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Abstract. We establish the Dancer-type unilateral global bifurcation theorem for nonlin-
ear operator equation of u + f (λ, u) = F(λ, u) = 0, where X is a real Banach space and
f : R × X → X is completely continuous with f (λ, 0) = 0 and C1 with respect to u at
u = 0. We shall show that, if dimKer(DuF(µ, 0)) = 1 for some µ ∈ R and DuF(λ, 0) has
an odd crossing number at λ = µ, there exist two branches C ν

µ (ν ∈ {+,−}) emanating
from (µ, 0), such that either C+

µ and C−
µ are both unbounded or C+

µ ∩ C−
µ ̸= {(µ, 0)}.

As one of applications, we obtain the unilateral global bifurcation result for an overde-
termined problem in SN × R and HN × R.

Keywords: unilateral global bifurcation, odd crossing number, completely continuous,
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1 Introduction

Let X be real Banach space. We investigate the structure of the set of nontrivial solutions for
the following nonlinear parameter-dependent problem

u + f (λ, u) = F(λ, u) = 0, (λ, u) ∈ R × X, (1.1)

where f : R × X → X is completely continuous with f (λ, 0) = 0 for λ ∈ R and C1 with
respect to u at u = 0.

For f (λ, u) = −λLu − H(λ, u) where L : X → X is a linear compact operator and H :
R × X → X is completely continuous with H = o(∥u∥) near u = 0 uniformly on bounded
λ sets, Krasnosel’skii [12] has shown that all characteristic values of L which are of odd
multiplicity are bifurcation points. Rabinowitz [20] has extended this result by showing that
bifurcation has global consequences.

Rabinowitz [20] also established two unilateral global bifurcation theorems from simple
eigenvalues, i.e., Theorem 1.27 and Theorem 1.40 of [20]. As pointed out by Dancer [6], the
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proofs of these two theorems both contain gaps. Dancer [6, 7] constructed a counterexample
to Theorem 1.40 of [20]. López-Gómez [15] also pointed out that the proof of Theorem 1.27
is insufficient. Moreover, Dancer [6] established the so-called Dancer-type unilateral global
bifurcation theorem from simple eigenvalues. Concretely, if µ−1 is an eigenvalue of L of al-
gebraic multiplicity 1, then there exist two sub-continua, C +

µ and C −
µ , of Cµ bifurcating from

(µ, 0), such that either C +
µ and C −

µ are both unbounded or C +
µ ∩ C −

µ ̸= {(µ, 0)}. Further,
Dancer [7] also proved that the above beautiful unilateral global bifurcation result is also valid
for the case of µ−1 being an eigenvalue of L with geometric multiplicity 1 and odd alge-
braic multiplicity. López-Gómez [15] also established a unilateral global bifurcation theorem.
López-Gómez’s result indicates that C ν

µ with each ν ∈ {+,−} either satisfies Rabinowitz-type
global alternative or contains a nontrivial element of complement of kernel space.

Following the Rabinowitz’s reflection argument in the proof of [20, Theorem 1.27], Kiel-
hofer [11, Theorem II.5.9] established a unilateral global bifurcation theorem via the concep-
tion of odd crossing number. To present the Kielhofer’s unilateral global bifurcation theorem,
we recall the conception of odd crossing number. Let 0 be an isolated eigenvalue of algebraic
multiplicity m of DuF(µ, 0) for some µ ∈ R. It is well known that the number m is an in-
variant, i.e., the dimension of eigenspace is invariant under perturbation near µ. The set of
all perturbed eigenvalues near 0 is called 0-group. Further, define σ(λ) = 1 if there are no
negative real eigenvalues in the 0-group of DuF(λ, 0) and

σ(λ) = (−1)m1+m2+···+mk

if µ1, µ2, . . . , µk are all negative real eigenvalues in the 0-group having algebraic multiplicities
m1, m2, . . . , mk, respectively. From now on, for simplicity, σ(λ) is called 0-group index of λ. If
DuF(λ, 0) is regular for λ ∈ (µ − δ, µ)∪ (µ, µ + δ) and if σ(λ) changes at λ = µ, then DuF(λ, 0)
has an odd crossing number at λ = µ.

