Electronic Journal of Qualitative Theory of Differential Equations

2025, No. 59, 1–22; https://doi.org/10.14232/ejqtde.2025.1.59

www.math.u-szeged.hu/ejqtde/

Positive solutions for a degenerate *p*-Kirchhoff problem with singular and sublinear nonlinearities

Laboratory of Mathematics and its Applications, Faculty of Sciences, University of Medea, Medea, Algeria

> Received 28 May 2025, appeared 20 October 2025 Communicated by Gabriela Bonanno

Abstract. In this paper, we study the following *p*-Kirchhoff-type elliptic problem:

$$\begin{cases} -M\left(\int_{\Omega} |\nabla u|^{p}\right) \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) = \frac{f(x)}{u^{\gamma}} + g(x) u^{q} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $1 , <math>0 < \gamma \le 1$, 0 < q < p - 1 and $M : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous function satisfying additional hypotheses. The data f and g belonging to suitable Lebesgue space. Our approaches are based on an approximation scheme and the pseudomonotone operators theory.

Keywords: nonlocal elliptic equations, singular nonlinearity, pseudomonotone operators theory, weighted eigenvalue problems.

2020 Mathematics Subject Classification: 35A15, 35J75, 47H05, 35P30.

1 Introduction

Let Ω be a bounded open subset in \mathbb{R}^N with 1 . We consider the following non local elliptic problem

$$\begin{cases}
-M (\|u\|^p) \Delta_p u = \frac{f(x)}{u^{\gamma}} + g(x) u^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where $||u||^p = \int_{\Omega} |\nabla u|^p dx$, $0 < \gamma \le 1$ and $M : \mathbb{R}^+ = [0, +\infty[\to \mathbb{R}^+ \text{ is a continuous nondecreasing function satisfying the following structural assumption:$

$$\exists m_0 > 0, \ \mu > 1: \ M(t) \ge m_0 t^{\mu - 1}, \ \forall t \in [0, 1].$$
 (1.2)

 $^{^{\}mbox{\tiny \boxtimes}}\mbox{Corresponding author.}$ Email: ayadi.hocine@univ-medea.dz

Observe that condition (1.2) is trivially satisfied in the non-degenerate case, i.e., when M(0) > 0. A prototypical example of a Kirchhoff-type function satisfying (1.2) is:

$$M(t) = a + brt^{r-1}$$
, $a, b \ge 0, a + b > 0, r \ge 1, t \ge 0$.

Such a condition has been previously utilized by Pucci et al. in [30].

We assume the source terms f and g satisfy the following conditions:

$$f, g \ge 0, \quad \underline{h} := \inf(f, g) \not\equiv 0,$$
 (1.3)

$$f \in L^{m}(\Omega), \quad \text{with } m = \frac{pN}{N(p-1) + p + \gamma(N-p)} = \begin{cases} \left(\frac{p^*}{1-\gamma}\right)' & \text{if } 0 < \gamma < 1, \\ 1 & \text{if } \gamma = 1. \end{cases}$$
(1.4)

$$g \in L^{\left(\frac{p*}{1+q}\right)'}(\Omega). \tag{1.5}$$

Due to the nonlocal term $M(\|u\|^p)$, the first equation in (1.1) is no longer a pointwise identity. This introduces significant mathematical challenges, making the study of such problems particularly interesting.

For p = 2, the operator $M(\|u\|^p) \Delta_p$ arises naturally in the Kirchhoff equation:

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 dx \right) \frac{\partial^2 u}{\partial x^2} = 0,$$

which generalizes the classical D'Alembert wave equation for vibrating strings:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in (0, L), \ t > 0.$$

For more on this physical background, see [11,23–25,27] and the references therein.

Before presenting the details of our results, we briefly review existing results for singular and nonlocal problems.

In the local case, i.e., $M \equiv 1$, the problem (1.1) is closely related to the foundational work in [10], where the authors showed the existence of a solution for the following nonlinear singular elliptic equation

$$\begin{cases} -\Delta u = \frac{\lambda}{u^{\gamma}} + u^{q} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ $(N \ge 3)$ is a bounded domain with smooth boundary $\partial\Omega$, $\lambda > 0$, and the exponent q of the sublinear term satisfies 0 < q < 1.

Giacomoni, Schindler, and Takáč in [18] extended this analysis to the quasilinear setting:

$$\begin{cases} -\Delta_p u = \frac{\lambda}{u^{\gamma}} + u^q & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $0 < \gamma < 1$, $1 and <math>p - 1 < q < p^* - 1$, with $p^* = \frac{Np}{N-p}$ denotes the critical Sobolev exponent for the embedding $W_0^{1,p}(\Omega)$ in to $L^t(\Omega)$ for every $t \in [1,p^*]$.

In [15], the author considered:

$$\begin{cases}
-\Delta_p u = \frac{f(x)}{u^{\gamma}} + g(x)u^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.6)

where $0 \le q \le p-1$, f and g are nonnegative functions belonging to suitable Lebesgue spaces. The author proved that

- If $q , <math>0 < \gamma < 1$, $f \in \left(\frac{p^*}{1 \gamma}\right)'$, and $g \in L^{\left(\frac{p^*}{1 + q}\right)'}(\Omega)$, then the solution u belongs to $W_0^{1,p}(\Omega)$.
- if $\gamma = 1$, $f \in L^1(\Omega)$, and $g \in L^{\left(\frac{p*}{1+q}\right)'}(\Omega)$, then $u \in W_0^{1,p}(\Omega)$.

In the nonlocal setting, Corrêa et al. [12] studied:

$$\begin{cases}
-M (\|u\|^p) \Delta_p u = \frac{f(x)}{u^\gamma} + u^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.7)

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $2 \leq p \leq N$, $0 < \gamma$, q < 1, $f : \bar{\Omega} \to \mathbb{R}$ is continuous function with f > 0 on $\bar{\Omega}$, and $M : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous function satisfying

- there are $m_0 > 0$ and $\theta_1 > 0$ such that $M(t) \ge m_0 \ \forall t \ge \theta_1$;
- $\theta_2 = \sup\{t > 0; M(t) = 0\} > 0.$

The authors consider an approximation of problem (1.7) by a regularized problem. They then prove that there is at least one solution in $W_0^{1,p}(\Omega)$ by employing the Galerkin method along with a variant of Brouwer's fixed point theorem [22, Lemme 4.3]. Subsequently, they pass to the limit to obtain a solution of (1.7).

Motivated by the above works, in this paper we investigate the existence and regularity of solutions to problem (1.1), extending some results from [15] to the degenerate nonlocal case. To the best of our knowledge, this work provides the first treatment of a degenerate Kirchhoff-type problem involving both singular and sublinear nonlinearities, under optimal integrability assumptions on the source terms f and g.

Before presenting our main results, we first define what we mean by a weak solution to (1.1). Following Giacomoni et al. [18], the solutions of (1.1) are understood in the following sense

Definition 1.1. A weak solution to problem (1.1) is a function $u \in W_0^{1,p}(\Omega)$ such that

$$\forall \omega \subset\subset \Omega, \ \exists c_{\omega} > 0: \ u \geq c_{\omega} > 0 \text{ in } \omega, \tag{1.8}$$

and

$$M(\|u\|^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi = \int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x) u^q \right) \varphi, \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$
 (1.9)

Remark 1.2. If u is a weak solution to problem (1.1) in the sense of Definition 1.1, then for every test function $\varphi \in C_0^{\infty}(\Omega)$, the right-hand side of the weak formulation (1.9) is finite. Indeed, the local positivity condition (1.8) implies

$$\int_{\Omega} \frac{f\varphi}{u^{\gamma}} \leq \frac{\|\varphi\|_{L^{\infty}(\Omega)}}{c_{w}^{\gamma}} \int_{\Omega} f < +\infty.$$

Hence, $\frac{f(x)}{u^{\gamma}} \in L^1_{loc}(\Omega)$, and consequently,

$$\frac{f(x)}{u^{\gamma}} + g(x) u^{q} \in L^{1}_{loc}(\Omega).$$

Therefore, the weak formulation (1.9) is well-defined.

2 Statements of the main result

Here is the main result of this paper.

