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Abstract. The existence of solutions to a family of inclusion systems with fractional,
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1 Introduction

Let Ω be a bounded domain in RN , N ≥ 3, with a smooth boundary ∂Ω, let µ1, µ2 ∈ R, and
let F1, F2 : Ω × R2 × R2N → 2R be two compact convex-valued multifunctions. Consider the
differential inclusion system

(−∆)s1
p1 u1 + µ1(−∆)t1

q1 u1 ∈ F1(x, u1, u2, Dr1 u1, Dr2 u2) in Ω,

(−∆)s2
p2 u2 + µ2(−∆)t2

q2 u2 ∈ F2(x, u1, u2, Dr1 u1, Dr2 u2) in Ω,

u1 = u2 = 0 in RN\Ω,

(1.1)

where

(H1) 0 < ti < ri < si ≤ 1 and 1 < qi < pi <
N
si

for each i = 1, 2.

The symbol (−∆)s
p, with p > 1 and 0 < s < 1, denotes the fractional p-Laplacian, defined by

setting, provided u is smooth enough,

(−∆)s
pu(x) := 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy, x ∈ RN ,
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with Bε(x) := {z ∈ RN : ∥z − x∥RN < ε}. When s = 1 it becomes the classical p-Laplacian,
namely

−∆pu := −div(|∇u|p−2∇u).

Moreover, Dsu indicates the distributional Riesz fractional gradient of u in the sense of [19,20]. If
u appropriately decays and is sufficiently smooth then, setting

cN,s := −
2s Γ

(N+s+1
2

)
π

N
2 Γ
( 1−s

2

) ,

one has [20, pp. 289 and 298]

Dsu(x) := cN,s lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)
|x − y|N+s

x − y
|x − y|dy, x ∈ RN .

The right-hand sides F1 and F2 satisfy the conditions below, where, to avoid cumbersome
formulae, we shall write

y := (y1, y2), z := (z1, z2), p∗i :=
Npi

N − si pi
, i = 1, 2. (1.2)

(H2) x 7→ Fi(x, y, z) is measurable on Ω for all (y, z) ∈ R2 × R2N and (y, z) 7→ Fi(x, y, z) is
upper semi-continuous for almost every x ∈ Ω.

(H3) There exist mi > 0, δi ∈ L(p∗i )
′
(Ω), i = 1, 2, such that

sup
wi∈Fi(x,y,z)

|wi| ≤mi

(
|y1|

p∗1
(p∗i )

′
+ |y2|

p∗2
(p∗i )

′
+ |z1|

p1
(p∗i )

′
+ |z2|

p2
(p∗i )

′

)
+ δi(x)

a.e. in Ω and for all (y, z) ∈ R2 × R2N .

(H4) There are Mi, M′
i > 0, σi ∈ L1(Ω)+, i = 1, 2, fulfilling

wiyi ≤ Mi(|y1|p1 + |y2|p2) + M′
i(|z1|p1 + |z2|p2) + σi(x)

a.e. in Ω and for all (y, z) ∈ R2 × R2N , wi ∈ Fi(x, y, z).

The involved differential operators are of the type

Aµ(u) := (−∆)s
pu + µ(−∆)t

qu, u ∈ Ws,p
0 (Ω),

where µ ∈ R, 0 < t ≤ r ≤ s ≤ 1, 1 < q < p < N
s , while convection comes from the presence

of fractional gradients Dru at right-hand sides. Aµ exhibits different behaviors depending on
the values of t, s ∈ (0, 1]. Precisely, if t = 1, then t = r = s = 1. Problem (1.1) falls inside
the local framework, which has already been investigated in some recent works; see, e.g., [9]
for single-valued reactions and [4, 18] as regards multi-valued ones. Moreover, the nature of
Aµ drastically changes depending on µ. When µ > 0, the operator Aµ is basically patterned
after the (possibly) fractional (p, q)-Laplacian, which is non-homogeneous because p ̸= q. If
µ = 0 it coincides with the fractional p-Laplacian. Both cases have been widely studied, and
meaningful results are by now available in the literature. On the other hand, for µ < 0 the
operator Aµ contains the difference between the fractional p- and q-Laplacians. It is usually
called competitive and, as already pointed out in [14, 17], does not satisfy any ellipticity or
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monotonicity condition. In fact, given u0 ∈ Ws,p
0 (Ω) \ {0} and chosen u := τu0, τ > 0, the