If dim Ker(DuF(µ, 0)) = 1 and DuF(λ, 0) has an odd crossing number at λ = µ, Kielhofer
[11, Theorem II.5.9] proved that there exist two sub-continua, C +

µ and C −
µ , of Cµ bifurcating

from (µ, 0), such that C ν
µ with each ν ∈ {+,−} either satisfies Rabinowitz-type global alter-

native or contains a pair of points (λ, u) and (λ,−u) with u ̸= 0. If f (λ, u) = λ f (u) and 0
is the simple eigenvalue of DuF(µ, 0), Kielhofer’s unilateral global bifurcation theorem is just
the Rabinowitz’s unilateral global bifurcation theorem of [20, Theorem 1.27]. So, Kielhofer’s
result extends Rabinowitz’s unilateral global bifurcation theorem of [20, Theorem 1.27]. As the
mentioned above, since the proof of Theorem 1.27 of [20] is insufficient, Kielhofer’s argument
is also insufficient because he also adopted the Rabinowitz’s reflection argument.

The first aim of this work is to establish the Dancer-type unilateral global bifurcation the-
orem under the assumptions of Kielhofer, which fills the above gap by providing a corrected
unilateral global bifurcation theorem. Let S be the closure of the set of nontrivial solutions
of equation (1.1). The following Dancer-type unilateral global bifurcation theorem is our first
main result.

Theorem 1.1. Assume that dim Ker(DuF(µ, 0)) = 1 for some µ ∈ R and DuF(λ, 0) has an odd
crossing number at λ = µ. Then S possesses two maximal sub-continua C ±

µ emanating from (µ, 0),
such that either C +

µ and C −
µ are both unbounded or C +

µ ∩ C −
µ ̸= {(µ, 0)}.

If f (λ, u) has the form of λ f (u) and 0 is the simple eigenvalue of DuF(µ, 0), the conclusion
of Theorem 1.1 would degenerate to the famous Dancer-type unilateral global bifurcation
theorem from simple eigenvalues [6]. While, f (λ, u) has the form of λ f (u) and 0 is odd
algebraic multiplicity eigenvalue of DuF(µ, 0), Theorem 1.1 degenerates to the Dancer-type
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unilateral global bifurcation theorem from odd algebraic multiplicity eigenvalues [7]. As
pointed out by Dancer [7], although the conditions are the same, Dancer-type unilateral global
bifurcation conclusion is better than López-Gómez’s [15, Theorem 6.4.3].

As one of applications for our unilateral global bifurcation theorem, we next investigate the
unilateral global bifurcation phenomenon for an overdetermined elliptic problem in SN × R

and HN ×R, where SN is the N-dimensional sphere, and HN is the N-dimensional hyperbolic
space. We consider the following overdetermined elliptic problem


∆gu + λu = 0 in Ω,

u = 0 on ∂Ω,

g(∇u, ν) = const. on ∂Ω,

(1.2)

where Ω ⊂ MN × R with MN = SN or HN , N ≥ 2, g denotes the standard metric of MN × R

and ∆g is the Laplace–Beltrami operator.
When MN = RN , Sicbaldi [24] constructed periodic solutions of (1.2) that are perturbations

of a cylinder, which can be seen the first unbounded case counterexample to the following
BCN Conjecture.

BCN Conjecture: If Ω is a smooth domain and RN \ Ω is connected such that problem (1.2)
exists a bounded solution, then Ω is either a ball, a half-space, a generalized cylinder Bk ×
RN−k where Bk is a ball in Rk, or the complement of one of them.

In [23], it is shown that such new solutions belong in fact to a smooth local 1-parameter fam-
ily. Generalizations of such results have been done in the Riemannian manifolds SN × R and
HN ×R [5,16], and in the Euclidean case for some functions f [22]. The boundaries of the do-
mains Ω constructed in [24] are related to the Delaunay surfaces in RN . The analogy between
constant mean curvatures surfaces and overdetermined elliptic problems has inspired a lot of
works [9, 14, 21, 25]. Such analogy motivated also the study of overdetermined elliptic prob-
lems in the Riemannian manifolds SN × R and HN × R. It is well known that the Thurston’s
Geometrization Conjecture proved by G. Perelman in 2003 [17–19]. Since these two manifolds
with N = 2 represent two of the eight Thurston’s 3-dimensional geometries [1], the theory of
constant mean curvature surfaces in such ambient spaces are extremely important.

While, we note that bifurcation results in [5,16] are all local. A natural question is whether
these local bifurcation results can be extended to the global? Our second main result provides
a positive answer to this question.

Theorem 1.2. Let C2,α
even,0(R/2πZ) be the space of even 2π-periodic C2,α functions of mean zero.