Theorem 2.1. Let us assume that (1.2)–(1.3) hold true, $g \in L^{\left(\frac{p*}{1+q}\right)'}(\Omega)$, and $f \in L^m(\Omega)$, with

$$m = \frac{pN}{N(p-1) + p + \gamma(N-p)}. (2.1)$$

Then there exists at least one weak solution to problem (1.1).

Remark 2.2. Note that

$$\frac{pN}{N(p-1)+p+\gamma(N-p)} = \begin{cases} \left(\frac{p^*}{1-\gamma}\right)' & \text{if } 0 < \gamma < 1, \\ 1 & \text{if } \gamma = 1. \end{cases}$$

The structure of the rest of this paper is as follows. Section 3 introduces the necessary notations and preliminary results that will be used throughout our analysis. Section 4 establishes the existence of a solution to the approximated problem by employing pseudomonotone operator theory. Section 5 derives essential a priori estimates for the approximate solution, which play a crucial role in proving the main result. Section 6 proves the main result by taking the limit of the sequence of approximated problems. Finally, Section 7 examines additional regularity properties of the obtained solution.

3 Notations and mathematical background

We begin by establishing the necessary framework for our analysis. Let Ω be a bounded smooth domain in \mathbb{R}^N with $1 . The truncation function <math>T_k : \mathbb{R} \to \mathbb{R}$ at level k > 0 is defined as

$$T_k(s) = \max\{-k, \min\{s, k\}\}.$$

We now present fundamental results concerning the spectrum of the p-Laplacian operator with weights. For further details on this topic, the reader is referred to [3,17,21,28].

3.1 Weighted eigenvalue problems

Let $V(x) \ge 0$ be a measurable function, not identically zero, $V(x) \in L^{\infty}(\Omega)$. Let us consider the problem:

$$\begin{cases} u \in W_0^{1,p}(\Omega), \ u \not\equiv 0, \\ -\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = \lambda V(x)|u|^{p-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (P_{\lambda})

We define the functionals A and B as follows:

$$\begin{cases} \mathcal{A}(w) = \frac{1}{p} \|w\|_{W_0^{1,p}(\Omega)'} \\ \mathcal{B}(w) = \frac{1}{p} \int_{\Omega} V(x) |w(x)|^p dx, \end{cases}$$

for all $w \in W_0^{1,p}(\Omega)$.

Definition 3.1 ([3]). A real number $\lambda \in \mathbb{R}$ is called an eigenvalue if there exists a function u such that the pair (u, λ) is a solution to problem (P_{λ}) . Such a function (non-trivial by definition) is called an eigenfunction associated with λ . The first eigenvalue λ_1 is defined by:

$$\lambda_1 = \inf \left\{ \mathcal{A}(w) : w \in W_0^{1,p}(\Omega), \text{ and } \mathcal{B}(w) = 1 \right\}.$$

Lemma 3.2 ([14, 19, 33]). Let $u \in W_0^{1,p}(\Omega) \setminus \{0\}$ be an eigenfunction associated to λ . Then $u \in L^{\infty}(\Omega)$.

Lemma 3.3 ([3, Lemma 3.1]). If u is an eigenfunction of (P_{λ}) , then $u \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$. Moreover, if $u \geq 0$, then u > 0 in Ω and $\frac{\partial u}{\partial \nu} < 0$ on $\partial \Omega$, where ν denotes the unit exterior normal vector to $\partial \Omega$.

Lemma 3.4 ([3, Lemma 3.3]). Every eigenfunction u associated with λ_1 has constant sign, i.e., either u > 0 or u < 0 in Ω .

Lemma 3.5 ([3, Theorem 3.1]). The first eigenvalue λ_1 is simple, i.e., if u and v are two eigenfunctions associated with λ_1 , then $u = \alpha v$ for some $\alpha \in \mathbb{R}$.

3.2 Weak comparison principle

The following weak comparison principle will be essential for our subsequent analysis. For the proof, we refer to [28, Lemma A.0.7] or the more general version in [26, Lemma 3].

Lemma 3.6. Let u_1 , $u_2 \in W^{1,p}(\Omega)$ satisfying

$$\begin{cases} -\Delta_p u_1 \leq -\Delta_p u_2, & \text{in } \Omega, \text{ (in the weak sense)} \\ u_1 \leq u_2, & \text{on } \partial \Omega. \end{cases}$$

Then, $u_1 \leq u_2$ a.e. in Ω .

3.3 Pseudomonotone operator theory

The following operator classes are fundamental to our nonlinear analysis framework. We recall these standard definitions from [37, Definition 26.1].

Definition 3.7. Let $A: X \to X'$ be an operator on the real reflexive Banach space X.

1. *A* is said to be hemicontinuous iff the real function

$$t \mapsto \langle A(u+tv), w \rangle$$
,

is continuous on [0,1] for all $u, v, w \in X$.

- 2. *A* is said to be strongly continuous iff $u_n \rightharpoonup u$ implies $A(u_n) \rightarrow A(u)$.
- 3. *A* is called to be bounded iff *A* maps bounded sets into bounded sets.
- 4. *A* is said to be monotone iff

$$\langle A(u) - A(v), u - v \rangle \ge 0$$
 for all $u, v \in X$.

5. *A* is called coercive if

$$\lim_{\|u\|\to\infty}\frac{\langle A(u),u\rangle}{\|u\|}=+\infty.$$

The following properties of the p-Laplacian operator are well-known, see [32, Theorem 17.11].

Lemma 3.8. The p-Laplacian operator $-\Delta_p:W_0^{1,p}(\Omega)\to W^{-1,p'}(\Omega)$ is monotone, coercif and continuous

The following definition, originally introduced by Brézis [8], plays a fundamental role in our existence proof.

Definition 3.9. [37, Definition 27.5] Let $A: X \to X'$ be an operator on the real reflexive Banach space X. The operator A is called pseudomonotone iff $u_n \rightharpoonup u$ as $n \to \infty$ and

$$\limsup_{n\to\infty}\langle A(u_n), u_n-u\rangle\leq 0,$$

implies that

$$\langle A(u), u-w \rangle \leq \liminf_{n\to\infty} \langle A(u_n), u_n-w \rangle.$$

The following result relates pseudomonotonicity to the sum of a monotone hemicontinuous operator and a strongly continuous operator, see [37, Proposition 27.6].

Lemma 3.10. Let $A: X \to X'$ be an operator on the real reflexive Banach space X. If A is monotone and hemicontinuous and B is strongly continuous, then A + B is pseudomonotone.

For our existence proof, we rely on the following surjectivity result due to Brézis [8]. The proof can be found in [31, Theorem 2.6].

Lemma 3.11. Let X be real, separable, and reflexive Banach space with dim $X = \infty$. If $A: X \to X'$ is pseudomonotone, bounded, and coercive then A is surjective; this means, for any $f \in X'$, there is at least one solution to the equation

$$A(u) = f$$
.

3.4 Nemytskii's operators

We begin by recalling the definition of Nemytskii's operator.

Definition 3.12 ([1,2]). Let $F: \Omega \times \mathbb{R} \to \mathbb{R}$. The Nemytskii operator associated to F is the map \mathcal{N}_F defined on $\mathcal{M}(\Omega)$ (the set of all measurable real valued functions defined on Ω) by setting

$$\mathcal{N}_F(u(x)) = F(x, u(x)).$$

We recall the following fundamental result about Nemytskii operators [1, Theorem 2.2], with a more general version can be found in [2, Theorem 1.7].

Lemma 3.13. Let α , $\beta \geq 1$, and $F: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function. Assume that there exist a positive function $a_1 \in L^{\beta}(\Omega)$ and a constant $a_2 > 0$ such that

$$|F(x,t)| \le a_1(x) + a_2|t|^{\frac{\alpha}{\beta}}, \quad a.e \ x \in \Omega, \ \forall t \in \mathbb{R}.$$

Then the Nemystskii's operator \mathcal{N}_F associated to the function F is continuous from $L^{\alpha}(\Omega)$ to $L^{\beta}(\Omega)$.

