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Abstract. In this paper, we study the following p-Kirchhoff-type elliptic problem:
−M

(∫
Ω
|∇u|p

)
div

(
|∇u|p−2∇u

)
=

f (x)
uγ

+ g(x) uq in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, 1 < p < N, 0 < γ ≤ 1, 0 < q < p − 1
and M : R+ → R+ is a continuous function satisfying additional hypotheses. The
data f and g belonging to suitable Lebesgue space. Our approaches are based on an
approximation scheme and the pseudomonotone operators theory.

Keywords: nonlocal elliptic equations, singular nonlinearity, pseudomonotone opera-
tors theory, weighted eigenvalue problems.
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1 Introduction

Let Ω be a bounded open subset in RN with 1 < p < N. We consider the following non local
elliptic problem 

−M (∥u∥p)∆pu = f (x)
uγ + g(x) uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where ∥u∥p =
∫

Ω |∇u|p dx, 0 < γ ≤ 1 and M : R+ = [0,+∞[→ R+ is a continuous nonde-
creasing function satisfying the following structural assumption:

∃ m0 > 0, µ > 1 : M(t) ≥ m0 tµ−1, ∀t ∈ [0, 1]. (1.2)
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Observe that condition (1.2) is trivially satisfied in the non-degenerate case, i.e., when M(0) >
0. A prototypical example of a Kirchhoff-type function satisfying (1.2) is:

M(t) = a + brtr−1, a, b ≥ 0, a + b > 0, r ≥ 1, t ≥ 0.

Such a condition has been previously utilized by Pucci et al. in [30].
We assume the source terms f and g satisfy the following conditions:

f , g ≥ 0, h := inf( f , g) ̸≡ 0, (1.3)

f ∈ Lm(Ω), with m =
pN

N(p − 1) + p + γ(N − p)
=


(

p∗
1−γ

)′
if 0 < γ < 1,

1 if γ = 1.
, (1.4)

g ∈ L
(

p∗
1+q

)′
(Ω). (1.5)

Due to the nonlocal term M (∥u∥p), the first equation in (1.1) is no longer a pointwise iden-
tity. This introduces significant mathematical challenges, making the study of such problems
particularly interesting.

For p = 2, the operator M (∥u∥p)∆p arises naturally in the Kirchhoff equation:

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx
)

∂2u
∂x2 = 0,

which generalizes the classical D’Alembert wave equation for vibrating strings:

∂2u
∂t2 − c2 ∂2u

∂x2 = 0, x ∈ (0, L) , t > 0.

For more on this physical background, see [11, 23–25, 27] and the references therein.
Before presenting the details of our results, we briefly review existing results for singular

and nonlocal problems.
In the local case, i.e., M ≡ 1, the problem (1.1) is closely related to the foundational work in

[10], where the authors showed the existence of a solution for the following nonlinear singular
elliptic equation 

−∆u = λ
uγ + uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ > 0, and the
exponent q of the sublinear term satisfies 0 < q < 1.

Giacomoni, Schindler, and Takáč in [18] extended this analysis to the quasilinear setting:
−∆pu = λ

uγ + uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 0 < γ < 1, 1 < p < N and p − 1 < q < p∗ − 1, with p∗ = Np
N−p denotes the critical

Sobolev exponent for the embedding W1,p
0 (Ω) in to Lt(Ω) for every t ∈ [1, p∗].
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In [15], the author considered:
−∆pu = f (x)

uγ + g(x)uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.6)

where 0 ≤ q ≤ p − 1, f and g are nonnegative functions belonging to suitable Lebesgue
spaces. The author proved that

• If q < p − 1, 0 < γ < 1, f ∈
( p∗

1−γ

)′, and g ∈ L( p∗
1+q )

′
(Ω), then the solution u belongs to

W1,p
0 (Ω).

• if γ = 1, f ∈ L1(Ω), and g ∈ L
(

p∗
1+q

)′
(Ω), then u ∈ W1,p

0 (Ω).

In the nonlocal setting, Corrêa et al. [12] studied:
−M (∥u∥p)∆pu = f (x)

uγ + uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.7)

where Ω ⊂ RN is a bounded smooth domain, 2 ≤ p ≤ N, 0 < γ, q < 1, f : Ω̄ → R is
continuous function with f > 0 on Ω̄, and M : R+ → R+ is a continuous function satisfying

• there are m0 > 0 and θ1 > 0 such that M(t) ≥ m0 ∀t ≥ θ1;

• θ2 = sup {t > 0; M(t) = 0} > 0.

The authors consider an approximation of problem (1.7) by a regularized problem. They then
prove that there is at least one solution in W1,p

0 (Ω) by employing the Galerkin method along
with a variant of Brouwer’s fixed point theorem [22, Lemme 4.3]. Subsequently, they pass to
the limit to obtain a solution of (1.7).

Motivated by the above works, in this paper we investigate the existence and regularity
of solutions to problem (1.1), extending some results from [15] to the degenerate nonlocal
case. To the best of our knowledge, this work provides the first treatment of a degenerate
Kirchhoff-type problem involving both singular and sublinear nonlinearities, under optimal
integrability assumptions on the source terms f and g.

Before presenting our main results, we first define what we mean by a weak solution to
(1.1). Following Giacomoni et al. [18], the solutions of (1.1) are understood in the following
sense

Definition 1.1. A weak solution to problem (1.1) is a function u ∈ W1,p
0 (Ω) such that

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω > 0 in ω, (1.8)

and

M (∥u∥p)
∫

Ω
|∇u|p−2∇u∇φ =

∫
Ω

(
f (x)
uγ

+ g(x) uq
)

φ, ∀φ ∈ C∞
0 (Ω). (1.9)
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Remark 1.2. If u is a weak solution to problem (1.1) in the sense of Definition 1.1, then for
every test function φ ∈ C∞

0 (Ω), the right-hand side of the weak formulation (1.9) is finite.
Indeed, the local positivity condition (1.8) implies

∫
Ω

f φ

uγ
≤

∥φ∥L∞(Ω)

cγ
w

∫
Ω

f < +∞.

Hence, f (x)
uγ ∈ L1

loc(Ω), and consequently,

f (x)
uγ

+ g(x) uq ∈ L1
loc(Ω).

