

Electronic Journal of Qualitative Theory of Differential Equations

2025, No. 48, 1–10; https://doi.org/10.14232/ejqtde.2025.1.48

www.math.u-szeged.hu/ejqtde/

Unilateral global bifurcation for an overdetermined problem in $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$

D Jia Xu^{⋈1, 2}

¹College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R. China ²College of Physical Education, Northwest Normal University, Lanzhou, 730070, P.R. China

> Received 30 May 2025, appeared 8 September 2025 Communicated by Fečkan Michal

Abstract. We establish the Dancer-type unilateral global bifurcation theorem for nonlinear operator equation of $u+f(\lambda,u)=F(\lambda,u)=0$, where X is a real Banach space and $f:\mathbb{R}\times X\to X$ is completely continuous with $f(\lambda,0)=0$ and C^1 with respect to u at u=0. We shall show that, if $\dim \ker(D_uF(\mu,0))=1$ for some $\mu\in\mathbb{R}$ and $D_uF(\lambda,0)$ has an odd crossing number at $\lambda=\mu$, there exist two branches \mathscr{C}^{ν}_{μ} ($\nu\in\{+,-\}$) emanating from $(\mu,0)$, such that either \mathscr{C}^+_{μ} and \mathscr{C}^-_{μ} are both unbounded or $\mathscr{C}^+_{\mu}\cap\mathscr{C}^-_{\mu}\neq\{(\mu,0)\}$. As one of applications, we obtain the unilateral global bifurcation result for an overdetermined problem in $\mathbb{S}^N\times\mathbb{R}$ and $\mathbb{H}^N\times\mathbb{R}$.

Keywords: unilateral global bifurcation, odd crossing number, completely continuous, overdetermined problem.

2020 Mathematics Subject Classification: 35B32, 35N05, 47A75, 47H14.

1 Introduction

Let *X* be real Banach space. We investigate the structure of the set of nontrivial solutions for the following nonlinear parameter-dependent problem

$$u + f(\lambda, u) = F(\lambda, u) = 0, \ (\lambda, u) \in \mathbb{R} \times X, \tag{1.1}$$

where $f: \mathbb{R} \times X \to X$ is completely continuous with $f(\lambda, 0) = 0$ for $\lambda \in \mathbb{R}$ and C^1 with respect to u at u = 0.

For $f(\lambda, u) = -\lambda Lu - H(\lambda, u)$ where $L: X \to X$ is a linear compact operator and $H: \mathbb{R} \times X \to X$ is completely continuous with $H = o(\|u\|)$ near u = 0 uniformly on bounded λ sets, Krasnosel'skii [12] has shown that all characteristic values of L which are of odd multiplicity are bifurcation points. Rabinowitz [20] has extended this result by showing that bifurcation has global consequences.

Rabinowitz [20] also established two unilateral global bifurcation theorems from simple eigenvalues, i.e., Theorem 1.27 and Theorem 1.40 of [20]. As pointed out by Dancer [6], the

[™]Corresponding author. Email: xujia@nwnu.edu.cn

proofs of these two theorems both contain gaps. Dancer [6,7] constructed a counterexample to Theorem 1.40 of [20]. López-Gómez [15] also pointed out that the proof of Theorem 1.27 is insufficient. Moreover, Dancer [6] established the so-called Dancer-type unilateral global bifurcation theorem from simple eigenvalues. Concretely, if μ^{-1} is an eigenvalue of L of algebraic multiplicity 1, then there exist two sub-continua, \mathscr{C}^+_μ and \mathscr{C}^-_μ , of \mathscr{C}_μ bifurcating from $(\mu,0)$, such that either \mathscr{C}^+_μ and \mathscr{C}^-_μ are both unbounded or $\mathscr{C}^+_\mu \cap \mathscr{C}^-_\mu \neq \{(\mu,0)\}$. Further, Dancer [7] also proved that the above beautiful unilateral global bifurcation result is also valid for the case of μ^{-1} being an eigenvalue of L with geometric multiplicity 1 and odd algebraic multiplicity. López-Gómez [15] also established a unilateral global bifurcation theorem. López-Gómez's result indicates that \mathscr{C}^ν_μ with each $\nu \in \{+,-\}$ either satisfies Rabinowitz-type global alternative or contains a nontrivial element of complement of kernel space.

