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Abstract. In this article, we prove the existence of a weak solution to the sub-elliptic
problem

−∆Hu + V(ξ)u =

(∫
HN

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

)(
Q∗

α|u|Q
∗
α−2u + pK(ξ)|u|p−2u

)
in the Heisenberg group HN , where 0 < α < 4, Q = 2N + 2, Q∗

α = 2Q−α
Q−2 , p ∈ (2, Q∗

α) ,
V is a non-negative continuous function that can vanish at infinity and K is continuous
non-negative bounded function. We establish the existence of a weak solution by em-
ploying the penalization method in conjunction with the mountain pass theorem.

Keywords: vanishing potential, critical Choquard type non-linearity, Heisenberg group,
penalization method.
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1 Introduction

In this paper, we study the existence of a weak solution to the problem:

−∆Hu + V(ξ)u =

(∫
HN

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

)(
Q∗

α|u|Q
∗
α−2u + pK(ξ)|u|p−2u

)
(1.1)

in the Heisenberg group HN , where 0 < α < 4, Q = 2N + 2, Q∗
α = 2Q−α

Q−2 , p ∈ (2, Q∗
α) , V is a

non-negative continuous function that can vanish at infinity and K is continuous non-negative
bounded function.

The Heisenberg group has found significant attraction due to its rich geometry, leading
to various applications in the field of partial differential equations. In one of the pioneering
works, Garofalo and Lanconelli [20] obtained the existence of a solution for a semilinear
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subelliptic PDE in the Heisenberg group via a variational technique. Since then, a wide range
of results have been obtained, see [7, 8, 13, 21, 25, 36, 39] and references therein.

The equation (1.1) is analogous to the well-known steady state Schrödinger equation

∆Ψ + V(x)Ψ = (Z(x) ∗ |Ψ|q)|Ψ|q−2Ψ in RN , (1.2)

where V is the potential, and Z is the response function describing the mutual interaction
between the bosons. When Z(x) = |x|−1, (1.2) reduces to the Choquard equation. A typical
model, corresponding to q = 2, is

−∆Ψ + Ψ =

(
1
|x| ∗ |Ψ|2

)
Ψ in RN ,

which was originally introduced in the context of polaron models [19,33]. For a comprehensive
overview of Choquard-type problems in RN , see [31].

On setting the response function Z(x) to be the Dirac-delta function in (1.2), we obtain the
Schrödinger equation in the following form:

−∆u + V(x)u = f (x, u) in RN , (1.3)

where u > 0, V is a continuous function and f is a non-linear function. The function V is
commonly referred to as the potential function. Equation (1.3) has been extensively studied
under various assumptions on V and f . For bounded, coercive potentials V, see [15,30,34,36].
For vanishing potentials (V(x) → 0 as |x| → ∞), notable contributions include [3–5, 24, 29].
Other situations such as constant, periodic, asymptotically constant, asymptotically periodic,
and radial potentials have also been addressed (see [1,2,10,32,40]). For the vanishing potential
case Alves–Souto [4], Alves–Figueiredo-Yang [3] employed a penalization technique inspired
by Del Pino–Felmer [16].

In recent years, considerable progress has been made on critical Choquard-type prob-
lems in the Heisenberg group. Goel and Sreenadh [21] established a Brezis–Nirenberg type
result for Choquard equations in Ω ⊂ HN . Sun et al. [36] developed a concentration-
compactness lemma for the Choquard equation and applied it to obtain weak solutions of a
Kirchhoff–Choquard problem with the critical Hardy–Littlewood–Sobolev exponent. Sub-
sequent works extended and refined these results: Bai et al. [7] proved existence of weak
solutions to Kirchhoff–Choquard equations with the same critical exponent in bounded do-
mains, recovering compactness through suitable conditions on the Kirchhoff term, while Sun
et al. [36] investigated Kirchhoff-–Choquard systems in bounded domains of HN . Yang et
al. [38] studied (p, q)-type Choquard equations in HN , focusing on cases where the Choquard
term is subcritical. Liang et al. [26] extended the concentration-compactness approach of [36]
to the p-sub-Laplacian framework. Further contributions include Bai et al. [6], who considered
critical Choquard-type problems with lower-order perturbation terms that may be sublinear
or superlinear. Bai et al. [9], who established results for fractional p-sub-Laplacian equations
with critical Choquard non-linearities. Most recently, Liang et al. [27] proved the existence of
normalized solutions for critical Choquard-type equations with logarithmic perturbations in
bounded domains of HN .

From the above survey, we conclude, to the best of our knowledge, that there are no ex-
isting works addressing problems involving vanishing potentials in the Heisenberg group.
Moreover, we are not aware of any research in the Heisenberg group that employs the pe-
nalization technique. Although Li et al. [24] studied a problem similar to (1.1) in RN for the
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Laplacian, their approach did not involve the penalization method. Furthermore, to the best
of our knowledge, Choquard-type problems have not been investigated via the penalization
technique either in RN or in HN . In this article, we obtain an existence result for (1.1) by
employing the penalization method, inspired by the works of Alves et al. [3, 4].

Before stating our main result, we specify our assumptions on V and K :

(Σ1) V : HN → R, is continuous, non-negative, V ∈ L∞(HN) ∩ L
Q
2 (HN) and there exists

µ > 0, Λ > 0 and R > 0 such that

inf
|ξ|≥R

|ξ|µV(ξ) ≥ Λ.

(Σ2) K : HN → R is continuous, non-negative, bounded and K ∈ L
Q∗

Q∗
α−p , where Q∗ = 2Q

Q−2 .

From (Σ1), we have V ∈ L
2Q

4−α (HN) by interpolation of the Lebesgue spaces L∞(HN) and
L

Q
2 (HN).

Next, we present and example of V and K satisfying (Σ1) and (Σ2), respectively.

Example 1.1. Let R = 1. Define

V1(ξ) =


1
|ξ|a , ξ ∈ HN \ B1(0), a > 2,

1, ξ ∈ B1(0).

Then V1 satisfies (Σ1) for any µ > a with Λ = 1.
Examples for K.

(i) Define

K1(ξ) =


1
|ξ|a , ξ ∈ HN \ B1(0), a >

Q(Q∗
α − p)

Q∗ ,

1, ξ ∈ B1(0),

where

p ∈
(

2,
2Q − α

Q − 2

)
.

Then, K1 satisfies (Σ2).
(ii) As a different example, consider

K2(ξ) = e−|ξ|4 .

Then K2 also satisfies (Σ2).

Now, we state the main result of this paper:

Theorem 1.2. Let the conditions (Σ1), (Σ2) hold. Then, there exists a constant γ such that (1.1) admits
a positive weak solution u ∈ E (see Section 2 for the definition of E) for any Λ ≥ γRµ.

We have organized the paper as follows. Section 2 gives the preliminaries for the Heisen-
berg group and some primary results on the Heisenberg group. Further, Section 3 converts
the main problem into an auxiliary problem and describes its variational framework. In the
last section, we prove Theorem 1.2.
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2 Preliminaries

We recall some terminologies and definitions related to the Heisenberg group
HN =

(
R2N+1, ◦

)
, where ‘◦’ denotes the group operation defined as

ξ ◦ ξ ′ = (x + x′, y + y′, t + t′ + 2(x′ · y − y′ · x)), for every ξ = (x, y, t), ξ ′ = (x′, y′, t′) ∈ HN ,

where x, y, x′, y′∈RN , t, t′∈R. ξ−1=−ξ is the inverse, and therefore (ξ ′)−1◦ ξ−1=(ξ ◦ ξ ′)−1.
The natural group of dilations on HN is defined as δs(ξ) = (sx, sy, s2t), for every s > 0.