Therefore, the weak formulation (1.9) is well-defined.

2 Statements of the main result

Here is the main result of this paper.

Theorem 2.1. Let us assume that (1.2)–(1.3) hold true, g ∈ L
(

p∗
1+q

)′
(Ω), and f ∈ Lm(Ω), with

m =
pN

N(p − 1) + p + γ(N − p)
. (2.1)

Then there exists at least one weak solution to problem (1.1).

Remark 2.2. Note that

pN
N(p − 1) + p + γ(N − p)

=


(

p∗
1−γ

)′
if 0 < γ < 1,

1 if γ = 1.

The structure of the rest of this paper is as follows. Section 3 introduces the necessary
notations and preliminary results that will be used throughout our analysis. Section 4 estab-
lishes the existence of a solution to the approximated problem by employing pseudomonotone
operator theory. Section 5 derives essential a priori estimates for the approximate solution,
which play a crucial role in proving the main result. Section 6 proves the main result by taking
the limit of the sequence of approximated problems. Finally, Section 7 examines additional
regularity properties of the obtained solution.

3 Notations and mathematical background

We begin by establishing the necessary framework for our analysis. Let Ω be a bounded
smooth domain in RN with 1 < p < N. The truncation function Tk : R → R at level k > 0 is
defined as

Tk(s) = max{−k, min{s, k}}.

We now present fundamental results concerning the spectrum of the p-Laplacian operator
with weights. For further details on this topic, the reader is referred to [3, 17, 21, 28].
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3.1 Weighted eigenvalue problems

Let V(x) ≥ 0 be a measurable function, not identically zero, V(x) ∈ L∞(Ω). Let us consider
the problem: 

u ∈ W1,p
0 (Ω), u ̸≡ 0,

−div
(
|∇u|p−2∇u

)
= λV(x)|u|p−2u in Ω,

u = 0 on ∂Ω.

(Pλ)

We define the functionals A and B as follows:
A(w) =

1
p
∥w∥W1,p

0 (Ω)
,

B(w) =
1
p

∫
Ω

V(x)|w(x)|p dx,

for all w ∈ W1,p
0 (Ω).

Definition 3.1 ([3]). A real number λ ∈ R is called an eigenvalue if there exists a function
u such that the pair (u, λ) is a solution to problem (Pλ). Such a function (non-trivial by
definition) is called an eigenfunction associated with λ. The first eigenvalue λ1 is defined by:

λ1 = inf
{
A(w) : w ∈ W1,p

0 (Ω), and B(w) = 1
}

.

Lemma 3.2 ([14, 19, 33]). Let u ∈ W1,p
0 (Ω)\ {0} be an eigenfunction associated to λ. Then u ∈

L∞(Ω).

Lemma 3.3 ([3, Lemma 3.1]). If u is an eigenfunction of (Pλ), then u ∈ C1,α(Ω) for some α ∈ (0, 1).
Moreover, if u ≥ 0, then u > 0 in Ω and ∂u

∂ν < 0 on ∂Ω, where ν denotes the unit exterior normal
vector to ∂Ω.

Lemma 3.4 ([3, Lemma 3.3]). Every eigenfunction u associated with λ1 has constant sign, i.e., either
u > 0 or u < 0 in Ω.

Lemma 3.5 ([3, Theorem 3.1]). The first eigenvalue λ1 is simple, i.e., if u and v are two eigenfunctions
associated with λ1, then u = αv for some α ∈ R.

3.2 Weak comparison principle

The following weak comparison principle will be essential for our subsequent analysis. For
the proof, we refer to [28, Lemma A.0.7] or the more general version in [26, Lemma 3].

Lemma 3.6. Let u1, u2 ∈ W1,p(Ω) satisfying{
−∆pu1 ≤ −∆pu2, in Ω, (in the weak sense)

u1 ≤ u2, on ∂Ω.

Then, u1 ≤ u2 a.e. in Ω.
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3.3 Pseudomonotone operator theory

The following operator classes are fundamental to our nonlinear analysis framework. We
recall these standard definitions from [37, Definition 26.1].

Definition 3.7. Let A : X → X′ be an operator on the real reflexive Banach space X.

1. A is said to be hemicontinuous iff the real function

t 7→ ⟨ A(u + tv), w ⟩,

is continuous on [0, 1] for all u, v, w ∈ X.

2. A is said to be strongly continuous iff un ⇀ u implies A(un) → A(u).

3. A is called to be bounded iff A maps bounded sets into bounded sets.

4. A is said to be monotone iff

⟨ A(u)− A(v), u − v ⟩ ≥ 0 for all u, v ∈ X.

5. A is called coercive if

lim
∥u∥→∞

⟨ A(u), u ⟩
∥u∥ = +∞.

The following properties of the p-Laplacian operator are well-known, see [32, Theorem
17.11].

Lemma 3.8. The p-Laplacian operator −∆p : W1,p
0 (Ω) → W−1,p′(Ω) is monotone, coercif and con-

tinuous.

The following definition, originally introduced by Brézis [8], plays a fundamental role in
our existence proof.

Definition 3.9. [37, Definition 27.5] Let A : X → X′ be an operator on the real reflexive Banach
space X. The operator A is called pseudomonotone iff un ⇀ u as n → ∞ and

lim sup
n→∞

⟨ A(un), un − u ⟩ ≤ 0,

implies that
⟨ A(u), u − w ⟩ ≤ lim inf

n→∞
⟨ A(un), un − w ⟩.

The following result relates pseudomonotonicity to the sum of a monotone hemicontinu-
ous operator and a strongly continuous operator, see [37, Proposition 27.6].

Lemma 3.10. Let A : X → X′ be an operator on the real reflexive Banach space X. If A is monotone
and hemicontinuous and B is strongly continuous, then A + B is pseudomonotone.

For our existence proof, we rely on the following surjectivity result due to Brézis [8]. The
proof can be found in [31, Theorem 2.6].

Lemma 3.11. Let X be real, separable, and reflexive Banach space with dim X = ∞. If A : X → X′

is pseudomonotone, bounded, and coercive then A is surjective; this means, for any f ∈ X′, there is at
least one solution to the equation

A(u) = f .
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3.4 Nemytskii’s operators

We begin by recalling the definition of Nemytskii’s operator.

