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Abstract. We establish the Dancer-type unilateral global bifurcation theorem for nonlin-
ear operator equation of u + f(A,u) = F(A,u) = 0, where X is a real Banach space and
f:R x X — X is completely continuous with f(A,0) = 0 and C! with respect to u at
u = 0. We shall show that, if dimKer(D, F(y,0)) = 1 for some y € R and D,F(A,0) has
an odd crossing number at A = y, there exist two branches ¢}/ (v € {+, —}) emanating
from (,0), such that either ¢,/ and ;" are both unbounded or ¢, N €, # {(1,0)}.
As one of applications, we obtain the unilateral global bifurcation result for an overde-
termined problem in SV x R and HN x R.
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1 Introduction

Let X be real Banach space. We investigate the structure of the set of nontrivial solutions for
the following nonlinear parameter-dependent problem

u+ f(A,u) =FAu)=0, (A, u) e RxX, (1.1)

where f : R x X — X is completely continuous with f(A,0) = 0 for A € R and C! with
respect to u at u = 0.

For f(A,u) = —ALu — H(A,u) where L : X — X is a linear compact operator and H :
R x X — X is completely continuous with H = o(||u||) near u = 0 uniformly on bounded
A sets, Krasnosel’skii [12] has shown that all characteristic values of L which are of odd
multiplicity are bifurcation points. Rabinowitz [20] has extended this result by showing that
bifurcation has global consequences.

Rabinowitz [20] also established two unilateral global bifurcation theorems from simple
eigenvalues, i.e., Theorem 1.27 and Theorem 1.40 of [20]. As pointed out by Dancer [6], the
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proofs of these two theorems both contain gaps. Dancer [6,7] constructed a counterexample
to Theorem 1.40 of [20]. Lépez-Goémez [15] also pointed out that the proof of Theorem 1.27
is insufficient. Moreover, Dancer [6] established the so-called Dancer-type unilateral global
bifurcation theorem from simple eigenvalues. Concretely, if #~! is an eigenvalue of L of al-
gebraic multiplicity 1, then there exist two sub-continua, " and %, of ¢, bifurcating from
(#,0), such that either 4, and 4, are both unbounded or €," N, # {(u,0)}. Further,
Dancer [7] also proved that the above beautiful unilateral global bifurcation result is also valid
for the case of u~! being an eigenvalue of L with geometric multiplicity 1 and odd alge-
braic multiplicity. Lépez-Gémez [15] also established a unilateral global bifurcation theorem.
Lopez-G6mez's result indicates that €}/ with each v € {+, —} either satisfies Rabinowitz-type
global alternative or contains a nontrivial element of complement of kernel space.

Following the Rabinowitz’s reflection argument in the proof of [20, Theorem 1.27], Kiel-
hofer [11, Theorem I1.5.9] established a unilateral global bifurcation theorem via the concep-
tion of odd crossing number. To present the Kielhofer’s unilateral global bifurcation theorem,
we recall the conception of odd crossing number. Let 0 be an isolated eigenvalue of algebraic
multiplicity m of D,F(u,0) for some y € R. It is well known that the number m is an in-
variant, i.e., the dimension of eigenspace is invariant under perturbation near y. The set of
all perturbed eigenvalues near 0 is called 0-group. Further, define o(A) = 1 if there are no
negative real eigenvalues in the 0-group of D, F(A,0) and

0.()\) — (_1)m1+mz+-~-+mk

if u1, 2, ..., pi are all negative real eigenvalues in the 0-group having algebraic multiplicities
my,my, ..., my, respectively. From now on, for simplicity, o(A) is called 0-group index of A. If
D,F(A,0)isregularfor A € (u— 0, 1)U (u, u + ) and if o(A) changes at A = y, then D,F(A,0)
has an odd crossing number at A = y.

