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1 Introduction

Let Q be a bounded domain in RN, N > 3, with a smooth boundary 9€), let u1, u2 € R, and
let F,F : QO x R? x RN — 2R be two compact convex-valued multifunctions. Consider the
differential inclusion system

(—=A)3u1 + p1(—A)giur € Fi(x,u1,up, D"uy, D"2up)  in Q,
(=A)Ruz + po(—A)Guz € Fo(x,u1,uz, D"uy, Dup)  in Q, (1.1)
up=u=0 in RN\ Q,

where

(Hi) 0<ti<fi<si§1and1<qi<p,'<sﬁiforeachizl,z.

The symbol (—A)j;, with p > 1 and 0 < s < 1, denotes the fractional p-Laplacian, defined by
setting, provided u is smooth enough,

AV () = 2 1 [u(x) = u(y) [P~ (u(x) — u(y)) N
O =2 o e R
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with Be(x) := {z € RN : ||z — x||[gv < €}. When s = 1 it becomes the classical p-Laplacian,
namely
—Apu = —div(|Vu|P~2Vu).

Moreover, D°u indicates the distributional Riesz fractional gradient of u in the sense of [19,20]. If
u appropriately decays and is sufficiently smooth then, setting
B 25T ( N +2S+1 )

RS

one has [20, pp. 289 and 298]

) e u(x) ~u(y) x-y N
Pl = s IR fosinn T gives oy TSR

The right-hand sides F; and F, satisfy the conditions below, where, to avoid cumbersome
formulae, we shall write

Npi

— , i=1,2. 1.2
N —s;p; (1.2)

yi= (i), z:=(212), pi=
(Hy) x ~ Fi(x,y,z) is measurable on Q) for all (y,z) € R?> x R?N and (y,z) — Fi(x,y,z) is
upper semi-continuous for almost every x € ().

(H3) There exist m; > 0, J; € L(p?)/(Q), i =1,2, such that

sup [wi| <my | |y " 4 y2 P 4 |z P+ |z |+ 65(x)
)

w;i€F;(x,y,z
a.e. in ) and for all (y,z) € R?> x R?VN,

(Hy) There are M;, M} >0, 0; € L1(Q), i = 1,2, fulfilling

wis < My 1P+ 2 lP) + MYz [P+ 227 + 0 (x)
a.e. in Q and for all (y,z) € R> x RN, w; € Fi(x,v,z).
The involved differential operators are of the type

Ap(u) = (=A)pu + y(—A);u, ue W, (Q),
where y e R, 0<t<r<s<1,1<g<p< %, while convection comes from the presence
of fractional gradients D"u at right-hand sides. A, exhibits different behaviors depending on
the values of t,s € (0,1]. Precisely, if t = 1, then t = r = s = 1. Problem (1.1) falls inside
the local framework, which has already been investigated in some recent works; see, e.g., [9]
for single-valued reactions and [4,18] as regards multi-valued ones. Moreover, the nature of
A, drastically changes depending on p. When u > 0, the operator A, is basically patterned
after the (possibly) fractional (p, g)-Laplacian, which is non-homogeneous because p # g. If
i = 0 it coincides with the fractional p-Laplacian. Both cases have been widely studied, and
meaningful results are by now available in the literature. On the other hand, for y < 0 the
operator A, contains the difference between the fractional p- and g-Laplacians. It is usually
called competitive and, as already pointed out in [14,17], does not satisfy any ellipticity or
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monotonicity condition. In fact, given up € W;"(Q) \ {0} and chosen u := Tug, T > 0, the
expression

(Ap(u),u) = T((=A)juo, uo) + pTI((=A)guo, uo)

turns out negative for T small and positive when 7 is large, because

Uug 75 0 = ((—A);uo,u(ﬁ >0, <(—A)Zuo,u0> > 0;

cf. Section 2. Hence, nonlinear regularity theory, comparison principles, as well as existence
theorems for pseudo-monotone maps cannot be employed. Moreover, since the reactions
are multi-valued and contain the fractional gradient of the solutions, also variational tech-
niques are no longer directly usable. To overcome these difficulties we first exploit Galerkin’s
method, thus working with a sequence {E, } of finite dimensional functional spaces. For each
integer n > 1, an approximate solution (u1,,u,) € E, to (1.1) is obtained via a suitable ver-
sion (see Proposition 2.3) of a classical surjectivity result. Next, letting n — +co yields a
solution in a generalized sense (cf. Definitions 3.3 and 3.5), which turns out weak sense once
min{y, p2} > 0.