expression
⟨Aµ(u), u⟩ = τp⟨(−∆)s

pu0, u0⟩+ µ τq⟨(−∆)t
qu0, u0⟩

turns out negative for τ small and positive when τ is large, because

u0 ̸= 0 =⇒ ⟨(−∆)s
pu0, u0⟩ > 0, ⟨(−∆)t

qu0, u0⟩ > 0;

cf. Section 2. Hence, nonlinear regularity theory, comparison principles, as well as existence
theorems for pseudo-monotone maps cannot be employed. Moreover, since the reactions
are multi-valued and contain the fractional gradient of the solutions, also variational tech-
niques are no longer directly usable. To overcome these difficulties we first exploit Galerkin’s
method, thus working with a sequence {En} of finite dimensional functional spaces. For each
integer n ≥ 1, an approximate solution (u1,n, u2,n) ∈ En to (1.1) is obtained via a suitable ver-
sion (see Proposition 2.3) of a classical surjectivity result. Next, letting n → +∞ yields a
solution in a generalized sense (cf. Definitions 3.3 and 3.5), which turns out weak sense once
min{µ1, µ2} ≥ 0.

Fractional gradients were first introduced more than sixty years ago by Horváth [12], but
they garnered significant interest especially after the works of Shieh and Spector [5,19,20]. The
operator Dsu appears as a natural non-local version of ∇u, to which Dsu formally converges
when s → 1−. It possesses favorable geometric and physical properties [2, 21], like invariance
under translations or rotations, homogeneity of order s, continuity, etc.

Section 2 contains some auxiliary results and the functional framework needed for han-
dling both fractional gradients and the fractional p-Laplacian. The existence of (generalized,
strong generalized, or weak) solutions to (1.1) is established in Section 3.

2 Preliminaries

Let X, Y be two nonempty sets. A multifunction Φ : X → 2Y is a map from X into the family of
all nonempty subsets of Y. A function φ : X → Y is called a selection of Φ when φ(x) ∈ Φ(x)
for every x ∈ X. Given B ⊆ Y, put Φ−(B) := {x ∈ X | Φ(x) ∩ B ̸= ∅}. If X, Y are topological
spaces and Φ−(B) turns out closed in X for all closed sets B ⊆ Y then we say that Φ is upper
semi-continuous. Suppose (X,F ) is a measurable space and Y is a topological space. The
multifunction Φ is called measurable when Φ−(B) ∈ F for every open set B ⊆ Y. The result
below, stated in [1, p. 215], will be repeatedly useful.

Proposition 2.1. Let F : Ω × Rh → 2R be a closed-valued multifunction such that:

• x 7→ F(x, ξ) is measurable for all ξ ∈ Rh;

• ξ 7→ F(x, ξ) is upper semi-continuous for almost every x ∈ Ω.

Let w : Ω → Rh be measurable. Then the multifunction x 7→ F(x, w(x)) admits a measurable
selection.

Let (X, ∥ · ∥) be a real normed space with topological dual X∗ and duality brackets ⟨·, ·⟩.
Given a nonempty set A ⊆ X, define |A| := supx∈A ∥x∥. We say that φ : X → X∗ is monotone
when

⟨φ(x)− φ(z), x − z⟩ ≥ 0 ∀ x, z ∈ X,
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and of type (S)+ provided

xn ⇀ x in X, lim sup
n→+∞

⟨φ(xn), xn − x⟩ ≤ 0 =⇒ xn → x in X.

The next elementary result [8, Proposition 2.1] will ensure that condition (S)+ holds true for
the differential operators we deal with.

Proposition 2.2. Let φ : X → X∗ be of type (S)+ and let ψ : X → X∗ be monotone. Then φ + ψ

satisfies condition (S)+.

A multifunction Φ : X → 2X∗
is called coercive provided

lim
∥x∥→∞

inf{⟨x∗, x⟩ | x ∈ X, x∗ ∈ Φ(x)}
∥x∥ = +∞ .

The following result is a direct consequence of [11, Proposition 3.2.33].

Theorem 2.3. Let X be a finite-dimensional normed space and let Φ : X → 2X∗
be a convex compact-

valued multifunction. Suppose Φ is upper semi-continuous and coercive. Then there exists x̂ ∈ X
satisfying 0 ∈ Φ(x̂).