Hence, δs(ξ ′ ◦ ξ) = δs(ξ ′) ◦ δs(ξ) and δs(δs′(ξ)) = δss′(ξ), for s, s′ > 0. It can be easily proved
that the Jacobian determinant of dilations δs : HN → HN is constant and equal to sQ, for every
ξ = (x, y, t) ∈ HN . The natural number Q = 2N + 2 is called the homogeneous dimension of
HN . The homogeneous norm on HN is defined as follows

|ξ| = |ξ|H =
[
(|x|2 + |y|2)2 + t2] 1

4 , for every ξ ∈ HN .

By definition, the homogeneous degree of the norm is 1, in terms of dilations. The following
vector fields

T =
∂

∂t
, Xj =

∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , N,

generate the real Lie algebra of left-invariant vector fields. The vector fields, T, Xj, Yj satisfy
the following relations:

[Xj, Yk] = −4δjkT, [Yj, Yk] = [Xj, Xk] = [Yj, T] = [Xj, T] = 0.

The Heisenberg gradient on HN is given by

∇H = (X1, X2, · · · , XN , Y1, Y2, · · · , YN),

and the Kohn-Laplacian on HN is given by

∆H =
N

∑
j=1

X2
j + Y2

j =
N

∑
j=1

∂2

∂x2
j
+

∂2

∂y2
j
+ 4yj

∂2

∂xj∂t
− 4xj

∂2

∂xj∂t
+ 4(x2

j + y2
j )

∂2

∂t2 .

The Haar measure on HN coincides with the Lebesgue measure and is Q-homogeneous
with respect to dilations. More precisely, it is consistent with the (2N + 1)-dimensional
Lebesgue measure. Consequently, the topological dimension of HN is 2N + 1, which is strictly
smaller than its Hausdorff dimension Q = 2N + 2.

For a measurable set Ω ⊆ HN , we denote by |Ω| its (2N + 1)-dimensional Lebesgue
measure. Then, for every s > 0, we have

|δs(Ω)| = sQ|Ω|, d(δs(ξ)) = sQ dξ, and |Br(ξ)| = αQrQ,

where αQ = |B1(0)|. Here, Br(ξ) denotes the ball in HN centered at ξ with radius r.
The horizontal Sobolev space is defined as

HW1,2(HN) =
{

u ∈ L2(HN) : Xju, Yju ∈ L2(HN), j = 1, . . . , N
}

.

It is a Hilbert space equipped with the inner product

⟨u, v⟩ =
∫

HN
∇Hu(ξ) · ∇Hv(ξ) dξ +

∫
HN

u(ξ) v(ξ) dξ,
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which induces the norm

∥u∥HW1,2(HN) =

(∫
HN

∣∣∇Hu(ξ)
∣∣2 dξ +

∫
HN

|u(ξ)|2 dξ

) 1
2

.

We define

E =

{
u ∈ S1,2(HN) :

∫
HN

V(ξ) |u(ξ)|2 dξ < ∞
}

,

where S1,2(HN) denotes the completion of C∞
0 (HN) with respect to the norm

∥u∥S1,2(HN) =

(∫
HN

|∇Hu(ξ)|2 dξ

) 1
2

.

The space E is a Hilbert space endowed with the inner product

⟨u, v⟩ =
∫

HN
(∇Hu(ξ) · ∇Hv(ξ) + V(ξ) u(ξ) v(ξ)) dξ,

which induces the norm

∥u∥ =

(∫
HN

(
|∇Hu(ξ)|2 + V(ξ)|u(ξ)|2

)
dξ

)1/2

.

The continuous embedding

E ⊂ S1,2(HN) ↪→ LQ∗
(HN)

holds (see [22]); that is,
∥u∥LQ∗ (HN) ≤ C∥u∥, u ∈ E.

Since S1,2(HN) ↪→ LQ∗
(HN), we have

S ∥u∥2
LQ∗ (HN)

≤
∫

HN
|∇Hu(ξ)|2 dξ,

where S is the best Sobolev constant, defined by

S = inf
S1,2(HN)\{0}

∫
HN |∇Hu(ξ)|2 dξ(∫

HN |u|Q∗ dξ
) 2

Q∗
.

It was proved by Jerison and Lee [23] that S is attained by the function

U(ξ) = U(x, y, t) =
C(

t2 +
(
1 + |x|2 + |y|2

)2
)Q−2

4

, (2.1)

(up to dilation and translation), where C > 0 is a suitable constant.
Now, we state the Hardy–Littlewood–Sobolev inequality.

Lemma 2.1. Let r, s > 1 and 0 < α < Q satisfy

1
r
+

α

Q
+

1
s
= 2.
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If f ∈ Lr(HN) and h ∈ Ls(HN), then there exists a sharp constant C(r, s, α, Q) > 0, independent of
f and h, such that

∫
HN

∫
HN

f (ξ) h(η)
|η−1 ◦ ξ|α dη dξ ≤ C(r, s, α, Q) ∥ f ∥Lr(HN) ∥h∥Ls(HN). (2.2)

In particular, if r = s = 2Q
2Q−α , then the sharp constant is given by

C(r, s, α, Q) = C(Q, α) =

(
πN+1

2 N−1N!

) α
Q N! Γ

(Q−α
2

)
Γ2
( 2Q−α

2

) , (2.3)

where Γ denotes the Gamma function.

Frank and Lieb [18] proved that the equality holds in (2.2) if and only if f , h ∈ L
2Q

2Q−α (HN)

defined as f (ξ) = cW
(
δθ

(
η−1 ◦ ξ

))
, h(ξ) = c′W

(
δθ

(
η−1 ◦ ξ

))
, where c ∈ C, θ > 0, and

η ∈ HN(unless f ≡ 0 or g ≡ 0) and

W(ξ) = W(x, y, t) =
(

t2 +
(
1 + |x|2 + |y|2

)2
)− 2Q−α

4
, for all ξ = (x, y, t) ∈ HN .

SHG is defined as

SHG = inf
S1,2(HN)\{0}

∫
HN |∇Hu(ξ)|2dξ(∫

HN

∫
HN

|u(η)|Q
∗
α |u(ξ)|Q

∗
α

|η−1◦ξ|α dηdξ
) 1

Q∗
α

.

Goel and Sreenadh [21] proved that SHG is attained by the function U (defined in (2.1)), up to
the translation and dilation.(cf [21, Lemma 2.1]) and

SHG = S
(

C(Q, α)
− 1

Q∗
α

)
,

where C(Q, α) is defined in (2.3).
To deal with the lack of compactness caused by the term with critical exponent, we use

the Concentration-Compactness Principle, which was given by Lions [28] in the Euclidean
framework and by Ivanov et al. [22] in the Carnot groups setting. We state the lemma in the
Heisenberg group setting.