4 The approximated problem

We approximate the problem (1.1) by the following non-singular and non-degenerate problem

$$\begin{cases}
-M_n (\|u_n\|^p) \Delta_p u_n = \frac{f_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}} + g_n u_n^q & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial\Omega,
\end{cases}$$
(4.1)

where $f_n = T_n(f)$, $g_n = T_n(g)$ and

$$M_n(t) = M(t) + \frac{1}{n}, \quad \forall t \in \mathbb{R}^+.$$
 (4.2)

Lemma 4.1. Assume that (1.2)–(1.5) hold. Then, problem (4.1) has at least one nonnegative weak solution $u_n \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Our proof relies on pseudomonotone operator theory. We define the operators A_n , \mathcal{F}_n : $W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ by

$$\langle \mathcal{A}_n(u), v \rangle = M_n (\|u\|^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v,$$
 (4.3)

and

$$\langle \mathcal{F}_n(u), v \rangle = \int_{\Omega} \mathcal{N}_F(u) v \, dx,$$
 (4.4)

where \mathcal{N}_F is the Nemyskii operator associated to the function F defined by

$$F(x,t) := -\frac{f_n(x)}{\left(t^+ + \frac{1}{n}\right)^{\gamma}} - g_n(x)(t^+)^q \quad \text{a.e. } x \in \Omega, \ \forall t \in \mathbb{R},$$

where $t^+ := \max(t, 0)$. Next, we set

$$\mathcal{B}_n(u) = \mathcal{A}_n(u) + \mathcal{F}_n(u), \tag{4.5}$$

We now verify that \mathcal{B}_n satisfies the hypotheses of Lemma 3.11. The proof proceeds in several steps.

Step 1: Hemicontinuity of A_n **.** This follows directly from the continuity of the *p*-Laplacian operator (see Lemma 3.8) and the continuity of the function M_n .

Step 2: Monotonicity of A_n . Let $u, v \in W_0^{1,p}(\Omega)$. Then,

$$\langle \mathcal{A}_{n}(u) - \mathcal{A}_{n}(v), u - v \rangle = \langle M_{n}(\|u\|^{p}) \Delta_{p}u + M_{n}(\|v\|^{p}) \Delta_{p}v, u - v \rangle$$

$$= M_{n}(\|u\|^{p}) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla (u - v)$$

$$- M_{n}(\|v\|^{p}) \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla (u - v)$$

$$= M_{n}(\|u\|^{p}) \|u\|^{p} - M_{n}(\|u\|^{p}) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v$$

$$+ M_{n}(\|v\|^{p}) \|v\|^{p} - M_{n}(\|v\|^{p}) \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u.$$

$$(4.6)$$

Applying Young's inequality:

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \le \frac{1}{p'} ||u||^p + \frac{1}{p} ||v||^p, \tag{4.7}$$

and

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u \le \frac{1}{p'} \|v\|^p + \frac{1}{p} \|u\|^p. \tag{4.8}$$

Combining (4.6), (4.7) and (4.8) yields:

$$\langle A_{n}(u) - A_{n}(v), u - v \rangle \geq M_{n} (\|u\|^{p}) \|u\|^{p} \left(1 - \frac{1}{p'}\right) - \frac{1}{p} M_{n} (\|u\|^{p}) \|v\|^{p}$$

$$+ M_{n} (\|v\|^{p}) \|v\|^{p} \left(1 - \frac{1}{p'}\right) - \frac{1}{p} M_{n} (\|v\|^{p}) \|u\|^{p}$$

$$= \frac{1}{p} (M_{n} (\|u\|^{p}) - M_{n} (\|v\|^{p})) (\|u\|^{p} - \|v\|^{p})$$

$$= \frac{1}{p} (M (\|u\|^{p}) - M (\|v\|^{p})) (\|u\|^{p} - \|v\|^{p})$$

$$\geq 0,$$

$$(4.9)$$

where the last inequality holds because *M* is nondecreasing function.

Step 3: Strong continuity of \mathcal{F}_n **.** Note that F satisfies the growth condition

$$|F(x,t)| \le C(n) \left(1 + (t^+)^{(q+1)-1}\right),$$
 (4.10)

where C(n) > 0 is a constant depending on n.

Let $(u_k)_{k\in\mathbb{N}}\subset W_0^{1,p}(\Omega)$ be a sequence converging weakly to $u\in W_0^{1,p}(\Omega)$. By the Sobolev compact embedding theorem, we have

$$u_k \to u$$
 strongly in $L^r(\Omega)$, for all $1 \le r < p^*$. (4.11)

Since q + 1 , it follows that

$$u_k \to u$$
 strongly in $L^{q+1}(\Omega)$.

By Lemma 3.13, the Nemytskii operator \mathcal{N}_F associated with the function F is continuous from $L^{q+1}(\Omega)$ into $L^{(q+1)'}(\Omega)$. Hence,

$$\mathcal{N}_F(u_k) \to \mathcal{N}_F(u)$$
 strongly in $L^{(q+1)'}(\Omega)$.

Moreover, since $(q+1)' > (p^*)'$ (due to $q+1 < p^*$), we further deduce

$$\mathcal{N}_F(u_k) \to \mathcal{N}_F(u)$$
 strongly in $L^{(p^*)'}(\Omega)$. (4.12)

Now, let $\varphi \in W_0^{1,p}(\Omega)$. Applying Hölder's inequality and the Sobolev embedding theorem, we obtain

$$\begin{split} \left| \left\langle \left. \mathcal{F}_{n}(u_{k}) - \mathcal{F}_{n}(u), \varphi \right. \right\rangle \right| &\leq \int_{\Omega} \left| \mathcal{N}_{F}(u_{k}) - \mathcal{N}_{F}(u) \right| |\varphi| \, dx \\ &\leq \left\| \left. \mathcal{N}_{F}(u_{k}) - \mathcal{N}_{F}(u) \right\|_{L^{(p^{*})'}(\Omega)} \|\varphi\|_{L^{p_{*}}(\Omega)} \\ &\leq \mathcal{S}_{p} \| \mathcal{N}_{F}(u_{k}) - \mathcal{N}_{F}(u) \|_{L^{(p^{*})'}(\Omega)} \|\varphi\|_{W_{0}^{1,p}(\Omega)'} \end{split}$$

where S_p is the optimal Sobolev constant for the embedding $W_0^{1,p}(\Omega)$ into $L^{p*}(\Omega)$. Consequently,

$$\|\mathcal{F}_n(u_k) - \mathcal{F}_n(u)\|_{W^{-1,p'}(\Omega)} \le \mathcal{S}_p \|\mathcal{N}_F(u_k) - \mathcal{N}_F(u)\|_{L^{(p^*)'}(\Omega)}. \tag{4.13}$$

Combining (4.12) and (4.13), we conclude that

$$\mathcal{F}_n(u_k) \to \mathcal{F}_n(u)$$
 strongly in $W^{-1,p'}(\Omega)$.

Step 4: Pseudomonotonicity of \mathcal{B}_n . Since the operator \mathcal{A}_n is monotone, hemicontinuous, and the operator \mathcal{F}_n is strongly continuous, by Lemma 3.10, we deduce that \mathcal{B}_n is pseudomonotone operator.

Step 5: Boundedness of \mathcal{B}_n **.** It suffices to prove that both \mathcal{A}_n and \mathcal{F}_n are bounded operators.

1. **Boundedness of** A_n . Let R > 0 and consider $u \in W_0^{1,p}(\Omega)$ with $||u|| \le R$. For any test function $v \in W_0^{1,p}(\Omega)$, we apply assumptions (1.2), (4.2) and Hölder's inequality to obtain:

$$\left| \left\langle A_n(u), v \right\rangle \right| \leq \left(M \left(\|u\|^p \right) + 1 \right) \int_{\Omega} |\nabla u|^{p-1} |\nabla v| \, dx$$

$$\leq \left(M(R^p) + 1 \right) R^{p-1} \|v\|_{W_{\Omega}^{1,p}(\Omega)}.$$

Hence,

$$\|\mathcal{A}_n(u)\|_{W^{-1,p'}(\Omega)} \le (M(R^p)+1) R^{p-1}.$$

This establishes that A_n maps bounded subsets of $W_0^{1,p}(\Omega)$ to bounded subsets of $W^{-1,p'}(\Omega)$.