Hereafter, if X and Y are two topological spaces, the symbol X ↪→ Y means that X contin-
uously embeds in Y. Given p > 1, put p′ := p

p−1 , denote by ∥ · ∥p the usual norm of Lp(Ω),

and indicate with ∥ · ∥1,p the norm on W1,p
0 (Ω) arising from Poincaré’s inequality, namely

∥u∥1,p := ∥∇u∥p , u ∈ W1,p
0 (Ω).

If u ∈ W1,p
0 (Ω), we set u(x) = 0 on RN \ Ω; cf. [6, Section 5]. Fix s ∈ (0, 1). The Gagliardo

seminorm of a measurable function u : RN → R is

[u]s,p :=
(∫

RN×RN

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p

,

while Ws,p(RN) denotes the fractional Sobolev space

Ws,p(RN) :=
{

u ∈ Lp(RN) : [u]s,p < ∞
}

,

endowed with the norm

∥u∥Ws,p(RN) :=
(
∥u∥p

Lp(RN)
+ [u]ps,p

) 1
p

.

As usual, on the space

Ws,p
0 (Ω) := {u ∈ Ws,p(RN) : u = 0 a.e. in RN \ Ω}

we will consider the equivalent norm

∥u∥s,p := [u]s,p, u ∈ Ws,p
0 (Ω).

Let W−s,p′(Ω) := (Ws,p
0 (Ω))∗ and let p∗s be the fractional Sobolev critical exponent, i.e., p∗s =

Np
N−sp when sp < N, p∗s = +∞ otherwise. Thanks to Propositions 2.1–2.2, Theorem 6.7, and
Corollary 7.2 of [6] one has
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Proposition 2.4. If 1 ≤ p < +∞ then:

(a) 0 < s′ ≤ s′′ ≤ 1 =⇒ Ws′′,p
0 (Ω) ↪→ Ws′,p

0 (Ω).

(b) sp < N =⇒ Ws,p
0 (Ω) ↪→ Lr(Ω) for all r ∈ [1, p∗s ].

(c) The embedding in (b) is also compact once r ∈ [1, p∗s ).

However, contrary to the non-fractional case, we know [15] that

1 ≤ q < p ≤ +∞ ≠⇒ Ws,p
0 (Ω) ⊆ Ws,q

0 (Ω).

Define, for every u, v ∈ Ws,p
0 (Ω),

⟨(−∆)s
pu, v⟩ :=

∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+ps dxdy .

The operator (−∆)s
p is called (negative) s-fractional p-Laplacian. It possesses the following

properties.

(p1) (−∆)s
p : Ws,p

0 (Ω) → W−s,p′(Ω) turns out monotone, continuous, and of type (S)+; vide,
e.g., [7, Lemma 2.1].

(p2) One has
∥(−∆)s

pu∥W−s,p′ (Ω) ≤ ∥u∥p−1
s,p ∀ u ∈ Ws,p

0 (Ω).

Hence, (−∆)s
p maps bounded sets into bounded sets.

(p3) The first eigenvalue λ1,p,s of (−∆)s
p is given by (cf. [13])

λ1,p,s = inf
u∈Ws,p

0 (Ω),u ̸=0

∥u∥p
s,p

∥u∥p
p

.

To deal with distributional fractional gradients, we first introduce the Bessel potential spaces
Lα,p(RN), where α > 0. Set, for every x ∈ RN ,

gα(x) :=
1

(4π)
α
2 Γ
(

α
2

) ∫ +∞

0
e
−π|x|2

δ e
−δ
4π δ

α−N
2

dδ

δ
.

On account of [16, Section 7.1] one can assert that:

1) gα ∈ L1(RN) and ∥gα∥L1(RN) = 1.

2) gα enjoys the semi-group property, i.e., gα ∗ gβ = gα+β for any α, β > 0, with ∗ being the
convolution operator.

We consider
Lα,p(RN) := {u : u = gα ∗ ũ for some ũ ∈ Lp(RN)}.

If u = gα ∗ ũ = gα ∗ u, with ũ, u ∈ Lp(RN), then a standard argument ensures that ũ = u
because gα > 0. So, we can define

∥u∥Lα,p(RN) = ∥ũ∥Lp(RN) whenever u = gα ∗ ũ.

Using 1) and 2) easily entails

0 < α < β =⇒ Lβ,p(RN) ⊆ Lα,p(RN) ⊆ Lp(RN).