Definition 3.12 ([1, 2]). Let F : Ω × R → R. The Nemytskii operator associated to F is the
map NF defined on M(Ω) (the set of all measurable real valued functions defined on Ω) by
setting

NF(u(x)) = F(x, u(x)).

We recall the following fundamental result about Nemytskii operators [1, Theorem 2.2],
with a more general version can be found in [2, Theorem 1.7].

Lemma 3.13. Let α, β ≥ 1, and F : Ω × R → R be a Carathéodory function. Assume that there exist
a positive function a1 ∈ Lβ(Ω) and a constant a2 > 0 such that

|F(x, t)| ≤ a1(x) + a2|t|
α
β , a.e x ∈ Ω, ∀t ∈ R.

Then the Nemystskii’s operator NF associated to the function F is continuous from Lα(Ω) to Lβ(Ω).

4 The approximated problem

We approximate the problem (1.1) by the following non-singular and non-degenerate problem
−Mn (∥un∥p)∆pun =

fn(
un +

1
n

)γ + gn uq
n in Ω,

un = 0 on ∂Ω,
(4.1)

where fn = Tn( f ), gn = Tn(g) and

Mn(t) = M(t) +
1
n

, ∀t ∈ R+. (4.2)

Lemma 4.1. Assume that (1.2)–(1.5) hold. Then, problem (4.1) has at least one nonnegative weak
solution un ∈ W1,p

0 (Ω) ∩ L∞(Ω).

Proof. Our proof relies on pseudomonotone operator theory. We define the operators An, Fn :
W1,p

0 (Ω) → W−1,p′(Ω) by

⟨An(u), v⟩ = Mn (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇v, (4.3)

and
⟨Fn(u), v⟩ =

∫
Ω
NF(u)v dx, (4.4)

where NF is the Nemyskii operator associated to the function F defined by

F(x, t) := − fn(x)(
t+ + 1

n

)γ − gn(x)(t+)q a.e. x ∈ Ω, ∀t ∈ R,

where t+ := max(t, 0). Next, we set

Bn(u) = An(u) +Fn(u), (4.5)

We now verify that Bn satisfies the hypotheses of Lemma 3.11. The proof proceeds in several
steps.
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Step 1: Hemicontinuity of An. This follows directly from the continuity of the p-Laplacian
operator (see Lemma 3.8) and the continuity of the function Mn.

Step 2: Monotonicity of An. Let u, v ∈ W1,p
0 (Ω). Then,

⟨ An(u)−An(v), u − v ⟩ = ⟨ Mn (∥u∥p)∆pu + Mn (∥v∥p)∆pv, u − v ⟩

= Mn (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇(u − v)

− Mn (∥v∥p)
∫

Ω
|∇v|p−2∇v · ∇(u − v)

= Mn (∥u∥p) ∥u∥p − Mn (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇v

+ Mn (∥v∥p) ∥v∥p − Mn (∥v∥p)
∫

Ω
|∇v|p−2∇v · ∇u.

(4.6)

Applying Young’s inequality:∫
Ω
|∇u|p−2∇u · ∇v ≤ 1

p′
∥u∥p +

1
p
∥v∥p, (4.7)

and ∫
Ω
|∇v|p−2∇v · ∇u ≤ 1

p′
∥v∥p +

1
p
∥u∥p. (4.8)

Combining (4.6), (4.7) and (4.8) yields:

⟨ An(u)−An(v), u − v ⟩ ≥ Mn (∥u∥p) ∥u∥p
(

1 − 1
p′

)
− 1

p
Mn (∥u∥p) ∥v∥p

+ Mn (∥v∥p) ∥v∥p
(

1 − 1
p′

)
− 1

p
Mn (∥v∥p) ∥u∥p

=
1
p
(Mn (∥u∥p)− Mn (∥v∥p)) (∥u∥p − ∥v∥p)

=
1
p
(M (∥u∥p)− M (∥v∥p)) (∥u∥p − ∥v∥p)

≥ 0,

(4.9)

where the last inequality holds because M is nondecreasing function.

Step 3: Strong continuity of Fn. Note that F satisfies the growth condition

|F(x, t)| ≤ C(n)
(

1 + (t+)(q+1)−1
)

, (4.10)

where C(n) > 0 is a constant depending on n.
Let (uk)k∈N ⊂ W1,p

0 (Ω) be a sequence converging weakly to u ∈ W1,p
0 (Ω). By the Sobolev

compact embedding theorem, we have

uk → u strongly in Lr(Ω), for all 1 ≤ r < p∗. (4.11)

Since q + 1 < p < p∗, it follows that

uk → u strongly in Lq+1(Ω).
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By Lemma 3.13, the Nemytskii operator NF associated with the function F is continuous from
Lq+1(Ω) into L(q+1)′(Ω). Hence,

NF(uk) → NF(u) strongly in L(q+1)′(Ω).

Moreover, since (q + 1)′ > (p∗)′ (due to q + 1 < p∗), we further deduce

NF(uk) → NF(u) strongly in L(p∗)′(Ω). (4.12)

Now, let φ ∈ W1,p
0 (Ω). Applying Hölder’s inequality and the Sobolev embedding theorem,

we obtain ∣∣∣⟨ Fn(uk)−Fn(u), φ ⟩
∣∣∣ ≤ ∫

Ω
|NF(uk)−NF(u)||φ| dx

≤ ∥NF(uk)−NF(u)∥L(p∗)′ (Ω)∥φ∥Lp∗(Ω)

≤ Sp∥NF(uk)−NF(u)∥L(p∗)′ (Ω)∥φ∥W1,p
0 (Ω)

,

where Sp is the optimal Sobolev constant for the embedding W1,p
0 (Ω) into Lp∗(Ω).

Consequently,

∥Fn(uk)−Fn(u)∥W−1,p′ (Ω) ≤ Sp∥NF(uk)−NF(u)∥L(p∗)′ (Ω). (4.13)

Combining (4.12) and (4.13), we conclude that

Fn(uk) → Fn(u) strongly in W−1,p′(Ω).

Step 4: Pseudomonotonicity of Bn. Since the operator An is monotone, hemicontinuous,
and the operator Fn is strongly continuous, by Lemma 3.10, we deduce that Bn is pseu-
domonotone operator.

