\tilde{w}_{1,n}, \tilde{w}_{2,n}) \rightarrow (w_1, w_2) \quad \text{in } L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega).$$

By (H₂), after passing to a sub-sequence which converges a.e., this easily entails

$$w_i(x) \in F_i(x, u_1(x), u_2(x), D^{r_1}u_1(x), D^{r_2}u_2(x)) \quad \text{for almost every } x \in \Omega, i = 1, 2.$$

Consequently, $(w_1, w_2) \in \mathcal{S}_{F_1, F_2}(u_1, u_2) \cap B$, i.e., $(u_1, u_2) \in \mathcal{S}_{F_1, F_2}^-(B)$, as desired. \square

Our existence result can be established after introducing some suitable constants and the notion of generalized solution to (1.1). Since $r_i < s_i$, $i = 1, 2$, embeddings (2.1) produce

$$\|D^{r_1}u_1\|_{p_1}^{p_1} \leq \hat{c}_1\|u_1\|_{s_1,p_1}^{p_1} \quad \forall u_1 \in U_1, \quad \|D^{r_2}u_2\|_{p_2}^{p_2} \leq \hat{c}_2\|u_2\|_{s_2,p_2}^{p_2} \quad \forall u_2 \in U_2, \quad (3.2)$$

with appropriate $\hat{c}_i > 0$. Via (3.1) and its analogue for couples $(s_2, p_2) - (t_2, q_2)$ we next have

$$\|u_1\|_{t_1,q_1}^{q_1} \leq \tilde{c}_1\|u_1\|_{s_1,p_1}^{p_1} \quad \forall u_1 \in U_1, \quad \|u_2\|_{t_2,q_2}^{q_2} \leq \tilde{c}_2\|u_2\|_{s_2,p_2}^{p_2} \quad \forall u_2 \in U_2, \quad (3.3)$$

where $\tilde{c}_i > 0$. Finally, given $(T_1, T_2) \in U_1^* \times U_2^*$, set

$$\langle (T_1, T_2), (u_1, u_2) \rangle := \langle T_1, u_1 \rangle_1 + \langle T_2, u_2 \rangle_2, \quad (u_1, u_2) \in U_1 \times U_2.$$

Observe also that, by (b) in Proposition 2.4,

$$L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega) \hookrightarrow U_1^* \times U_2^*.$$

Hence, every $w \in L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega)$, $w = (w_1, w_2)$, defines a functional $T_w \in U_1^* \times U_2^*$ through

$$T_w(u_1, u_2) := \int_{\Omega} (u_1 w_1 + u_2 w_2) dx \quad \forall (u_1, u_2) \in U_1 \times U_2. \quad (3.4)$$

Definition 3.3. We say that $(u_1, u_2) \in U_1 \times U_2$ is a generalized solution of (1.1) if there exist two sequences $(u_{1,n}, u_{2,n}) \in U_1 \times U_2$ and $w_n \in \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n})$, $w_n = (w_{1,n}, w_{2,n})$, fulfilling:

- (i) $(u_{1,n}, u_{2,n}) \rightharpoonup (u_1, u_2)$ in $U_1 \times U_2$;
- (ii) $A(u_{1,n}, u_{2,n}) - T_{w_n} \rightharpoonup 0$ in $U_1^* \times U_2^*$;
- (iii) $\langle A(u_{1,n}, u_{2,n}), (u_{1,n} - u_1, u_{2,n} - u_2) \rangle - T_{w_n}(u_{1,n} - u_1, u_{2,n} - u_2) \rightarrow 0$.

Theorem 3.4. Suppose (H₁)–(H₄) are satisfied and, moreover,

$$\frac{M_1 + M_2}{\lambda_{1,p_i,s_i}} + \hat{c}_i(M'_1 + M'_2) + \tilde{c}_i|\mu_i| < 1, \quad i = 1, 2. \quad (3.5)$$

Then Problem (1.1) admits a generalized solution.

Proof. The space $U_1 \times U_2$ is separable, therefore it possesses a Galerkin's basis, namely a sequence $\{E_n\}$ of linear sub-spaces of $U_1 \times U_2$ such that:

- (i₁) $\dim(E_n) < \infty \quad \forall n \in \mathbb{N}$;
- (i₂) $E_n \subseteq E_{n+1} \quad \forall n \in \mathbb{N}$;
- (i₃) $\overline{\cup_{n=1}^{\infty} E_n} = U_1 \times U_2$.