Moreover, by [19, Theorem 2.2], one has
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Theorem 2.5. If 1 < p < +∞ and 0 < ε < α then

Lα+ε,p(RN) ↪→ Wα,p(RN) ↪→ Lα−ε,p(RN).

Finally, given s ∈ (0, 1), set

Ls,p
0 (Ω) := {u ∈ Ls,p(RN) : u = 0 a.e. in RN \ Ω}

and thanks to Theorem 2.5 we infer

Ls+ε,p
0 (Ω) ↪→ Ws,p

0 (Ω) ↪→ Ls−ε,p
0 (Ω) ∀ ε ∈ (0, s). (2.1)

The next basic notion is taken from [19]. For 0 < α < N, let

γ(N, α) :=
Γ
(N−α

2

)
π

N
2 2αΓ

(
α
2

) , Iα(x) :=
γ(N, α)

|x|N−α
, x ∈ RN \ {0}.

If u ∈ Lp(RN) and I1−s ∗ u makes sense then the vector

Dsu :=
(

∂

∂x1
(I1−s ∗ u), . . . ,

∂

∂xN
(I1−s ∗ u)

)
,

where partial derivatives are understood in a distributional sense, is called distributional Riesz
s-fractional gradient of u. Theorem 1.2 in [19] ensures that

Dsu = I1−s ∗ Du ∀ u ∈ C∞
c (RN).

Further, Dsu looks like the natural extension of ∇u to the fractional framework, Indeed, it
exhibits analogous properties and, roughly speaking, Dsu → ∇u when s → 1−; see, e.g.,
[10, Section 2].

According to [19, Definition 1.5], Xs,p(RN) denotes the completion of C∞
c (RN) with respect

to the norm

∥u∥Xs,p(RN) :=
(
∥u∥p

Lp(RN)
+ ∥Dsu∥p

Lp(RN)

) 1
p

.

Since, by [19, Theorem 1.7], Xs,p(RN) = Ls,p(RN) we can deduce many facts about Xs,p(RN)

from the existing literature on Ls,p(RN). Moreover, if

Xs,p
0 (Ω) := {u ∈ Xs,p(RN) : u = 0 a.e. in RN \ Ω},

then Xs,p
0 (Ω) = Ls,p

0 (Ω).

3 Existence results

To shorten notation, for i = 1, 2, we set Ui := Wsi ,pi
0 (Ω) and denote by ⟨·, ·⟩i the duality

brackets of Ui. Lemma 2.6 in [3] guarantees that

Ui ↪→ Wti ,qi
0 (Ω). (3.1)

Hence, the differential operator u 7→ (−∆)si
pi u + µi(−∆)ti

qi u turns out well-defined on Ui. Let
Ai : Ui → U∗

i be given by

⟨Ai(u), v⟩i :=
∫

RN×RN

|u(x)− u(y)|pi−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+pisi

dx dy

+ µi

∫
RN×RN

|u(x)− u(y)|qi−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+qiti

dx dy

for every u, v ∈ Ui. Thanks to properties (p1)–(p2) stated in Section 2, Ai is bounded and
continuous. Consequently,
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Lemma 3.1. Under (H1), the operator A : U1 × U2 → U∗
1 × U∗

2 defined by

A(u1, u2) := (A1(u1), A2(u2)) ∀ (u1, u2) ∈ U1 × U2

maps bounded sets into bounded sets and is continuous.

Next, put, provided (u1, u2) ∈ U1 × U2,

SF1,F2(u1, u2) := {(w1, w2) ∈ L(p∗1)
′
(Ω)× L(p∗2)

′
(Ω) :

wi(·) ∈ Fi(·, u1, u2, Dr1 u1, Dr2 u2) a.e. in Ω, i = 1, 2},

with p∗i as in (1.2).

Lemma 3.2. Let (H1)–(H3) be satisfied. Then:

(a1) SF1,F2(u1, u2) turns out nonempty, convex, closed for all (u1, u2) ∈ U1 × U2.

(a2) The multifunction SF1,F2 : U1 × U2 → 2L(p∗1 )
′
(Ω)×L(p∗2 )

′
(Ω) is bounded and strongly-weakly upper

semi-continuous.

Proof. Since ri < si, if ε ∈ (0, si − ri), combining Proposition 2.4 with (2.1) yields

Ui ↪→ Wri+ε,pi
0 (Ω) ↪→ Lri ,pi

0 (Ω).