Lemma 2.2 ([22, Lemma 1.4.5]). Let {un} be a bounded sequence in S1,2(HN) converging weakly
and a.e. to some u ∈ S1,2(HN). |∇Hun|2 ⇀ ω, |un|Q

∗
⇀ ζ weakly in the sense of measures where ω

and ζ are bounded non-negative measures on HN . Then we have:

(1) there exists some at most countable set I, a family {zi : i ∈ I} of distinct points in HN , and a
family {ζi : i ∈ I} of positive numbers such that

ζ = |u|Q∗
+ ∑

i∈I
ζiδzi ,

where δξ is the Dirac-mass of mass 1 concentrated at ξ ∈ HN .
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(2) In addition, we have
ω ≥ |∇Hu|2 + ∑

i∈I
ωiδzi

for some family {ωi : i ∈ I}, ωi > 0 satisfying

Sζ
2

Q∗
i ≤ ωi, for all i ∈ I.

In particular, ∑i∈I ζ
2

Q∗
i < ∞.

We next recall the Concentration–Compactness Principle to handle Choquard-type prob-
lems in the Heisenberg group:

Lemma 2.3 ([36, Theorem 3.1]). Let {un} be a bounded sequence in S1,2(HN) converging weakly
and a.e. to some u and ω, ζ be the bounded nonnegative measures in Lemma 2.2. Assume that

∫
HN

(
|un(η)|Q

∗
α

|η−1 ◦ ξ|α dη

)
|un(ξ)|Q

∗
α ⇀ ν

weakly in the sense of measure where ν is a bounded positive measure on HN . Then, there exists a
countable sequence of points {zi}i∈I ⊂ HN and families of positive numbers {νi : i ∈ I}, {ζi : i ∈ I}
and {ωi : i ∈ I} such that

ν =

(∫
RN

|u(η)|Q∗
α

|η−1 ◦ ξ|α dη

)
|u(ξ)|Q∗

α + ∑
i∈I

νiδzi , ∑
i∈I

ν
1

Q∗
α

i < ∞,

ω ≥ |∇Hu|2 + ∑
i∈I

ωiδzi ,

ζ ≥ |u|Q∗
+ ∑

i∈I
ζiδzi ,

and

SHGν
1

Q∗
α

i ≤ ωi, ν
Q

2Q−α

i ≤ C(Q, α)
Q

2Q−α ζi,

where δξ is the Dirac-mass of mass 1 concentrated at ξ ∈ HN .

Lemma 2.4 ([21, Lemma 2.5]). Let 0 < α < Q. If {un} is a bounded sequence in L
2Q

Q−2 (HN) such
that un → u a.e. in HN as n → ∞. Then as n → ∞, the following holds:

∫
HN

(
|ξ|−α ∗ |un|Q

∗
α

)
|un|Q

∗
α dξ −

∫
HN

(
|ξ|−α ∗ |un − u|Q∗

α

)
|un − u|Q∗

α dξ

→
∫

HN

(
|ξ|−α ∗ |u|Q∗

α

)
|u|Q∗

α dξ.

By following the proof of [11, Proposition 2.2], we get the following embedding result:

Lemma 2.5. Let g ∈ Lm(HN), where m = Q∗

Q∗−q , q ∈ [1, Q∗). Then S1,2(HN) ↪→ Lq(HN , |g|)
compactly, where Lq(HN , |g|) = {u is a measurable function |

∫
HN g|u(ξ)|qdξ < ∞}.



8 V. Y. Naik and G. Dwivedi

3 Auxiliary problem and variational framework

In this section, adapting the arguments in [3, 29], we study the existence of a weak solution
to an auxiliary problem associated with (1.1). Throughout this and the following sections, we
use C to denote a generic constant, whose value may change from line to line.

Let f (ξ, u) = Q∗
α|u(ξ)|Q

∗
α−2u(ξ) + pK(ξ)|u(ξ)|p−2u(ξ). We penalize the left hand side

of (1.1)
Define, for ℓ > 1 and R > 1,

f̃ (ξ, t) =

{
f (ξ, t) if ℓ f (ξ, t) ≤ V(ξ)t,
V(ξ)
ℓ t if ℓ f (ξ, t) > V(ξ)t,

(3.1)

and

g(ξ, t) =

{
f (ξ, t) if |ξ| ≤ R,

f̃ (ξ, t) if |ξ| > R.
(3.2)

From (3.1) and (3.2), it follows that

f̃ (ξ, t) ≤ f (ξ, t), ∀ ξ ∈ HN ,

g(ξ, t) ≤ V(ξ)

ℓ
t, |ξ| ≥ R,

G(ξ, t) = F(ξ, t), |ξ| ≤ R,

G(ξ, t) ≤ V(ξ)

2ℓ
t2, |ξ| ≥ R,

(3.3)

where F(ξ, t) =
∫ t

0 f (ξ, s)ds, and G(ξ, t) =
∫ t

0 g(ξ, s)ds.
We consider the following auxiliary problem associated with (1.1):

−∆Hu(ξ) + V(ξ)u(ξ) =
(∫

HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
g(ξ, u(ξ)) in HN . (3.4)

The energy functional J : E → R associated with (3.4) is given by

J(u) =
1
2
∥u∥2 − 1

2

∫
HN

(∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
G(ξ, u(ξ))dξ. (3.5)

One can verify that J is a C1-functional and its derivative is given by

⟨J′(u), v⟩ =
∫

HN
(∇Hu(ξ) · ∇Hv(ξ) + V(ξ)u(ξ)v(ξ)) dξ

−
∫

HN

(∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
g(ξ, u(ξ))v(ξ)dξ.

We now present the result that constitutes the core of this paper.

Theorem 3.1. Let the conditions (Σ1), (Σ2) hold. Then, (3.4) admits a positive weak solution u ∈ E.

To prove Theorem 3.1, we first prove a series of lemmas.

Lemma 3.2. The functional J satisfies the following properties:
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(i) there exist β, r > 0 such that J(u) ≥ β whenever ∥u∥ = r;

(ii) there exists e ∈ E with ∥e∥ > ρ (for some ρ > 0) such that J(e) < β.

Proof. Consider,

J(u) =
1
2
∥u∥2 − 1

2

∫
HN

(∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
G(ξ, u(ξ))dξ

≥ 1
2
∥u∥2 − 1

2

∫
HN

(∫
HN

F(η, u)
|η−1 ◦ ξ|α dη

)
F(ξ, u)dξ

≥ 1
2
∥u∥2 − 1

2

∫
HN

(∫
HN

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

)(
|u(ξ)|Q∗

α + K(ξ)|u(ξ)|p
)

dξ

=
1
2
∥u∥2 − 1

2

∫
HN

∫
HN

|u(η)|Q∗
α

|η−1 ◦ ξ|α |u(ξ)|
Q∗

α dηdξ − 1
2

∫
HN

∫
HN

|u(η)|Q∗
α

|η−1 ◦ ξ|α K(ξ)|u(ξ)|pdηdξ

− 1
2

∫
HN

∫
HN

K(η)|u(η)|p
|η−1 ◦ ξ|α K(ξ)|u(ξ)|pdηdξ − 1

2

∫
HN

∫
HN

K(η)|u(η)|p
|η−1 ◦ ξ|α |u(ξ)|Q∗

α dηdξ.

Using (2.2), we get

∫
HN

∫
HN

K(η)|u(η)|p
|η−1 ◦ ξ|α K(ξ)|u(ξ)|pdηdξ ≤ C

(∫
HN

|K(ξ)|
2Q

2Q−α |u(ξ)|
2Qp

2Q−α dξ

) 2Q−α
Q

. (3.6)

By using Hölder’s inequality and (Σ2), we get

∫
HN

|K(ξ)|
2Q

2Q−α |u(ξ)|
2Qp

2Q−α dξ ≤
(∫

HN
|K(ξ)|

Q∗
Q∗

α−p dξ

) Q∗
α−p
Q∗

α

(∫
HN

|u(ξ)|Q∗
dξ

) p
Q∗

α

≤ C
(∫

HN
|u(ξ)|Q∗

dξ

) p
Q∗

α
.