There exist two nontrivial branches C + and C − in V × (0, T0) emanating from (0, T∗(N)), such that
C ν ∩ ({0} × (0,+∞)) = {(0, T∗(N))} and for any (vν, T) ∈ C ν \ {(0, T∗(N))} with ν ∈ {+,−},
the overdetermined problem (1.2) has a positive T-periodic solution u ∈ C2,α(Ων) on the modified
cylinder

Ων =

{
(x, t) ∈ MN × R : |x| < 1 + vν

(
2π

T
t
)}

,

where V is an open neighborhoods of the 0 in
{

v ∈ C2,α
even,0(R/2πZ) : v > −1

}
for some positive

constant T0. Moreover, C ν satisfies at least one of the following three properties:
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(i) C ν ∩ ∂O ̸= ∅ with O = V × (0, T0),

(ii) C ν is unbounded,

(iii) C ν contains a point (T∗, 0) ∈ O with some T∗ ̸= T∗.

The outline of the rest of this article is as follows. In Section 2, we mainly establish a
new Dancer-type unilateral global bifurcation theorem via the so-called 0-group, which ends
the proof of Theorem 1.1. In Section 3, we finish the proof of Theorem 1.2 by using the new
Dancer-type unilateral global bifurcation Theorem 1.1.

2 Proof of Theorem 1.1

Under the assumptions of Theorem 1.1, the operator F can be rewritten as

F(λ, u) = u + Du f (λ, 0)u + H(λ, u),

where H(λ, u) is o(∥u∥) for u ∈ X near 0 uniformly on the bounded λ interval. Since f :
R × X → X is a completely continuous operator, Du f (λ, 0) is also a completely continuous
operator (see [8] or [13]). It further follows that H : R × X → X is a completely continuous
operator.

Let X = R × X. Given any ι ∈ R and 0 < s < +∞, we consider an open neighborhood of
(ι, 0) in X defined by

Bs(ι, 0) = {(λ, u) ∈ X : ∥u∥+ |λ − ι| < s}.

Let X0 be a closed subspace of X such that

X = span{w0} ⊕ X0,

where w0 is a nonzero element in Ker(DuF(µ, 0)). Without loss of generality, we assume that
∥w0∥ = 1. According to the Hahn–Banach theorem, there exists a linear functional l ∈ X∗

such that
l(w0) = 1 and X0 = {u ∈ X : l(u) = 0},

where X∗ denotes the dual space of X. For any 0 < η < 1, define

Kη = {(λ, u) ∈ X : |l(u)| > η∥u∥}.

Obviously, Kη is an open subset of X consisting of two disjoint components K+
η and K−

η with

K+
η = {(λ, u) ∈ X : l(u) > η∥u∥},

K−
η = {(λ, u) ∈ X : l(u) < −η∥u∥}.

Clearly, both K+
η and K−

η are convex cones, K−
η = −K+

η , and νtw0 ∈ Kν
η for every t > 0 and

each ν ∈ {+,−}.
Applying [15, Lemma 6.4.1] or [3, Lemma 2.2], we have the the following lemma, which

localizes the possible solutions of problem (1.1) bifurcating from (µ, 0).

Lemma 2.1. For every η ∈ (0, 1) there exists a number δ0 > 0 such that for each 0 < δ < δ0, there
holds

(S\{(µ, 0)}) ∩ B̄δ(µ, 0) ⊆ Kη ,
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and when
(λ, u) ∈ (S\{(µ, 0)}) ∩ B̄δ(µ, 0)

there are s ∈ R and a unique y ∈ X0 such that u = sw0 + y and |s| > η∥u∥. Furthermore, for each
(λ, u), there holds λ = µ + o(1) and y = o(s) as s → 0.

It follows from [11, Theorem II.3.3] that (µ, 0) is a bifurcation point for equation (1.1), and
S possesses a maximal continuum Cµ such that (µ, 0) ∈ Cµ and Cµ either meets at infinity
in R × X, or meets at (µ̂, 0) with some µ̂ ̸= µ. Furthermore, by [15, Lemma 6.4.2] or [3,
Lemma 2.3], we have that Cµ possesses a subcontinuum in each of the cones K+

η ∪ {(µ, 0)}
and K−

η ∪ {(µ, 0)} each of which meets (µ, 0) and ∂B̄ϱ(µ, 0) for all ϱ > 0 sufficiently small,
which is the local unilateral bifurcation structure of Cµ.