Thus,
(u1, u2) ∈ U1 × U2 =⇒ (Dr1 u1, Dr2 u2) ∈ Lp1(Ω)× Lp2(Ω).

Now, pick (u1, u2)∈U1 ×U2. Via (H2) and Proposition 2.1 we see that Fi(·, u1, u2, Dr1 u1, Dr2 u2)

admits a measurable selection wi : Ω → R. By (H3) one has

∥w1∥
(p∗1)

′

(p∗1)
′ ≤

∫
Ω

[
m1

(
|u1|p

∗
1−1 + |u2|

p∗2
(p∗1 )

′
+ |Dr1 u1|

p1
(p∗1 )

′
+ |Dr2 u2|

p2
(p∗1 )

′
)
+ δ1

](p∗1)
′

dx

≤ c
(
∥δ1∥

(p∗1)
′

(p∗1)
′ + ∥u1∥

p∗1
p∗1
+ ∥u2∥

p∗2
p∗2
+ ∥Dr1 u1∥

p1
p1 + ∥Dr2 u2∥p2

p2

)
for some c > 0, whence ∥w1∥(p∗1)

′ < ∞. Similarly, ∥w2∥(p∗2)′
< ∞. So, SF1,F2(u1, u2) ̸= ∅. This

proves (a1), because convexity and closedness follow at once from the analogous properties
of Fi. Let us next verify (a2). The above inequalities also guarantee that SF1,F2 maps bounded
sets into bounded sets. If B is a nonempty weakly closed subset of L(p∗1)

′
(Ω)× L(p∗2)

′
(Ω) while

{(u1,n, u2,n)} ⊆ S−
F1,F2

(B) converges to (u1, u2) in U1 × U2, then {(u1,n, u2,n)} ⊆ U1 × U2 turns
out bounded. The same holds true concerning the set⋃

n∈N

SF1,F2(u1,n, u2,n) ⊆ L(p∗1)
′
(Ω)× L(p∗2)

′
(Ω).

Thus, up to sub-sequences, there exists (w1,n, w2,n) ∈ SF1,F2(u1,n, u2,n) ∩ B, n ∈ N, such that

(w1,n, w2,n) ⇀ (w1, w2) in L(p∗1)
′
(Ω)× L(p∗2)

′
(Ω).

One evidently has (w1, w2) ∈ B, because B is weakly closed. Mazur’s principle provides a
sequence {(w̃1,n, w̃2,n)} of convex combinations of {(w1,n, w2,n)} satisfying

(w̃1,n, w̃2,n) → (w1, w2) in L(p∗1)
′
(Ω)× L(p∗2)

′
(Ω).

By (H2), after passing to a sub-sequence which converges a.e., this easily entails

wi(x) ∈ Fi(x, u1(x), u2(x), Dr1 u1(x), Dr2 u2(x)) for almost every x ∈ Ω, i = 1, 2.

Consequently, (w1, w2) ∈ SF1,F2(u1, u2) ∩ B, i.e., (u1, u2) ∈ S−
F1,F2

(B), as desired.
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Our existence result can be established after introducing some suitable constants and the
notion of generalized solution to (1.1). Since ri < si, i = 1, 2, embeddings (2.1) produce

∥Dr1 u1∥
p1
p1 ≤ ĉ1∥u1∥

p1
s1,p1 ∀ u1 ∈ U1, ∥Dr2 u2∥p2

p2 ≤ ĉ2∥u2∥p2
s2,p2 ∀ u2 ∈ U2, (3.2)

with appropriate ĉi > 0. Via (3.1) and its analogue for couples (s2, p2)–(t2, q2) we next have

∥u1∥
q1
t1,q1

≤ c̃1∥u1∥
p1
s1,p1 ∀ u1 ∈ U1, ∥u2∥q2

t2,q2
≤ c̃2∥u2∥p2

s2,p2 ∀ u2 ∈ U2, (3.3)

where c̃i > 0. Finally, given (T1, T2) ∈ U∗
1 × U∗

2 , set

⟨(T1, T2), (u1, u2)⟩ := ⟨T1, u1⟩1 + ⟨T2, u2⟩2, (u1, u2) ∈ U1 × U2.

Observe also that, by (b) in Proposition 2.4,

L(p∗1)
′
(Ω)× L(p∗2)

′
(Ω) ↪→ U∗

1 × U∗
2 .

