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Abstract. In this paper, we study the following p-Kirchhoff-type elliptic problem:

-M </Q Vu|P> div (|wv’*2w) = % +g(x)ul inQ,

u>0 in O,
u=20 on o),

where O c RY is a bounded smooth domain, 1 < p<N0<y<1,0<g<p-—1
and M : R — R" is a continuous function satisfying additional hypotheses. The
data f and g belonging to suitable Lebesgue space. Our approaches are based on an
approximation scheme and the pseudomonotone operators theory.
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1 Introduction

Let Q) be a bounded open subset in RN with 1 < p < N. We consider the following non local
elliptic problem

~M(JJu]]?) Apu = L5 4 g(x)u? inQ,
u>0 in Q, (1.1)
u=20 on (),

where |[ul|f = [|Vu[Pdx,0 <y <1and M : RT = [0,400[— R™ is a continuous nonde-
creasing function satisfying the following structural assumption:

Tmg >0, u>1: M(t) >mt' !, vt € [0,1]. (1.2)
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Observe that condition (1.2) is trivially satisfied in the non-degenerate case, i.e., when M(0) >
0. A prototypical example of a Kirchhoff-type function satisfying (1.2) is:

M) =a+brt"', a4, b>0,a+b>0,r>1,t>0.

Such a condition has been previously utilized by Pucci et al. in [30].
We assume the source terms f and g satisfy the following conditions:

f,§>0, h:=inf(f,g) #0, (1.3)

m . pN (1’1* )I fo<y<l,
L"(Q)), hm = = T , 1.4
feL"(Q), withm NG 1% p LN ) {1 N (1.4)
ge (5 (). (1.5)

Due to the nonlocal term M (||u||?), the first equation in (1.1) is no longer a pointwise iden-
tity. This introduces significant mathematical challenges, making the study of such problems
particularly interesting.

For p = 2, the operator M (||u||?) A, arises naturally in the Kirchhoff equation:

azl PO / ) -0
FYe tor axz_ '

which generalizes the classical D’ Alembert wave equation for vibrating strings:

2 2
3;‘—&3;:0, x € (0,L), t>0.
For more on this physical background, see [11,23-25,27] and the references therein.

Before presenting the details of our results, we briefly review existing results for singular
and nonlocal problems.

In the local case, i.e., M = 1, the problem (1.1) is closely related to the foundational work in
[10], where the authors showed the existence of a solution for the following nonlinear singular
elliptic equation

—Au = u%%—uq in O,
u>0 in ),
u=20 on 0(),

where O C RN (N > 3) is a bounded domain with smooth boundary 9Q, A > 0, and the
exponent g of the sublinear term satisfies 0 < g < 1.
Giacomoni, Schindler, and Taka¢ in [18] extended this analysis to the quasilinear setting:

—Apu = u%—i—uq in (),

u>0 in ),
u=20 on dQ),
where0 <y <1, 1<p< Nandp—-1<gq < p*—1, with p* = Np denotes the critical

Sobolev exponent for the embedding W0 P(Q) in to L!(Q) for every t € [1, p*].
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In [15], the author considered:

—Apu = 1) +g(x)u? inQ,

u

u>0 in O, (1.6)
u=20 on 0Q),

where 0 < g < p—1, f and g are nonnegative functions belonging to suitable Lebesgue
spaces. The author proved that

px

elfg<p—-1,0<y<1,fe (1{‘7)/, and g € L(Hq)/(Q), then the solution u belongs to
1,
W,” ().

p*

° 1ffy =1, f € Ll(ﬂ), and ge L(Hq) (Q)/ then u € W(},p(ﬂ)

In the nonlocal setting, Corréa et al. [12] studied:

—M(HuHP)Apu:%—i—uq in O,
u>0 in Q, (1.7)
u=20 on dQ),

where QO € RY is a bounded smooth domain, 2 < p<NO<7,q9<1f: O — Ris
continuous function with f > 0 on (), and M : RT — R is a continuous function satisfying

e there are mp > 0 and 0; > 0 such that M(t) > mg Vt > 6y;
e 0, =sup{t>0; M(t) =0} > 0.

The authors consider an approximation of problem (1.7) by a regularized problem. They then
prove that there is at least one solution in Wg’p (Q)) by employing the Galerkin method along
with a variant of Brouwer’s fixed point theorem [22, Lemme 4.3]. Subsequently, they pass to
the limit to obtain a solution of (1.7).