2. **Boundedness of** \mathcal{F}_n . For any $u, v \in W_0^{1,p}(\Omega)$, we use the growth condition (4.10) and the fact that $p' < \frac{p}{q}$ (since q), we have

$$\begin{split} \left| \left\langle \mathcal{F}_{n}(u), v \right\rangle \right| &\leq C \int_{\Omega} \left(1 + |u|^{q} \right) v \, dx \\ &\leq C_{1} \|v\|_{L^{p}(\Omega)} + \left(\int_{\Omega} u^{p'q} \right)^{\frac{1}{p'}} \|v\|_{L^{p}(\Omega)} \\ &\leq C_{1} \|v\|_{L^{p}(\Omega)} + C_{2} \|u\|_{L^{p}(\Omega)}^{q} \|v\|_{L^{p}(\Omega)} \\ &\leq C_{3} \left(1 + \|u\|_{W_{0}^{1,p}(\Omega)}^{q} \right) \|v\|_{W_{0}^{1,p}(\Omega)} \end{split}$$

Consequently,

$$\|\mathcal{F}_n(u)\|_{W^{-1,p'}(\Omega)} \le C_3 \left(1 + \|u\|_{W_0^{1,p}(\Omega)}^q\right).$$

Therefore, \mathcal{F}_n maps bounded subsets of $W_0^{1,p}(\Omega)$ into bounded subsets of $W^{-1,p'}(\Omega)$.

Step 6: Coercivity of \mathcal{B}_n . Let $u \in W_0^{1,p}(\Omega)$. Using the growth condition (4.10), we obtain

$$\langle \mathcal{B}_{n}(u), u \rangle = \langle \mathcal{A}_{n}(u), u \rangle + \langle \mathcal{F}_{n}(u), u \rangle$$

$$= M_{n} (\|u\|^{p}) \|u\|^{p} - \int_{\Omega} F(x, u) u$$

$$\geq \frac{1}{n} \|u\|^{p} - C_{1} \|u\| - C_{2} \|u\|^{q+1}$$

$$\geq \|u\|^{p} \left(\frac{1}{n} - C_{1} \|u\|^{1-p} - C_{2} \|u\|^{q+1-p}\right).$$

Since q , it follows that

$$\lim_{\|u\|\to\infty}\frac{\langle \mathcal{B}_n(u),u\rangle}{\|u\|}=+\infty.$$

The operator \mathcal{B} satisfies all assumptions of Lemma 3.11. Consequently, there exists $u_n \in W_0^{1,p}(\Omega)$ such that $\mathcal{B}_n(u) = 0$, meaning u_n weakly solves:

$$\begin{cases}
-M_n (\|u_n\|^p) \, \Delta_p u_n = \frac{f_n}{\left(u_n^+ + \frac{1}{n}\right)^{\gamma}} + g_n (u_n^+)^q & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial\Omega.
\end{cases}$$
(4.14)

Non-negativity and regularity Choosing u_n^- as a test function in the weak formulation of (4.14) yields:

$$-\int_{\Omega} |\nabla u_n^-|^p = \frac{1}{M_n (\|u_n\|^p)} \int_{\Omega} \left(\frac{f_n}{(u_n^+ + \frac{1}{n})^{\gamma}} + g_n (u_n^+)^q \right) u_n^- \ge 0, \tag{4.15}$$

which implies $u_n^- = 0$ a.e. in Ω , and thus $u_n \ge 0$.

Furthermore, by [19, Proposition 1.2], we have u_n belongs to $L^t(\Omega)$ for any $t \in [1, +\infty)$. Since the right-hand side of (4.1) belongs to $L^{\beta}(\Omega)$ with $\beta > \frac{N}{p}$, the L^{∞} -regularity result of [34, Théorème 4.2] implies that $u_n \in L^{\infty}(\Omega)$. This completes the proof of Lemma 4.1.

5 A priori estimates

Lemma 5.1. Let $(u_n)_n$ be a sequence of nonnegative solutions to problem (4.1). Assume that

$$g \in L^{\left(rac{p*}{1+q}
ight)'}(\Omega)$$
 and $f \in L^m(\Omega)$,

where

$$m = \frac{pN}{N(p-1) + p + \gamma(N-p)}.$$

Then there exists a constant L > 0, independent of n, such that

$$||u_n||_{W_0^{1,p}(\Omega)} \le L \quad \text{for all } n \in \mathbb{N}^*. \tag{5.1}$$

Proof. We argue by contradiction. Suppose that (5.1) does not hold. Then, there exists a subsequence, still denoted by (u_n) , such that

$$\|u_n\|_{W_0^{1,p}(\Omega)}^p \to +\infty \quad \text{as } n \to +\infty.$$
 (5.2)

Consequently, for n sufficiently large, we have

$$\|u_n\|_{W_0^{1,p}(\Omega)}^p \ge 1. (5.3)$$

Since the function M is nondecreasing and satisfies assumption (1.2), it follows from (5.3) that

$$||u_n||_{W_0^{1,p}(\Omega)}^p \ge M(1) \ge m_0.$$
 (5.4)

Testing (4.1) with u_n , and using (5.4), we obtain

$$m_0 \|u_n\|_{W_0^{1,p}(\Omega)}^p \le \int_{\Omega} \frac{f_n u_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}} + \int_{\Omega} g_n u_n^{1+q}.$$
 (5.5)

We now distinguish two cases depending on the value of γ .

Case 1: $0 < \gamma < 1$. In this case, the exponent m satisfies $1 < m < \frac{N}{\nu}$.

Since $f_n \le f$ and $g_n \le g$, we apply Hölder inequality to both terms on the right-hand side of (5.5):

$$m_0 \|u_n\|_{W_0^{1,p}(\Omega)}^p \le \|f\|_{L^{\left(\frac{p*}{1-\gamma}\right)'}(\Omega)} \|u_n\|_{L^{p*}(\Omega)}^{1-\gamma} + \|g\|_{L^{\left(\frac{p*}{1+q}\right)'}(\Omega)} \|u_n\|_{L^{p*}(\Omega)}^{q+1}. \tag{5.6}$$

Applying Sobolev's inequality on the left-hand side, we derive:

$$Sm_0 \|u_n\|_{L^{p*}(\Omega)}^p \le \|f\|_{L^{\left(\frac{p*}{1-\gamma}\right)'}(\Omega)} \|u_n\|_{L^{p*}(\Omega)}^{1-\gamma} + \|g\|_{L^{\left(\frac{p*}{1+q}\right)'}(\Omega)} \|u_n\|_{L^{p*}(\Omega)}^{q+1}. \tag{5.7}$$

Since $0 < 1 - \gamma < q + 1 < p$, it follows from inequality (5.7) that the sequence (u_n) is uniformly bounded in $L^{p*}(\Omega)$.

Letting n tends to infinity in (5.6), we arrive at a contradiction: the right-hand side remains bounded, while the left-hand side diverges to infinity as a consequence of assumption (5.2).

Case 2: $\gamma = 1$. In this case m = 1. From (5.5) and $f_n \leq f$, we have:

$$m_0 \|u_n\|_{W_0^{1,p}(\Omega)}^p \le \|f\|_{L^1(\Omega)} + \int_{\Omega} g_n \, u_n^{1+q}.$$
 (5.8)

Using the fact that $g_n \leq g$, and Hölder inequality on the right hand side of (5.8), we obtain

$$m_0 \|u_n\|_{W_0^{1,p}(\Omega)}^p \le \|f\|_{L^1(\Omega)} + \|g\|_{L^{\left(\frac{p*}{1+q}\right)'}(\Omega)} \|u_n\|_{L^{p*}(\Omega)}^{q+1}. \tag{5.9}$$

Again, applying Sobolev's inequality on the right-hand side of (5.9), we get

$$m_0 \|u_n\|_{W_0^{1,p}(\Omega)}^p \le \|f\|_{L^1(\Omega)} + \mathcal{S}^{q+1} \|g\|_{L^{\left(\frac{p*}{1+q}\right)'}(\Omega)} \|u\|_{W_0^{1,p}(\Omega)}^{q+1}. \tag{5.10}$$

Since q + 1 < p, inequality (5.10) implies that the sequence (u_n) is uniformly bounded in $W_0^{1,p}(\Omega)$, contradicting (5.2).

In both cases, we reach a contradiction, which completes the proof of Lemma 5.1.