If dim Ker(D,F(¢,0)) = 1 and D,F(A,0) has an odd crossing number at A = yu, Kielhofer
[11, Theorem IL.5.9] proved that there exist two sub-continua, ‘5; and ‘5]], of ¢, bifurcating
from (p,0), such that ¢} with each v € {+, —} either satisfies Rabinowitz-type global alter-
native or contains a pair of points (A, u) and (A, —u) with u # 0. If f(A,u) = Af(u) and 0
is the simple eigenvalue of D, F(y,0), Kielhofer’s unilateral global bifurcation theorem is just
the Rabinowitz’s unilateral global bifurcation theorem of [20, Theorem 1.27]. So, Kielhofer’s
result extends Rabinowitz’s unilateral global bifurcation theorem of [20, Theorem 1.27]. As the
mentioned above, since the proof of Theorem 1.27 of [20] is insufficient, Kielhofer’s argument
is also insufficient because he also adopted the Rabinowitz’s reflection argument.

The first aim of this work is to establish the Dancer-type unilateral global bifurcation the-
orem under the assumptions of Kielhofer, which fills the above gap by providing a corrected
unilateral global bifurcation theorem. Let S be the closure of the set of nontrivial solutions
of equation (1.1). The following Dancer-type unilateral global bifurcation theorem is our first
main result.

Theorem 1.1. Assume that dimKer(D,F(u,0)) = 1 for some u € R and D,F(A,0) has an odd
crossing number at A = p. Then S possesses two maximal sub-continua %ﬂi emanating from (y,0),
such that either €, and ¢, are both unbounded or 6,7 N €, # {(u,0)}.

If f(A,u) has the form of A f(u) and 0 is the simple eigenvalue of D, F(y,0), the conclusion
of Theorem 1.1 would degenerate to the famous Dancer-type unilateral global bifurcation
theorem from simple eigenvalues [6]. While, f(A,u) has the form of Af(u) and 0 is odd
algebraic multiplicity eigenvalue of D, F(u,0), Theorem 1.1 degenerates to the Dancer-type
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unilateral global bifurcation theorem from odd algebraic multiplicity eigenvalues [7]. As
pointed out by Dancer [7], although the conditions are the same, Dancer-type unilateral global
bifurcation conclusion is better than Lopez-Gémez’s [15, Theorem 6.4.3].

As one of applications for our unilateral global bifurcation theorem, we next investigate the
unilateral global bifurcation phenomenon for an overdetermined elliptic problem in SV x R
and HN x IR, where S" is the N-dimensional sphere, and HY is the N-dimensional hyperbolic
space. We consider the following overdetermined elliptic problem

Agu+Au =0 in O,
u=20 on 0(), (1.2)
¢(Vu,v) = const. on 9(),

where QO € MY x R with MN =8N or HN, N > 2, g denotes the standard metric of MN x R
and A, is the Laplace-Beltrami operator.

When MY = RY, Sicbaldi [24] constructed periodic solutions of (1.2) that are perturbations
of a cylinder, which can be seen the first unbounded case counterexample to the following
BCN Conjecture.

BCN Conjecture: If Q) is a smooth domain and RN \ Q is connected such that problem (1.2)
exists a bounded solution, then () is either a ball, a half-space, a generalized cylinder Bk x
RNk where B* is a ball in IR¥, or the complement of one of them.

In [23], it is shown that such new solutions belong in fact to a smooth local 1-parameter fam-
ily. Generalizations of such results have been done in the Riemannian manifolds SV x R and
HY x R [5,16], and in the Euclidean case for some functions f [22]. The boundaries of the do-
mains () constructed in [24] are related to the Delaunay surfaces in RN. The analogy between
constant mean curvatures surfaces and overdetermined elliptic problems has inspired a lot of
works [9,14,21,25]. Such analogy motivated also the study of overdetermined elliptic prob-
lems in the Riemannian manifolds S¥ x R and HY x R. It is well known that the Thurston’s
Geometrization Conjecture proved by G. Perelman in 2003 [17-19]. Since these two manifolds
with N = 2 represent two of the eight Thurston’s 3-dimensional geometries [1], the theory of
constant mean curvature surfaces in such ambient spaces are extremely important.