Following the Rabinowitz's reflection argument in the proof of [20, Theorem 1.27], Kielhofer [11, Theorem II.5.9] established a unilateral global bifurcation theorem via the conception of odd crossing number. To present the Kielhofer's unilateral global bifurcation theorem, we recall the conception of odd crossing number. Let 0 be an isolated eigenvalue of algebraic multiplicity m of $D_uF(\mu,0)$ for some $\mu \in \mathbb{R}$. It is well known that the number m is an invariant, i.e., the dimension of eigenspace is invariant under perturbation near μ . The set of all perturbed eigenvalues near 0 is called 0-group. Further, define $\sigma(\lambda) = 1$ if there are no negative real eigenvalues in the 0-group of $D_uF(\lambda,0)$ and

$$\sigma(\lambda) = (-1)^{m_1 + m_2 + \dots + m_k}$$

if $\mu_1, \mu_2, \ldots, \mu_k$ are all negative real eigenvalues in the 0-group having algebraic multiplicities m_1, m_2, \ldots, m_k , respectively. From now on, for simplicity, $\sigma(\lambda)$ is called 0-*group index* of λ . If $D_u F(\lambda, 0)$ is regular for $\lambda \in (\mu - \delta, \mu) \cup (\mu, \mu + \delta)$ and if $\sigma(\lambda)$ changes at $\lambda = \mu$, then $D_u F(\lambda, 0)$ has an *odd crossing number* at $\lambda = \mu$.

If dim Ker $(D_uF(\mu,0))=1$ and $D_uF(\lambda,0)$ has an odd crossing number at $\lambda=\mu$, Kielhofer [11, Theorem II.5.9] proved that there exist two sub-continua, \mathcal{C}_{μ}^+ and \mathcal{C}_{μ}^- , of \mathcal{C}_{μ} bifurcating from $(\mu,0)$, such that \mathcal{C}_{μ}^{ν} with each $\nu\in\{+,-\}$ either satisfies Rabinowitz-type global alternative or contains a pair of points (λ,u) and $(\lambda,-u)$ with $u\neq 0$. If $f(\lambda,u)=\lambda f(u)$ and 0 is the simple eigenvalue of $D_uF(\mu,0)$, Kielhofer's unilateral global bifurcation theorem is just the Rabinowitz's unilateral global bifurcation theorem of [20, Theorem 1.27]. So, Kielhofer's result extends Rabinowitz's unilateral global bifurcation theorem of [20, Theorem 1.27]. As the mentioned above, since the proof of Theorem 1.27 of [20] is insufficient, Kielhofer's argument is also insufficient because he also adopted the Rabinowitz's reflection argument.

The first aim of this work is to establish the Dancer-type unilateral global bifurcation theorem under the assumptions of Kielhofer, which fills the above gap by providing a corrected unilateral global bifurcation theorem. Let $\mathcal S$ be the closure of the set of nontrivial solutions of equation (1.1). The following Dancer-type unilateral global bifurcation theorem is our first main result.

Theorem 1.1. Assume that dim Ker $(D_uF(\mu,0))=1$ for some $\mu \in \mathbb{R}$ and $D_uF(\lambda,0)$ has an odd crossing number at $\lambda=\mu$. Then \mathcal{S} possesses two maximal sub-continua \mathscr{C}^{\pm}_{μ} emanating from $(\mu,0)$, such that either \mathscr{C}^+_{μ} and \mathscr{C}^-_{μ} are both unbounded or $\mathscr{C}^+_{\mu} \cap \mathscr{C}^-_{\mu} \neq \{(\mu,0)\}$.

If $f(\lambda, u)$ has the form of $\lambda f(u)$ and 0 is the simple eigenvalue of $D_u F(\mu, 0)$, the conclusion of Theorem 1.1 would degenerate to the famous Dancer-type unilateral global bifurcation theorem from simple eigenvalues [6]. While, $f(\lambda, u)$ has the form of $\lambda f(u)$ and 0 is odd algebraic multiplicity eigenvalue of $D_u F(\mu, 0)$, Theorem 1.1 degenerates to the Dancer-type

unilateral global bifurcation theorem from odd algebraic multiplicity eigenvalues [7]. As pointed out by Dancer [7], although the conditions are the same, Dancer-type unilateral global bifurcation conclusion is better than López-Gómez's [15, Theorem 6.4.3].