Lemma 5.2. Let u_n be a nonnegative solution of problem (4.1). Then, for any $\omega \subset\subset \Omega$, there exists a constant $c_\omega > 0$ such that

$$u_n \ge c_\omega$$
 in ω , for all $n \in \mathbb{N}^*$. (5.11)

Proof. Using (5.1) and the fact that *M* is a nondecreasing function, we obtain

$$M_n(\|u_n\|^p) \le M(L) = M_{\infty}, \quad \forall n \in \mathbb{N}^*. \tag{5.12}$$

Thus, in the sense of distributions, we have

$$-\Delta_{p}u_{n} \geq \frac{T_{1}(f) + T_{1}(g)}{M_{\infty}} \left(\frac{1}{(u_{n}+1)^{\gamma}} + u_{n}^{q}\right)$$

$$\geq \frac{\min\left(T_{1}(f) + T_{1}(g)\right)}{M_{\infty}} \left(\frac{1}{(u_{n}+1)^{\gamma}} + u_{n}^{q}\right)$$

$$\geq \frac{c_{0}}{M_{\infty}} T_{1}(\underline{h}) = V(x),$$
(5.13)

where we have used the fact the function $\frac{1}{t^{\gamma}+1} + t^q$, attains a positive minimum on $[0, +\infty[$. Now consider the problem:

$$\begin{cases}
-\Delta_p v = V(x) & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega,
\end{cases}$$
(5.14)

and the weighted eigenvalue problem:

$$\begin{cases} -\Delta_p \phi_1 = \lambda_1 V(x) |\phi_1|^{p-2} \phi_1 & \text{in } \Omega, \\ \phi_1 = 0 & \text{on } \partial \Omega, \end{cases}$$
 (5.15)

where λ_1 is the first eigenvalue of $-\Delta_p$ with weight V, and $\phi_1 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ is its associated eigenfunction. By Lemma 3.3, $\phi_1 \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ and $\phi_1(x) > 0$ for all $x \in \Omega$. Choose $\eta > 0$ sufficiently small so that

$$\lambda_1 \eta^{p-1} \|\phi_1\|_{L^{\infty}(\Omega)}^{p-1} \le 1. \tag{5.16}$$

Then, $\underline{v} = \eta \phi_1$ is a subsolution for problem (5.14), since

$$-\Delta_p \underline{v} = -\Delta_p(\eta \phi_1) = \eta^{p-1} \lambda_1 V(x) \phi_1^{p-1} \le V(x) \quad \text{in } \Omega.$$

By the weak comparison principle, we obtain

$$u_n(x) \ge v(x) \ge \eta \phi_1(x)$$
 a.e. in Ω . (5.17)

Since $\phi_1 > 0$ in Ω and $\omega \subset\subset \Omega$, there exists $c_\omega = \min_\omega \phi_1 > 0$ such that

$$u_n(x) \ge c_{\omega} > 0$$
 for a.e. $x \in \omega$ for all $n \in \mathbb{N}^*$. (5.18)

This completes the proof of Lemma 5.2.

Lemma 5.3. Let u_n be a nonnegative solution of (4.1). Then there exists a constant $\Lambda > 0$, independent of n, such that

$$M(\|u_n\|^p) \ge \Lambda > 0 \quad \text{for all } n \in \mathbb{N}^*. \tag{5.19}$$

Proof. Let ϕ_1 be as in the proof of Lemma 5.2. By normalizing ϕ_1 , we may assume that

$$\|\phi_1\|_{L^p(\Omega)}^p = \int_{\Omega} \phi_1^p \, dx = 1. \tag{5.20}$$

Using the normalization (5.20), the uniform positivity (5.17), and Poincaré's inequality, we obtain

$$\eta^p = \eta^p \int_{\Omega} \phi_1^p dx \le \int_{\Omega} u_n^p dx \le C_{\Omega} \|u_n\|_{W_0^{1,p}(\Omega)}^p.$$

This yields

$$\|u_n\|_{W_0^{1,p}(\Omega)}^p \ge \frac{\eta^p}{C_\Omega}.$$
 (5.21)

Since M is nondecreasing, it follows from (5.21) that

$$M\left(\|u_n\|^p\right) \ge M\left(\frac{\eta^p}{C_{\Omega}}\right). \tag{5.22}$$

Next, we choose $\eta > 0$ sufficiently small so that it satisfies both (5.16) and

$$0<\frac{\eta^p}{C_{\Omega}}\leq 1.$$

Applying the growth condition (1.2) on M, we get

$$M\left(\frac{\eta^p}{C_{\Omega}}\right) \ge m_0 \left(\frac{\eta^p}{C_{\Omega}}\right)^{\mu-1}.$$
 (5.23)

Combining (5.22) and (5.23), we conclude that

$$M(\|u_n\|^p) \ge m_0 \left(\frac{\eta^p}{C_{\Omega}}\right)^{\mu-1} = \Lambda.$$

This completes the proof.

6 Proof of the main results

By Lemma 5.1, the sequence (u_n) is bounded in $W_0^{1,p}(\Omega)$. Consequently, there exists a function $u \in W_0^{1,p}(\Omega)$ such that, up to subsequence,

$$u_n \to u$$
 weakly in $W_0^{1,p}(\Omega)$,

and

 $u_n \to u$ almost everywhere in Ω .

Moreover, using (5.11), we deduce that u satisfies (1.8).

Furthermore, by (5.19) and (5.11), the sequence

$$\frac{1}{M_n\left(\|u_n\|^p\right)}\left(\frac{f_n}{\left(u_n+\frac{1}{n}\right)^{\gamma}}+g_n\ u_n^q\right),\,$$

is bounded in $L^1_{loc}(\Omega)$. By Theorem 2.1 of [5], it follows that

 $\nabla u_n \to \nabla u$ almost everywhere in Ω .

We now prove that u satisfies (1.9). Let $\varphi \in C_0^{\infty}(\Omega)$. The inequality (5.11) implies

$$0 \le \left| \frac{f_n \varphi}{\left(u_n + \frac{1}{n}\right)^{\gamma}} \right| \le \left| \frac{f_n \varphi}{u_n^{\gamma}} \right| \le \frac{\|\varphi\|_{L^{\infty}(\Omega)}}{c_{\omega}^{\gamma}} f,$$

where ω is the compact support of the function φ . By the Lebesgue dominated convergence theorem,

$$\lim_{n \to +\infty} \int_{\Omega} \frac{f_n \varphi}{\left(u_n + \frac{1}{n}\right)^{\gamma}} = \int_{\Omega} \frac{f \varphi}{u^{\gamma}}.$$
 (6.1)

Since $g \in L^{\frac{p^*}{p^*-q-1}}(\Omega)$ and (u_n) is bounded in $L^{p^*}(\Omega)$, Vitali's theorem (see [36, p. 333]) ensures

$$\int_{\Omega} g_n \, u_n^q \varphi \to \int_{\Omega} g u^q \varphi. \tag{6.2}$$

Indeed, for any measurable subset $E \subset \Omega$, we have

$$\begin{split} \int_{E} g_{n} \, u_{n}^{q} \varphi \, dx &\leq \|\varphi\|_{L^{\infty}(\Omega)} \int_{E} |g(x)| \, |u_{n}|^{q} \, dx \\ &\leq \|\varphi\|_{L^{\infty}(\Omega)} \|g\|_{L^{\frac{p_{*}}{p^{*}} - q - 1}(\Omega)} \left(\int_{E} |u_{n}|^{\frac{qp^{*}}{q + 1}} \, dx \right)^{\frac{q + 1}{p^{*}}} \\ &\leq \|\varphi\|_{L^{\infty}(\Omega)} \|g\|_{L^{\frac{p_{*}}{p^{*}} - q - 1}(\Omega)} \|u_{n}\|_{L^{p^{*}(\Omega)}} |E|^{\frac{1}{p^{*}}} \to 0 \quad \text{as } |E| \to 0. \end{split}$$

Thus, $(g_n u_n^q \varphi)_n$ is equi-integrable, and since it converges a.e. to $g u^q \varphi$, (6.2) holds by Vitali's theorem.