While, we note that bifurcation results in [5,16] are all local. A natural question is whether
these local bifurcation results can be extended to the global? Our second main result provides
a positive answer to this question.

Theorem 1.2. Let Cg;";n,o(lR/ 27Z) be the space of even 2m-periodic C*>* functions of mean zero.
There exist two nontrivial branches € and €~ in V x (0, Ty) emanating from (0, T.(N)), such that
€' N ({0} x (0,+00)) = {(0, T«(N))} and for any (v, T) € €V \ {(0, T«(N))} withv € {+,—},
the overdetermined problem (1.2) has a positive T-periodic solution u € C*>*(Q") on the modified

cylinder

2
QY = {(x,t) e MN xR :|x| <1+vv<;t>},

where V is an open neighborhoods of the 0 in {v € C* (R/27Z) : v > —1} for some positive

even,0
constant Ty. Moreover, ¢ satisfies at least one of the following three properties:



(i) €V N0 # O with O =V x (0, Tp),
(ii)) €V is unbounded,
(iii) €V contains a point (T*,0) € O with some T* # T..

The outline of the rest of this article is as follows. In Section 2, we mainly establish a
new Dancer-type unilateral global bifurcation theorem via the so-called 0-group, which ends
the proof of Theorem 1.1. In Section 3, we finish the proof of Theorem 1.2 by using the new
Dancer-type unilateral global bifurcation Theorem 1.1.

2 Proof of Theorem 1.1
Under the assumptions of Theorem 1.1, the operator F can be rewritten as
F(Au) =u+D,f(A,0)u+ H(A, u),

where H(A,u) is o(||u||) for u € X near 0 uniformly on the bounded A interval. Since f :
R x X — X is a completely continuous operator, D, f(A,0) is also a completely continuous
operator (see [8] or [13]). It further follows that H : R x X — X is a completely continuous
operator.
Let X = R x X. Given any 1 € R and 0 < s < +00, we consider an open neighborhood of
(1,0) in X defined by
Bs(1,0) = {(A,u) € Xt |Jul| + |2 — 1] <s}.

Let Xo be a closed subspace of X such that
X = span{wy} @ Xo,

where wy is a nonzero element in Ker(D,F(u,0)). Without loss of generality, we assume that
|lwo|| = 1. According to the Hahn-Banach theorem, there exists a linear functional / € X*
such that

l(wp) =1 and Xo={ue€ X:Il(u)=0},

where X* denotes the dual space of X. For any 0 < 57 < 1, define
Ky = {(Au) € X [1(w)] > nlfu]}.
Obviously, Ky is an open subset of X consisting of two disjoint components K; and K~ with

K = {(Au) € X2 1) > lul}},
Ky = {(Au) € X:1(u) < —yllu]}.

Clearly, both K,j and K,; are convex cones, Kﬂ* = —K,j , and vtwy € K,V] for every t > 0 and
eachv e {+,—}.

Applying [15, Lemma 6.4.1] or [3, Lemma 2.2], we have the the following lemma, which
localizes the possible solutions of problem (1.1) bifurcating from (y,0).

Lemma 2.1. For every n € (0,1) there exists a number &y > 0 such that for each 0 < 6 < o, there
holds

(S\{(1,0)}) NBs(1,0) € Ky,
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and when
(A u) € (S\{(1,0)}) NBs(p,0)

there are s € R and a unique y € Xo such that u = swy + y and |s| > n||u||. Furthermore, for each
(A, u), there holds A = y+o0(1) and y = o(s) as s — 0.

It follows from [11, Theorem I1.3.3] that (y,0) is a bifurcation point for equation (1.1), and
S possesses a maximal continuum %), such that (1,0) € %, and ), either meets at infinity
in R x X, or meets at (f1,0) with some /i # u. Furthermore, by [15, Lemma 6.4.2] or [3,
Lemma 2.3], we have that %, possesses a subcontinuum in each of the cones K;~ U {(y,0)}
and K U {(y,0)} each of which meets (,0) and 0B,(y,0) for all ¢ > 0 sufficiently small,
which is the local unilateral bifurcation structure of ,.