Pick $n \in \mathbb{N}$. Consider the following problem: Find $(u_1, u_2) \in E_n$, $(w_1, w_2) \in \mathcal{S}_{F_1, F_2}(u_1, u_2)$ fulfilling

$$\langle A(u_1, u_2), (v_1, v_2) \rangle - T_w(v_1, v_2) = 0 \quad \forall (v_1, v_2) \in E_n^*, \quad (3.6)$$

with T_w as in (3.4). Thanks to Lemma 3.2 the multifunction $\Phi : E_n \rightarrow 2^{E_n^*}$ defined by

$$\Phi(u_1, u_2) := \{(A(u_1, u_2) - T_w)|_{E_n} : w \in \mathcal{S}_{F_1, F_2}(u_1, u_2), w = (w_1, w_2)\}, \quad (u_1, u_2) \in E_n,$$

takes nonempty, convex, closed values and maps bounded sets into bounded sets. We claim that Φ is upper semi-continuous. In fact, let $B \subseteq E_n^*$ closed. If $\{(u_{1,k}, u_{2,k})\} \subseteq \Phi^-(B)$ and $(u_{1,k}, u_{2,k}) \rightarrow (u_1, u_2)$ in E_n then there exists a sequence $w_k \in \mathcal{S}_{F_1, F_2}(u_{1,k}, u_{2,k})$, $w_k = (w_{1,k}, w_{2,k})$, such that

$$(A(u_{1,k}, u_{2,k}) - T_{w_k})|_{E_n} \in B \quad \forall k \in \mathbb{N}. \quad (3.7)$$

The same argument used in the proof of Lemma 3.2 gives $w \in \mathcal{S}_{F_1, F_2}(u_1, u_2)$, $w = (w_1, w_2)$, satisfying $(w_{1,k}, w_{2,k}) \rightharpoonup (w_1, w_2)$ in $L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega)$. Since $\dim(E_n) < \infty$, one has $T_{w_k}|_{E_n} \rightarrow T_w|_{E_n}$ in E_n^* . Thus, from Lemma 3.1 and (3.7) it follows

$$(A(u_1, u_2) - T_w)|_{E_n} \in B, \quad \text{i.e.,} \quad (u_1, u_2) \in \Phi^-(B).$$

This shows that $\Phi^-(B)$ is closed. As B was arbitrary, the multifunction Φ turns out upper semi-continuous. Next, if $(u_1, u_2) \in U_1 \times U_2$ and $w \in \mathcal{S}_{F_1, F_2}(u_1, u_2)$ then, thanks to (H₄), we have

$$\begin{aligned} \langle A(u_1, u_2), (u_1, u_2) \rangle - T_w(u_1, u_2) &\geq \|u_1\|_{s_1, p_1}^{p_1} + \|u_2\|_{s_2, p_2}^{p_2} - |\mu_1| \|u_1\|_{t_1, q_1}^{q_1} - |\mu_2| \|u_2\|_{t_2, q_2}^{q_2} \\ &\quad - \int_{\Omega} [M_1(|u_1|^{p_1} + |u_2|^{p_2}) + M'_1(|D^{r_1}u_1|^{p_1} + |D^{r_2}u_2|^{p_2}) + \sigma_1] \, dx \\ &\quad - \int_{\Omega} [M_2(|u_1|^{p_1} + |u_2|^{p_2}) + M'_2(|D^{r_1}u_1|^{p_1} + |D^{r_2}u_2|^{p_2}) + \sigma_2] \, dx. \end{aligned}$$

Exploiting (p₃) yields

$$\begin{aligned} \langle A(u_1, u_2), (u_1, u_2) \rangle - T_w(u_1, u_2) &\geq \left(1 - \frac{M_1 + M_2}{\lambda_{1, p_1, s_1}}\right) \|u_1\|_{s_1, p_1}^{p_1} + \left(1 - \frac{M_1 + M_2}{\lambda_{1, p_2, s_2}}\right) \|u_2\|_{s_2, p_2}^{p_2} - |\mu_1| \|u_1\|_{t_1, q_1}^{q_1} - |\mu_2| \|u_2\|_{t_2, q_2}^{q_2} \\ &\quad - \int_{\Omega} (M'_1 + M'_2) |D^{r_1}u_1|^{p_1} \, dx - \int_{\Omega} (M'_1 + M'_2) |D^{r_2}u_2|^{p_2} \, dx - \|\sigma_1\|_1 - \|\sigma_2\|_1, \end{aligned}$$