As one of applications for our unilateral global bifurcation theorem, we next investigate the unilateral global bifurcation phenomenon for an overdetermined elliptic problem in $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$, where \mathbb{S}^N is the N-dimensional sphere, and \mathbb{H}^N is the N-dimensional hyperbolic space. We consider the following overdetermined elliptic problem

$$\begin{cases} \Delta_g u + \lambda u = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ g(\nabla u, \nu) = \text{const.} & \text{on } \partial \Omega, \end{cases}$$
 (1.2)

where $\Omega \subset \mathbb{M}^N \times \mathbb{R}$ with $\mathbb{M}^N = \mathbb{S}^N$ or \mathbb{H}^N , $N \geq 2$, g denotes the standard metric of $\mathbb{M}^N \times \mathbb{R}$ and Δ_g is the Laplace–Beltrami operator.

When $\mathbb{M}^N = \mathbb{R}^N$, Sicbaldi [24] constructed periodic solutions of (1.2) that are perturbations of a cylinder, which can be seen the first unbounded case counterexample to the following BCN Conjecture.

BCN Conjecture: If Ω is a smooth domain and $\mathbb{R}^N \setminus \overline{\Omega}$ is connected such that problem (1.2) exists a bounded solution, then Ω is either a ball, a half-space, a generalized cylinder $B^k \times \mathbb{R}^{N-k}$ where B^k is a ball in \mathbb{R}^k , or the complement of one of them.

In [23], it is shown that such new solutions belong in fact to a smooth local 1-parameter family. Generalizations of such results have been done in the Riemannian manifolds $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$ [5,16], and in the Euclidean case for some functions f [22]. The boundaries of the domains Ω constructed in [24] are related to the Delaunay surfaces in \mathbb{R}^N . The analogy between constant mean curvatures surfaces and overdetermined elliptic problems has inspired a lot of works [9,14,21,25]. Such analogy motivated also the study of overdetermined elliptic problems in the Riemannian manifolds $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$. It is well known that the Thurston's Geometrization Conjecture proved by G. Perelman in 2003 [17–19]. Since these two manifolds with N=2 represent two of the eight Thurston's 3-dimensional geometries [1], the theory of constant mean curvature surfaces in such ambient spaces are extremely important.

While, we note that bifurcation results in [5,16] are all local. A natural question is whether these local bifurcation results can be extended to the global? Our second main result provides a positive answer to this question.

Theorem 1.2. Let $C^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ be the space of even 2π -periodic $C^{2,\alpha}$ functions of mean zero. There exist two nontrivial branches \mathscr{C}^+ and \mathscr{C}^- in $\mathcal{V}\times(0,T_0)$ emanating from $(0,T_*(N))$, such that $\mathscr{C}^{\nu}\cap(\{0\}\times(0,+\infty))=\{(0,T_*(N))\}$ and for any $(v^{\nu},T)\in\mathscr{C}^{\nu}\setminus\{(0,T_*(N))\}$ with $\nu\in\{+,-\}$, the overdetermined problem (1.2) has a positive T-periodic solution $u\in C^{2,\alpha}(\Omega^{\nu})$ on the modified cylinder

$$\Omega^{\nu} = \left\{ (x,t) \in \mathbb{M}^N \times \mathbb{R} : |x| < 1 + v^{\nu} \left(\frac{2\pi}{T} t \right) \right\},$$

where V is an open neighborhoods of the 0 in $\{v \in C^{2,\alpha}_{\text{even},0}(\mathbb{R}/2\pi\mathbb{Z}) : v > -1\}$ for some positive constant T_0 . Moreover, \mathscr{C}^{ν} satisfies at least one of the following three properties:

- (i) $\mathscr{C}^{\nu} \cap \partial \mathcal{O} \neq \emptyset$ with $\mathcal{O} = \mathcal{V} \times (0, T_0)$,
- (ii) \mathcal{C}^{ν} is unbounded,
- (iii) \mathscr{C}^{\vee} contains a point $(T^*,0) \in \mathcal{O}$ with some $T^* \neq T_*$.

The outline of the rest of this article is as follows. In Section 2, we mainly establish a new Dancer-type unilateral global bifurcation theorem via the so-called 0-group, which ends the proof of Theorem 1.1. In Section 3, we finish the proof of Theorem 1.2 by using the new Dancer-type unilateral global bifurcation Theorem 1.1.