Fractional gradients were first introduced more than sixty years ago by Horvéath [12], but
they garnered significant interest especially after the works of Shieh and Spector [5,19,20]. The
operator D°u appears as a natural non-local version of Vu, to which D*u formally converges
when s — 17. It possesses favorable geometric and physical properties [2,21], like invariance
under translations or rotations, homogeneity of order s, continuity, etc.

Section 2 contains some auxiliary results and the functional framework needed for han-
dling both fractional gradients and the fractional p-Laplacian. The existence of (generalized,
strong generalized, or weak) solutions to (1.1) is established in Section 3.

2 Preliminaries

Let X, Y be two nonempty sets. A multifunction ® : X — 2V is a map from X into the family of
all nonempty subsets of Y. A function ¢ : X — Y is called a selection of ® when ¢(x) € ®(x)
forevery x € X. Given BC Y, put ® (B) := {x € X | ®(x) N B # @}. If X, Y are topological
spaces and @~ (B) turns out closed in X for all closed sets B C Y then we say that ® is upper
semi-continuous. Suppose (X, F) is a measurable space and Y is a topological space. The
multifunction @ is called measurable when ®~(B) € F for every open set B C Y. The result
below, stated in [1, p. 215], will be repeatedly useful.

Proposition 2.1. Let F : QO x R" — 2R be a closed-valued multifunction such that:
* x — F(x,¢) is measurable for all € R";
*  — F(x,¢) is upper semi-continuous for almost every x € Q).

Let w : Q — R" be measurable. Then the multifunction x + F(x,w(x)) admits a measurable
selection.

Let (X, || - ||) be a real normed space with topological dual X* and duality brackets (-, -).
Given a nonempty set A C X, define |A| := sup,_, ||x||. We say that ¢ : X — X* is monotone
when

(p(x) —@(z),x—2z) >0 Vx,zeX,
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and of type (S) provided

X, = x inX, limsup(g(x,),x,—x) <0 = x, »>x inX.
n——+0o0

The next elementary result [8, Proposition 2.1] will ensure that condition (S); holds true for
the differential operators we deal with.

Proposition 2.2. Let ¢ : X — X* be of type (S)+ and let ¢ : X — X* be monotone. Then ¢ + 1
satisfies condition (S) .

A multifunction @ : X — 2X" is called coercive provided

lim inf{(x*,x) | x € X, x* € ®(x)}

]| o0 [| ]|

:+OO_

The following result is a direct consequence of [11, Proposition 3.2.33].

Theorem 2.3. Let X be a finite-dimensional normed space and let ® : X — 2% be a convex compact-
valued multifunction. Suppose ® is upper semi-continuous and coercive. Then there exists £ € X
satisfying 0 € ®(X).

Hereafter, if X and Y are two topological spaces, the symbol X — Y means that X contin-

uously embeds in Y. Given p > 1, put p’ := %, denote by || - ||, the usual norm of L?(Q)),

and indicate with [ - ||;,, the norm on W& ?(Q) arising from Poincaré’s inequality, namely
1,
lullp = 1Vully, ue Wy (Q).

If u e W&’p(ﬂ), we set u(x) = 0 on RN\ Q; cf. [6, Section 5]. Fix s € (0,1). The Gagliardo
seminorm of a measurable function u : RN — R is

1
_ |u(x) —u(y)|” ’
while W¥?(R¥N) denotes the fractional Sobolev space
WP (RN) := {u e LP(RN) : [u]s, < oo},

endowed with the norm

==

ellwer ey = (1102 ey + 115
As usual, on the space
WP (Q) := {u € W(RN):u=0ae in RV \ Q}
we will consider the equivalent norm
ulls,p := [ulsp, u€ WP (Q).

Let W=7 (Q)) := (W, (Q))* and let p? be the fractional Sobolev critical exponent, i.e., p; =

Nl\i’; ; when sp < N, p; = +oco otherwise. Thanks to Propositions 2.1-2.2, Theorem 6.7, and

Corollary 7.2 of [6] one has
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Proposition 2.4. If 1 < p < +o0 then:
@ 0<s <s" <1 = W) < W7 Q).
(b) sp <N = W;7(Q) = L (Q) forall r € [1, pZ].
(c) The embedding in (b) is also compact once r € [1, p%).
However, contrary to the non-fractional case, we know [15] that
1<g<p<+oo =5 WiP(Q) CW(Q).