Step 5: Boundedness of Bn. It suffices to prove that both An and Fn are bounded operators.

1. Boundedness of An. Let R > 0 and consider u ∈ W1,p
0 (Ω) with ∥u∥ ≤ R. For any

test function v ∈ W1,p
0 (Ω), we apply assumptions (1.2), (4.2) and Hölder’s inequality to

obtain: ∣∣∣⟨ An(u), v ⟩
∣∣∣ ≤ (M (∥u∥p) + 1)

∫
Ω
|∇u|p−1|∇v| dx

≤ (M(Rp) + 1) Rp−1∥v∥W1,p
0 (Ω)

.

Hence,
∥An(u)∥W−1,p′ (Ω) ≤ (M(Rp) + 1) Rp−1.

This establishes that An maps bounded subsets of W1,p
0 (Ω) to bounded subsets of

W−1,p′(Ω).

2. Boundedness of Fn. For any u, v ∈ W1,p
0 (Ω), we use the growth condition (4.10) and

the fact that p′ < p
q (since q < p − 1), we have∣∣∣⟨ Fn(u), v ⟩

∣∣∣ ≤ C
∫

Ω
(1 + |u|q) v dx

≤ C1∥v∥Lp(Ω) +

(∫
Ω

up′q
) 1

p′

∥v∥Lp(Ω)

≤ C1∥v∥Lp(Ω) + C2∥u∥q
Lp(Ω)

∥v∥Lp(Ω)

≤ C3

(
1 + ∥u∥q

W1,p
0 (Ω)

)
∥v∥W1,p

0 (Ω)
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Consequently,

∥Fn(u)∥W−1,p′ (Ω) ≤ C3

(
1 + ∥u∥q

W1,p
0 (Ω)

)
.

Therefore, Fn maps bounded subsets of W1,p
0 (Ω) into bounded subsets of W−1,p′(Ω).

Step 6: Coercivity of Bn. Let u ∈ W1,p
0 (Ω). Using the growth condition (4.10), we obtain

⟨ Bn(u), u ⟩ = ⟨ An(u), u ⟩+ ⟨ Fn(u), u ⟩

= Mn (∥u∥p) ∥u∥p −
∫

Ω
F(x, u)u

≥ 1
n
∥u∥p − C1∥u∥ − C2∥u∥q+1

≥ ∥u∥p
(

1
n
− C1∥u∥1−p − C2∥u∥q+1−p

)
.

Since q < p − 1, it follows that

lim
∥u∥→∞

⟨ Bn(u), u ⟩
∥u∥ = +∞.

The operator B satisfies all assumptions of Lemma 3.11. Consequently, there exists un ∈
W1,p

0 (Ω) such that Bn(u) = 0, meaning un weakly solves:
−Mn (∥un∥p)∆pun =

fn(
u+

n + 1
n

)γ + gn (u+
n )

q in Ω,

un = 0 on ∂Ω.
(4.14)

Non-negativity and regularity Choosing u−
n as a test function in the weak formulation of

(4.14) yields:

−
∫

Ω
|∇u−

n |p =
1

Mn (∥un∥p)

∫
Ω

(
fn(

u+
n + 1

n

)γ + gn (u+
n )

q

)
u−

n ≥ 0, (4.15)

which implies u−
n = 0 a.e. in Ω, and thus un ≥ 0.

Furthermore, by [19, Proposition 1.2], we have un belongs to Lt(Ω) for any t ∈ [1,+∞).
Since the right-hand side of (4.1) belongs to Lβ(Ω) with β > N

p , the L∞-regularity result of
[34, Théorème 4.2] implies that un ∈ L∞(Ω). This completes the proof of Lemma 4.1.

5 A priori estimates

Lemma 5.1. Let (un)n be a sequence of nonnegative solutions to problem (4.1). Assume that

g ∈ L
(

p∗
1+q

)′
(Ω) and f ∈ Lm(Ω),

where
m =

pN
N(p − 1) + p + γ(N − p)

.

Then there exists a constant L > 0, independent of n, such that

∥un∥W1,p
0 (Ω)

≤ L for all n ∈ N∗. (5.1)
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Proof. We argue by contradiction. Suppose that (5.1) does not hold. Then, there exists a
subsequence, still denoted by (un), such that

∥un∥p

W1,p
0 (Ω)

→ +∞ as n → +∞. (5.2)

Consequently, for n sufficiently large, we have

∥un∥p

W1,p
0 (Ω)

≥ 1. (5.3)

Since the function M is nondecreasing and satisfies assumption (1.2), it follows from (5.3) that

∥un∥p

W1,p
0 (Ω)

≥ M(1) ≥ m0. (5.4)

Testing (4.1) with un, and using (5.4), we obtain

m0∥un∥p

W1,p
0 (Ω)

≤
∫

Ω

fn un(
un +

1
n

)γ +
∫

Ω
gn u1+q

n . (5.5)

We now distinguish two cases depending on the value of γ.

Case 1: 0 < γ < 1. In this case, the exponent m satisfies 1 < m < N
p .

Since fn ≤ f and gn ≤ g, we apply Hölder inequality to both terms on the right-hand side
of (5.5):

m0∥un∥p

W1,p
0 (Ω)

≤ ∥ f ∥
L(

p∗
1−γ )

′
(Ω)

∥un∥1−γ
Lp∗(Ω)

+ ∥g∥
L(

p∗
1+q )

′
(Ω)

∥un∥q+1
Lp∗(Ω)

. (5.6)

Applying Sobolev’s inequality on the left-hand side, we derive:

Sm0∥un∥p
Lp∗(Ω)

≤ ∥ f ∥
L(

p∗
1−γ )

′
(Ω)

∥un∥1−γ
Lp∗(Ω)

+ ∥g∥
L(

p∗
1+q )

′
(Ω)

∥un∥q+1
Lp∗(Ω)

. (5.7)

Since 0 < 1−γ < q+ 1 < p, it follows from inequality (5.7) that the sequence (un) is uniformly
bounded in Lp∗(Ω).

Letting n tends to infinity in (5.6), we arrive at a contradiction: the right-hand side remains
bounded, while the left-hand side diverges to infinity as a consequence of assumption (5.2).