On using this in (3.6), we get

∫
HN

∫
HN

K(η)|u(η)|p
|η−1 ◦ ξ|α K(ξ)|u(ξ)|pdηdξ ≤ C

(∫
HN

|u(ξ)|Q∗dξ

) p
Q∗ (∫

HN
|u(ξ)|Q∗

dξ

) p
Q∗

= C∥u∥2p
LQ∗ (HN).

Similarly, we have ∫
HN

∫
HN

|u(η)|Q∗
α

|η−1 ◦ ξ|α K(ξ)|u(ξ)|pdηdξ ≤ C∥u∥p+Q∗
α

LQ∗

and ∫
HN

∫
HN

|u(η)|Q∗
α

|η−1 ◦ ξ|α |u(ξ)|
Q∗

α dηdξ ≤ C∥u∥2Q∗
α

LQ∗ .

Hence,

J(u) ≥ 1
2
∥u∥2 − 1

2
C
(
∥u∥p+Q∗

α

LQ∗ + ∥u∥2Q∗
α

LQ∗ + ∥u∥2p
LQ∗

)
≥ 1

2
∥u∥2 − 1

2
C
(
∥u∥p+Q∗

α + ∥u∥2Q∗
α + ∥u∥2p

)
.
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Thus for sufficiently small ∥u∥ = r, J(u) ≥ β.
(ii) For u ∈ C∞

0 (BR \ {0}),

J(tu) ≤ t2

2

∫
|ξ|≤R

|∇Hu|2 + V(ξ)u2dξ

− t2p

2

∫
|η|≤R

(∫
|ξ|≤R

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

)(
|u(ξ)|Q∗

α + K(ξ)|u(ξ)|pdξ
)

.

Thus, we conclude that J(tu) → −∞ as t → ∞. Hence for some e ∈ E with ∥e∥ > ρ such
that J(e) < β. This completes the proof.

Lemma 3.3. Let {un} be a (PS)c sequence associated to the functional J in E ⊂ S1,2(HN). Then {un}
is bounded.

Proof. Let {un} be a (PS)c sequence associated to the functional J in E ⊂ S1,2(HN). Then

J(un) → c, J′(un) → 0. (3.7)

Let Ψ(u) = 1
2

∫
HN

(∫
HN

G(η,u(η))
|η−1◦ξ|α dη

)
G(ξ, u(ξ))dξ.

We prove ⟨Ψ′(u), u⟩ ≥ 2θΨ(u) > 0, for some θ ∈ (1, 2).
Consider,

1
2θ

⟨Ψ′(u), u⟩ − Ψ(u) =
∫

HN

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

g(ξ, u(ξ))u − 1
2

G(ξ, u(ξ))
)

dξ

=
∫
|ξ|≤R

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

f (ξ, u)u − 1
2

F(ξ, u)
)

dξ

+
∫
|ξ|>R

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

g(ξ, u(ξ))u − 1
2

G(ξ, u(ξ))
)

dξ

Let,

A = {σ ∈ HN : |σ| > R and ℓ f (σ, u) ≤ V(σ)u(σ)},

B = {σ ∈ HN : |σ| > R and ℓ f (σ, u) > V(σ)u(σ)}.
(3.8)

We have, u f (ξ, u) ≥ θF(ξ, u). Now for |ξ| > R,

1
2θ

⟨Ψ′(u), u⟩ − Ψ(u) =
∫
|ξ|>R

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

g(ξ, u(ξ))u − 1
2

G(ξ, u(ξ))
)

dξ

≥
∫

A

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

g(ξ, u(ξ))u − 1
2

G(ξ, u(ξ))
)

dξ

+
∫

B

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

g(ξ, u(ξ))u − 1
2

G(ξ, u(ξ))
)

dξ

≥
∫

A

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1
2θ

f (ξ, u)u − 1
2

F(ξ, u)
)

dξ

+
∫

B

( ∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)(
1

2θℓ
− 1

4ℓ

)
V(ξ)u2dξ

≥ 0.
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Consider,

c + ∥un∥o(1) = J(un)−
1
2θ

⟨J′(un), un⟩

=

(
1
2
− 1

2θ

)
∥un∥2 +

1
2θ

⟨Ψ′(un), un⟩ − Ψ(un)

≥
(

1
2
− 1

2θ

)
∥un∥2.

Thus, {un} is bounded.

Lemma 3.4. Let V and K satisfy (Σ1), (Σ2) and let {un} be as (PS)c sequence of J. Then, there exists
a positive number c1 > 0 such that for c < c1,

lim
n→∞

∫
BR

∫
HN

|(un − u)(ξ)|Q∗
α |(un − u)(η)|Q∗

α

|η−1 ◦ ξ|α dη dξ = 0

Proof. Let {un} be a (PS)c sequence. By Lemma 3.3, the sequence {un} is bounded in E.
Since E is reflexive, there exists u ∈ E such that, up to a subsequence, un ⇀ u weakly in E.
Consequently, un → u strongly in Lq

loc(H
N) for every q ∈ [2, Q∗), and un(ξ) → u(ξ) a.e. in

HN . Moreover, un ⇀ u in S1,2(HN), and hence, by Sobolev embedding, un ⇀ u in LQ∗
(HN).

Therefore, there exist bounded nonnegative measures ω, ζ, and ν such that, as n → ∞,

|∇Hun|2 ⇀ ω, |un|Q
∗
⇀ ζ,

∫
HN

|un(η)|Q
∗
α

|η−1 ◦ ξ|α dη |un(ξ)|Q
∗
α ⇀ ν.

Therefore by Lemma 2.3, there exists a countable sequence of points {zi}i∈I ⊂ HN and
families of positive numbers {νi : i ∈ I} , {ζi : i ∈ I} and {ωi : i ∈ I} such that

ν =

( ∫
RN

|u(η)|Q∗
α

|η−1 ◦ ξ|α dy
)
|u(x)|Q∗

α + Σi∈Iνiδzi , Σi∈Iν
1

Q∗
α

i < ∞,

ω ≥ |∇Hu|2 + ∑
i∈I

ωiδzi ,

ζ ≥ |u|Q∗
+ ∑

i∈I
ζiδzi ,

and

SHGν
1

Q∗
α

i ≤ ωi, ν
Q

2Q−α

i ≤ C(Q, α)
Q

2Q−α ζi,

where δξ is the Dirac-mass of mass 1 concentrated at ξ ∈ HN .
Let ϕ ∈ C∞

0 (Hn) be such that 0 ≤ ϕ ≤ 1,

ϕ(ξ) =

{
1 if ξ ∈ B1(0),

0 if ξ ∈ HN \ B2(0).
(3.9)

Let ε > 0. For fixed i ∈ I, define

ϕε,i(ξ) = ϕ
(

δ 2
ε
(z−1

i ◦ ξ)
)

.

From (3.7), we have J′(un) → 0 as n → ∞. Therefore, ⟨J′(un), ϕε,iun⟩ → 0 as n → ∞. Hence,

lim
n→∞

∫
HN

(
∇Hun · ∇H (un · ϕε,i(ξ)un + V(ξ)|un|2ϕε,i

)
dξ

−
∫

HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)un(ξ)ϕε,i(ξ)dξ = 0.