Combining (6.1) and (6.2), we obtain

$$\lim_{n \to +\infty} \int_{\Omega} \left(\frac{f_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}} + g_n u_n^q \right) \varphi = \int_{\Omega} \left(\frac{f}{u^{\gamma}} + g u^q \right) \varphi. \tag{6.3}$$

Recalling that u_n satisfies the identity

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla \varphi = \frac{1}{M_n \left(\|u_n\|^p \right)} \int_{\Omega} \left(\frac{f_n}{\left(u_n + \frac{1}{n} \right)^{\gamma}} + g_n \, u_n^q \right) \varphi, \tag{6.4}$$

for every $\varphi \in C_0^{\infty}(\Omega)$. By Lemma 5.3, the sequence (u_n) is bounded in $W_0^{1,p}(\Omega)$, so up to a subsequence,

$$||u_n|| \longrightarrow \theta_0.$$
 (6.5)

Passing to the limit in (6.4) using (6.3) and (6.5), we conclude

$$M(\theta_0^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi = \int_{\Omega} \left(\frac{f}{u^{\gamma}} + g u^q \right) \varphi, \ \forall \varphi \in C_0^{\infty}(\Omega).$$
 (6.6)

To complete the proof of (1.9), it remains to show that

$$M(\theta_0^p) = M(\|u\|^p).$$

Let $\varphi_{\varepsilon} \in C_0^{\infty}(\Omega)$ such that $\varphi_{\varepsilon} \to u$ strongly in $W_0^{1,p}(\Omega)$. Testing (6.6) with φ_{ε} and taking liminf (using Fatou's Lemma) yields

$$M(\theta_0^p) \|u\|^p \ge \int_{\Omega} f u^{1-\gamma} + \int_{\Omega} g u^{q+1}. \tag{6.7}$$

On the other hand, testing the weak formulation (4.1) with u_n gives

$$M_n(\|u_n\|^p)\|u_n\|^p = \int_{\Omega} \frac{f_n u_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}} + \int_{\Omega} g_n u_n^{q+1}.$$
 (6.8)

To pass to the limit in the right side of (6.8), we distinguish two cases based on the value of γ .

Case 1: $0 < \gamma < 1$. Since $f \in L^{\frac{p^*}{p^*+\gamma-1}}(\Omega)$ and $g \in L^{\frac{p^*}{p^*-q-1}}(\Omega)$, it follows from [6, Theorem 2.5.7] that for every for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every measurable set $E \subset \Omega$ with $|E| \le \delta$, we have

$$\int_{E} |f(x)|^{\frac{p^*}{p^*+\gamma-1}} dx \leq \varepsilon^{\frac{p^*}{p^*+\gamma-1}}, \quad \int_{E} |g(x)|^{\frac{p^*}{p^*-q-1}} dx \leq \varepsilon^{\frac{p^*}{p^*-q-1}},$$

Applying Hölder's inequality, we obtain

$$\int_{E} \left(\frac{f_{n} u_{n}}{\left(u_{n} + \frac{1}{n} \right)^{\gamma}} + g_{n} u_{n}^{q+1} \right) dx \leq \|u_{n}\|_{L^{p*}(\Omega)}^{1-\gamma} \left(\int_{E} |f(x)|^{\frac{p^{*}}{p^{*}+\gamma-1}} dx \right)^{\frac{p^{*}+\gamma-1}{p^{*}}} + \|u_{n}\|_{L^{p*}(\Omega)}^{q+1} \left(\int_{E} |g(x)|^{\frac{p^{*}}{p^{*}-q-1}} dx \right)^{\frac{p^{*}-q-1}{p^{*}}} \leq C\varepsilon, \tag{6.9}$$

where the constant C > 0 is independent of n, thanks to the uniform boundedness of (u_n) in $W_0^{1,p}(\Omega)$ and the continuous Sobolev embedding.

From (6.9), we deduce that the sequences

$$\left(\frac{f_n u_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}}\right)_n$$
 and $\left(g_n u_n^{q+1}\right)_n$

are equi-integrable. Therefore, by Vitali's convergence theorem, we obtain

$$\int_{\Omega} \frac{f_n u_n}{(u_n + \frac{1}{n})^{\gamma}} dx \to \int_{\Omega} f u^{1-\gamma}, \tag{6.10}$$

and

$$\int_{\Omega} g_n \, u_n^{q+1} \, dx \to \int_{\Omega} g u^{q+1} \, dx. \tag{6.11}$$

Combining (6.10) and (6.11), it follows that

$$\int_{\Omega} \frac{f_n u_n}{\left(u_n + \frac{1}{n}\right)^{\gamma}} dx + \int_{\Omega} g_n u_n^{q+1} dx \to \int_{\Omega} f u^{1-\gamma} + \int_{\Omega} g u^{q+1} dx. \tag{6.12}$$

Case 2: $\gamma = 1$. In this case, observe that

$$\frac{f_n u_n}{u_n + \frac{1}{n}} \le f,$$

and

$$\frac{f_n u_n}{u_n + \frac{1}{n}} \to f$$
 almost everywhere in Ω .

Hence, by the Lebesgue dominated convergence theorem, we deduce

$$\int_{\Omega} \frac{f_n \, u_n}{u_n + \frac{1}{n}} \, dx \to \int_{\Omega} f \, dx. \tag{6.13}$$

Combining (6.13) with the already established convergence (6.11), we obtain

$$\int_{\Omega} \frac{f_n u_n}{u_n + \frac{1}{n}} dx + \int_{\Omega} g_n u_n^{q+1} dx \to \int_{\Omega} f dx + \int_{\Omega} g u^{q+1} dx.$$
 (6.14)

Using (6.5) in conjunction with either (6.12) or (6.14) (depending on the value of γ), we can pass to the limit in (6.8). This leads to the following identity:

$$M\left(\theta_0^p\right)\theta_0^p = \int_{\Omega} f u^{1-\gamma} + \int_{\Omega} g \, u^{q+1}. \tag{6.15}$$

Comparing (6.7) and (6.15), we obtain $M(\theta_0^p)\|u\|^p \ge M(\theta_0^p)\theta_0^p$, which implies $\|u\| \ge \theta_0$, since $M(\theta_0) \ge \Lambda > 0$.

On the other hand, since u_n converges weakly to u in $W_0^{1,p}(\Omega)$, and given that $||u_n||$ converges to θ_0 , we have

$$\theta_0 = \liminf_{n \to +\infty} \|u_n\| \ge \|u\|.$$

Thus, $||u|| = \theta_0$, and the proof of Theorem 2.1 is complete.

7 Regularity results

In this section, we investigate how the regularity of a solution u to problem (1.1) depends on the summability of f and g.

We begin with a key lemma that extends the class of admissible test functions in the weak formulation (1.9) from $C_0^{\infty}(\Omega)$ to $W_0^{1,p}(\Omega)$.

Lemma 7.1. Let $u \in W_0^{1,p}(\Omega)$ be a weak solution of the problem (1.1). Then, the formulation (1.9) holds for all test functions $W_0^{1,p}(\Omega)$, i.e.,

$$M(\|u\|^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi = \int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x) u^q \right) \varphi, \tag{7.1}$$

for every $\varphi \in W_0^{1,p}(\Omega)$.

Proof. The proof follows the approach of [18, Lemma A.5] and also [16, Lemma 5.1]. Let $u \in W_0^{1,p}(\Omega)$ be a weak solution of the problem (1.1). Given $\varphi \in W_0^{1,p}(\Omega)$, there exists a sequence $(\varphi_{\varepsilon})_{\varepsilon>0} \subset \mathcal{C}_0^{\infty}(\Omega)$ such that

$$\varphi_{\varepsilon} \to \varphi$$
 strongly in $W_0^{1,p}(\Omega)$. (7.2)

Define $\psi_{\varepsilon} = |\varphi_{\varepsilon} - \varphi|$. By density, for each fixed $\varepsilon > 0$, there exists a sequence of nonnegative functions $(\psi_{\varepsilon\eta})_{\eta>0} \subset \mathcal{C}_0^{\infty}(\Omega)$ such that

$$\psi_{\varepsilon\eta} \to \psi_{\varepsilon} \quad \text{in } W_0^{1,p}(\Omega) \text{ and a.e. in } \Omega.$$

Testing (1.9) with $\psi_{\varepsilon\eta}$ yields

$$M(\|u\|^p)\int_{\Omega}|\nabla u|^{p-2}\nabla u\cdot\nabla\psi_{\varepsilon\eta}=\int_{\Omega}\left(\frac{f(x)}{u^{\gamma}}+g(x)u^q\right)\psi_{\varepsilon\eta}.$$

Taking the lim inf as $\eta \to 0$ and applying Fatou's lemma to the right-hand side, we obtain

$$\int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x)u^{q} \right) \psi_{\varepsilon} \le M \left(\|u\|^{p} \right) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \psi_{\varepsilon} \tag{7.3}$$

Using Hölder's inequality on the right-hand side of (7.3), we deduce

$$\int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x)u^{q} \right) |\varphi_{\varepsilon} - \varphi| \leq M \left(\|u\|^{p} \right) \|u\|^{p-1} \|\psi_{\varepsilon}\|.$$

Passing to the limit as $\varepsilon \to 0$, we conclude that

$$\int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x)u^{q} \right) \varphi_{\varepsilon} \to \int_{\Omega} \left(\frac{f(x)}{u^{\gamma}} + g(x)u^{q} \right) \varphi. \tag{7.4}$$

From (7.2), it follows that

$$M(\|u\|^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi_{\varepsilon} \to M(\|u\|^p) \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi. \tag{7.5}$$

Combining (7.4) and (7.5), we obtain the desired result.