Proof of Theorem 1.1. For any ε > 0 small enough, let a = µ − ε and b = µ + ε. Since
DuF(a, 0) and DuF(b, 0) are isomorphism, the isolated zero index formula is well-defined for
I +Du f (a, 0) and I +Du f (b, 0), which are denoted by i(I +Du f (a, 0), 0) and i(I +Du f (b, 0), 0).
From the definition of 0-group index we see that

i(I + Du f (a, 0), 0) = σ(a)

and
i(I + Du f (b, 0), 0) = σ(b).

Thus, we have that
i(I + Du f (a, 0), 0) ̸= i(I + Du f (b, 0), 0).

That is to say

deg(I + Du f (a, 0),Br(0), 0) ̸= deg(I + Du f (a, 0),Br(0), 0),

where Br(0) = {u ∈ X : ∥u∥ < r} is an isolating neighborhood of the trivial solution. Apply-
ing [4, Theorem 3.1], we obtain that S possesses two maximal sub-continua C ±

µ emanating
from (µ, 0), such that either C +

µ and C −
µ are both unbounded or C +

µ ∩ C −
µ ̸= {(µ, 0)}.

Note that the unilateral global bifurcation result of [4, Theorem 3.1] is for multiparameter
problem. Here we use its special case of single parameter. If f is not globally defined, it is not
difficult to get the following result.

Corollary 2.2. Assume that O is an open subset of R × X and F is defined on O. Under the assump-
tions of Theorem 1.1, either C +

µ and C −
µ satisfy the alternatives of Theorem 1.1 or at least one of them

meets ∂O.

3 Proof of Theorem 1.2

Let k be the sectional curvature of the manifold MN (i.e. k = 1 if MN = SN and k = −1 if
MN = HN). If we choose spherical coordinates (r, θ), with θ ∈ SN−1 and r ∈ [0,+∞) if k < 0
and r ∈ [0, π] if k > 0, the usual metric in MN [2, Section II.5, Theorem 1] can be written as

gMN = dr2 + S2
k(r)dθ2

where

Sk(r) =

{
sinh r if k = −1,

sin r if k = 1.
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Consider the eigenvalue problem{
∆g

MN u + λu = 0 in B1,

u = 0 on ∂B1,
(3.1)

where B1 is the unit geodesic ball of MN . It is well known that (3.1) possesses a unique
principal eigenvalue λ1. Let ϕ̃1 be the positive eigenfunction associated to λ1 normalized so
that

∫
B1

ϕ̃2
1 dvolg

MN = 1/2π. Then, if g denotes the standard product metric of MN × R and
r(x) denotes the geodesic distance of x ∈ MN from a fixed point 0 ∈ MN (the origin), the
function ϕ1(x, t) = ϕ̃1(x) is a solution of{

∆gϕ1 + λ1ϕ1 = 0 in CT
1 ,

ϕ1 = 0 on ∂CT
1 ,

where
CT

1 =
{
(x, t) ∈ MN × R/TZ : r(x) < 1

}
.

It is easy to see that ∫
C2π

1

ϕ2
1 dvolg = 1. (3.2)

For each v ∈ C2,α
even,0(R/2πZ) with v(t) > −1, we set

CT
1+v =

{
(x, t) ∈ MN × R/TZ : r(x) < 1 + v

(
2πt
T

)}
.

It follows from [2, 10] that there exists a unique positive function ϕv ∈ C2,α(CT
1+v

)
and a

constant λv such that {
∆gϕv + λvϕv = 0 in CT

1+v,

ϕv = 0 on ∂CT
1+v

(3.3)

and ∫
C2π

1+v

ϕ2
v

(
x,

T
2π

t
)

dvolg = 1.

Define the operator

N(v, T) = g(∇ϕv, ω) |∂CT
1+v

− 1
Volg

(
∂CT

1+v
) ∫

∂CT
1+v

g(∇ϕv, ω)dvolg,

where ω denotes the unit normal vector field to ∂CT
1+v. By the rotational symmetry of CT

1+v,
it is easy to show that N depends only on the variable t [16]. Set F(v, T) = N(v, T)

( T
2π t

)
.

Obviously, F(0, T) = 0 for any T > 0. From [5, Lemma 2.1] we know that F is a C1 operator
in a neighborhood of (0, T) for any fixed T > 0.