Case 2: γ = 1. In this case m = 1. From (5.5) and fn ≤ f , we have:

m0∥un∥p

W1,p
0 (Ω)

≤ ∥ f ∥L1(Ω) +
∫

Ω
gn u1+q

n . (5.8)

Using the fact that gn ≤ g, and Hölder inequality on the right hand side of (5.8), we obtain

m0∥un∥p

W1,p
0 (Ω)

≤ ∥ f ∥L1(Ω) + ∥g∥
L(

p∗
1+q )

′
(Ω)

∥un∥q+1
Lp∗(Ω)

. (5.9)

Again, applying Sobolev’s inequality on the right-hand side of (5.9), we get

m0∥un∥p

W1,p
0 (Ω)

≤ ∥ f ∥L1(Ω) + Sq+1∥g∥
L(

p∗
1+q )

′
(Ω)

∥u∥q+1

W1,p
0 (Ω)

. (5.10)

Since q + 1 < p, inequality (5.10) implies that the sequence (un) is uniformly bounded in
W1,p

0 (Ω), contradicting (5.2).
In both cases, we reach a contradiction, which completes the proof of Lemma 5.1.
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Lemma 5.2. Let un be a nonnegative solution of problem (4.1). Then, for any ω ⊂⊂ Ω, there exists a
constant cω > 0 such that

un ≥ cω in ω, for all n ∈ N∗. (5.11)

Proof. Using (5.1) and the fact that M is a nondecreasing function, we obtain

Mn(∥un∥p) ≤ M(L) = M∞, ∀n ∈ N∗. (5.12)

Thus, in the sense of distributions, we have

−∆pun ≥ T1( f ) + T1(g)
M∞

(
1

(un + 1)γ + uq
n

)
≥ min (T1( f ) + T1(g))

M∞

(
1

(un + 1)γ + uq
n

)
≥ c0

M∞
T1(h) = V(x),

(5.13)

where we have used the fact the function 1
tγ+1 + tq, attains a positive minimum on [0,+∞[.

Now consider the problem: {
−∆pv = V(x) in Ω,

v = 0 on ∂Ω,
(5.14)

and the weighted eigenvalue problem:{
−∆pϕ1 = λ1V(x)|ϕ1|p−2ϕ1 in Ω,

ϕ1 = 0 on ∂Ω,
(5.15)

where λ1 is the first eigenvalue of −∆p with weight V, and ϕ1 ∈ W1,p
0 (Ω) ∩ L∞(Ω) is its

associated eigenfunction. By Lemma 3.3, ϕ1 ∈ C1,α(Ω) for some α ∈ (0, 1) and ϕ1(x) > 0 for
all x ∈ Ω. Choose η > 0 sufficiently small so that

λ1ηp−1∥ϕ1∥
p−1
L∞(Ω)

≤ 1. (5.16)

Then, v = ηϕ1 is a subsolution for problem (5.14), since

−∆pv = −∆p(ηϕ1) = ηp−1λ1V(x)ϕp−1
1 ≤ V(x) in Ω.

By the weak comparison principle, we obtain

un(x) ≥ v(x) ≥ ηϕ1(x) a.e. in Ω. (5.17)

Since ϕ1 > 0 in Ω and ω ⊂⊂ Ω, there exists cω = min
ω

ϕ1 > 0 such that

un(x) ≥ cω > 0 for a.e. x ∈ ω for all n ∈ N∗. (5.18)

This completes the proof of Lemma 5.2.

Lemma 5.3. Let un be a nonnegative solution of (4.1). Then there exists a constant Λ > 0, independent
of n, such that

M (∥un∥p) ≥ Λ > 0 for all n ∈ N∗. (5.19)
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Proof. Let ϕ1 be as in the proof of Lemma 5.2. By normalizing ϕ1, we may assume that

∥ϕ1∥
p
Lp(Ω)

=
∫

Ω
ϕ

p
1 dx = 1. (5.20)

Using the normalization (5.20), the uniform positivity (5.17), and Poincaré’s inequality, we
obtain

ηp = ηp
∫

Ω
ϕ

p
1 dx ≤

∫
Ω

up
ndx ≤ CΩ∥un∥p

W1,p
0 (Ω)

.

This yields

∥un∥p

W1,p
0 (Ω)

≥ ηp

CΩ
. (5.21)

Since M is nondecreasing, it follows from (5.21) that

M (∥un∥p) ≥ M
(

ηp

CΩ

)
. (5.22)

Next, we choose η > 0 sufficiently small so that it satisfies both (5.16) and

0 <
ηp

CΩ
≤ 1.

Applying the growth condition (1.2) on M, we get

M
(

ηp

CΩ

)
≥ m0

(
ηp

CΩ

)µ−1

. (5.23)

Combining (5.22) and (5.23), we conclude that

M (∥un∥p) ≥ m0

(
ηp

CΩ

)µ−1

= Λ.

This completes the proof.

6 Proof of the main results

By Lemma 5.1, the sequence (un) is bounded in W1,p
0 (Ω). Consequently, there exists a function

u ∈ W1,p
0 (Ω) such that, up to subsequence,

un → u weakly in W1,p
0 (Ω),

and
un → u almost everywhere in Ω.

Moreover, using (5.11), we deduce that u satisfies (1.8).
Furthermore, by (5.19) and (5.11), the sequence

1
Mn (∥un∥p)

(
fn(

un +
1
n

)γ + gn uq
n

)
,

is bounded in L1
loc(Ω). By Theorem 2.1 of [5], it follows that

∇un → ∇u almost everywhere in Ω.
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We now prove that u satisfies (1.9). Let φ ∈ C∞
0 (Ω). The inequality (5.11) implies

0 ≤
∣∣∣ fn φ(

un +
1
n

)γ

∣∣∣ ≤ ∣∣∣ fn φ

uγ
n

∣∣∣ ≤ ∥φ∥L∞(Ω)

cγ
ω

f ,

where ω is the compact support of the function φ. By the Lebesgue dominated convergence
theorem,

lim
n→+∞

∫
Ω

fn φ(
un +

1
n

)γ =
∫

Ω

f φ

uγ
. (6.1)

Since g ∈ L
p∗

p∗−q−1 (Ω) and (un) is bounded in Lp∗(Ω), Vitali’s theorem (see [36, p. 333]) ensures∫
Ω

gn uq
n φ →

∫
Ω

guq φ. (6.2)

Indeed, for any measurable subset E ⊂ Ω, we have∫
E

gn uq
n φ dx ≤ ∥φ∥L∞(Ω)

∫
E
|g(x)| |un|q dx

≤ ∥φ∥L∞(Ω)∥g∥
L

p∗
p∗−q−1 (Ω)

(∫
E
|un|

qp∗
q+1 dx

) q+1
p∗

≤ ∥φ∥L∞(Ω)∥g∥
L

p∗
p∗−q−1 (Ω)

∥un∥Lp∗(Ω) |E|
1

p∗ → 0 as |E| → 0.