Motivated by the above works, in this paper we investigate the existence and regularity
of solutions to problem (1.1), extending some results from [15] to the degenerate nonlocal
case. To the best of our knowledge, this work provides the first treatment of a degenerate
Kirchhoff-type problem involving both singular and sublinear nonlinearities, under optimal
integrability assumptions on the source terms f and g.

Before presenting our main results, we first define what we mean by a weak solution to
(1.1). Following Giacomoni et al. [18], the solutions of (1.1) are understood in the following
sense

Definition 1.1. A weak solution to problem (1.1) is a function u € W&’p (Q) such that
Yo cCQ, dc, >0: u>cy >0inw, (1.8)

and

M) [V 2vave = [ (B egwur) g, vpecr@. a9
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Remark 1.2. If u is a weak solution to problem (1.1) in the sense of Definition 1.1, then for
every test function ¢ € C3°(Q)), the right-hand side of the weak formulation (1.9) is finite.
Indeed, the local positivity condition (1.8) implies

f£< |’(P|’L°°(Q)/Qf<+oo.

aur — ¢

Hence, £ ¢ L1 (Q)), and consequently,

7 u loc
T 4 gut € L, (@),

Therefore, the weak formulation (1.9) is well-defined.

2 Statements of the main result

Here is the main result of this paper.

Theorem 2.1. Let us assume that (1.2)—(1.3) hold true, g € L(lﬂ*q) (Q), and f € L™(Q), with

pN

"I Np-D+p+r(N=p)

2.1)

Then there exists at least one weak solution to problem (1.1).

Remark 2.2. Note that

N(p—-1)+p+y(N-p) if y = 1.

N
PN (&) fo<y<n,
1

The structure of the rest of this paper is as follows. Section 3 introduces the necessary
notations and preliminary results that will be used throughout our analysis. Section 4 estab-
lishes the existence of a solution to the approximated problem by employing pseudomonotone
operator theory. Section 5 derives essential a priori estimates for the approximate solution,
which play a crucial role in proving the main result. Section 6 proves the main result by taking
the limit of the sequence of approximated problems. Finally, Section 7 examines additional
regularity properties of the obtained solution.

3 Notations and mathematical background

We begin by establishing the necessary framework for our analysis. Let () be a bounded
smooth domain in RN with 1 < p < N. The truncation function Ty : R — R at level k > 0 is
defined as

Ty (s) = max{—k, min{s, k}}.

We now present fundamental results concerning the spectrum of the p-Laplacian operator
with weights. For further details on this topic, the reader is referred to [3,17,21,28].
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3.1 Weighted eigenvalue problems

Let V(x) > 0 be a measurable function, not identically zero, V(x) € L®(Q}). Let us consider
the problem:
ue W,(Q), u#o,
—div (|Vu|P~2Vu) = AV(x)[ulf?u inQ, (Py)
u=20 on 0Q).

We define the functionals A and B as follows:

1
A(w) = el oy

Bw) = [ Vi)

for all w € W, " (Q).
Definition 3.1 ([3]). A real number A € R is called an eigenvalue if there exists a function

u such that the pair (u, A) is a solution to problem (P,). Such a function (non-trivial by
definition) is called an eigenfunction associated with A. The first eigenvalue A, is defined by:

A = inf{A(w) D wE Wol’p(Q), and B(w) = 1} :

Lemma 3.2 ([14,19,33]). Let u € Wg’p(ﬂ)\ {0} be an eigenfunction associated to A. Then u €
L2(Q).

Lemma 3.3 ([3, Lemma 3.1]). If u is an eigenfunction of (Py), then u € C*(Q) for some a € (0,1).
Moreover, if u > 0, then u > 0 in Q) and % < 0 on dQ), where v denotes the unit exterior normal
vector to oQ).

Lemma 3.4 ([3, Lemma 3.3]). Every eigenfunction u associated with Ay has constant sign, i.e., either
u>0o0ru<0inQ.

Lemma 3.5 ([3, Theorem 3.1]). The first eigenvalue Ay is simple, i.e., if u and v are two eigenfunctions
associated with Ay, then u = av for some a € R.

3.2 Weak comparison principle

The following weak comparison principle will be essential for our subsequent analysis. For
the proof, we refer to [28, Lemma A.0.7] or the more general version in [26, Lemma 3].

Lemma 3.6. Let uy, uy € WY (Q) satisfying

—Apuy < —Apup, in Q, (in the weak sense)
uy < uy, on 0Q).