2 Proof of Theorem 1.1

Under the assumptions of Theorem 1.1, the operator F can be rewritten as

$$F(\lambda, u) = u + D_u f(\lambda, 0) u + H(\lambda, u),$$

where $H(\lambda, u)$ is $o(\|u\|)$ for $u \in X$ near 0 uniformly on the bounded λ interval. Since $f : \mathbb{R} \times X \to X$ is a completely continuous operator, $D_u f(\lambda, 0)$ is also a completely continuous operator (see [8] or [13]). It further follows that $H : \mathbb{R} \times X \to X$ is a completely continuous operator.

Let $\mathbb{X} = \mathbb{R} \times X$. Given any $\iota \in \mathbb{R}$ and $0 < s < +\infty$, we consider an open neighborhood of $(\iota, 0)$ in \mathbb{X} defined by

$$\mathbb{B}_{s}(\iota,0) = \{(\lambda,u) \in \mathbb{X} : ||u|| + |\lambda - \iota| < s\}.$$

Let X_0 be a closed subspace of X such that

$$X = \operatorname{span}\{w_0\} \oplus X_0$$
,

where w_0 is a nonzero element in $Ker(D_uF(\mu,0))$. Without loss of generality, we assume that $\|w_0\|=1$. According to the Hahn–Banach theorem, there exists a linear functional $l\in X^*$ such that

$$l(w_0) = 1$$
 and $X_0 = \{u \in X : l(u) = 0\},\$

where X^* denotes the dual space of X. For any $0 < \eta < 1$, define

$$K_{\eta} = \{(\lambda, u) \in \mathbb{X} : |l(u)| > \eta ||u||\}.$$

Obviously, K_{η} is an open subset of \mathbb{X} consisting of two disjoint components K_{η}^+ and K_{η}^- with

$$K_{\eta}^{+} = \{(\lambda, u) \in \mathbb{X} : l(u) > \eta \|u\|\},$$

$$K_{\eta}^{-} = \{(\lambda, u) \in \mathbb{X} : l(u) < -\eta \|u\|\}.$$

Clearly, both K_{η}^+ and K_{η}^- are convex cones, $K_{\eta}^- = -K_{\eta}^+$, and $\nu t w_0 \in K_{\eta}^{\nu}$ for every t > 0 and each $\nu \in \{+, -\}$.

Applying [15, Lemma 6.4.1] or [3, Lemma 2.2], we have the following lemma, which localizes the possible solutions of problem (1.1) bifurcating from $(\mu, 0)$.

Lemma 2.1. For every $\eta \in (0,1)$ there exists a number $\delta_0 > 0$ such that for each $0 < \delta < \delta_0$, there holds

$$(S \setminus \{(\mu, 0)\}) \cap \bar{\mathbb{B}}_{\delta}(\mu, 0) \subseteq K_{\eta},$$

and when

$$(\lambda, u) \in (\mathcal{S} \setminus \{(\mu, 0)\}) \cap \bar{\mathbb{B}}_{\delta}(\mu, 0)$$

there are $s \in \mathbb{R}$ and a unique $y \in X_0$ such that $u = sw_0 + y$ and $|s| > \eta ||u||$. Furthermore, for each (λ, u) , there holds $\lambda = \mu + o(1)$ and y = o(s) as $s \to 0$.

It follows from [11, Theorem II.3.3] that $(\mu,0)$ is a bifurcation point for equation (1.1), and \mathcal{S} possesses a maximal continuum \mathscr{C}_{μ} such that $(\mu,0)\in\mathscr{C}_{\mu}$ and \mathscr{C}_{μ} either meets at infinity in $\mathbb{R}\times X$, or meets at $(\hat{\mu},0)$ with some $\hat{\mu}\neq\mu$. Furthermore, by [15, Lemma 6.4.2] or [3, Lemma 2.3], we have that \mathscr{C}_{μ} possesses a subcontinuum in each of the cones $K^+_{\eta}\cup\{(\mu,0)\}$ and $K^-_{\eta}\cup\{(\mu,0)\}$ each of which meets $(\mu,0)$ and $\partial\bar{\mathbb{B}}_{\varrho}(\mu,0)$ for all $\varrho>0$ sufficiently small, which is the local unilateral bifurcation structure of \mathscr{C}_{μ} .