Proof of Theorem 1.1. For any & > 0 small enough, let @ = y —¢e and b = p+e Since
D,F(a,0) and D,F(b,0) are isomorphism, the isolated zero index formula is well-defined for
I14+D,f(a,0)and I+ D, f(b,0), which are denoted by i(I + D, f (a,0),0) and i(I + D, f(b,0),0).
From the definition of 0-group index we see that

i(I+Dyf(a,0),0) = c(a)
and
i(I4+ Dyf(b,0),0) = co(b).

Thus, we have that

That is to say
deg(I + D, f(a,0),%B,(0),0) # deg(I+ D,f(a,0),%5,(0),0),

where B,(0) = {u € X : ||u|| < r} is an isolating neighborhood of the trivial solution. Apply-
ing [4, Theorem 3.1], we obtain that & possesses two maximal sub-continua ‘gljt emanating
from (p,0), such that either ¢, and ¢, are both unbounded or €," N %, # {(1,0)}. O

Note that the unilateral global bifurcation result of [4, Theorem 3.1] is for multiparameter
problem. Here we use its special case of single parameter. If f is not globally defined, it is not
difficult to get the following result.

Corollary 2.2. Assume that O is an open subset of R x X and F is defined on O. Under the assump-
tions of Theorem 1.1, either €, and €, satisfy the alternatives of Theorem 1.1 or at least one of them
meets 00.

3 Proof of Theorem 1.2

Let k be the sectional curvature of the manifold MY (i.e. k = 1if MN = SN and k = —1 if
MN = HN). If we choose spherical coordinates (r,6), with § € SN~! and r € [0, +0) if k < 0
and r € [0, rt] if k > 0, the usual metric in MM [2, Section II.5, Theorem 1] can be written as

g = dr? + S2(r) d6?

where

sinhr ifk= -1,
Se(r) =4 . .
sinr ifk=1.



Consider the eigenvalue problem

{AgMNu +Au=0 in By, 1)

u=20 on dBq,

where B; is the unit geodesic ball of M. Tt is well known that (3.1) possesses a unique
principal eigenvalue A;. Let ¢; be the positive eigenfunction associated to A; normalized so
that | B, ¢? dvolg = 1/27. Then, if ¢ denotes the standard product metric of MY x R and

r(x) denotes the geodesic distance of x € MY from a fixed point 0 € MY (the origin), the
function ¢; (x,t) = ¢1(x) is a solution of

Ag471 +Mp1 =0 in ClT,
=0 on aC/,

where
cl = {(x,t) e MN x R/TZ : r(x) < 1}.

It is easy to see that

2 dvol, = 1. 3.2
o 1ol 62

For each v € C**_(R/27Z) with v(t) > —1, we set

even,(

Cl, = {(x,t) e MN xR/TZ : r(x) <1+v<2m>}.

T
It follows from [2,10] that there exists a unique positive function ¢, € C>*(C{,,) and a
constant A, such that
Agpo+Aopp =0 inC{,,, (3.3)
P =0 on aC{_,
and
/ 2( x lt dvol, =1
e, Po "2m §—
Define the operator
1
N(0,T) = g(Vos, e T | 8(Veow)dvoly,
o) = 8V et "o o) SV Ok

where w denotes the unit normal vector field to dC{, ;. By the rotational symmetry of C{, ,
it is easy to show that N depends only on the variable t [16]. Set F(v,T) = N(v,T)(t).
Obviously, F(0,T) = 0 for any T > 0. From [5, Lemma 2.1] we know that F is a Ct operator
in a neighborhood of (0, T) for any fixed T > 0.

Let ¢ be the unique solution of

Agp+Mp=0 inC],
= —0,¢10(#) onaCl.