Hence, every w ∈ L(p∗1)
′
(Ω) × L(p∗2)

′
(Ω), w = (w1, w2), defines a functional Tw ∈ U∗

1 × U∗
2

through

Tw(u1, u2) :=
∫

Ω
(u1w1 + u2w2)dx ∀ (u1, u2) ∈ U1 × U2. (3.4)

Definition 3.3. We say that (u1, u2) ∈ U1 × U2 is a generalized solution of (1.1) if there exist
two sequences (u1,n, u2,n) ∈ U1 × U2 and wn ∈ SF1,F2(u1,n, u2,n), wn = (w1,n, w2,n), fulfilling:

(i) (u1,n, u2,n) ⇀ (u1, u2) in U1 × U2;

(ii) A(u1,n, u2,n)− Twn ⇀ 0 in U∗
1 × U∗

2 ;

(iii) ⟨A(u1,n, u2,n), (u1,n − u1, u2,n − u2)⟩ − Twn(u1,n − u1, u2,n − u2) → 0.

Theorem 3.4. Suppose (H1)–(H4) are satisfied and, moreover,

M1 + M2

λ1,pi ,si

+ ĉi(M′
1 + M′

2) + c̃i|µi| < 1, i = 1, 2. (3.5)

Then Problem (1.1) admits a generalized solution.

Proof. The space U1 × U2 is separable, therefore it possesses a Galerkin’s basis, namely a
sequence {En} of linear sub-spaces of U1 × U2 such that:

(i1) dim(En) < ∞ ∀ n ∈ N;

(i2) En ⊆ En+1 ∀ n ∈ N;

(i3) ∪∞
n=1En = U1 × U2.

Pick n ∈ N. Consider the following problem: Find (u1, u2) ∈ En, (w1, w2) ∈ SF1,F2(u1, u2)

fulfilling
⟨A(u1, u2), (v1, v2)⟩ − Tw(v1, v2) = 0 ∀ (v1, v2) ∈ E∗

n, (3.6)

with Tw as in (3.4). Thanks to Lemma 3.2 the multifunction Φ : En → 2E∗
n defined by

Φ(u1, u2) := {(A(u1, u2)− Tw)⌊En : w ∈ SF1,F2(u1, u2), w = (w1, w2)}, (u1, u2) ∈ En,
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takes nonempty, convex, closed values and maps bounded sets into bounded sets. We claim
that Φ is upper semi-continuous. In fact, let B ⊆ E∗

n closed. If {(u1,k, u2,k)} ⊆ Φ−(B) and
(u1,k, u2,k) → (u1, u2) in En then there exists a sequence wk ∈ SF1,F2(u1,k, u2,k), wk = (w1,k, w2,k),
such that

(A(u1,k, u2,k)− Twk)⌊En∈ B ∀ k ∈ N. (3.7)

The same argument used in the proof of Lemma 3.2 gives w ∈ SF1,F2(u1, u2), w = (w1, w2),
satisfying (w1,k, w2,k) ⇀ (w1, w2) in L(p∗1)

′
(Ω) × L(p∗2)

′
(Ω). Since dim(En) < ∞, one has

Twk⌊En→ Tw⌊En in E∗
n. Thus, from Lemma 3.1 and (3.7) it follows

(A(u1, u2)− Tw)⌊En∈ B, i.e., (u1, u2) ∈ Φ−(B).

This shows that Φ−(B) is closed. As B was arbitrary, the multifunction Φ turns out upper
semi-continuous. Next, if (u1, u2) ∈ U1 × U2 and w ∈ SF1,F2(u1, u2) then, thanks to (H4), we
have

⟨A(u1, u2), (u1, u2)⟩ − Tw(u1, u2) ≥ ∥u1∥
p1
s1,p1 + ∥u2∥p2

s2,p2 − |µ1|∥u1∥
q1
t1,q1

− |µ2|∥u2∥q2
t2,q2

−
∫

Ω

[
M1(|u1|p1 + |u2|p2) + M′

1(|Dr1 u1|p1 + |Dr2 u2|p2) + σ1
]

dx

−
∫

Ω

[
M2(|u1|p1 + |u2|p2) + M′

2(|Dr1 u1|p1 + |Dr2 u2|p2) + σ2
]

dx.