Proof of Theorem 1.1. For any $\varepsilon > 0$ small enough, let $a = \mu - \varepsilon$ and $b = \mu + \varepsilon$. Since $D_u F(a,0)$ and $D_u F(b,0)$ are isomorphism, the isolated zero index formula is well-defined for $I + D_u f(a,0)$ and $I + D_u f(b,0)$, which are denoted by $i(I + D_u f(a,0),0)$ and $i(I + D_u f(b,0),0)$. From the definition of 0-group index we see that

$$i(I + D_u f(a, 0), 0) = \sigma(a)$$

and

$$i(I + D_u f(b,0), 0) = \sigma(b).$$

Thus, we have that

$$i(I + D_u f(a,0), 0) \neq i(I + D_u f(b,0), 0).$$

That is to say

$$deg(I + D_u f(a, 0), \mathfrak{B}_r(0), 0) \neq deg(I + D_u f(a, 0), \mathfrak{B}_r(0), 0),$$

where $\mathfrak{B}_r(0) = \{u \in X : ||u|| < r\}$ is an isolating neighborhood of the trivial solution. Applying [4, Theorem 3.1], we obtain that \mathcal{S} possesses two maximal sub-continua \mathscr{C}^{\pm}_{μ} emanating from $(\mu,0)$, such that either \mathscr{C}^{+}_{μ} and \mathscr{C}^{-}_{μ} are both unbounded or $\mathscr{C}^{+}_{\mu} \cap \mathscr{C}^{-}_{\mu} \neq \{(\mu,0)\}$.

Note that the unilateral global bifurcation result of [4, Theorem 3.1] is for multiparameter problem. Here we use its special case of single parameter. If f is not globally defined, it is not difficult to get the following result.

Corollary 2.2. Assume that \mathcal{O} is an open subset of $\mathbb{R} \times X$ and F is defined on \mathcal{O} . Under the assumptions of Theorem 1.1, either \mathscr{C}^+_{μ} and \mathscr{C}^-_{μ} satisfy the alternatives of Theorem 1.1 or at least one of them meets $\partial \mathcal{O}$.

3 Proof of Theorem 1.2

Let k be the sectional curvature of the manifold \mathbb{M}^N (i.e. k=1 if $\mathbb{M}^N=\mathbb{S}^N$ and k=-1 if $\mathbb{M}^N=\mathbb{H}^N$). If we choose spherical coordinates (r,θ) , with $\theta\in\mathbb{S}^{N-1}$ and $r\in[0,+\infty)$ if k<0 and $r\in[0,\pi]$ if k>0, the usual metric in \mathbb{M}^N [2, Section II.5, Theorem 1] can be written as

$$g_{\mathbb{M}^N} = \mathrm{d}r^2 + S_k^2(r)\,\mathrm{d}\theta^2$$

where

$$S_k(r) = \begin{cases} \sinh r & \text{if } k = -1, \\ \sin r & \text{if } k = 1. \end{cases}$$

Consider the eigenvalue problem

$$\begin{cases} \Delta_{g_{\mathbb{M}^N}} u + \lambda u = 0 & \text{in } B_1, \\ u = 0 & \text{on } \partial B_1, \end{cases}$$
(3.1)

where B_1 is the unit geodesic ball of \mathbb{M}^N . It is well known that (3.1) possesses a unique principal eigenvalue λ_1 . Let $\widetilde{\phi}_1$ be the positive eigenfunction associated to λ_1 normalized so that $\int_{B_1} \widetilde{\phi}_1^2 \operatorname{dvol}_{g_{\mathbb{M}^N}} = 1/2\pi$. Then, if g denotes the standard product metric of $\mathbb{M}^N \times \mathbb{R}$ and r(x) denotes the geodesic distance of $x \in \mathbb{M}^N$ from a fixed point $0 \in \mathbb{M}^N$ (the origin), the function $\phi_1(x,t) = \widetilde{\phi}_1(x)$ is a solution of

$$\begin{cases} \Delta_g \phi_1 + \lambda_1 \phi_1 = 0 & \text{in } C_1^T, \\ \phi_1 = 0 & \text{on } \partial C_1^T, \end{cases}$$

where

$$C_1^T = \{(x,t) \in \mathbb{M}^N \times \mathbb{R}/T\mathbb{Z} : r(x) < 1\}.$$

It is easy to see that

$$\int_{C_1^{2\pi}} \phi_1^2 \, \mathrm{dvol}_g = 1. \tag{3.2}$$

For each $v \in \mathcal{C}^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ with v(t) > -1, we set

$$C_{1+v}^T = \left\{ (x,t) \in \mathbb{M}^N \times \mathbb{R} / T\mathbb{Z} : r(x) < 1 + v\left(\frac{2\pi t}{T}\right) \right\}.$$