whence, on account of (3.2),

$$\begin{aligned} \langle A(u_1, u_2), (u_1, u_2) \rangle - T_w(u_1, u_2) &\geq \left[1 - \frac{M_1 + M_2}{\lambda_{1, p_1, s_1}} - \hat{c}_1(M'_1 + M'_2)\right] \|u_1\|_{s_1, p_1}^{p_1} + \left[1 - \frac{M_1 + M_2}{\lambda_{1, p_2, s_2}} - \hat{c}_2(M'_1 + M'_2)\right] \|u_2\|_{s_2, p_2}^{p_2} \\ &\quad - |\mu_1| \|u_1\|_{t_1, q_1}^{q_1} - |\mu_2| \|u_2\|_{t_2, q_2}^{q_2} - \|\sigma_1\|_1 - \|\sigma_2\|_1. \end{aligned}$$

Finally, through (3.3) we obtain

$$\begin{aligned} \langle A(u_1, u_2), (u_1, u_2) \rangle - T_w(u_1, u_2) &\geq \left[1 - \frac{M_1 + M_2}{\lambda_{1, p_1, s_1}} - \hat{c}_1(M'_1 + M'_2) - |\mu_1| \tilde{c}_1\right] \|u_1\|_{s_1, p_1}^{p_1} \\ &\quad + \left[1 - \frac{M_1 + M_2}{\lambda_{1, p_2, s_2}} - \hat{c}_2(M'_1 + M'_2) - |\mu_2| \tilde{c}_2\right] \|u_2\|_{s_2, p_2}^{p_2} - \|\sigma_1\|_1 - \|\sigma_2\|_1 \\ &\geq \min_{i=1,2} \left[1 - \frac{M_1 + M_2}{\lambda_{1, p_i, s_i}} - \hat{c}_i(M'_1 + M'_2) - |\mu_i| \tilde{c}_i\right] (\|u_1\|_{s_1, p_1}^{p_1} + \|u_2\|_{s_2, p_2}^{p_2}) - \|\sigma_1\|_1 - \|\sigma_2\|_1, \end{aligned}$$

namely

$$\langle A(u_1, u_2), (u_1, u_2) \rangle - T_w(u_1, u_2) \geq \alpha (\|u_1\|_{s_1, p_1}^{p_1} + \|u_2\|_{s_2, p_2}^{p_2}) - \beta, \quad (3.8)$$

where

$$\alpha := \min_{i=1,2} \left[1 - \frac{M_1 + M_2}{\lambda_{1,p_i,s_i}} - \hat{c}_i(M'_1 + M'_2) - |\mu_i| \tilde{c}_i \right], \quad \beta := \|\sigma_1\|_1 + \|\sigma_2\|_1.$$

Since (3.5) holds, the multifunction Φ turns out coercive. Now, Theorem 2.3 can be applied, and there exists a solution $(u_{1,n}, u_{2,n}) \in E_n$, $w_n \in \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n})$, $w_n = (w_{1,n}, w_{2,n})$, to Problem (3.6), i.e.,

$$\langle A(u_{1,n}, u_{2,n}), (v_1, v_2) \rangle - T_{w_n}(v_1, v_2) = 0, \quad (v_1, v_2) \in E_n^*. \quad (3.9)$$

From (3.8), written with $(u_1, u_2) := (u_{1,n}, u_{2,n})$, and (3.9) it follows

$$0 \geq \alpha (\|u_{1,n}\|_{s_1, p_1}^{p_1} + \|u_{2,n}\|_{s_2, p_2}^{p_2}) - \beta \quad \forall n \in \mathbb{N}.$$

Thus, $\{(u_{1,n}, u_{2,n})\} \subseteq U_1 \times U_2$ is bounded. By reflexivity one has $(u_{1,n}, u_{2,n}) \rightharpoonup (u_1, u_2)$ in $U_1 \times U_2$, taking a sub-sequence when necessary. Consequently, (i) of Definition 3.3 holds. Through Lemma 3.2 we next infer that $\{(w_{1,n}, w_{2,n})\} \subseteq L^{(p_1^*)'}(\Omega) \times L^{(p_2^*)'}(\Omega)$ turns out bounded. Therefore, always up to sub-sequences,

$$A(u_{1,n}, u_{2,n}) - T_{w_n} \rightharpoonup T \quad \text{in } U_1^* \times U_2^*. \quad (3.10)$$