Exploiting (p3) yields

⟨A(u1, u2), (u1, u2)⟩ − Tw(u1, u2)

≥
(

1 − M1 + M2

λ1,p1,s1

)
∥u1∥

p1
s1,p1 +

(
1 − M1 + M2

λ1,p2,s2

)
∥u2∥p2

s2,p2 − |µ1|∥u1∥
q1
t1,q1

− |µ2|∥u2∥q2
t2,q2

−
∫

Ω
(M′

1 + M′
2)|Dr1 u1|p1dx −

∫
Ω
(M′

1 + M′
2)|Dr2 u2|p2dx − ∥σ1∥1 − ∥σ2∥1,

whence, on account of (3.2),

⟨A(u1, u2), (u1, u2)⟩ − Tw(u1, u2)

≥
[

1 − M1 + M2

λ1,p1,s1

− ĉ1(M′
1 + M′

2)

]
∥u1∥

p1
s1,p1 +

[
1 − M1 + M2

λ1,p2,s2

− ĉ2(M′
1 + M′

2)

]
∥u2∥p2

s2,p2

− |µ1|∥u1∥
q1
t1,q1

− |µ2|∥u2∥q2
t2,q2

− ∥σ1∥1 − ∥σ2∥1.

Finally, through (3.3) we obtain

⟨A(u1, u2), (u1, u2)⟩ − Tw(u1, u2)

≥
[

1 − M1 + M2

λ1,p1,s1

− ĉ1(M′
1 + M′

2)− |µ1|c̃1

]
∥u1∥

p1
s1,p1

+

[
1 − M1 + M2

λ1,p2,s2

− ĉ2(M′
1 + M′

2)− |µ2|c̃2

]
∥u2∥p2

s2,p2 − ∥σ1∥1 − ∥σ2∥1

≥ min
i=1,2

[
1 − M1 + M2

λ1,pi ,si

− ĉi(M′
1 + M′

2)− |µi|c̃i

] (
∥u1∥

p1
s1,p1 + ∥u2∥p2

s2,p2

)
− ∥σ1∥1 − ∥σ2∥1,

namely
⟨A(u1, u2), (u1, u2)⟩ − Tw(u1, u2) ≥ α

(
∥u1∥

p1
s1,p1 + ∥u2∥p2

s2,p2

)
− β, (3.8)
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where

α := min
i=1,2

[
1 − M1 + M2

λ1,pi ,si

− ĉi(M′
1 + M′

2)− |µi|c̃i

]
, β := ∥σ1∥1 + ∥σ2∥1.

Since (3.5) holds, the multifunction Φ turns out coercive. Now, Theorem 2.3 can be applied,
and there exists a solution (u1,n, u2,n) ∈ En, wn ∈ SF1,F2(u1,n, u2,n), wn = (w1,n, w2,n), to Problem
(3.6), i.e.,

⟨A(u1,n, u2,n), (v1, v2)⟩ − Twn(v1, v2) = 0, (v1, v2) ∈ E∗
n. (3.9)

From (3.8), written with (u1, u2) := (u1,n, u2,n), and (3.9) it follows

0 ≥ α
(
∥u1,n∥

p1
s1,p1 + ∥u2,n∥p2

s2,p2

)
− β ∀ n ∈ N.

Thus, {(u1,n, u2,n)} ⊆ U1 ×U2 is bounded. By reflexivity one has (u1,n, u2,n) ⇀ (u1, u2) in U1 ×
U2, taking a sub-sequence when necessary. Consequently, (i) of Definition 3.3 holds. Through
Lemma 3.2 we next infer that {(w1,n, w2,n)} ⊆ L(p∗1)

′
(Ω)× L(p∗3)

′
(Ω) turns out bounded. There-

fore, always up to sub-sequences,

A(u1,n, u2,n)− Twn ⇀ T in U∗
1 × U∗

2 . (3.10)

Given any (v1, v2) ∈ ∪∞
k=1Ek, Property (i2) and (3.9) yield

T(v1, v2) = lim
n→∞

(⟨A(u1,n, u2,n), (v1, v2)⟩ − Twn(v1, v2)) = 0.

Because of (i3) this forces T = 0, namely condition (ii) is true. Moreover, using (3.9)–(3.10)
entails

⟨A(u1,n, u2,n), (u1,n − u1, u2,n − u2)⟩ − Twn(u1,n − u1, u2,n − u2)

= −⟨A(u1,n, u2,n), (u1, u2)⟩+ Twn(u1, u2) → 0,
(3.11)

which shows (iii) in Definition 3.3. Summing up, the pair (u1, u2) turns out to be a generalized
solution to (1.1).