Then, u; < up a.e. in Q.
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3.3 Pseudomonotone operator theory

The following operator classes are fundamental to our nonlinear analysis framework. We
recall these standard definitions from [37, Definition 26.1].

Definition 3.7. Let A : X — X’ be an operator on the real reflexive Banach space X.
1. A is said to be hemicontinuous iff the real function
t— (A(u+to),w),
is continuous on [0,1] for all u, v, w € X.
2. Ais said to be strongly continuous iff 1, — u implies A(u,) — A(u).
3. Ais called to be bounded iff A maps bounded sets into bounded sets.
4. A is said to be monotone iff

(A(u) —A(v),u—v)>0 forallu,veX.

5. A is called coercive if A
L (AW,

luf oo [[u]]

= +-o00.

The following properties of the p-Laplacian operator are well-known, see [32, Theorem
17.11].

Lemma 3.8. The p-Laplacian operator —A,, : Wé’p (Q) — WP (Q) is monotone, coercif and con-
tinuous.

The following definition, originally introduced by Brézis [8], plays a fundamental role in
our existence proof.

Definition 3.9. [37, Definition 27.5] Let A : X — X’ be an operator on the real reflexive Banach
space X. The operator A is called pseudomonotone iff 1, — u as n — oo and

limsup( A(u,),uy, —u) <0,
n—oo
implies that
(A(u),u—w) <liminf{ A(uy), u, —w).

n—oo

The following result relates pseudomonotonicity to the sum of a monotone hemicontinu-
ous operator and a strongly continuous operator, see [37, Proposition 27.6].

Lemma 3.10. Let A : X — X' be an operator on the real reflexive Banach space X. If A is monotone
and hemicontinuous and B is strongly continuous, then A + B is pseudomonotone.

For our existence proof, we rely on the following surjectivity result due to Brézis [8]. The
proof can be found in [31, Theorem 2.6].

Lemma 3.11. Let X be real, separable, and reflexive Banach space with dimX = oco. If A : X — X'
is pseudomonotone, bounded, and coercive then A is surjective; this means, for any f € X', there is at
least one solution to the equation

A(u) = f.



p-Kirchhoff problems with singular and sublinear nonlinearities 7

3.4 Nemytskii’s operators
We begin by recalling the definition of Nemytskii’s operator.

Definition 3.12 ([1,2]). Let F : 3 x R — IR. The Nemytskii operator associated to F is the
map N defined on M (Q) (the set of all measurable real valued functions defined on Q) by
setting

Nre(u(x)) = F(x, u(x)).

We recall the following fundamental result about Nemytskii operators [1, Theorem 2.2],
with a more general version can be found in [2, Theorem 1.7].

Lemma 3.13. Let , B > 1,and F : O x R — R be a Carathéodory function. Assume that there exist
a positive function a; € LP(Q) and a constant a; > 0 such that

IF(x,t)| < a1(x) + m|t|P, aexeQ, VteR

Then the Nemystskii’s operator N associated to the function F is continuous from L*(Q)) to LF(Q)).

4 The approximated problem

We approximate the problem (1.1) by the following non-singular and non-degenerate problem

=My, ([[unl?) Apun = (uinly*gnui in O, (4.1)
nTy .
u, =0 on d(),

where f, = T,,(f), ¢n = Tx(g) and
M, (t) = M(t) + % vt € RT. (4.2)

Lemma 4.1. Assume that (1.2)—(1.5) hold. Then, problem (4.1) has at least one nonnegative weak
solution u, € W&’p(Q) NL®(Q).

Proof. Our proof relies on pseudomonotone operator theory. We define the operators A, F, :
WP (Q) — W' (Q) by

(An(10),0) = My (Jul’) [ |9ul"2Vu- Vo, (4.3)
Q
and
(Fu(u),v) = /Q/\fp(u)v dx, (4.4)
where N is the Nemyskii operator associated to the function F defined by
fu(x) +
F(x,t): = ———"7 _ — ¢, (x)(t7)1 ae.xcQ, VtcR,

where t* := max(t,0). Next, we set
Bn(”) = An(”) + fn(”)/ (4-5)

We now verify that B, satisfies the hypotheses of Lemma 3.11. The proof proceeds in several
steps.
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Step 1: Hemicontinuity of .4,. This follows directly from the continuity of the p-Laplacian
operator (see Lemma 3.8) and the continuity of the function M,,.