It follows from [2, 10] that there exists a unique positive function $\phi_v \in \mathcal{C}^{2,\alpha}(C_{1+v}^T)$ and a constant λ_v such that

$$\begin{cases} \Delta_g \phi_v + \lambda_v \phi_v = 0 & \text{in } C_{1+v}^T, \\ \phi_v = 0 & \text{on } \partial C_{1+v}^T \end{cases}$$
(3.3)

and

$$\int_{C_{1+v}^{2\pi}} \phi_v^2 \left(x, \frac{T}{2\pi} t \right) \operatorname{dvol}_g = 1.$$

Define the operator

$$N(v,T) = g(\nabla \phi_v, \omega) \mid_{\partial C_{1+v}^T} - \frac{1}{\operatorname{Vol}_g(\partial C_{1+v}^T)} \int_{\partial C_{1+v}^T} g(\nabla \phi_v, \omega) \operatorname{dvol}_g,$$

where ω denotes the unit normal vector field to ∂C_{1+v}^T . By the rotational symmetry of C_{1+v}^T , it is easy to show that N depends only on the variable t [16]. Set $F(v,T) = N(v,T) \left(\frac{T}{2\pi}t\right)$. Obviously, F(0,T) = 0 for any T > 0. From [5, Lemma 2.1] we know that F is a C^1 operator in a neighborhood of (0,T) for any fixed T > 0.

Let ψ be the unique solution of

$$\begin{cases} \Delta_g \psi + \lambda_1 \psi = 0 & \text{in } C_1^T, \\ \psi = -\partial_r \phi_1 v(\frac{2\pi t}{T}) & \text{on } \partial C_1^T. \end{cases}$$

Define the function $\widetilde{H}_T(\cdot)$ as follows

$$\widetilde{H}_T(v) = \left(\partial_r \psi + \partial_r^2 \phi_1 v \left(\frac{2\pi}{T} t\right)\right) \bigg|_{\partial C_1^T}$$

and set

$$H_T(v) = \widetilde{H}_T(v) igg(rac{T}{2\pi}tigg).$$

It follows from [16, Proposition 3.2] that the linearization of F with respect to v at the point (0,T) is just H_T .

If $v \in \mathcal{C}^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$, its Fourier expansion is

$$v = \sum_{m \ge 1} a_m \cos(mt).$$

Let V_m be the space spanned by the function $\cos(mt)$. It follows from [16, Proposition 4.3] that H_T preserves the eigenspaces V_m . Let $\sigma_m(T)$ be the eigenvalue of H_T associated with the eigenfunction $\cos(mt)$. It is known (see [16]) that

$$\sigma_m(T) = \partial_r c_m(1) + \partial_r^2 \phi_1(1),$$

where c_m is the continuous solution on [0,1] of

$$\left(\partial_r^2 + (n-1)\frac{C_k(r)}{S_k(r)}\partial_r + \lambda_1\right)c - \left(\frac{2m\pi}{T}\right)^2c = 0$$

with $c_m(1) = -\partial_r \phi_1(1)$, where

$$C_k(r) = \begin{cases} \cosh r & \text{if } k = -1, \\ \cos r & \text{if } k = 1. \end{cases}$$

It follows from [5, Proposition 2.1] that the function $\sigma_1(T)$ satisfies $\sigma_1'(T) < 0$ for any T > 0. Moreover, σ_1 has exactly one zero in $(0, +\infty)$, which is denoted by T_* . Furthermore, by [5, Proposition 2.2], we also know that the linearized operator

$$H_T = D_v F(0,T) : \mathcal{C}^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z}) \longrightarrow \mathcal{C}^{1,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$$

is a formally self-adjoint, first order elliptic operator. It preserves the eigenspaces V_m for all m and T > 0. Moreover, the kernel of H_{T_m} is just V_m and the eigenvalue associated to the eigenspace V_m has a unique zero which is just T_m . Note that $\sigma_m(T) = \sigma_1(T/m)$, which indicates the property of σ_m can be deduced from the property of σ_1 . So we next only consider the case of m = 1.