(3.10)
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Next, we claim that

lim
ε→0

lim
n→∞

∫
HN

un∇Hun∇Hϕε,i = 0. (3.11)

Indeed, the boundedness of {un}, combined with Hölder’s inequality and the Sobolev em-
bedding theorem, yields

lim
ε→0

lim
n→∞

∣∣∣∣∫
HN

un(ξ)∇Hun(ξ) · ∇Hϕε,i(ξ) dξ

∣∣∣∣
≤ lim

ε→0
lim
n→∞

(∫
HN

|∇Hun(ξ)|2 dξ

) 1
2
(∫

HN
|un(ξ)∇Hϕε,i(ξ)|2 dξ

) 1
2

≤ lim
ε→0

lim
n→∞

C
(∫

Bε(zi)
|un(ξ)|2|∇Hϕε,i(ξ)|2 dξ

) 1
2

≤ lim
ε→0

C
(∫

Bε(zi)
|u(ξ)|2|∇Hϕε,i(ξ)|2 dξ

) 1
2

≤ lim
ε→0

C
(∫

Bε(zi)
|∇Hϕε,i(ξ)|Q dξ

) 1
Q
(∫

Bε(zi)
|u(ξ)|Q∗

dξ

) 1
Q∗

.

One can see that using change of variables,
∫

Bε(zi)
|∇Hϕε,i(ξ)|Q dξ is bounded as ε → 0. Thus,

(3.11) holds. Further, by using (Σ2) and Lemma 2.5, with m = 2, we have

lim
n→∞

∫
HN

V(ξ)|un(ξ)|2dξ = lim
n→∞

∫
HN

V(ξ)|u(ξ)|2dξ.

So by Hölder’s inequality,

lim
ε→0

lim
n→∞

∫
HN

V(ξ)|un(ξ)|2ϕε,i(ξ)dξ = lim
ε→0

∫
HN

V(ξ)|u(ξ)|2ϕε,i(ξ)dξ

≤ lim
ε→0

(∫
Bε(zi)

|V(ξ)|
Q
2

)(∫
Bε(zi)

|u(ξ)|Q∗
dξ

) 1
Q∗

.

Hence,

lim
ε→0

lim
n→∞

∫
HN

V(ξ)|un(ξ)|2ϕε,i(ξ)dξ = 0. (3.12)

Therefore, using Lemma 2.3, (3.11) and (3.12), we get

ωi ≤ lim
ε→0

lim
n→∞

∫
HN

|∇Hun|2ϕε,i(ξ)dξ = lim
ε→0

lim
n→∞

∫
HN

∇Hun · ∇H (ϕε,i(ξ)un(ξ)) dξ. (3.13)

Suppose that there exists i ∈ I such that zi ∈ BR(0). Hence for small ε > 0,∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)un(ξ)ϕε,i(ξ)dξ

=
∫
|ξ|≤R

(∫
|η|≤R

|un(η)|Q
∗
α + K(η)|un(η)|p
|η−1 ◦ ξ|α dη

)
(Q∗

α|un(ξ)|Q
∗
α + pK(ξ)|un(ξ)|p)ϕε,i(ξ)dξ

+
∫
|ξ|≤R

(∫
A

|un(η)|Q
∗
α + K(η)|un(η)|p
|η−1 ◦ ξ|α dη

)
(Q∗

α|un(ξ)|Q
∗
α + pK(ξ)|un(ξ)|p)ϕε,i(ξ)dξ

+
∫
|ξ|≤R

(∫
B

V(η)|un(η)|2
2ℓ|η−1 ◦ ξ|α dη

)
(Q∗

α|un(ξ)|Q
∗
α + pK(ξ)|un(ξ)|p)ϕε,i(ξ)dξ. (3.14)
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We now claim

lim
n→∞

∫
|ξ|≤R

∫
|η|≥R

V(η)|un(η)|2|un(ξ)|p
|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0 as ε → 0. (3.15)

By the Hardy–Littlewood–Sobolev inequality,∫
|ξ|≤R

∫
|η|≥R

V(η)|un(η)|2|un(ξ)|p
|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ ≤ C∥V|un|2∥

L
2Q

2Q−α (HN)
∥un∥p

L
2Qp

2Q−α (Bε(zi))

.

On using Hölder’s inequality, Sobolev embedding and (Σ1), we get∫
|ξ|≤R

∫
|η|≥R

V(η)|un(η)|2|un(ξ)|p
|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ ≤ C∥u∥p

L
2Qp

2Q−α (Bε(zi))

.

Letting ε → 0, we prove the claim. Similarly, by the Hardy–Littlewood–Sobolev inequality
and (Σ2), we have

lim
n→∞

∫
|ξ|≤R

∫
|η|≤R

K(η)|un(η)|pK(ξ)|un(ξ)|p
|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0 as ε → 0, (3.16)

lim
n→∞

∫
|ξ|≤R

∫
|η|≤R

|un(η)|Q
∗
α K(ξ)|un(ξ)|p

|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0, as ε → 0. (3.17)

Next, we claim that

lim
n→∞

∫
|ξ|≤R

∫
A

K(η)|un(η)|p|un(ξ)|Q
∗
α

|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0 as ε → 0.

We have p ∈
(

2, 2Q−α
Q−2

)
, K ∈ L

Q∗
Q∗

α−p (HN). Hence, K
2Q

2Q−α ∈ L
Q∗

Q∗− 2Qp
2Q−α (HN). By Lemma 2.5,∫

A
(K(η)|un(η)− u(η)|p)

2Q
2Q−α → 0

as n → ∞, i.e K|un|p → K|u|p in L
2Q

2Q−α (HN). By the Hardy–Littlewood–Sobolev inequality, we
have ∫

A

K(η)|un(η)|p
|η−1 ◦ ξ|α dη →

∫
A

K(η)|u(η)|p
|η−1 ◦ ξ|α dη

in L
2Q
α (HN). Now since un is a bounded sequence in E, we have

∫
|ξ|≤R(|un(ξ)|Q

∗
α ϕε,i)

2Q
2Q−α dξ ≤

C. Since un ⇀ u in E, as n → ∞, |un(ξ)|Q
∗
α ϕε,i(ξ) ⇀ |u(ξ)|Q∗

α ϕε,i(ξ) in L
2Q

2Q−α (|ξ| ≤ R). Thus,∫
|ξ|≤R

∫
A

K(η)|un(η)|p
|η−1 ◦ ξ|α dη|un(ξ)|Q

∗
α ϕε,i(ξ)dξ →

∫
|ξ|≤R

∫
A

K(η)|u(η)|p
|η−1 ◦ ξ|α dη|u(ξ)|Q∗

α ϕε,i(ξ)dξ,

as n → ∞. Now using the Hardy–Littlewood–Sobolev inequality,∫
|ξ|<R

∫
A

K(η)|u(η)|p
|η−1 ◦ ξ|α dη|u(ξ)|Q∗

α ϕε,i(ξ)dξ ≤ C∥K|u|p∥
L

2Q
2Q−α (|ξ|≤R)

∥u∥Q∗
α

LQ∗ (Bε(zi))

and taking limit as ε → 0, we prove the claim. Thus, we have

lim
n→∞

∫
|ξ|

∫
A

K(η)|un(η)|p|un(ξ)|Q
∗
α

|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0 as ε → 0.
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Similarly, we can prove

lim
n→∞

∫
|ξ|≤R

∫
B

V(η)|un(η)|2|un(ξ)|Q
∗
α

|η−1 ◦ ξ|α ϕε,i(ξ)dηdξ → 0 as ε → 0.