Step 2: Monotonicity of A,. Letu, v e Wg’p(ﬂ). Then,

(Au(u) = Ay(0), 1= 0) = (M, ([[u]]?) At + M, ([o]|?) Ayo,u — o)
= My (|lul|") [ [Vul2Vu- Y (u—v)

=~ M, (o) [ Vo] Vo V(u—o0) »
= M () 1l = Mo () [ [Vl o
+Amwuww>Wwp—AmmumwyLJVMFQVv-v%
Applying Young’s inequality:
5 1 1
[ IVl Vo < Sl + ol @)
0 p p

and . .
/ VolP2Vo - Vi < = [o]|? + ~|u]”. 4.8)
Q p p

Combining (4.6), (4.7) and (4.8) yields:

(Au(tt) = An(0),u— ) > My (ul]?) ] (1 - 1) = Loty () o

My (o) ol (1= ) = M (el P
= (0 (") = M (Jol17) (= o17) )
= }19( (lull?) =M ([lol]P)) (l[ull” = {lo][)
>0,
where the last inequality holds because M is nondecreasing function.
Step 3: Strong continuity of 7,,. Note that F satisfies the growth condition
|F(x,1)| < C(n) (1 + (t*)(q“)*l), (4.10)

where C(n) > 0 is a constant depending on n.

Let (ux)ken C Wg’p (Q)) be a sequence converging weakly to u € Wé’p(ﬂ). By the Sobolev
compact embedding theorem, we have

up — u strongly in L'(Q), forall1 <r < p*. (4.11)
Since g +1 < p < p*, it follows that

upy — u  strongly in L1T1(Q).
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By Lemma 3.13, the Nemytskii operator N associated with the function F is continuous from
LI+1(Q) into LU+ (Q). Hence,

Ne(up) = Np(u)  strongly in LU (Q).
Moreover, since (9 +1)" > (p*)’ (due to g+ 1 < p*), we further deduce
Ne(up) = Np(u)  strongly in L)' (Q). (4.12)

Now, let ¢ € Wé’p (Q). Applying Holder’s inequality and the Sobolev embedding theorem,
we obtain

[(Falw) = Faw), )] < [ INe(m) = Ne(wllg] dx
< e (1) = Ne() |y 9l
< Spl| Nr(uy) —NP(”)||L<p*>'(g)H?’Hng(Qy

where S, is the optimal Sobolev constant for the embedding Wé’p (Q) into LP*(Q)).
Consequently,

| Fou(ug) — ‘Fn<u)HW*1J’/(Q) < SPHNF(”k) - NF<u)HL(P*)/(Q)‘ (4.13)
Combining (4.12) and (4.13), we conclude that
Fulug) — Fu(u) strongly in W=7 (Q).

Step 4: Pseudomonotonicity of B,. Since the operator A, is monotone, hemicontinuous,
and the operator F,, is strongly continuous, by Lemma 3.10, we deduce that B, is pseu-
domonotone operator.

Step 5: Boundedness of B,. It suffices to prove that both 4, and F,, are bounded operators.

1. Boundedness of A,. Let R > 0 and consider u € Wé’p(Q) with ||u|| < R. For any

test function v € Wg’p (Q)), we apply assumptions (1.2), (4.2) and Holder’s inequality to
obtain:

(Au),0)] < (M (") +1) [ [Vul?|Voldx
-1
< (M(R?) + 1) R ol
Hence,
A1)y 1 < (M(RP) +1) RP,

This establishes that A, maps bounded subsets of Wg’p (Q)) to bounded subsets of
WL (Q).

2. Boundedness of F,,. For any u, v € Wg’p (Q)), we use the growth condition (4.10) and
the fact that p’ < % (since g < p — 1), we have

(Fawo)| < [ @+ [ vds

1
/ v’
<Gl + ( f, ) ol

< Gillvlleay + Callullfy ) o1l oy

<G (14 Il ) Tl
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Consequently,
H‘Fi’l(u)HW*lfpl(Q) S C3 <1 + HMH‘ZNS";(Q)) .

Therefore, F,, maps bounded subsets of W&’p (Q) into bounded subsets of W17 (Q)).

Step 6: Coercivity of B,. Letu € Wé’p (Q)). Using the growth condition (4.10), we obtain
(Bu(u),u) = (An(u),u) + ( Fu(u),u)
= M ([[ul[P) ]l = /QF(x/u)u

1
> —|ul” = Cylull = Cafjuf| 7!