Let ψ be the unique solution of{
∆gψ + λ1ψ = 0 in CT

1 ,

ψ = −∂rϕ1v
( 2πt

T

)
on ∂CT

1 .

Define the function H̃T(·) as follows

H̃T(v) =
(

∂rψ + ∂2
r ϕ1v

(
2π

T
t
))∣∣∣∣∣

∂CT
1
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and set

HT(v) = H̃T(v)
(

T
2π

t
)

.

It follows from [16, Proposition 3.2] that the linearization of F with respect to v at the point
(0, T) is just HT.

If v ∈ C2,α
even,0(R/2πZ), its Fourier expansion is

v = ∑
m≥1

am cos(mt).

Let Vm be the space spanned by the function cos(mt). It follows from [16, Proposition 4.3]
that HT preserves the eigenspaces Vm. Let σm(T) be the eigenvalue of HT associated with the
eigenfunction cos(mt). It is known (see [16]) that

σm(T) = ∂rcm(1) + ∂2
r ϕ1(1),

where cm is the continuous solution on [0, 1] of(
∂2

r + (n − 1)
Ck(r)
Sk(r)

∂r + λ1

)
c −

(
2mπ

T

)2

c = 0

with cm(1) = −∂rϕ1(1), where

Ck(r) =

{
cosh r if k = −1,

cos r if k = 1.

It follows from [5, Proposition 2.1] that the function σ1(T) satisfies σ′
1(T) < 0 for any T > 0.

Moreover, σ1 has exactly one zero in (0,+∞), which is denoted by T∗. Furthermore, by
[5, Proposition 2.2], we also know that the linearized operator

HT = DvF(0, T) : C2,α
even,0(R/2πZ) −→ C1,α

even,0(R/2πZ)

is a formally self-adjoint, first order elliptic operator. It preserves the eigenspaces Vm for
all m and T > 0. Moreover, the kernel of HTm is just Vm and the eigenvalue associated to
the eigenspace Vm has a unique zero which is just Tm. Note that σm(T) = σ1(T/m), which
indicates the property of σm can be deduced from the property of σ1. So we next only consider
the case of m = 1.

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. From the property of σ1(T) we know that there exists T0 > T∗ such that
σ1(T) > −1 for any T ∈ (0, T0). We claim that HT + Id is invertible for any T ∈ (0, T0).
For any v ∈ C2,α

even,0(R/2πZ) such that HTv + v = 0, it follows from the Fourier expansion
v = ∑m≥1 am cos(mt) and σm(T) = σ(T/m) that

(σ(T) + 1)
∫ π

−π
v2 dt ≤

∫ π

−π

(
HTv2 + v2)dt = 0.

It follows that v ≡ 0. Clearly, HT + Id is linear continuous. By Banach inverse operator
theorem, HT + Id is an isomorphism for any T ∈ (0, T0).

Define G : (0, T0)× V → W by

G(T, v) = F(v, T) + v,



8 J. Xu

where V ⊂ C2,α
even,0(R/2πZ) and W ⊂ C1,α

even,0(R/2πZ) are open neighborhoods of the 0 func-
tion. Since the operator HT + Id is invertible for T ∈ (0, T0), DvG(T, 0) is an isomorphism for
all T ∈ (0, T0). For w ∈ W , there exists a unique v ∈ V such that G(λ, v) = w. Let v = G−1(w).
Clearly, G−1 maps W into V . Let R(T, w) = w − G−1(w), which maps (0, T0) ×W into W
because V ⊂ W . Since the embedding of C2,α

even,0(R/2πZ) ↪→ C1,α
even,0(R/2πZ) is compact,

R : (0, T0) × W → W is compact. Then F(v, T) = 0 is equivalent to R(T, v) = 0 for all
T ∈ (0, T0). We see that DwR(T, 0)w = µw is equivalent to Hλ(w) = µw/(1 − µ) with µ < 1.
It follows that DwR(T, 0) has the same number of negative eigenvalues as HT.

We have known that dim Ker(HT∗) = 1. So we also have that dim Ker(DwR(T∗, 0)) = 1.
For any ε > 0 small enough, the property of σ(T) implies that 0-group index σ(T∗ − ε) =

(−1)0 = 1 and σ(T∗ + ε) = (−1)1 = −1. It further indicates that DwR(T, 0) has an odd
crossing number at T = T∗. Applying Theorem 1.1 to R(T, v) = 0, we can conclude the
desired unilateral global bifurcation result.
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