Hence, taking limit as ε → 0 and n → ∞ in (3.14) and using Lemma 2.3 we get

lim
ε→∞

lim
n→∞

∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)un(ξ)ϕε,i(ξ)dξ

≤ lim
ε→∞

lim
n→∞

Q∗
α

∫
|ξ|≤R

(∫
|η|≤R

|un(η)|Q
∗
α

|η−1 ◦ ξ|α dη

)
|un(ξ)|Q

∗
α ϕε,i(ξ)dξ

+ Q∗
α

∫
|ξ|≤R

(∫
A

|un(η)|Q
∗
α

|η−1 ◦ ξ|α dη

)
|un(ξ)|Q

∗
α ϕε,i(ξ)dξ

≤ Q∗
ανi

where we have used (2.2) and Hölder’s inequality. Hence, from (3.10) and (3.12)

ωi ≤ Q∗
ανi ,

SHGν
Q−2

2Q−α

i ≤ Q∗
ανi ,

SHG ≤ Q∗
αν

Q−α+2
2Q−α

i .

Hence, we conclude that νi > δ > 0, for some fixed δ. Now by Lemma 2.3, we have

∑i∈I ν
2

Q∗
α

i < ∞. Hence, I is finite.
Consider,

c + o(1) = J(un)−
1
2
⟨J′(un), un⟩

≥ 1
2

∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
(g(ξ, un)un − 2G(ξ, un))dξ

=
1
2

∫
HN

(∫
|η|≤R

|un|Q
∗
α + K(η)|un|p
|η−1 ◦ ξ|α dη

)
((Q∗

α − 2)|un|Q
∗
α + (p − 2)K(ξ)|un|p)dξ

+
1
2

∫
HN

(∫
A

|un|Q
∗
α + K(η)|un|p
|η−1 ◦ ξ|α dη

)
((Q∗

α − 2)|un|Q
∗
α + (p − 2)K(ξ)|un|p)dξ

+
1
2

∫
HN

(∫
B

V(η)|un|2
2ℓ|η−1 ◦ ξ|α dη

)
((Q∗

α − 2)|un|Q
∗
α + (p − 2)K(ξ)|un|p)dξ

≥
(

Q∗
α − 2
2

) ∫
HN

(∫
|η|≤R

|un(η)|Q
∗
α |un(ξ)|Q

∗
α

|η−1 ◦ ξ|α dη

)
ϕε,i(ξ)dξ

+

(
Q∗

α − 2
2

) ∫
HN

(∫
A

|un(η)|Q
∗
α |un(ξ)|Q

∗
α

|η−1 ◦ ξ|α dη

)
ϕε,i(ξ)dξ

≥
(

Q∗
α − 2
2Q∗

α

)
ωi

≥
(

Q∗
α − 2
2Q∗

α

)
SHGν

Q−2
2Q−α

i

≥
(

Q∗
α − 2
2

)(
SHG

Q∗
α

) 2Q−α
Q−α+2
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as ε → 0. Therefore,

c ≥
(

Q∗
α − 2
2

)(
SHG

Q∗
α

) 2Q−α
Q−2+α

.

Hence for level less than c1 =
(Q∗

α−2
2

)( SHG
Q∗

α

) 2Q−α
Q−2+α , I is empty or νi = 0 for all zi ∈ BR(0) and

using Lemma 2.4 we get the desired result.

Lemma 3.5. Let V and K satisfy (Σ1), (Σ2) and {un} be a (PS)c sequence for J. Then, at least for a
subsequence and for any ε > 0 there exists r ≥ R such that, for all r

lim sup
n→∞

∫
|ξ|≥2r

(|∇Hun(ξ)|2 + V(ξ)un(ξ)
2)dξ < ε.

Proof. For r > R, let ψr ∈ C∞(Hn) be such that 0 ≤ ψr ≤ 1,

ψr(ξ) =

{
0 if ξ ∈ Br(0),

1 if ξ ∈ HN \ B2r(0),
(3.18)

and |∇Hψr(ξ)| ≤ 2
r . Since J′(un) → 0 as n → ∞, ⟨J′(un), ψrun⟩ → 0 as n → ∞. Thus,

lim
n→∞

∫
HN

∇Hun(ξ) · ∇H(un(ξ)ψr(ξ))dξ + lim
n→∞

∫
HN

V(ξ)|un(ξ)|2ψr(ξ)dξ

= lim
n→∞

∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ,

lim
n→∞

∫
HN

|∇Hun(ξ)|2ψr(ξ)dξ + lim
n→∞

∫
HN

V(ξ)|un(ξ)|2ψr(ξ)dξ

+ lim
n→∞

∫
HN

un(ξ)∇Hun(ξ) · ∇Hψr(ξ)dξ

= lim
n→∞

∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ.

Next, we claim that

lim
r→∞

lim
n→∞

∫
HN

un(ξ)∇Hun(ξ) · ∇Hψr(ξ)dξ = 0. (3.19)

Since ∇Hψr(ξ) = 0 for |ξ| ≤ r and |ξ| ≥ 2r, it follows from Hölder’s inequality, boundedness
of {un} and compact embedding S1,2(HN) ↪→ L2

loc(H
N) that∫

HN
un(ξ)∇Hun(ξ) · ∇Hψr(ξ)dξ ≤ 2

r

∫
r≤|ξ|≤2r

|un(ξ)||∇Hun(ξ)|dξ

≤ 2
r

(∫
r≤|ξ|≤2r

|un|2dξ

) 1
2
(∫

r≤|ξ|≤2r
|∇un|2dξ

) 1
2

≤ C
r

(∫
r≤|ξ|≤2r

|un|2dξ

) 1
2

.

→ C
r

(∫
r≤|ξ|≤2r

|u(ξ)|2dξ

) 1
2

as n → ∞.
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Thus, we have

lim
n→∞

∫
HN

un(ξ)∇Hun(ξ) · ∇Hψr(ξ)dξ ≤ C
r

(∫
r≤|ξ|≤2r

|u(ξ)|2dξ

) 1
2

≤ C
r

(∫
r≤|ξ|≤2r

dξ

) 1
Q
(∫

r≤|ξ|≤2r
|u(ξ)|Q∗

dξ

) 1
Q∗

≤ C
(∫

r≤|ξ|
|u(ξ)|Q∗

dξ

) 1
Q∗

,

which shows that
lim
r→∞

lim
n→∞

∫
HN

un(ξ)∇Hun(ξ) · ∇Hψr(ξ)dξ = 0.

This proves (3.19). Next, we see that∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ ≤

∫
|ξ|≥r

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ.