Given any $(v_1, v_2) \in \bigcup_{k=1}^{\infty} E_k$, Property (i₂) and (3.9) yield

$$T(v_1, v_2) = \lim_{n \rightarrow \infty} (\langle A(u_{1,n}, u_{2,n}), (v_1, v_2) \rangle - T_{w_n}(v_1, v_2)) = 0.$$

Because of (i₃) this forces $T = 0$, namely condition (ii) is true. Moreover, using (3.9)–(3.10) entails

$$\begin{aligned} & \langle A(u_{1,n}, u_{2,n}), (u_{1,n} - u_1, u_{2,n} - u_2) \rangle - T_{w_n}(u_{1,n} - u_1, u_{2,n} - u_2) \\ &= -\langle A(u_{1,n}, u_{2,n}), (u_1, u_2) \rangle + T_{w_n}(u_1, u_2) \rightarrow 0, \end{aligned} \quad (3.11)$$

which shows (iii) in Definition 3.3. Summing up, the pair (u_1, u_2) turns out to be a generalized solution to (1.1). \square

If we strengthen (H₃) as follows:

(H₃)' For every $i = 1, 2$ there exist $\rho_i, \sigma_i \in (1, p_i^*)$, $m_i > 0$, and $\delta_i \in L^{\sigma_i'}(\Omega)$ such that

$$|F_i(x, y_1, y_2, z_1, z_2)| \leq m_i \left(|y_1|^{\frac{p_1^*}{\rho_i'}} + |y_2|^{\frac{p_2^*}{\rho_i'}} + |z_1|^{\frac{p_1}{\rho_i'}} + |z_2|^{\frac{p_2}{\rho_i'}} \right) + \delta_i(x)$$

a.e. in Ω and for all $(y_1, y_2, z_1, z_2) \in \mathbb{R}^2 \times \mathbb{R}^{2N}$,

then the next notion of strongly generalized solution can be given. Obviously, (H₃)' implies (H₃), because $\rho_i < p_i^*$ forces

$$\frac{\kappa}{\rho_i'} < \frac{\kappa}{(p_i^*)'} \quad \forall \kappa \in \{p_1, p_2, p_1^*, p_2^*\}.$$

Definition 3.5. We say that $(u_1, u_2) \in U_1 \times U_2$ is a strongly generalized solution to (1.1) if there are two sequences $(u_{1,n}, u_{2,n}) \in U_1 \times U_2$ and $w_n \in \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n})$, $w_n = (w_{1,n}, w_{2,n})$, satisfying (i) and (ii) of Definition 3.3 and, moreover,

$$(\text{iii})' \lim_{n \rightarrow \infty} \langle A(u_{1,n}, u_{2,n}), (u_{1,n} - u_1, u_{2,n} - u_2) \rangle = 0.$$

Theorem 3.6. *Under assumptions (H₁)–(H₂), (H₃)', (H₄), and (3.5), Problem (1.1) admits a strongly generalized solution.*

Proof. Reasoning as in the proof of Theorem 3.4 yields both $(u_1, u_2) \in U_1 \times U_2$ and two sequences $(u_{1,n}, u_{2,n}) \in U_1 \times U_2$, $(w_{1,n}, w_{2,n}) \in \mathcal{S}_{F_1, F_2}(u_{1,n}, u_{2,n})$ that comply with (i)–(ii) in Definition 3.3 as well as (3.11). Thus, it remains to show (iii)'. By (H₃)' and Hölder's inequality we have

$$\begin{aligned} & \left| \int_{\Omega} w_{i,n}(u_{i,n} - u_i) dx \right| \\ & \leq m_i \int_{\Omega} \left(|u_{1,n}|^{\frac{p_1^*}{\rho_i}} + |u_{2,n}|^{\frac{p_2^*}{\rho_i}} + |\nabla u_{1,n}|^{\frac{p_1}{\rho_i}} + |\nabla u_{2,n}|^{\frac{p_2}{\rho_i}} \right) |u_{i,n} - u_i| dx + \int_{\Omega} \delta_i |u_{i,n} - u_i| dx \\ & \leq m_i \left(\|u_{1,n}\|_{p_1^*}^{p_1^*/\rho_i} + \|u_{2,n}\|_{p_2^*}^{p_2^*/\rho_i} + \|u_{1,n}\|_{1,p_1}^{p_1/\rho_i} + \|u_{2,n}\|_{1,p_2}^{p_2/\rho_i} \right) \|u_{i,n} - u_i\|_{\rho_i} + \|\delta_i\|_{\sigma_i'} \|u_{i,n} - u_i\|_{\sigma_i} \\ & \leq C \|u_{i,n} - u_i\|_{\rho_i} + \|\delta_i\|_{\sigma_i'} \|u_{i,n} - u_i\|_{\sigma_i} \quad \forall n \in \mathbb{N}, \end{aligned}$$