Thus,
(

gn uq
n φ
)

n is equi-integrable, and since it converges a.e. to g uq φ, (6.2) holds by Vitali’s
theorem.

Combining (6.1) and (6.2), we obtain

lim
n→+∞

∫
Ω

(
fn(

un +
1
n

)γ + gn uq
n

)
φ =

∫
Ω

(
f

uγ
+ g uq

)
φ. (6.3)

Recalling that un satisfies the identity

∫
Ω
|∇un|p−2∇un · ∇φ =

1
Mn (∥un∥p)

∫
Ω

(
fn(

un +
1
n

)γ + gn uq
n

)
φ, (6.4)

for every φ ∈ C∞
0 (Ω). By Lemma 5.3, the sequence (un) is bounded in W1,p

0 (Ω), so up to a
subsequence,

∥un∥ −→ θ0. (6.5)

Passing to the limit in (6.4) using (6.3) and (6.5), we conclude

M(θ
p
0 )
∫

Ω
|∇u|p−2∇u · ∇φ =

∫
Ω

(
f

uγ
+ guq

)
φ, ∀φ ∈ C∞

0 (Ω). (6.6)

To complete the proof of (1.9), it remains to show that

M(θ
p
0 ) = M (∥u∥p) .

Let φε ∈ C∞
0 (Ω) such that φε → u strongly in W1,p

0 (Ω). Testing (6.6) with φε and taking liminf
(using Fatou’s Lemma) yields

M(θ
p
0 )∥u∥p ≥

∫
Ω

f u1−γ +
∫

Ω
guq+1. (6.7)
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On the other hand, testing the weak formulation (4.1) with un gives

Mn (∥un∥p) ∥un∥p =
∫

Ω

fn un(
un +

1
n

)γ +
∫

Ω
gn uq+1

n . (6.8)

To pass to the limit in the right side of (6.8), we distinguish two cases based on the value of γ.

Case 1: 0 < γ < 1. Since f ∈ L
p∗

p∗+γ−1 (Ω) and g ∈ L
p∗

p∗−q−1 (Ω), it follows from [6, Theorem
2.5.7] that for every for every ε > 0, there exists δ > 0 such that for every measurable set
E ⊂ Ω with |E| ≤ δ, we have∫

E
| f (x)|

p∗
p∗+γ−1 dx ≤ ε

p∗
p∗+γ−1 ,

∫
E
|g(x)|

p∗
p∗−q−1 dx ≤ ε

p∗
p∗−q−1 ,

Applying Hölder’s inequality, we obtain

∫
E

(
fn un(

un +
1
n

)γ + gn uq+1
n

)
dx ≤ ∥un∥1−γ

Lp∗(Ω)

(∫
E
| f (x)|

p∗
p∗+γ−1 dx

) p∗+γ−1
p∗

+ ∥un∥q+1
Lp∗(Ω)

(∫
E
|g(x)|

p∗
p∗−q−1 dx

) p∗−q−1
p∗

≤ Cε,

(6.9)

where the constant C > 0 is independent of n, thanks to the uniform boundedness of (un) in
W1,p

0 (Ω) and the continuous Sobolev embedding.
From (6.9), we deduce that the sequences(

fn un(
un +

1
n

)γ

)
n

and
(

gn uq+1
n

)
n

are equi-integrable. Therefore, by Vitali’s convergence theorem, we obtain∫
Ω

fn un(
un +

1
n

)γ dx →
∫

Ω
f u1−γ, (6.10)

and ∫
Ω

gn uq+1
n dx →

∫
Ω

guq+1 dx. (6.11)

Combining (6.10) and (6.11), it follows that∫
Ω

fn un(
un +

1
n

)γ dx +
∫

Ω
gn uq+1

n dx →
∫

Ω
f u1−γ +

∫
Ω

guq+1 dx. (6.12)

Case 2: γ = 1. In this case, observe that

fn un

un +
1
n

≤ f ,

and
fn un

un +
1
n

→ f almost everywhere in Ω.
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Hence, by the Lebesgue dominated convergence theorem, we deduce∫
Ω

fn un

un +
1
n

dx →
∫

Ω
f dx. (6.13)

Combining (6.13) with the already established convergence (6.11), we obtain∫
Ω

fn un

un +
1
n

dx +
∫

Ω
gn uq+1

n dx →
∫

Ω
f dx +

∫
Ω

guq+1 dx. (6.14)

Using (6.5) in conjunction with either (6.12) or (6.14) (depending on the value of γ), we can
pass to the limit in (6.8). This leads to the following identity:

M
(
θ

p
0

)
θ

p
0 =

∫
Ω

f u1−γ +
∫

Ω
g uq+1. (6.15)

Comparing (6.7) and (6.15), we obtain M(θ
p
0 )∥u∥p ≥ M

(
θ

p
0

)
θ

p
0 , which implies ∥u∥ ≥ θ0, since

M(θ0) ≥ Λ > 0.
On the other hand, since un converges weakly to u in W1,p

0 (Ω), and given that ∥un∥ con-
verges to θ0, we have

θ0 = lim inf
n→+∞

∥un∥ ≥ ∥u∥.

Thus, ∥u∥ = θ0, and the proof of Theorem 2.1 is complete.

7 Regularity results

In this section, we investigate how the regularity of a solution u to problem (1.1) depends on
the summability of f and g.

We begin with a key lemma that extends the class of admissible test functions in the weak
formulation (1.9) from C∞

0 (Ω) to W1,p
0 (Ω).