Since r > R, using (3.3), boundedness of {un}, (Σ1), and (Σ2), we have∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ

≤
∫
|ξ|≥r

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
V(ξ)|un(ξ)|2

ℓ
dξ

≤
∫
|ξ|≥r

(∫
HN

|un(η)|Q
∗
α + K(η)|un(η)|p
|η−1 ◦ ξ|α dη

)
V(ξ)|un(ξ)|2

ℓ
dξ

+
∫
|ξ|≥r

(∫
HN

V(η)|un(η)|2
2ℓ|η−1 ◦ ξ|α dη

)
V(ξ)|un(ξ)|2

ℓ
dξ

≤ C
(∫

|ξ|≥r
|V(ξ)|

2Q
2Q−α |un(ξ)|

4Q
2Q−α dξ

) 2Q−α
2Q
(∫

HN

(
|un(η)|Q

∗
+ |K(η)|

2Q
2Q−α |un(η)|

2Qp
2Q−α

)
dη

) 2Q−α
2Q

+ C
(∫

|ξ|≥r
|V(ξ)|

2Q
2Q−α |un(ξ)|

4Q
2Q−α dξ

) 2Q−α
2Q
(∫

HN
|V(η)|

2Q
2Q−α |un(η)|

4Q
2Q−α dη

) 2Q−α
2Q

≤ C
(∫

|ξ|≥r
|V(ξ)|

2Q
2Q−α |un(ξ)|

4Q
2Q−α dξ

) 2Q−α
2Q
(∫

HN

(
|un(η)|Q

∗
+ |K(η)|

2Q
2Q−α |un(η)|

2Qp
2Q−α

)
dη

) 2Q−α
2Q

+ C
(∫

|ξ|≥r
|V(ξ)|

2Q
2Q−α |un(ξ)|

4Q
2Q−α dξ

) 2Q−α
2Q
(∫

HN
|V(η)|

2Q
4−α dη

) 4−α
2Q
(∫

HN
|un(η)|Q

∗
dη

) 2Q−4
2Q

≤ C
(∫

|ξ|≥r
|V(ξ)|

2Q
2Q−α |un(ξ)|

4Q
2Q−α dξ

) 2Q−α
2Q

. (3.20)

Since α ∈ (0, 4), it follows that 4Q
2Q−α ∈ (2, Q∗). Moreover, as V ∈ L

2Q
4−α (HN), we have

V
2Q

2Q−α ∈ L

Q∗

Q∗− 4Q
2Q−α (HN).

Therefore, by applying Lemma 2.5, we deduce that

lim
n→∞

∫
|ξ|≥r

|V(ξ)|
2Q

2Q−α |un(ξ)|
4Q

2Q−α dξ =
∫
|ξ|≥r

|V(ξ)|
2Q

2Q−α |u(ξ)|
4Q

2Q−α dξ.
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Hence,
lim
r→∞

lim
n→∞

∫
|ξ|≥r

|V(ξ)|
2Q

2Q−α |un(ξ)|
4Q

2Q−α dξ = 0.

Substituting this into (3.20), we obtain

lim
r→∞

lim
n→∞

∫
HN

(∫
HN

G(η, un)

|η−1 ◦ ξ|α dη

)
g(ξ, un)unψr(ξ)dξ = 0.

This completes the proof.

We now find the upper bound for the functional J. Before that, we state some asymptotic
estimates which can be proved similar to [21, Lemma 3.1] and [14, Lemma 1.1]. The minimizer
for the Sobolev inequality

S ∥u∥2
LQ∗ (HN)

≤
∫

HN
|∇Hu(ξ)|2 dξ,

is attained by

U(ξ) = U(x, y, t) =
C

((t2 + (1 + |x|2 + |y2|)2))
Q−2

4

,

where C is a suitable positive constant. Let,

Uε(ξ) =
C

((t2 + (ε + |x|2 + |y2|)2))
Q−2

4

, (3.21)

where C is a suitable constant. Hence

Uε(ξ) = ε−
Q−2

2 U(δ 1√
ε
(ξ)).

Define,

ϕ(ξ) =

{
1 if ξ ∈ B R

2
(0),

0 if ξ ∈ Bc
R(0),

uε(ξ) = Uε(ξ)ϕ(ξ),

vε(ξ) =
uε(ξ)( ∫

HN

∫
HN

|uε(η)|Q
∗
α |uε(ξ)|Q

∗
α

|η−1◦ξ|α dηdξ
) 1

2Q∗
α

. (3.22)

Since S1,2(HN) ↪→ L2
loc(H

N) and ϕ ∈ C∞
c (HN), we have uε ∈ L2

loc(H
N). Consequently, vε ∈ E.

Further, we have ∫
HN

|∇Huε(ξ)|2dξ = ε−
Q−2

2

∫
HN

|∇HU(ξ)|2dξ + O(1). (3.23)∫
HN

|uε(ξ)|Q
∗
dξ = ε−

Q
2

∫
HN

|U(ξ)|Q∗
dξ + O(1). (3.24)

Using the Hardy–Littlewood–Sobolev inequality, we get

∫
HN

∫
HN

|uε(η)|Q
∗
α |uε(ξ)|Q

∗
α

|η−1 ◦ ξ|α dηdξ ≤ C(Q, α)ε−
2Q−α

2

(∫
HN

|U(ξ)|Q∗
dξ

) 2Q−α
Q

+ O(1) (3.25)

Following the calculations in [21, Lemma 3.1], we obtain∫
HN

∫
HN

|uε(η)|Q
∗
α |uε(ξ)|Q

∗
α

|η−1 ◦ ξ|α dηdξ ≥ ε−
2Q−α

2

∫
HN

∫
HN

|U(η)|Q
∗
α |U(ξ)|Q

∗
α

|η−1 ◦ ξ|α dηdξ − O(1). (3.26)
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Lemma 3.6.

∫
HN

|uε(ξ)|qdξ ≤


Cε

Q
2 −

Q−2
2 q + O(1), q ∈ (2, Q∗),

1 + log R√
ε
, q = 2, Q = 4,

Cε−
Q−4

2 + O(1), q = 2, Q > 4.

Proof. If q ∈ (2, Q∗), then∫
HN

|uε(ξ)|qdξ ≤
∫
|ξ|≤R

|Uε(ξ)|qdξ

≤ ε
Q
2 −

Q−2
2 q
∫
|ξ|≤ R√

ε

|U(ξ)|qdξ

= Cε
Q
2 −

Q−2
2 q
∫
|ξ|≤ R√

ε

1

(t2 + (1 + |x|2 + |y|2)2)
Q−2

4 q
dξ

≤ Cε
Q
2 −

Q−2
2 q
∫
|ξ|≤ R√

ε

1

(1 + |ξ|4) Q−2
4 q

dξ

≤ Cε
Q
2 −

Q−2
2 q

(∫
1≤|ξ|≤ R√

ε

1
|ξ|(Q−2)q

dξ +
∫
|ξ|≤1

1dξ

)

≤ Cε
Q
2 −

Q−2
2 q

(
1 +

∫ R√
ε

1

1
s(Q−2)q−Q+1

ds

)

≤ Cε
Q
2 −

Q−2
2 q
(

1 +
1

ε
Q
2 −

Q−2
2 q

)
,

that is, ∫
HN

|uε(ξ)|qdξ ≤ Cε
Q
2 −

Q−2
2 q + O(1).

For q = 2, Q = 4, we have∫
HN

|uε(ξ)|2dξ ≤
∫
|ξ|≤R

|Uε(ξ)|2dξ

≤ C
∫
|ξ|≤ R√

ε

C
1 + |ξ|4 dξ

≤ C

(
1 +

∫ R√
ε

1

1
s

ds

)

≤ 1 + log
R√

ε
.