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. From the property of $\sigma_1(T)$ we know that there exists $T_0 > T_*$ such that $\sigma_1(T) > -1$ for any $T \in (0, T_0)$. We claim that $H_T + \operatorname{Id}$ is invertible for any $T \in (0, T_0)$. For any $v \in \mathcal{C}^{2,\alpha}_{\operatorname{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ such that $H_Tv + v = 0$, it follows from the Fourier expansion $v = \sum_{m \geq 1} a_m \cos(mt)$ and $\sigma_m(T) = \sigma(T/m)$ that

$$(\sigma(T)+1)\int_{-\pi}^{\pi}v^2\,dt \leq \int_{-\pi}^{\pi}(H_Tv^2+v^2)\,dt = 0.$$

It follows that $v \equiv 0$. Clearly, $H_T + \text{Id}$ is linear continuous. By Banach inverse operator theorem, $H_T + \text{Id}$ is an isomorphism for any $T \in (0, T_0)$.

Define $G:(0,T_0)\times\mathcal{V}\to\mathcal{W}$ by

$$G(T,v) = F(v,T) + v$$

where $\mathcal{V} \subset \mathcal{C}^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ and $\mathcal{W} \subset \mathcal{C}^{1,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ are open neighborhoods of the 0 function. Since the operator H_T + Id is invertible for $T \in (0,T_0)$, $D_vG(T,0)$ is an isomorphism for all $T \in (0,T_0)$. For $w \in \mathcal{W}$, there exists a unique $v \in \mathcal{V}$ such that $G(\lambda,v) = w$. Let $v = G^{-1}(w)$. Clearly, G^{-1} maps \mathcal{W} into \mathcal{V} . Let $R(T,w) = w - G^{-1}(w)$, which maps $(0,T_0) \times \mathcal{W}$ into \mathcal{W} because $\mathcal{V} \subset \mathcal{W}$. Since the embedding of $\mathcal{C}^{2,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z}) \hookrightarrow \mathcal{C}^{1,\alpha}_{\mathrm{even},0}(\mathbb{R}/2\pi\mathbb{Z})$ is compact, $R: (0,T_0) \times \mathcal{W} \to \mathcal{W}$ is compact. Then F(v,T) = 0 is equivalent to R(T,v) = 0 for all $T \in (0,T_0)$. We see that $D_w R(T,0) w = \mu w$ is equivalent to $H_\lambda(w) = \mu w/(1-\mu)$ with $\mu < 1$. It follows that $D_w R(T,0)$ has the same number of negative eigenvalues as H_T .

We have known that $\dim \operatorname{Ker}(H_{T_*})=1$. So we also have that $\dim \operatorname{Ker}(D_wR(T_*,0))=1$. For any $\varepsilon>0$ small enough, the property of $\sigma(T)$ implies that 0-group index $\sigma(T_*-\varepsilon)=(-1)^0=1$ and $\sigma(T_*+\varepsilon)=(-1)^1=-1$. It further indicates that $D_wR(T,0)$ has an odd crossing number at $T=T_*$. Applying Theorem 1.1 to R(T,v)=0, we can conclude the desired unilateral global bifurcation result.