Define, for every u,v € Wg’p (Q),

_ -2 _ _
((—A);u,w — /]RNX]RN |u(x) M(y)|p ‘(:(_x;‘pr(sy))(v(x) v(y))dxdy.

The operator (—A)j, is called (negative) s-fractional p-Laplacian. It possesses the following
properties.

(p1) (=8);: W,7(Q) — W' (Q) turns out monotone, continuous, and of type (S); vide,

e.g., [7, Lemma 2.1].

(p2) One has
-1 ’
|8ty < Nl ¥ € WEP(€Q).

Hence, (—A); maps bounded sets into bounded sets.

(p3) The first eigenvalue Ay 5 of (—A); is given by (cf. [13])

lullZ,p
ueWy? (Q),uz0 ||MH§

Al,p,s -

To deal with distributional fractional gradients, we first introduce the Bessel potential spaces
L""?’(]RN ), where & > 0. Set, for every x € RN,

(x) = 1 /+°° k2 s aNdd
Salt) = (471)3T (&) Jo

On account of [16, Section 7.1] one can assert that:
1) g € L'(RY) and || gallps vy = 1.

2) ga enjoys the semi-group property, i.e., g * §g = Su+p for any a, f > 0, with * being the
convolution operator.

We consider
LY (RN) := {u : u = g, * i for some 7 € LP(RN)}.

If u =gyl = gy +u, with #,u € LP(RY), then a standard argument ensures that ii = u
because g, > 0. So, we can define

]| or(mry = [[]|pryy  Whenever u = g, *il.
Using 1) and 2) easily entails
0<a<p = LAP(RN)C LY (RN)C LP(RN).

Moreover, by [19, Theorem 2.2], one has
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Theorem 2.5. If 1 < p < +ooand 0 < & < a then
LY (RN) < WP (RN) — L 9P(RN).
Finally, given s € (0,1), set

Ly (Q) = {u e L*(RY):u=0ae in RN\ Q}
and thanks to Theorem 2.5 we infer

L (Q) = WyP(Q) — Ly P (Q) Vee (0,5). 2.1)
The next basic notion is taken from [19]. For 0 < &« < N, let

r (%)

TEeT (5)’

()= YN gV o).

Y(N,a) := = |x[N=a"

If u € LF(RN) and I; s * u makes sense then the vector

0 d
Ds‘l,[ = <axl(11_s * u),. .oy a([l_s * u)) ’
where partial derivatives are understood in a distributional sense, is called distributional Riesz
s-fractional gradient of u. Theorem 1.2 in [19] ensures that
Déu=1I_¢+xDu YuecC®(RN).

Further, D°u looks like the natural extension of Vu to the fractional framework, Indeed, it
exhibits analogous properties and, roughly speaking, D°u — Vu when s — 17; see, e.g.,
[10, Section 2].
According to [19, Definition 1.5], X*?(RN) denotes the completion of C°(RN) with respect
to the norm .
il son vy 3= (el oy + 1000 e )

Since, by [19, Theorem 1.7], X*?(RN) = L*?(RN) we can deduce many facts about X*?(RV)
from the existing literature on LS?(RY). Moreover, if

X" (Q):={ueX*(RV):u=0ae inRV\ O},
then X;"(Q) = Ly" ().

3 Existence results
To shorten notation, for i = 1,2, we set U; := W,”'(Q) and denote by (-,-); the duality
brackets of U;. Lemma 2.6 in [3] guarantees that

U; — Wi (Q). (3.1)

Hence, the differential operator u — (—A)ju + yi(—A)gfiu turns out well-defined on U;. Let
A; : U; — U] be given by

A= [ OO O —o)

RN xRN |x — y|Ntrisi
|(x) — u(y)[" 2 (u(x) — u(y)) (v(x) = v(y))
TH /RNXW [ — y| Nt e

for every u,v € U;. Thanks to properties (p1)—(p2) stated in Section 2, A; is bounded and
continuous. Consequently,
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Lemma 3.1. Under (Hy), the operator A : Uy x Uy — Uj x U defined by
A(uy,up) = (A1(u1), Aa(uz)) YV (uy,uz) € Uy x Uy
maps bounded sets into bounded sets and is continuous.
Next, put, provided (u3, uz) € Uy x Uy,
Sryp (u1,u2) = { (w1, wy) € LFV'(Q) x LF)'(Q) :
w;(+) € F(+,u1, up, D"uy, D?up) ae. in Q, i = 1,2},
with p} as in (1.2).
Lemma 3.2. Let (H;)—(H3) be satisfied. Then:
(a1) Sk, (U1, u2) turns out nonempty, convex, closed for all (uy,uz) € Uy x Ua.
(az2) The multifunction Sg, f, : Uy X Up — 2tV (@<L () i pounded and strongly-weakly upper
semi-continuous.
Proof. Since r; < s, if ¢ € (0,s; — r;), combining Proposition 2.4 with (2.1) yields
U; — Wy ™"(Q) — LiP' (Q).