with $C > 0$, because $\{u_{i,n}\} \subseteq U_i$ turns out bounded. The condition $\max\{\rho_i, \sigma_i\} < p_i^*$ forces $u_{i,n} \rightarrow u_i$ in $L^{\rho_i}(\Omega) \cap L^{\sigma_i}(\Omega)$, where a sub-sequence is considered if necessary; see Proposition 2.4. Hence,

$$\lim_{n \rightarrow \infty} \int_{\Omega} w_{i,n}(u_{i,n} - u_i) dx = 0, \quad i = 1, 2. \quad (3.12)$$

Through (3.11)–(3.12), we arrive at

$$\lim_{n \rightarrow \infty} \langle A(u_{1,n}, u_{2,n}), (u_{1,n} - u_1, u_{2,n} - u_2) \rangle = 0,$$

namely (iii)' of Definition 3.5 also holds. \square

Finally, recall that $(u_1, u_2) \in U_1 \times U_2$ is called a *weak solution* to (1.1) when there exists $(w_1, w_2) \in \mathcal{S}_{F_1, F_2}(u_1, u_2)$ such that

$$A(u_1, u_2) = (w_1, w_2) \quad \text{in } U_1^* \times U_2^*. \quad (3.13)$$

Corollary 3.7. *Let the hypotheses of Theorem 3.6 be satisfied and let $\min\{\mu_1, \mu_2\} \geq 0$. Then Problem (1.1) possesses a weak solution.*

Proof. Keep the same notation of the previous proof. Since $\mu_i \geq 0$, gathering (p₁) with Proposition 2.2 together ensures that A_i is of type (S)₊. Therefore, from (iii)' it follows $(u_{1,n}, u_{2,n}) \rightarrow (u_1, u_2)$ in $U_1 \times U_2$. On the other hand, (a₂) in Lemma 3.2 produces, up to subsequences, $(w_{1,n}, w_{2,n}) \rightharpoonup (w_1, w_2)$ in $U_1^* \times U_2^*$. Now, through (ii) and Lemma 3.1 we easily infer (3.13). \square

Acknowledgment

This work was supported in part by: 1) the Research project of MIUR Prin 2022 *Nonlinear differential problems with applications to real phenomena* (Grant No. 2022ZXZTN2); 2) the Natural Science Foundation of Guangxi (Grant No. 2024GXNSFBA010337); 3) the National Natural Science Foundation of China (Grant Nos. 12371312 and 12526641); 4) the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-JQX0033); 5) the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20241534); 6) the Science and Technology Research

Program of Chongqing Municipal Education Commission No. KJZD-M202500502; 7) Startup Project of doctor Scientific Research of Chongqing Normal University No. 24XLB034.

The second author is a member of the GNAMPA of INdAM.

The authors wish to thank the anonymous referee for careful reading and insightful remark, which helped to improve the paper.