Theorem 7.2. Assume that $f \in L^m(\Omega)$, with $m > \frac{N}{p}$, and $g \in L^{\infty}(\Omega)$. Let u be a positive solution of (1.1). Then, $u \in L^{\infty}(\Omega)$.

Proof. The proof follows the approach in [14,29,35]. For $k \ge 1$, define the truncation function

$$G_k(t) = t - T_k(t) = \begin{cases} k & \text{if } t > k, \\ t & \text{if } -k \le t \le k, \\ -k & \text{if } t < -k. \end{cases}$$

For s > 0 and h > 0, define the test function

$$w = G_k(u) \min \left\{ G_k(u)^{ps}, h^p \right\}.$$

Testing the weak formulation (7.1) with w, and using the uniform lower bound $M(\|u\|^p) \ge \Lambda$ from Lemma 5.3 (see (5.19)), we obtain

$$\Lambda \int_{\Omega} |\nabla G_{k}(u)|^{p} \min \{G_{k}(u)^{ps}, h^{p}\} + ps \int_{\{0 \leq G_{k}(u)^{s} \leq h\}} G_{k}(u)^{ps} |\nabla G_{k}(u)|^{p} \\
\leq \int_{\Omega} \left(\frac{f}{u^{\gamma}} + g u^{q}\right) G_{k}(u) \min \{G_{k}(u)^{ps}, h^{p}\}.$$

Since $u \ge 1$ on the set $\{u \ge k\}$, we deduce that

$$\Lambda \int_{\Omega} \left| \nabla \left(G_k(u) \min \left\{ G_k(u)^s, h \right\} \right) \right|^p \leq \int_{\Omega} f G_k(u) \min \left\{ G_k(u)^{ps}, h^p \right\} \\
+ \|g\|_{L^{\infty}(\Omega)} \int_{\Omega} G_k(u)^p \min \left\{ G_k(u)^{ps}, h^p \right\}.$$

Since $f \in L^{\frac{N}{p}}(\Omega)$, the absolute continuity of the integral (see [6, Theorem 2.5.7]) implies that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any measurable set $E \subset \Omega$ with $|E| \leq \delta$, we have

$$\int_{E} |f(x)|^{\frac{N}{p}} dx \le \varepsilon^{\frac{N}{p}}.$$
 (7.6)

Now, by the Chebyshev inequality (see [7, Lemma 20.1])), for any c > 0,

$$|\left\{f(x)>c\right\}| \leq \frac{1}{c^{\frac{N}{p}}} \int_{\Omega} |f(x)|^{\frac{N}{p}} dx.$$

Then choosing *c* sufficiently large, we conclude that

$$|\{f > c\}| \le \delta. \tag{7.7}$$

Combining (7.6) and (7.7), it follows that

$$\left(\int_{\{f\geq c\}}|f|^{\frac{N}{p}}\right)^{\frac{p}{N}}<\varepsilon.$$

Assume $G_k(u) \in L^{p(s+1)}(\Omega)$. Applying the Sobolev inequality on the left-hand side and the Hölder inequality on the right hand-side, we obtain

$$\begin{split} S\Lambda \left(\int_{\Omega} \left| G_{k}(u) \min \left\{ G_{k}(u)^{s}, h \right\} \right|^{p^{*}} \right)^{\frac{p}{p^{*}}} \\ & \leq h^{p} |\Omega|^{\frac{p-1}{p^{*}}} \left(\int_{\left\{ f \geq c \right\}} |f|^{\frac{N}{p}} \right)^{\frac{p}{N}} \|G_{k}(u)\|_{L^{p^{*}}(\Omega)} + \left(c + \|g\|_{L^{\infty}(\Omega)} \right) \int_{\Omega} G_{k}(u)^{p(s+1)} \\ & \leq \varepsilon h^{p} |\Omega|^{\frac{p-1}{p^{*}}} \|G_{k}(u)\|_{L^{p^{*}}(\Omega)} + \left(c + \|g\|_{L^{\infty}(\Omega)} \right) \int_{\Omega} G_{k}(u)^{p(s+1)}. \end{split}$$

Choosing $\varepsilon < \frac{1}{h^p |\Omega|^{\frac{p-1}{p^*}}}$, we derive

$$\left(\int_{\Omega} \left| G_k(u) \min \left\{ G_k(u)^s, h \right\} \right|^{p^*} \right)^{\frac{p}{p^*}} \leq \frac{1}{S\Lambda} \|G_k(u)\|_{L^{p^*}(\Omega)} + \frac{c + \|g\|_{L^{\infty}(\Omega)}}{S\Lambda} \|G_k(u)\|_{L^{p(s+1)}(\Omega)}^{p(s+1)}.$$

Taking $h \to \infty$, we obtain

$$\left(\int_{\Omega} |G_k(u)|^{p^*(s+1)}\right)^{\frac{p}{p^*}} \leq \frac{1}{S\Lambda} \|G_k(u)\|_{L^{p^*}(\Omega)} + \frac{c + \|g\|_{L^{\infty}(\Omega)}}{S\Lambda} \|G_k(u)\|_{L^{p(s+1)}(\Omega)}^{p(s+1)}. \tag{7.8}$$

Since $u \in W_0^{1,p}(\Omega)$, it follows from Sobolev's embedding theorem that $G_k(u) \in L^{p^*}(\Omega)$. Therefore, the bootstrap inequality (7.8) holds for $s = s_0 = 0$.

Now, set $s = s_1$ in (7.8) such that

$$p(s_1+1) = p^* = \frac{pN}{N-p},$$

which gives

$$s_1 + 1 = (s_0 + 1)N/(N - p).$$

This implies $G_k(u) \in L^{p^*(s_1+1)}(\Omega)$.

We now iterate this argument. Suppose $G_k(u) \in L^{p^*(s_{i-1}+1)}(\Omega)$; then, applying the same reasoning, we obtain

$$G_k(u) \in L^{p^*(s_i+1)}(\Omega)$$
, where $s_i + 1 = N(s_{i-1} + 1)/(N - p)$.

The sequence $(s_i)_{i\in\mathbb{N}}$ is positive (since $s_1>0$) and increasing because $s_i+1=N(s_{i-1}+1)/(N-p)>s_{i-1}+1$. Thus, $(s_i)_{i\in\mathbb{N}}$ approaches a limit l as $i\to\infty$. Suppose, for contradiction, that l is finite. Then, passing to the limit in the recurrence relation gives

$$l+1 = N(l+1)/(N-p)$$

which is impossible since $\frac{N}{N-p} > 1$. Hence $l = +\infty$, and we conclude that

$$G_k(u) \in L^{\rho}(\Omega)$$
 for all $\rho \in (1, \infty)$.

Next, we take $G_k(u)$ as a test function in the weak formulation (7.1). Using the uniform positivity estimate $M(\|u\|^p) \ge \Lambda$ from Lemma 5.3 (see (5.19)), we obtain

$$\Lambda \int_{\Omega} |\nabla G_k(u)|^p \leq \int_{\Omega} \left(\frac{f}{u^{\gamma}} + gu^q\right) G_k(u).$$

Since $u \ge k \ge 1$ on the set $\{u \ge k\}$, it follows that

$$\int_{\Omega} |\nabla G_k(u)|^p \leq \frac{1}{\Lambda} \int_{\Omega} (f + gG_k(u)^q) G_k(u).$$

Because $f + gG_k(u)^q \in L^{\alpha}(\Omega)$ for some $\alpha > \frac{N}{p}$, we can apply Stampacchia's L^{∞} -regularity result (see [34]) to conclude that $u \in L^{\infty}(\Omega)$.