Define the function Hr(-) as follows

Fir(o) = (3rp + 221071t

acT
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and set
T

Hr(v) = Hr(v) <27T >

It follows from [16, Proposition 3.2] that the linearization of F with respect to v at the point
(0,T) is just Hr.
If v € C** (R/271Z), its Fourier expansion is

even,0
v =Y aycos(mt).
m>1

Let V,, be the space spanned by the function cos(mt). It follows from [16, Proposition 4.3]
that Hr preserves the eigenspaces V;,. Let 0,,,(T) be the eigenvalue of Hr associated with the
eigenfunction cos(mt). It is known (see [16]) that

om(T) = dren(1) + 71 (1),

where ¢, is the continuous solution on [0, 1] of

(a% +(n— 1)(5:1’:5:;& +/\1>c - <2mn>2c =0

with ¢, (1) = —9,¢1(1), where

Cu(r) coshr if k= -1,
v =
k Ccos T if k=1.

It follows from [5, Proposition 2.1] that the function o1 (T) satisfies o7(T) < 0 for any T > 0.
Moreover, o1 has exactly one zero in (0,+0c0), which is denoted by T.. Furthermore, by
[5, Proposition 2.2], we also know that the linearized operator

Hr = D,F(0,T) : C**

even,(

(R/27Z) — C*

even,0

(R/27Z)

is a formally self-adjoint, first order elliptic operator. It preserves the eigenspaces V;, for
all m and T > 0. Moreover, the kernel of Hry, is just V;, and the eigenvalue associated to
the eigenspace V;, has a unique zero which is just T,,. Note that 0,,(T) = 01(T/m), which
indicates the property of ¢, can be deduced from the property of 7;. So we next only consider
the case of m = 1.

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. From the property of o1 (T) we know that there exists Ty > T. such that
01(T) > —1 for any T € (0,Tp). We claim that Hy + Id is invertible for any T € (0, Tp).
For any v € C¥*_,(R/27Z) such that Hro +v = 0, it follows from the Fourier expansion

even,0

v =Y >14mcos(mt) and 0,,(T) = o(T/m) that
7T 7T
(U(T)—i—l)/ vzdtg/ (Hro? +0?) dt = 0.
-7 -7
It follows that v = 0. Clearly, Hr + Id is linear continuous. By Banach inverse operator

theorem, Hr + Id is an isomorphism for any T € (0, Tp).
Define G : (0,Tp) x V — W by

G(T,v) =F(v,T)+ 0,
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where V C Ci’,ﬁnlo(]R /2ntZ) and W C C:\’,"énlo(]R /21tZ) are open neighborhoods of the 0 func-
tion. Since the operator Hy + Id is invertible for T € (0, Tp), D,G(T,0) is an isomorphism for
all T € (0, Tp). For w € W, there exists a unique v € V such that G(A,v) = w. Letv = G~ (w).
Clearly, G~! maps W into V. Let R(T,w) = w — G~ !(w), which maps (0, Tp) x W into W
because V C W. Since the embedding of Cg\’,"énlo(lR/ 2nZ) < Ci",”énlo(]R/ 27tZ) is compact,
R : (0,Top) x W — W is compact. Then F(v,T) = 0 is equivalent to R(T,v) = 0 for all
T € (0, Ty). We see that D,,R(T,0)w = pw is equivalent to Hy(w) = pw/(1 — ) with u < 1.
It follows that Dy, R(T,0) has the same number of negative eigenvalues as Hr.

We have known that dimKer(Hr,) = 1. So we also have that dim Ker(D,R(T,0)) = 1.

For any ¢ > 0 small enough, the property of ¢(T) implies that 0-group index (T, —¢) =

(-1)° = 1 and o(T, +¢) = (=1)! = —1. It further indicates that D;,R(T,0) has an odd
crossing number at T = T.. Applying Theorem 1.1 to R(T,v) = 0, we can conclude the
desired unilateral global bifurcation result. O
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