1 _ _
> [l (5 — Callal ™ = ol 7).
Since q < p — 1, it follows that
lim (\Belw)u)
Jull—eo ul]

The operator B satisfies all assumptions of Lemma 3.11. Consequently, there exists u, €
Wé’p (Q) such that B, (1) = 0, meaning u, weakly solves:

—M,, (|[un||?) Apu :L_{_ (u,)7 inQ,
S T gy TS (4.14)

u, =0 on 0Q).

Non-negativity and regularity Choosing u,, as a test function in the weak formulation of
(4.14) yields:

_ o 1 fn _
o = S (w e (“W) o 4

which implies u,, = 0 a.e. in (), and thus u, > 0.

Furthermore, by [19, Proposition 1.2], we have u, belongs to L/(Q) for any t € [1, 400).
Since the right-hand side of (4.1) belongs to LF(Q) with g > %, the L*-regularity result of
[34, Théoreme 4.2] implies that u, € L®(Q)). This completes the proof of Lemma 4.1. O

5 A priori estimates
Lemma 5.1. Let (uy),, be a sequence of nonnegative solutions to problem (4.1). Assume that
(F)
ge L\ (Q) and feL"(Q),
where
pN

N(p—=1)+p+r(N=p)
Then there exists a constant L > 0, independent of n, such that

m =

||unHwép(Q) < L fOT’ all n € IN*. (51)
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Proof. We argue by contradiction. Suppose that (5.1) does not hold. Then, there exists a
subsequence, still denoted by (u,), such that

p
Hu”Hw(}'V(Q) — 400 asn — +oo. (5.2)

Consequently, for n sufficiently large, we have

P >
IIunHWg/p(Q) > 1. (5.3)

Since the function M is nondecreasing and satisfies assumption (1.2), it follows from (5.3) that

|V 1, > M(1) > m. (5.4)

Wy (Q)
Testing (4.1) with u,,, and using (5.4), we obtain

nun
ol oy < f o2 s 63

I’l

We now distinguish two cases depending on the value of 7.

Case 1: 0 < ¢y < 1. In this case, the exponent m satisfies 1 < m < %.
Since f, < f and g, < g, we apply Holder inequality to both terms on the right-hand side
of (5.5):
P < , 1—y , g+1
mOH”nHWé,p(Q) > ||fHL(%) (Q)H”n”m(m + ||8HL(%) Q) ||”nHm Q) (5.6)

Applying Sobolev’s inequality on the left-hand side, we derive:

q+1

S n * * )/ n 1_*7 * )/ n * 5.7
mo||u HLp Hf”L(ﬁv) (Q)HM HLP Q) + HgHL(l”Tq) (Q)Hu Hm Q)" (5.7)

Since0 < 1—9 < g+1 < p, it follows from inequality (5.7) that the sequence (u,) is uniformly
bounded in LP*(Q)).

Letting n tends to infinity in (5.6), we arrive at a contradiction: the right-hand side remains
bounded, while the left-hand side diverges to infinity as a consequence of assumption (5.2).

Case 2: v = 1. In this case m = 1. From (5.5) and f, < f, we have:

1
molltal oy < Wl + [ g™ 59

Using the fact that g, < g, and Holder inequality on the right hand side of (5.8), we obtain

1
molun ey < I s + gl ey ol (5.9)

Again, applying Sobolev’s inequality on the right-hand side of (5.9), we get

p < q+1 , q+1 1
ol s oy < Iflrey + 728l gy Bl o 610
Since g +1 < p, inequality (5.10) implies that the sequence (u,) is uniformly bounded in
Wg’p(ﬂ), contradicting (5.2).
In both cases, we reach a contradiction, which completes the proof of Lemma 5.1. O
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Lemma 5.2. Let u, be a nonnegative solution of problem (4.1). Then, for any w CC (), there exists a
constant c,, > 0 such that
Up > Cy inw, foralln € N (5.11)

Proof. Using (5.1) and the fact that M is a nondecreasing function, we obtain
M, (|lun||P) < M(L) = Mo, Vn e IN™. (5.12)

Thus, in the sense of distributions, we have

— Aty > Ti(f) + Ta(g) ((un Jlr o +uZ>

Moo
min (Ty(f) + Ta(g)) (1
> T = V(),

where we have used the fact the function ﬁ + 11, attains a positive minimum on [0, +oo].
Now consider the problem:

—App=V(x) inQ, (5.14)
v=20 on d(),
and the weighted eigenvalue problem:
Ny =MV P2 in (),
pP1r =MV (x)[¢1]P 1 in (5.15)
$1 =0 on 9Q),

where A; is the first eigenvalue of —A, with weight V, and ¢; € W&’p (Q)NL®(Q) is its
associated eigenfunction. By Lemma 3.3, ¢; € C*(Q)) for some & € (0,1) and ¢;(x) > 0 for
all x € (). Choose 1 > 0 sufficiently small so that

Ml < 1. (5.16)
Then, v = 3¢, is a subsolution for problem (5.14), since
—Apo = =D, (n¢r) = P V()¢ < V(x) in Q.
By the weak comparison principle, we obtain

uy(x) > v(x) > nep1(x) ae. in Q. (5.17)

Since ¢; > 01in () and w CC (), there exists ¢, = min¢; > 0 such that

w

Up(x) >cy >0 forae. x € wforalln € N (5.18)

This completes the proof of Lemma 5.2. O

Lemma 5.3. Let u,, be a nonnegative solution of (4.1). Then there exists a constant A > 0, independent
of n, such that
M (J|un||P) > A >0 foralln € IN*. (5.19)
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Proof. Let ¢ be as in the proof of Lemma 5.2. By normalizing ¢, we may assume that

11l175 0y = /Qcpf dx = 1. (5.20)

Using the normalization (5.20), the uniform positivity (5.17), and Poincaré’s inequality, we
obtain

g = WP/Qcpfdx < /Qu,’jdx < Calluallfns -

This yields
. 5.1
Hul’lHWOLp(Q) Z o (5.21)
Since M is nondecreasing, it follows from (5.21) that
;717
M ([[un|”) > M| ). (5.22)
Ca

Next, we choose 1 > 0 sufficiently small so that it satisfies both (5.16) and

;7p
- < 1.
O<CQ_

Applying the growth condition (1.2) on M, we get

u—1
M () sm (L) 5

Combining (5.22) and (5.23), we conclude that

u—1

;/lp
M)z mo (E) = A
Q

This completes the proof. O

6 Proof of the main results

By Lemma 5.1, the sequence (u,) is bounded in WO1 ?(Q). Consequently, there exists a function
u e Wé'p(ﬂ) such that, up to subsequence,

u, - u weakly in WS’F(Q),

and
u, — u almost everywhere in Q).

Moreover, using (5.11), we deduce that u satisfies (1.8).
Furthermore, by (5.19) and (5.11), the sequence

1 fn
My ([|unl|?) ((un Ly +8n MZ) ,

n

is bounded in L] _(Q). By Theorem 2.1 of [5], it follows that

Vu, — Vu almost everywhere in ().
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We now prove that u satisfies (1.9). Let ¢ € C5°(Q2). The inequality (5.11) implies

0= ’ (unffai)vl

where w is the compact support of the function ¢. By the Lebesgue dominated convergence
theorem,

fnqo‘S ||§0||Lw Iel=@
C

w

. fa9 [ fo
o Gy 37 o D

Since g € L7 (Q) and (uy) is bounded in LP" (Q)), Vitali’s theorem (see [36, p. 333]) ensures

/an uZ(p—>/quqq). (6.2)

Indeed, for any measurable subset E C (), we have

[ gnitgdx < llpli=o [ 1g()] lual? dx
+1

ar* qv*
([
1) \JE

1
[nll @ [E7" =0 as [E] = 0.

< @l

< o« *
<llellL Q) L1 )
Thus, (g, u} ¢), is equi-integrable, and since it converges a.e. to g u?¢, (6.2) holds by Vitali’s
theorem.

Combining (6.1) and (6.2), we obtain

- fn AP / S
VIETOO Q <(un+711)’}’+g1’lun q)_Q u’)’+g” ¢' (6'3)
Recalling that u,, satisfies the identity
/ |Vun|P*Vu, - Vo = L / Ju 5+ 8&n ul | o, (6.4)
Q My ([[unP) Jo (un—i-n)

for every ¢ € C(Q)). By Lemma 5.3, the sequence (u,) is bounded in Wg’p (), soup to a
subsequence,
(||| — 6o. (6.5)

Passing to the limit in (6.4) using (6.3) and (6.5), we conclude
M(6)) / |VulP=2Vu-Vo = / ( guq> @, Vo € CP(Q). (6.6)
To complete the proof of (1.9), it remains to show that
M(05) = M ([[u]]").