Lemma 7.1. Let u ∈ W1,p
0 (Ω) be a weak solution of the problem (1.1). Then, the formulation (1.9)

holds for all test functions W1,p
0 (Ω), i.e.,

M (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇φ =

∫
Ω

(
f (x)
uγ

+ g(x)uq
)

φ, (7.1)

for every φ ∈ W1,p
0 (Ω).

Proof. The proof follows the approach of [18, Lemma A.5] and also [16, Lemma 5.1]. Let
u ∈ W1,p

0 (Ω) be a weak solution of the problem (1.1). Given φ ∈ W1,p
0 (Ω), there exists a

sequence (φε)ε>0 ⊂ C∞
0 (Ω) such that

φε → φ strongly in W1,p
0 (Ω). (7.2)

Define ψε = |φε − φ|. By density, for each fixed ε > 0, there exists a sequence of nonnegative
functions

(
ψεη

)
η>0 ⊂ C∞

0 (Ω) such that

ψεη → ψε in W1,p
0 (Ω) and a.e. in Ω.
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Testing (1.9) with ψεη yields

M (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇ψεη =

∫
Ω

(
f (x)
uγ

+ g(x)uq
)

ψεη .

Taking the lim inf as η → 0 and applying Fatou’s lemma to the right-hand side, we obtain∫
Ω

(
f (x)
uγ

+ g(x)uq
)

ψε ≤ M (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇ψε (7.3)

Using Hölder’s inequality on the right-hand side of (7.3), we deduce∫
Ω

(
f (x)
uγ

+ g(x)uq
)
|φε − φ| ≤ M (∥u∥p) ∥u∥p−1∥ψε∥.

Passing to the limit as ε → 0, we conclude that∫
Ω

(
f (x)
uγ

+ g(x)uq
)

φε →
∫

Ω

(
f (x)
uγ

+ g(x)uq
)

φ. (7.4)

From (7.2), it follows that

M (∥u∥p)
∫

Ω
|∇u|p−2∇u · ∇φε → M (∥u∥p)

∫
Ω
|∇u|p−2∇u · ∇φ. (7.5)

Combining (7.4) and (7.5), we obtain the desired result.

Theorem 7.2. Assume that f ∈ Lm(Ω), with m > N
p , and g ∈ L∞(Ω). Let u be a positive solution

of (1.1). Then, u ∈ L∞(Ω).

Proof. The proof follows the approach in [14, 29, 35]. For k ≥ 1, define the truncation function

Gk(t) = t − Tk(t) =


k if t > k,

t if − k ≤ t ≤ k,

−k if t < −k.

For s > 0 and h > 0, define the test function

w = Gk(u)min {Gk(u)ps, hp} .

Testing the weak formulation (7.1) with w, and using the uniform lower bound M (∥u∥p) ≥ Λ
from Lemma 5.3 (see (5.19)), we obtain

Λ
∫

Ω
|∇Gk(u)|p min {Gk(u)ps, hp}+ ps

∫
{0≤Gk(u)s≤h}

Gk(u)ps|∇Gk(u)|p

≤
∫

Ω

(
f

uγ
+ g uq

)
Gk(u)min {Gk(u)ps, hp} .

Since u ≥ 1 on the set {u ≥ k}, we deduce that

Λ
∫

Ω

∣∣∣∇(Gk(u)min {Gk(u)s, h}
)∣∣∣p ≤

∫
Ω

f Gk(u)min {Gk(u)ps, hp}

+ ∥g∥L∞(Ω)

∫
Ω

Gk(u)p min {Gk(u)ps, hp} .
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Since f ∈ L
N
p (Ω), the absolute continuity of the integral (see [6, Theorem 2.5.7]) implies that

for every ε > 0, there exists δ > 0 such that for any measurable set E ⊂ Ω with |E| ≤ δ, we
have ∫

E
| f (x)|

N
p dx ≤ ε

N
p . (7.6)

Now, by the Chebyshev inequality (see [7, Lemma 20.1])), for any c > 0,

| { f (x) > c} | ≤ 1

c
N
p

∫
Ω
| f (x)|

N
p dx.

Then choosing c sufficiently large, we conclude that

| { f > c} | ≤ δ. (7.7)

Combining (7.6) and (7.7), it follows that(∫
{ f≥c}

| f |
N
p

) p
N

< ε.

Assume Gk(u) ∈ Lp(s+1)(Ω). Applying the Sobolev inequality on the left-hand side and the
Hölder inequality on the right hand-side, we obtain

SΛ
(∫

Ω

∣∣∣Gk(u)min {Gk(u)s, h}
∣∣∣p∗) p

p∗

≤ hp|Ω|
p−1
p∗

(∫
{ f≥c}

| f |
N
p

) p
N

∥Gk(u)∥Lp∗ (Ω) +
(

c + ∥g∥L∞(Ω)

) ∫
Ω

Gk(u)p(s+1)

≤ εhp|Ω|
p−1
p∗ ∥Gk(u)∥Lp∗ (Ω) +

(
c + ∥g∥L∞(Ω)

) ∫
Ω

Gk(u)p(s+1).

Choosing ε < 1

hp|Ω|
p−1
p∗

, we derive

(∫
Ω

∣∣∣Gk(u)min {Gk(u)s, h}
∣∣∣p∗) p

p∗

≤ 1
SΛ

∥Gk(u)∥Lp∗ (Ω) +
c + ∥g∥L∞(Ω)

SΛ
∥Gk(u)∥

p(s+1)
Lp(s+1)(Ω)

.

Taking h → ∞, we obtain(∫
Ω
|Gk(u)|p

∗(s+1)
) p

p∗

≤ 1
SΛ

∥Gk(u)∥Lp∗ (Ω) +
c + ∥g∥L∞(Ω)

SΛ
∥Gk(u)∥

p(s+1)
Lp(s+1)(Ω)

. (7.8)

Since u ∈ W1,p
0 (Ω), it follows from Sobolev’s embedding theorem that Gk(u) ∈ Lp∗(Ω). There-

fore, the bootstrap inequality (7.8) holds for s = s0 = 0.
Now, set s = s1 in (7.8) such that

p(s1 + 1) = p∗ =
pN

N − p
,

which gives
s1 + 1 = (s0 + 1)N/(N − p).