References

- [1] J. APPELL, E. DE PASCALE, P. P. ZABREIKO, Multivalued superposition operators, *Rend. Sem. Mat. Univ. Padova* **86**(1991), 213–231. <http://eudml.org/doc/108237>; MR1154110
- [2] J. C. BELLIDO, J. CUETO, C. MORA-CORRAL, Non-local gradients in bounded domains motivated by continuum mechanics: Fundamental theorem of calculus and embeddings, *Adv. Nonlinear Anal.* **12**(2023), Paper No. 20220316. <https://doi.org/10.1515/anona-2022-0316>; MR4626320
- [3] L. BRASCO, E. LINDGREN, E. PARINI, The fractional Cheeger problem, *Interfaces Free Bound.* **16**(2014), 419–458. <https://doi.org/10.4171/IFB/325>; MR3264796
- [4] J. CEN, S. A. MARANO, S. ZENG, Differential inclusion systems with double phase competing operators, convection, and mixed boundary conditions, *Appl. Math. Lett.* **167**(2025), Paper No. 109556. <https://doi.org/10.1016/j.aml.2025.109556>; MR4891440
- [5] G. E. COMI, G. STEFANI, A distributional approach to fractional Sobolev spaces and fractional variation: Asymptotics I, *Rev. Mat. Complut.* **36**(2023), 491–569. <https://doi.org/10.1007/s13163-022-00429-y>; MR4581759
- [6] E. DI NEZZA, G. PALATUCCI, E. VALDINOCI, Hitchhiker’s guide to the fractional Sobolev spaces, *Bull. Sci. Math.* **136**(2012), 521–573. <https://doi.org/10.1016/j.bulsci.2011.12.004>; MR2944369
- [7] S. FRASSU, A. IANNIZZOTTO, Extremal constant sign solutions and nodal solutions for the fractional p -Laplacian, *J. Math. Anal. Appl.* **501**(2021), Paper No. 124205. <https://doi.org/10.1016/j.jmaa.2020.124205>; MR4258799
- [8] L. GAMBERA, S. A. MARANO, Fractional Dirichlet problems with singular and non-locally convective reaction, *Adv. Nonlinear Anal.* **14**(2025), Paper No. 20250082. <https://doi.org/10.1515/anona-2025-0082>; MR4986564
- [9] L. GAMBERA, S. A. MARANO, D. MOTREANU, Quasilinear Dirichlet systems with competing operators and convection, *J. Math. Anal. Appl.* **530**(2024), Paper No. 127718. <https://doi.org/10.1016/j.jmaa.2023.127718>; MR4638852
- [10] L. GAMBERA, S. A. MARANO, D. MOTREANU, Dirichlet problems with fractional competing operators and fractional convection, *Fract. Calc. Appl. Anal.* **27**(2024), 2203–2218. <https://doi.org/10.1007/s13540-024-00331-y>; MR4806298
- [11] L. GASIŃSKI, N. S. PAPAGEORGIOU, *Nonlinear analysis*, Chapman and Hall/CRC, Boca Raton, FL, 2005. <https://doi.org/10.1201/9781420035049>; MR2168068

- [12] J. HORVÁTH, On some composition formulas, *Proc. Amer. Math. Soc.* **10**(1959), 433–437. <https://doi.org/10.2307/2032862>; MR0107788
- [13] E. LINDGREN, P. LINDQVIST, Fractional eigenvalues, *Calc. Var. Partial Differential Equations* **49**(2014), 795–826. <https://doi.org/10.1007/s00526-013-0600-1>; MR3148135
- [14] Z. LIU, R. LIVREA, D. MOTREANU, S. ZENG, Variational differential inclusions without ellipticity condition, *Electron. J. Qual. Theory Differ. Equ.* **2020**, No. 43, 1–17. <https://doi.org/10.14232/ejqtde.2020.1.43>; MR4118158
- [15] P. MIRONESCU, W. SICKEL, A Sobolev non embedding, *Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.* **26**(2015), 291–298. <https://doi.org/10.4171/RLM/707>; MR3357858
- [16] Y. MIZUTA, *Potential theory in Euclidean spaces*, Gakkotosho, Tokyo, 1996. MR1428685
- [17] D. MOTREANU, Quasilinear Dirichlet problems with competing operators and convection, *Open Math.* **18**(2020), 1510–1517. <https://doi.org/10.1515/math-2020-0112>; MR4197099
- [18] D. MOTREANU, Systems of hemivariational inclusions with competing operators, *Mathematics* **12**(2024), Paper No. 1766. <https://doi.org/10.3390/math12111766>
- [19] T. T. SHIEH, D. E. SPECTOR, On a new class of fractional partial differential equations, *Adv. Calc. Var.* **8**(2015), 321–336. <https://doi.org/10.1515/acv-2014-0009>; MR3403430
- [20] T. T. SHIEH, D. E. SPECTOR, On a new class of fractional partial differential equations II, *Adv. Calc. Var.* **11**(2018), 289–307. <https://doi.org/10.1515/acv-2016-0056>; MR3819528
- [21] M. ŠILHAVÝ, Fractional vector analysis based on invariance requirements (critique of coordinate approaches), *Contin. Mech. Thermodyn.* **32**(2020), 207–228. <https://doi.org/10.1007/s00161-019-00797-9>; MR4048032