Thus,

(I/ll,I/lQ) el xU = (D“ul, D“uz) S Lpl(ﬂ) X LPZ(Q).
Now, pick (uy, up) € Uy x Up. Via (Hp) and Proposition 2.1 we see that F;(-, uy, uz, D"'u1, D"u5)
admits a measurable selection w; : 3 — R. By (H3) one has

P1 P2

s
[ + ’Dr1u1| [ + |Dr2u2 (p}‘)’) + &

] (P’{)’dx

(P -
el < [ [ma (i + e
( *)/ * *
< c(loah(hEy + luallhh + luall % + D™ ]15: + D" 52

for some ¢ > 0, whence [[w1||(:) < co. Similarly, ||wsl|(y;) < c0. So, Sk, (u1,u2) # @. This
proves (a1), because convexity and closedness follow at once from the analogous properties
of F;. Let us next verify (a2). The above inequalities also guarantee that Sp, r, maps bounded
sets into bounded sets. If B is a nonempty weakly closed subset of L(P1)'(Q) x L(#3)'(Q)) while
{(urn,u2n)} € Sp p, (B) converges to (u1,u2) in Uy x Uy, then {(u1,,uz,0)} C Uy x U turns
out bounded. The same holds true concerning the set

U SFl,Fz(ul,nz uZ,n) - L(ﬁ)/(ﬂ) X L(pé)/(Q)_
nelN

Thus, up to sub-sequences, there exists (w1, w2,) € Sk, E (U1, U2,n) N B, n € N, such that
(W1, Wap) = (wy,wp) in  LP(Q) x L¥)(Q).

One evidently has (w;, w;) € B, because B is weakly closed. Mazur’s principle provides a
sequence { (@1, W2,,)} of convex combinations of { (w1, w2,,)} satisfying

(@10, Do) — (w1, wz) in LPV(Q) x LF)(Q).
By (H>), after passing to a sub-sequence which converges a.e., this easily entails
w;(x) € Fi(x,uq1(x),uz(x), D""up(x), D"uy(x)) for almostevery x € Q), i =1,2.

Consequently, (w1, w2) € Sk, (u1,u2) N B, ie., (u1,u2) € S, f, (B), as desired. O
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Our existence result can be established after introducing some suitable constants and the
notion of generalized solution to (1.1). Since r; < s;, i = 1,2, embeddings (2.1) produce

DM < &llunllZy Vi ety DRl < Gl Yure s, (32)
with appropriate ¢; > 0. Via (3.1) and its analogue for couples (s, p2)—(t2,42) we next have

luallfy, < @llmlsy, Yweth,  lwlf, <alulls, Yu el (33)

where ¢; > 0. Finally, given (T3, T>) € Uf x U, set
((T1, Tz), (u1,u2)) := (T1, u1)1 + (To, u2)2, (ug,u2) € Uy x Uy.
Observe also that, by (b) in Proposition 2.4,
L) x L) (Q) — U x U3,

Hence, every w € L(PT),(Q) X L(PE)I(Q), w = (wy, wy), defines a functional T, € Uf x Uj
through

Tw(u1, up) = /Q(ulwl + upwy)dx ¥V (ug,up) € Uy x Up. (3.4)

Definition 3.3. We say that (u1,u2) € Up x Uy is a generalized solution of (1.1) if there exist
two sequences (Uy ,, Uz,) € Uy X Uy and wy, € Sp, g, (W10, tan), Wy = (W14, W2, ), fulfilling:

(1) (1, t2n) = (U1, uz) in Uy x Uy;
(i) A(uin, tzn) — Tw, = 0in Uy x U;;
(iﬁ) <A(u1,n/ MZ,n)/ (ul,n — Uy, Uy — u2)> - Twn (ul,n — Uy, Uy — MZ) — 0.

Theorem 3.4. Suppose (Hy)—(Ha) are satisfied and, moreover,
——— + &M+ M) + &l <1, i=1,2 (3.5)

Then Problem (1.1) admits a generalized solution.