References

- [1] L. Bessières, G. Besson, S. Maillot, M. Boileau, J. Porti, Geometrisation of 3-manifolds, EMS Tracts Math., Vol. 13, European Mathematical Society, Zurich, 2010. https://doi.org/10.4171/082; MR2683385; Zbl 1244.57003
- [2] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, Orlando, 1984. MR0768584; Zbl 0551.53001
- [3] G. DAI, Bifurcation and one-sign solutions of the *p*-Laplacian involving a nonlinearity with zeros, *Discrete Contin. Dyn. Syst.* **36**(2016), 5323–5345. https://doi.org/10.3934/dcds.2016034; MR3543550; Zbl 06638709
- [4] G. Dai, Y. Sun, Z.Q. Wang, Z. Zhang, The structure of positive solutions for a Schrödinger system, *Topol. Methods Nonlinear Anal.* 55(2020), 343–367. https://doi.org/10.12775/TMNA.2019.098; MR4100389; Zbl 1505.47069
- [5] G. Dai, F. Morabito, P. Sicbaldi, A smooth 1-parameter family of Delaunay-type domains for an overdetermined elliptic problem in $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$, Potential Anal. **60**(2024), 1407–1420. https://doi.org/10.1007/s11118-023-10093-6; Zbl 1537.35255
- [6] E. N. DANCER, On the structure of solutions of non-linear eigenvalue problems, *Indiana Univ. Math. J.* 23(1974), 1069–1076. https://doi.org/10.1512/iumj.1974.23.23087; MR0348567; Zbl 0276.47051
- [7] E.N. DANCER, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, *Bull. London Math. Soc.* 34(2002), 533–538.https://doi.org/10.1112/ S002460930200108X; MR1912875; Zbl 1027.58009
- [8] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin-New York-Heidelberg, 1985. https://doi.org/10.1007/978-3-662-00547-7; MR787404 Zbl 1257.47059
- [9] M. Del Pino, F. Pacard, J. Wei, Serrin's overdetermined problem and constant mean curvature surfaces, *Duke Math. J.* 164(2015) 2643–2722.https://doi.org/10.1215/00127094-3146710; MR3417183; Zbl 1342.35188

- [10] D. GILBARG, N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, 2001. https://doi.org/10.1007/978-3-642-61798-0; MR1814364 Zbl 1042.35002
- [11] H. Kielhöfer, Bifurcation theory: an introduction with applications to PDEs, Appl. Math. Sci., Vol. 156, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-0502-3; MR2859263; Zbl 1230.35002
- [12] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964. MR159197; Zbl 0111.30303
- [13] J. Leray, J. Schauder, Topologie et équations fonctionnelles, *Ann. Sci. école Norm. Sup.* (3) **51**(1934), 45–78. https://doi.org/10.24033/asens.836; MR1509338; Zbl 0009.07301
- [14] Y. Liu, K. Wang, J. Wei, On smooth solutions to one phase free boundary problem in \mathbb{R}^N , *Int. Math. Res. Not. IMRN* **2021**, No. 20, 15682–15732. https://doi.org/10.1093/imrn/rnz250; MR4329879; Zbl 1481.35412
- [15] J. López-Gómez, Spectral theory and nonlinear functional analysis, Chapman and Hall/CRC, Boca Raton, 2001. MR1823860; Zbl 0978.47048
- [16] F. Morabito, P. Sicbaldi, Delaunay type domains for an overdetermined elliptic problem in $\mathbb{S}^N \times \mathbb{R}$ and $\mathbb{H}^N \times \mathbb{R}$, ESAIM Control Optim. Calc. Var. 22(2016), 1–28. https://doi.org/10.1051/cocv/2014064; MR3489374; Zbl 1336.58015
- [17] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint, 2002. https://arxiv.org/abs/math/0211159; Zbl 1130.53001
- [18] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint, 2003. https://arxiv.org/abs/math/0303109; Zbl 1130.53002
- [19] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv preprint, 2003. https://arxiv.org/abs/math/0307245; Zbl 1130.53003
- [20] P. H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7(1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9; MR0301587; Zbl 0212.16504
- [21] A. Ros, P. Sicbaldi, Geometry and topology of some overdetermined elliptic problem, *J. Differential Equations* **255**(2013), 951–977. MR3062759
- [22] D. Ruiz, P. Sicbaldi, J. Wu, Overdetermined elliptic problems in onduloid-type domains with general nonlinearities, *J. Funct. Anal.* **283**(2022), Paper No. 109705, 26 pp. https://doi.org/10.1016/j.jfa.2022.109705; MR4484836; Zbl 1501.35229
- [23] F. SCHLENK, P. SICBALDI, Bifurcating extremal domains for the first eigenvalue of the Laplacian, *Adv. Math.* 229(2012), 602–632.https://doi.org/10.1016/j.aim.2011.10.001; MR2854185; Zbl 1233.35147
- [24] P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori, *Calc. Var. Partial Differential Equations* **37**(2010), 329–344. https://doi.org/10.1007/s00526-009-0264-z; MR2592974; Zbl 1188.35122

[25] M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, *Geom. Func. Anal.* **24**(2014), No. 2, 690–720. https://doi.org/110.1007/s00039-014-0268-5; MR3192039; Zbl 1295.35344