This implies Gk(u) ∈ Lp∗(s1+1)(Ω).
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We now iterate this argument. Suppose Gk(u) ∈ Lp∗(si−1+1)(Ω); then, applying the same
reasoning, we obtain

Gk(u) ∈ Lp∗(si+1)(Ω), where si + 1 = N(si−1 + 1)/(N − p).

The sequence (si)i∈N is positive (since s1 > 0) and increasing because si + 1 = N(si−1 +

1)/(N − p) > si−1 + 1. Thus, (si)i∈N approaches a limit l as i → ∞. Suppose, for contradiction,
that l is finite. Then, passing to the limit in the recurrence relation gives

l + 1 = N(l + 1)/(N − p),

which is impossible since N
N−p > 1. Hence l = +∞, and we conclude that

Gk(u) ∈ Lρ(Ω) for all ρ ∈ (1, ∞).

Next, we take Gk(u) as a test function in the weak formulation (7.1). Using the uniform
positivity estimate M (∥u∥p) ≥ Λ from Lemma 5.3 (see (5.19)), we obtain

Λ
∫

Ω
|∇Gk(u)|p ≤

∫
Ω

(
f

uγ
+ guq

)
Gk(u).

Since u ≥ k ≥ 1 on the set {u ≥ k}, it follows that∫
Ω
|∇Gk(u)|p ≤ 1

Λ

∫
Ω
( f + gGk(u)q) Gk(u).

Because f + gGk(u)q ∈ Lα(Ω) for some α > N
p , we can apply Stampacchia’s L∞-regularity

result (see [34]) to conclude that u ∈ L∞(Ω).
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[18] J. Giacomoni, I. Schindler, P. Takáč, Sobolev versus Hölder local minimizers and exis-
tence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa
Cl. Sci. 6(2007), 117–158. https://doi.org/10.2422/2036-2145.2007.1.07; MR2341518;
Zbl 1181.35116

[19] M. Guedda, L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents,
Nonlinear Anal. 13(1989), 879–902. https://doi.org/10.1016/0362-546X(89)90020-5;
MR1009077; Zbl 0714.35032

https://doi.org/10.1515/9783110866209
https://doi.org/10.1515/9783110866209
https://zbmath.org/?q=an:0985.28001
https://doi.org/10.5802/aif.280
https://www.ams.org/mathscinet-getitem?mr=0270222
https://zbmath.org/?q=an:0169.18602
https://doi.org/10.1007/s00030-016-0361-6
https://www.ams.org/mathscinet-getitem?mr=3478284
https://zbmath.org/?q=an:1341.35074
https://doi.org/10.1080/03605308908820656
https://zbmath.org/?q=an:0692.35047
https://doi.org/10.1017/S000497270003570X
https://doi.org/10.1017/S000497270003570X
https://www.ams.org/mathscinet-getitem?mr=2260494
https://zbmath.org/?q=an:1108.45005
https://doi.org/10.1155/2008/364085
https://www.ams.org/mathscinet-getitem?mr=2466217
https://zbmath.org/?q=an:1220.35080
https://www.ams.org/mathscinet-getitem?mr=3136107
https://zbmath.org/?q=an:1282.35180
https://doi.org/10.1515/9783110804775
https://www.ams.org/mathscinet-getitem?mr=1460729
https://zbmath.org/?q=an:0894.35002
https://doi.org/10.1007/s11118-021-09906-3
https://doi.org/10.1007/s11118-021-09906-3
https://www.ams.org/mathscinet-getitem?mr=4421923
https://zbmath.org/?q=an:1491.35161
https://doi.org/10.1016/j.na.2022.113022
https://www.ams.org/mathscinet-getitem?mr=4444761
https://zbmath.org/?q=an:1495.35010
https://doi.org/10.1201/9781420035049
https://doi.org/10.1201/9781420035049
https://www.ams.org/mathscinet-getitem?mr=2168068
https://doi.org/10.2422/2036-2145.2007.1.07
https://www.ams.org/mathscinet-getitem?mr=2341518
https://zbmath.org/?q=an:1181.35116
https://doi.org/10.1016/0362-546X(89)90020-5
https://www.ams.org/mathscinet-getitem?mr=1009077
https://zbmath.org/?q=an:0714.35032


p-Kirchhoff problems with singular and sublinear nonlinearities 21

[20] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.

[21] P. Lindqvist, On the equation −div(|∇u|p−2∇u), Proc. Amer. Math. Soc. 109(1990),
157–166. https://doi.org/10.1090/S0002-9939-1990-1007505-7; MR1007505;
Zbl 0714.35029

[22] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (in French),
Dunod, Gauthier-Villars, Paris, 1969. MR0259693; Zbl 0189.40603

[23] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63(2005),
e1967–e1977. https://doi.org/10.1016/j.na.2005.03.021; Zbl 1224.35140

[24] L. A. Medeiros, J. Limaco, S. B. Menezes, Vibrations of elastic strings: Mathematical
aspects – Part one, J. Comput. Anal. Appl. 4(2002), 91–127. https://doi.org/10.1023/A:
1012934900316; MR1875347; Zbl 1118.35335

[25] L. A. Medeiros, J. Limaco, On the Kirchhoff equation in noncylindrical domains of RN ,
Pro Mathematica 19(2005), 91–106.

[26] M. Ôtani, T. Teshima, On the first eigenvalue of some quasilinear elliptic equations,
Proc. Japan Acad. Ser. A Math. Sci. 64(1988), 8–10. https://doi.org/10.3792/pjaa.64.8;
MR0953752

[27] J. Peradze, An approximate algorithm for a Kirchhoff wave equation, SIAM J.
Numer. Anal. 47(2009), 2243–2268. https://doi.org/10.1137/070711876; MR2519602;
Zbl 1197.65230

[28] I. Peral, Multiplicity of solutions for the p-Laplacian, ICTP SMR 990/1, 1997.

[29] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous
quasilinear elliptic equations, Indiana Univ. Math. J. 57(2008), 3329–3363. https://doi.
org/10.1512/iumj.2008.57.3525; Zbl 2492235; Zbl 1171.35057

[30] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional
p-Kirchhoff equations, Adv. Nonlinear Anal. 5(2016), 27–55. https://doi.org/10.1515/
anona-2015-0102; MR3456737; Zbl 1334.35395
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