Proof. The space U; x U, is separable, therefore it possesses a Galerkin’s basis, namely a
sequence {E,} of linear sub-spaces of U; x U, such that:

(i) dim(E,) < o0 Vn eN;
(i2) En CEny1 VREN;
(i3) Uc;lozlEn = U; x U,.

Pick n € IN. Consider the following problem: Find (u1,u2) € E,, (w1, w2) € Sk, g (U1, 12)
fulfilling
<A(M1,M2), (2)1, Uz)> — Tw(’()l,vz) =0 V(Ul,vz) € EZ, (36)

with T, as in (3.4). Thanks to Lemma 3.2 the multifunction ® : E,, — 2E» defined by

D(uy, up) := {(A(ur,u2) — Tw) |g,: w € Sp 5 (11, u2), w = (w1, w2)}, (u1,u2) € Ey,
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takes nonempty, convex, closed values and maps bounded sets into bounded sets. We claim
that @ is upper semi-continuous. In fact, let B C E} closed. If {(uy, uzx)} € @ (B) and
(U1, uzx) — (u1,up) in E, then there exists a sequence wy € Sg, r, (U1k U k), Wk = (W1 Wak),
such that

(A(ullk, uzlk) — ka) LEnG B VkeNN. (3.7)

The same argument used in the proof of Lemma 3.2 gives w € Sr, r, (U1, u2), w = (w1, wy),
satisfying (wy g, wyx) — (wy,wa) in LD (Q) x L)' (Q). Since dim(E,) < oo, one has
Tw, | E,— Tw|E, in E;;. Thus, from Lemma 3.1 and (3.7) it follows

(A(uy,u2) — Ty)|g,€ B, ie, (u1,ux) € @ (B).

This shows that @~ (B) is closed. As B was arbitrary, the multifunction ® turns out upper
semi-continuous. Next, if (13, u2) € Uy x Uy and w € Sp, f, (11, u2) then, thanks to (Hy), we
have

(A(ur,u2), (u1,u2)) = Tw(ur, u2) > ([a]|§) p, + lu2ll& p, = lpalllnallf = 2l luall?

o
J

A [Ma(Jua|[* + [u2]P2) + My (|D"ua |t + | D"un|") + 03] dx.

[M1(|u1|p1 + |M2’p2) + M1(|Dr1u1|p1 + |Dr21/l2|p2) —|—0’1] dx

Exploiting (p3) yields

(A(ur,u2), (u1,u2)) — Top(ur, u2)

> (1= MAEM p (1 MM e a2, — (el
2 M, pys: Utllsy,p + Mo U2llsy,py — KLU gy g, — IH2[11H211E 4,

— [ (M5 + M) | D" — [ (M5 + M) | D" dx — o = [zl
whence, on account of (3.2),

(A(ur, uz), (u1,uz)) — Tow(u1, uz)

M +M;
> [1- Y g g )] a2+ [1 -
Lpisi

M1+ M,

3 — & (My + M) | [lu2ll5p,
1/}72/52

= lmllnllfl,, = lu2llluzll,, — llorllh = ozl

Finally, through (3.3) we obtain

(A(ur,ua), (u1,u2)) = Tw(ur, uz)

z@—%&?—MW+wwwm@wmm
+@—ﬂif—mm+w>Wﬂ$mmmnmwwml
> min [1 - w — &i(My + My) — !#i!fi] (Newall3)py + 12015 p0) = Nl = llo2]l,
namely

(A(ur,u), (u1,u2)) — T (uy,uz) > a ([Jug||8p, + u2ll5 ) — B, (3.8)
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where
— &My + M) — |piléi |, B = lloulls + [lo2]]s-

Since (3.5) holds, the multifunction ® turns out coercive. Now, Theorem 2.3 can be applied,
and there exists a solution (11, U2,,) € Ey, Wy € Sk, F, (U1, U2n), Wy = (W1, W2,n), to Problem
(3.6), i.e.,

(A(uin, uan), (v1,02)) — Tw,(v1,v2) =0, (v1,02) € E;. (3.9)

From (3.8), written with (uq,uy) := (1, Uz,,), and (3.9) it follows
0>« (Hul,n| 511,171 + ||u2,71| gzz,Pz) - ﬁ Vn € N.