Let . € C5°(Q)) such that ¢, — u strongly in W&’p (Q)). Testing (6.6) with ¢, and taking liminf
(using Fatou’s Lemma) yields

M(6!)|u” E/qu1_7+/0gu”’+l. ©6.7)



p-Kirchhoff problems with singular and sublinear nonlinearities 15

On the other hand, testing the weak formulation (4.1) with u, gives

M ) = [ I [ g™ 69

Q(u

To pass to the limit in the right side of (6.8), we distinguish two cases based on the value of 7.

Case 1: 0 < v < 1. Since f € LT () and g € L (Q)), it follows from [6, Theorem
2.5.7] that for every for every ¢ > 0, there exists § > 0 such that for every measurable set
E C O with |E| < 6, we have

et et e

Applying Holder’s inequality, we obtain

P4yl
fn Up q+1 1—y % p*
/E <(un+n) + &n ln dx < HunHLP*(Q) /E|f(x)|ﬁ+7 Tdx
. - ”*;5*1 (6.9)
+ i
g, (] el 75 o)

< Cg,

where the constant C > 0 is independent of 1, thanks to the uniform boundedness of (u,) in
Wg’p(ﬂ) and the continuous Sobolev embedding.
From (6.9), we deduce that the sequences

(), = ),

n

are equi-integrable. Therefore, by Vitali’s convergence theorem, we obtain

/ St u" - dx — / ful™", (6.10)
o (u” + n
and
/ n il iy o / quT™dx. (6.11)
Combining (6.10) and (6.11), it follows that
_ fatn / / 1— 1
5 dx + Lu T dy o ul=" +/ uidx. 6.12
/Q (0 + 1) gnlt f g (6.12)

Case 2: v = 1. In this case, observe that

fntin
Uy +

<f

S|

and
fn Un

un+%

— f almost everywhere in Q).
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Hence, by the Lebesgue dominated convergence theorem, we deduce

fnun

Qun+%

dx — /Q Fdx. (6.13)

Combining (6.13) with the already established convergence (6.11), we obtain

fn iy

Quy+ 2

dx + /Q guuldx — /Qfdx - /qu””l dx. (6.14)

Using (6.5) in conjunction with either (6.12) or (6.14) (depending on the value of ), we can
pass to the limit in (6.8). This leads to the following identity:

M (80) 8 = /Q Ful=7 + /Q guitl, (6.15)

Comparing (6.7) and (6.15), we obtain M(6]))||u||P > M (6}) 6}, which implies ||u > 6, since
M(6o) > A > 0.
On the other hand, since u, converges weakly to u in Wé’p(ﬂ), and given that ||u,]|| con-
verges to tp, we have
6o = liminf |Ju, || > [jul|.
n——+00

Thus, ||u|| = 6y, and the proof of Theorem 2.1 is complete.

7 Regularity results

In this section, we investigate how the regularity of a solution u to problem (1.1) depends on
the summability of f and g.

We begin with a key lemma that extends the class of admissible test functions in the weak
formulation (1.9) from C3°(Q2) to Wé’p(ﬂ).

Lemma 7.1. Let u € W&’p (Q) be a weak solution of the problem (1.1). Then, the formulation (1.9)
holds for all test functions W&’p (Q), ie.,

M) [ Va2V o= [ (£ 4 gtou) o, 71

for every ¢ € W&’p(Q).

Proof. The proof follows the approach of [18, Lemma A.5] and also [16, Lemma 5.1]. Let
u € Wé’p (Q)) be a weak solution of the problem (1.1). Given ¢ € Wé’p (QQ), there exists a
sequence (¢¢),.o C C;°(Q)) such that

@ — ¢ strongly in W;’p (Q). (7.2)

Define ¢, = |@. — ¢|. By density, for each fixed ¢ > 0, there exists a sequence of nonnegative
functions (gbgﬂ)po C C§(Q) such that

Pey — P in W&’p(ﬂ) and a.e. in Q).
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Testing (1.9) with 1, yields

uY

M) [ 19290 9 = [ (224t )

Taking the liminf as 7 — 0 and applying Fatou’s lemma to the right-hand side, we obtain

uY

f (B2 g0un) ye < M) [ 19up-29u- 9. .