References

- [1] A. Ambrosetti, G. Prodi, *A primer of nonlinear analysis*, Cambridge University Press, Cambridge, 1993. MR1336591
- [2] A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge university press, Cambridge, 2007. MR2292344
- [3] A. Anane, Étude des valeurs propres et de la résonance pour l'opérateur p-Laplacien (in French) [On the eigenvalues and resonance for the p-Laplacian operator], PhD thesis, Université Libre de Bruxelles, 1987.
- [4] L. BOCCARDO, L. ORSINA, Semilinear elliptic equations with singular nonlinearities, *Calc. Var. Partial Differ. Equ.* **37**(2010), No. 3–4, 363–380. https://doi.org/10.1007/s00526-009-0266-x; MR2592976; Zbl 1187.35081
- [5] L. BOCCARDO, F. MURAT, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, *Nonlinear Anal.* 19(1992), No. 6, 581–597. https://doi. org/10.1016/0362-546X(92)90023-8; MR1183665; Zbl 0783.35020
- [6] V. I. BOGACHEV, Measure theory. Vol. I, Springer-Verlag, Berlin, 2007. https://doi.org/ 10.1007/978-3-540-34514-5; MR2267655; Zbl 1120.28001

- [7] H. BAUER, Measure and integration theory, Walter de Gruyter, Berlin, 2001. https://doi.org/10.1515/9783110866209; Zbl 0985.28001
- [8] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité (in French) [Nonlinear equations and inequalities in vector spaces in duality], *Annales de l'Institut Fourier (Grenoble)* **18**(1968), 115–175. https://doi.org/10.5802/aif.280; MR0270222; Zbl 0169.18602
- [9] A. CANINO, B. SCIUNZI, A. TROMBETTA, Existence and uniqueness for *p*-Laplace equations involving singular nonlinearities, *Nonlinear Differ. Equ. Appl.* **23**(2016), Art. 8, 18 pp. https://doi.org/10.1007/s00030-016-0361-6; MR3478284; Zbl 1341.35074
- [10] M. M. COCLITE, G. PALMIERI, On a singular nonlinear Dirichlet problem, Commun. Partial Differ. Equ. 14(1989), 1315–1327. https://doi.org/10.1080/03605308908820656; Zbl 0692.35047
- [11] F. J. S. A. CORRÊA, G. M. FIGUEIREDO, On an elliptic equation of *p*-Kirchhoff type via variational methods, *Bull. Aust. Math. Soc.* **74**(2006), 263–277. https://doi.org/10.1017/S000497270003570X; MR2260494; Zbl 1108.45005
- [12] F. J. S. A. CORRÊA, R. G. NASCIMENTO, On the existence of solutions of a nonlocal elliptic equation with a *p*-Kirchhoff-type term, *Int. J. Math. Math. Sci.* **2008**, Article ID 364085, 25 pp. https://doi.org/10.1155/2008/364085; MR2466217; Zbl 1220.35080
- [13] L. M. DE CAVE, Nonlinear elliptic equations with singular nonlinearities, *Asymptot. Anal.* **84**(2013), 181–195. MR3136107; Zbl 1282.35180
- [14] P. Drábek, A. Kufner, F. Nicolosi, *Quasilinear elliptic equations with degenerations and singularities*, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 5, Walter de Gruyter, Berlin, 1997. https://doi.org/10.1515/9783110804775; MR1460729; Zbl 0894.35002
- [15] R. Durastanti, F. Oliva, Comparison principle for elliptic equations with mixed singular nonlinearities, *Potential Anal.* **57**(2022), 83–100. https://doi.org/10.1007/s11118-021-09906-3; MR4421923; Zbl 1491.35161
- [16] P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, *Nonlinear Anal.* **223**(2022), Paper No. 113022, 35 pp. https://doi.org/10.1016/j.na.2022.113022; MR4444761; Zbl 1495.35010
- [17] L. Gasinski, N. S. Papageorgiou, *Nonlinear analysis*, Series in Mathematical Analysis and Applications, Vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420035049; MR2168068
- [18] J. GIACOMONI, I. SCHINDLER, P. TAKÁČ, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, *Ann. Sc. Norm. Super. Pisa Cl. Sci.* **6**(2007), 117–158. https://doi.org/10.2422/2036-2145.2007.1.07; MR2341518; Zbl 1181.35116
- [19] M. Guedda, L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13(1989), 879–902. https://doi.org/10.1016/0362-546X(89)90020-5; MR1009077; Zbl 0714.35032

- [20] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.
- [21] P. LINDQVIST, On the equation $-\text{div}(|\nabla u|^{p-2}\nabla u)$, Proc. Amer. Math. Soc. **109**(1990), 157–166. https://doi.org/10.1090/S0002-9939-1990-1007505-7; MR1007505; Zbl 0714.35029
- [22] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (in French), Dunod, Gauthier-Villars, Paris, 1969. MR0259693; Zbl 0189.40603
- [23] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, *Nonlinear Anal.* **63**(2005), e1967–e1977. https://doi.org/10.1016/j.na.2005.03.021; Zbl 1224.35140
- [24] L. A. Medeiros, J. Limaco, S. B. Menezes, Vibrations of elastic strings: Mathematical aspects Part one, *J. Comput. Anal. Appl.* 4(2002), 91–127. https://doi.org/10.1023/A: 1012934900316; MR1875347; Zbl 1118.35335
- [25] L. A. Medeiros, J. Limaco, On the Kirchhoff equation in noncylindrical domains of \mathbb{R}^N , *Pro Mathematica* **19**(2005), 91–106.
- [26] M. ÔTANI, T. TESHIMA, On the first eigenvalue of some quasilinear elliptic equations, *Proc. Japan Acad. Ser. A Math. Sci.* **64**(1988), 8–10. https://doi.org/10.3792/pjaa.64.8; MR0953752
- [27] J. Peradze, An approximate algorithm for a Kirchhoff wave equation, SIAM J. Numer. Anal. 47(2009), 2243–2268. https://doi.org/10.1137/070711876; MR2519602; Zbl 1197.65230
- [28] I. Peral, Multiplicity of solutions for the p-Laplacian, ICTP SMR 990/1, 1997.
- [29] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, *Indiana Univ. Math. J.* **57**(2008), 3329–3363. https://doi.org/10.1512/iumj.2008.57.3525; Zbl 2492235; Zbl 1171.35057
- [30] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional *p*-Kirchhoff equations, *Adv. Nonlinear Anal.* **5**(2016), 27–55. https://doi.org/10.1515/anona-2015-0102; MR3456737; Zbl 1334.35395
- [31] T. Roubíček, Nonlinear partial differential equations with applications, Second edition, International Series of Numerical Mathematics, Vol. 153, Birkhäuser/Springer Basel AG, Basel, 2013. https://doi.org/10.1007/978-3-0348-0513-1; Zbl 1270.35005
- [32] B. Schweizer, *Partielle Differentialgleichungen*, Springer-Verlag, Berlin, 2013. https://doi.org/10.1007/978-3-662-67188-7; MR3616239; Zbl 1284.35001
- [33] J. Serrin, Local behavior of solutions of quasi-linear equations, *Acta Math.* **111**(1964), 247–302. https://doi.org/10.1007/BF02391014; MR0170096; Zbl 0128.09101
- [34] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus (in French), *Ann. Inst. Fourier (Grenoble)* **15**(1965), 189–258. MR0192177; Zbl 0151.15401
- [35] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Fourth edition, Springer-Verlag, Berlin, 2008. https://doi.org/10.1007/978-3-540-74013-1; MR2431434, Zbl 1284.49004

- [36] E. M. Vestrup, *The theory of measures and integration*, Wiley, New York , 2003. https://doi.org/10.1002/9780470317112; MR2014776; Zbl 1059.28001
- [37] E. Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4612-0981-2; MR1033498