Thus, {(u1,,, u2n)} C Uy x Uy is bounded. By reflexivity one has (11, uz,,) — (1, u2) in Uy x
Uy, taking a sub-sequence when necessary. Consequently, (i) of Definition 3.3 holds. Through
Lemma 3.2 we next infer that { (w1 ,, wp,)} € L) (Q) x L)' (Q) turns out bounded. There-
fore, always up to sub-sequences,

A(uyp,uzp) — Ty, = T in Uy x U;. (3.10)
Given any (v1,v2) € U, Ex, Property (i2) and (3.9) yield

T(v1,v2) = Um ((A(u1,,u2n), (v1,02)) — Tw, (v1,02)) = 0.

n—oo

Because of (i3) this forces T = 0, namely condition (ii) is true. Moreover, using (3.9)—(3.10)
entails

(AU, uon), (Urn — U1, Uy — Uz)) — To, (U1 — U1, Uy — U2)

3.11)
= _<A(u1,n/ uZ,lfl)/ (u1/u2)> + Twn(ull MZ) — 0/

which shows (iii) in Definition 3.3. Summing up, the pair (u1, 1) turns out to be a generalized
solution to (1.1). m

If we strengthen (Hj3) as follows:
(H3)" For every i = 1,2 there exist p;, 0; € (1,p), m; >0, and §; € L‘Tz'/(Q) such that

*

121 121 )

1 P1
|Fi(x,y1,Y2,21,22)| <m; (Iyﬂpf + 2| i 4 |z1 |7+ IZz\”f> + 6i(x)

a.e. in Q and for all (y1,12,21,22) € R? x R?V,

then the next notion of strongly generalized solution can be given. Obviously, (Hs)" implies
(Hs), because p; < p; forces

<

Vk € {p1,p2pi pa}

K K
"
i

Definition 3.5. We say that (u1,up) € Uy x Uy is a strongly generalized solution to (1.1) if
there are two sequences (uy,,Uzy,) € Uy X Uy and w,, € Spr, (U1, ton), Wn = (W10, Won),
satisfying (i) and (ii) of Definition 3.3 and, moreover,

(iii)" limy—seo (A (U1, 2 ), (1,0 — U1, Uy — t2)) = 0.
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Theorem 3.6. Under assumptions (Hy)—-(Hy), (Hs)', (Ha), and (3.5), Problem (1.1) admits a
strongly generalized solution.

Proof. Reasoning as in the proof of Theorem 3.4 yields both (uq,up) € U; x Uy and two
sequences (Uj,, Up,) € Uy X Uy, (W10, Wan) € Sk, F, (11,0, U2,,) that comply with (i)—(ii) in Def-
inition 3.3 as well as (3.11). Thus, it remains to show (iii)’. By (H3)" and Holder’s inequality
we have

'/ wi,n(ui,n - ui)dx
(9]

21 21 P i)
< mi/Q (!m,n\"; + g i 4 |Vur,| o + |Vuz,n!”§) Uiy —Mi\dx—F/QfSi\Mi,n — u;|dx

/0! /0 /0! /0!
< g ([543 Yl 4 N2 1520 Vot = il + il i —

< Clluin — uillo, + 110illo: [win — uill;, ¥n €N,

with C > 0, because {u;,} C U; turns out bounded. The condition max{p;, 0;} < p; forces
Ui, — u; in LPi(Q)) N L%(Q), where a sub-sequence is considered if necessary; see Proposi-
tion 2.4. Hence,

lim [ wj,(uj, —u;))dx=0, i=12. (3.12)

n—oo /0O

Through (3.11)—(3.12), we arrive at

gm(A(ul,n, Upp), (U1 — U1, Uy —Up)) =0,

namely (iii)" of Definition 3.5 also holds. O

Finally, recall that (u3,uy) € Uy x Uy is called a weak solution to (1.1) when there exists
(w1, w2) € Sk, (11, u2) such that

A(ur,up) = (wy,wy) inU; x U;. (3.13)

Corollary 3.7. Let the hypotheses of Theorem 3.6 be satisfied and let min{pq, pi2} > 0. Then Problem
(1.1) possesses a weak solution.

Proof. Keep the same notation of the previous proof. Since y; > 0, gathering (p1) with
Proposition 2.2 together ensures that A; is of type (S);. Therefore, from (iii)" it follows
(U1, ) — (ug,up) in Up X Up. On the other hand, (az) in Lemma 3.2 produces, up to
subsequences, (w1, Wp,,) — (w1, w7) in U7 x U;. Now, through (ii) and Lemma 3.1 we easily
infer (3.13). O
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