Using Holder’s inequality on the right-hand side of (7.3), we deduce

uy

[ (20 1 g0 g g1 < M (Il el

Passing to the limit as ¢ — 0, we conclude that

/o (flx(l:) +g(x)”q) Pe = /Q (fflf) +g(X)1ﬂ) 9. (7.4)

From (7.2), it follows that
M) [ 1VulP2Vu- Voo — M(Jull?) [ [Vul2Vu- V. 75)

Combining (7.4) and (7.5), we obtain the desired result. O

Theorem 7.2. Assume that f € L™(Q), with m > %, and g € L*(Q)). Let u be a positive solution
of (1.1). Then, u € L*(Q}).

Proof. The proof follows the approach in [14,29,35]. For k > 1, define the truncation function

k if t >k,
Gr(t) =t—Ti(t) =<t if —k<t<k,
—k ift < —k.

For s > 0 and & > 0, define the test function
w = Gy (u) min {Gy(u)P®, hP} .

Testing the weak formulation (7.1) with w, and using the uniform lower bound M (||u||?) > A
from Lemma 5.3 (see (5.19)), we obtain

A/ VG (1) [P min { Gy ()P, hP / G ()P |V Gy (1) P
[ IV Gl min (Gelw? 7y +ps [ G| TG

< /Q <£ —|—guq) Gy (1) min { Gy (u)P*, WP} .
Since u > 1 on the set {u > k}, we deduce that
A/Q ‘V(Gk(u)min{Gk(u)s,h})‘p < /Qka(u)min{Gk(u)Ps,hP}

+lglsien [ Gilw)? min {Ge(a)™, ).
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Since f € Ly (Q)), the absolute continuity of the integral (see [6, Theorem 2.5.7]) implies that
for every € > 0, there exists 6 > 0 such that for any measurable set E C Q) with |E| < J, we
have

N N
/!f(x)lpdxéeﬂ. (7.6)
E
Now, by the Chebyshev inequality (see [7, Lemma 20.1])), for any ¢ > 0,

1 N
{F) > el < = [ IF)]7 ax
cr /O
Then choosing c sufficiently large, we conclude that

[{f >c}]| <9. (7.7)

Combining (7.6) and (7.7), it follows that

(fpog )" <

Assume Gi(u) € LPE+D(Q). Applying the Sobolev inequality on the left-hand side and the
Holder inequality on the right hand-side, we obtain

SA(/ ‘Gk ) min { Gy (u h}’ )

<wial (| |f|’r’)N||c (0l + (4 gllimey) [ Gela)e
< (el k )t 8liL=(0 k(U

p—1
< 0] 7 Gl )+ (¢ + vy [, Gelu)o.

S

Choosing e < —1-—, we derive
w|Qf v

(/ |Ge(a) min {G(u h}])

Taking h — oo, we obtain

P
o1 ¢+ I8ll=(0 1)
< g7 16l @) + g PG

P
o

S e+ glrio s
([ 16mP )™ < GGl o+ gy PG g O

Since u € Wg ?(Q), it follows from Sobolev’s embedding theorem that G (u) € L* (Q). There-
fore, the bootstrap inequality (7.8) holds for s = sg = 0.
Now, set s = 57 in (7.8) such that

plar+l) =p" =5—.,

which gives
s1+1= (So+1)N/(N—p).

This implies G (1) € LP 5111 (QQ).
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We now iterate this argument. Suppose Gi(u) € LP'i-1+1)(Q); then, applying the same
reasoning, we obtain

Ge(u) € L") (Q)),  where sj+1 = N(s;_1 +1)/(N — p).

The sequence (s;)ien is positive (since s; > 0) and increasing because s; +1 = N(s;_1 +
1)/ (N —p) > si_1 + 1. Thus, (s;)ien approaches a limit ! as i — oo. Suppose, for contradiction,
that [ is finite. Then, passing to the limit in the recurrence relation gives

I+1=N(I+1)/(N—p),

which is impossible since Nl_p > 1. Hence | = 400, and we conclude that

Gi(u) € LP(Q)) forall p € (1,00).

Next, we take Gi(u) as a test function in the weak formulation (7.1). Using the uniform
positivity estimate M (||u||”) > A from Lemma 5.3 (see (5.19)), we obtain

A 1VGw) < [ (L{; +gu‘7) Gi(u).

Since u > k > 1 on the set {u > k}, it follows that

1
L VGl < & [ (f+86(1)7) Ge(w).
Because f + gGi(u)? € L*(Q)) for some a > %, we can apply Stampacchia’s L®-regularity
result (see [34]) to conclude that u € L®(Q)). O
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