If we strengthen (H3) as follows:

(H3)′ For every i = 1, 2 there exist ρi, σi ∈ (1, p∗i ), mi > 0, and δi ∈ Lσ′
i (Ω) such that

|Fi(x, y1, y2, z1, z2)| ≤mi

(
|y1|

p∗1
ρ′i + |y2|

p∗2
ρ′i + |z1|

p1
ρ′i + |z2|

p2
ρ′i

)
+ δi(x)

a.e. in Ω and for all (y1, y2, z1, z2) ∈ R2 × R2N ,

then the next notion of strongly generalized solution can be given. Obviously, (H3)′ implies
(H3), because ρi < p∗i forces

κ

ρ′i
<

κ

(p∗i )
′ ∀ κ ∈ {p1, p2, p∗1 , p∗2}.

Definition 3.5. We say that (u1, u2) ∈ U1 × U2 is a strongly generalized solution to (1.1) if
there are two sequences (u1,n, u2,n) ∈ U1 × U2 and wn ∈ SF1,F2(u1,n, u2,n), wn = (w1,n, w2,n),
satisfying (i) and (ii) of Definition 3.3 and, moreover,

(iii)′ limn→∞⟨A(u1,n, u2,n), (u1,n − u1, u2,n − u2)⟩ = 0.
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Theorem 3.6. Under assumptions (H1)–(H2), (H3)′, (H4), and (3.5), Problem (1.1) admits a
strongly generalized solution.

Proof. Reasoning as in the proof of Theorem 3.4 yields both (u1, u2) ∈ U1 × U2 and two
sequences (u1,n, u2,n) ∈ U1 ×U2, (w1,n, w2,n) ∈ SF1,F2(u1,n, u2,n) that comply with (i)–(ii) in Def-
inition 3.3 as well as (3.11). Thus, it remains to show (iii)′. By (H3)′ and Hölder’s inequality
we have∣∣∣∣∫Ω

wi,n(ui,n − ui)dx
∣∣∣∣

≤ mi

∫
Ω

(
|u1,n|

p∗1
ρ′i + |u2,n|

p∗2
ρ′i + |∇u1,n|

p1
ρ′i + |∇u2,n|

p2
ρ′i

)
|ui,n − ui|dx +

∫
Ω

δi|ui,n − ui|dx

≤ mi

(
∥u1,n∥

p∗1 /ρ′i
p∗1

+ ∥u2,n∥
p∗2 /ρ′i
p∗2

+ ∥u1,n∥
p1/ρ′i
1,p1

+ ∥u2,n∥
p2/ρ′i
1,p2

)
∥ui,n − ui∥ρi + ∥δi∥σ′

i
∥ui.n − ui∥σi

≤ C∥ui,n − ui∥ρi + ∥δi∥σ′
i
∥ui,n − ui∥σi ∀ n ∈ N,

with C > 0, because {ui,n} ⊆ Ui turns out bounded. The condition max{ρi, σi} < p∗i forces
ui,n → ui in Lρi(Ω) ∩ Lσi(Ω), where a sub-sequence is considered if necessary; see Proposi-
tion 2.4. Hence,

lim
n→∞

∫
Ω

wi,n(ui,n − ui)dx = 0, i = 1, 2. (3.12)

Through (3.11)–(3.12), we arrive at

lim
n→∞

⟨A(u1,n, u2,n), (u1,n − u1, u2,n − u2)⟩ = 0,

namely (iii)′ of Definition 3.5 also holds.

Finally, recall that (u1, u2) ∈ U1 × U2 is called a weak solution to (1.1) when there exists
(w1, w2) ∈ SF1,F2(u1, u2) such that

A(u1, u2) = (w1, w2) in U∗
1 × U∗

2 . (3.13)

Corollary 3.7. Let the hypotheses of Theorem 3.6 be satisfied and let min{µ1, µ2} ≥ 0. Then Problem
(1.1) possesses a weak solution.

Proof. Keep the same notation of the previous proof. Since µi ≥ 0, gathering (p1) with
Proposition 2.2 together ensures that Ai is of type (S)+. Therefore, from (iii)′ it follows
(u1,n, u2,n) → (u1, u2) in U1 × U2. On the other hand, (a2) in Lemma 3.2 produces, up to
subsequences, (w1,n, w2,n) ⇀ (w1, w2) in U∗

1 ×U∗
2 . Now, through (ii) and Lemma 3.1 we easily

infer (3.13).
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