For q = 2, Q > 4, we have∫
HN

|uε(ξ)|2dξ ≤ ε−
Q−4

2

∫
|ξ|≤R

|Uε(ξ)|2dξ

≤ Cε−
Q−4

2

(
1 +

∫ R√
ε

1

1
sQ−3 ds

)
≤ Cε−

Q−4
2 + O(1).
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Using these estimates and following the calculations as in [14, Lemma 1.1] we obtain the
following: Using (3.23), (3.25) and (3.26) we get,∫

HN
|∇Hvε(ξ)|2dξ = SHG + O(ε

Q−2
2 ), (3.27)

Using Lemma 3.6, (3.26) and the Hardy–Littlewood–Sobolev inequality,∫
HN

∫
HN

|vε(η)|p|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ ≤ O
(

ε
2Q−α

2 − Q−2
2 p
)
+ O

(
ε

Q−2
2 p
)

. (3.28)

Using Lemma 3.6 and (3.26),

∫
HN

|vε(ξ)|2dξ ≤

Cε
(

1 + log
(

R√
ε

))
, if Q = 4,

O(ε2), if Q > 4.
(3.29)

Thus, from (3.28) and (3.29), we conclude

lim
ε→0

∫
HN

∫
HN

|vε(η)|p|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ = 0

and
lim
ε→0

∫
HN

|vε(ξ)|2dξ = 0.

Now, we prove a bound for the energy functional J.

Lemma 3.7. There exists v ∈ E, v > 0, such that sup
t>0

J(tv) < 1
2

( 1
Q∗

α

) 1
Q∗

α−1
(
1 −

( 1
Q∗

α

)Q∗
α
)
S

Q∗
α

Q∗
α−1

HG .

Proof. Let vε ∈ E be defined as in (3.22). Define

h(t) =
t2

2
∥vε∥2 − t2p

2

∫
|ξ|≤R

∫
|η|≤R

K(η)|vε(η)|pK(ξ)|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ − t2Q∗
α

2
. (3.30)

We observe that h(t) ≥ J(tvε), with h(t) → 0 as t → 0 and h(t) → −∞ as t → ∞. Since
2 < 2p < 2Q∗

α, we have h(t) > 0 for small t > 0. Therefore, h attains a global maximum. Let
tε denote a point at which h achieves its global maximum. Then

∥vε∥2 = pt2(p−1)
ε

∫
|ξ|≤R

∫
|η|≤R

K(η)|vε(η)|pK(ξ)|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ + Q∗
αt2(Q∗

α−1)
ε . (3.31)

Hence,

Q∗
αt2(Q∗

α−1)
ε ≤ ∥vε∥2,

tε ≤
(

1
Q∗

α

∥vε∥2
) 1

2(Q∗
α−1)

.

Therefore, using this preceding inequality in (3.30),

∫
|ξ|≤R

|∇Hvε(ξ)|2dξ ≤ p
(

1
Q∗

α

∥vε∥2
) 2(p−1)

2(Q∗
α−1)

∫
|ξ|≤R

∫
|η|≤R

K(η)|vε(η)|pK(ξ)|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ

+ Q∗
αt2(Q∗

α−1)
ε .
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From (3.27) for sufficiently small ε,

Q∗
αt2(Q∗

α−1)
ε ≥ SHG

2
.

Hence,

h(tε) ≤
t2
ε

2

∫
|ξ|≤R

|∇Hvε(ξ)|2dξ + C
∫
|ξ|≤R

|vε(ξ)|2dξ

− C
∫
|ξ|≤R

∫
|η|≤R

K(η)|vε(η)|pK(ξ)|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ − t2Q∗
α

ε

2
.

Let ρ(τ) = τ2

2 ∥vε∥2 − τ2Q∗
α

2 . By an argument similar to that used for h, the function ρ attains

a global maximum. Let τ′ =
( 1

Q∗
α

) 1
Q∗

α−1 ∥vε∥
1

Q∗
α−1 be the point at which ρ attains its maximum.

Hence,

ρ(τ′) =
1
2

(
1

Q∗
α

) 1
Q∗

α−1

∥vε∥
2Q∗

α
Q∗

α−1 − 1
2

(
1

Q∗
α

) Q∗
α

Q∗
α−1

∥vε∥
2Q∗

α
Q∗

α−1

=
1
2
∥vε∥

2Q∗
α

Q∗
α−1

( 1
Q∗

α

) 1
Q∗

α−1

−
(

1
Q∗

α

) Q∗
α

Q∗
α−1

 .

Therefore using (3.27), (3.28) and (3.29),

h(t) ≤ 1
2

(
1

Q∗
α

) 1
Q∗

α−1

∥vε∥
2Q∗

α
Q∗

α−1

(
1 −

(
1

Q∗
α

)Q∗
α

)
+ C

∫
|ξ|≤R

|vε(ξ)|2dξ

− C
∫
|ξ|≤R

∫
|η|≤R

K(η)|vε(η)|pK(ξ)|vε(ξ)|p

|η−1 ◦ ξ|α dηdξ

≤ 1
2

( 1
Q∗

α

) 1
Q∗

α−1

−
(

1
Q∗

α

) Q∗
α

Q∗
α−1

 S
Q∗

α
Q∗

α−1

HG .

Proof of Theorem 3.1. Let,

c0 = min


(

Q∗
α − 2
2

)(
SHG

Q∗
α

) 2Q−α
Q−2+α

,
1
2

( 1
Q∗

α

) 1
Q∗

α−1

−
(

1
Q∗

α

) Q∗
α

Q∗
α−1

 S
Q∗

α
Q∗

α−1

HG

 .

c0 > 0. We conclude that from Lemma 3.4, Lemma 3.5 and Lemma 3.6, if c ≤ c0, then I = ∅.
To conclude the result, it is enough to prove that the (PS)c−sequence {un} is convergent in E.
From (3.7) we have ⟨J′(un), un − u⟩ → 0 and so ⟨J′(un − u), un − u⟩ → 0. Hence,∫

HN
|∇H(un − u)(ξ)|2 + V(ξ)|(un − u)(ξ)|2dξ

−
∫

HN

(∫
HN

G(η, un − u)
|η−1 ◦ ξ|α dη

)
g(ξ, un − u)(un − u)dξ → 0.

We claim that
∫

HN

( ∫
HN

G(η,un−u)
|η−1◦ξ|α dη

)
g(ξ, un − u)(un − u) → 0 as n → ∞.

Using Lemma 3.5, for given ε > 0, if r > R is sufficiently large then for all n ≥ n0,∫
|ξ|≥2r

(∫
HN

G(η, un − u)
|η−1 ◦ ξ|α dη

)
g(ξ, un − u)(un − u)dξ ≤ ε

2
.
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Consider∫
|ξ|≤R

(∫
HN

G(η, un − u)
|η−1 ◦ ξ|α

dη

)
g(ξ, un − u)(un − u)dξ

=
∫
|ξ|≤R

(∫
|η|≤R

|(un − u)(η)|Q∗
α + K(η)|(un − u)(η)|p
|η−1 ◦ ξ|α

dη

)
(Q∗

α|(un − u)(ξ)|Q∗
α + pK(ξ)|(un − u)(ξ)|p)dξ

+
∫
|ξ|≤R

(∫
A

|(un − u)(η)|Q∗
α + K(η)|(un − u)(η)|p
|η−1 ◦ ξ|α

dη

)
(Q∗

α|(un − u)(ξ)|Q∗
α + pK(ξ)|(un − u)(ξ)|p)dξ

+
∫
|ξ|≤R

(∫
B

V(η)|(un − u)(η)|2
|η−1 ◦ ξ|α

dη

)
(Q∗

α|(un − u)(ξ)|Q∗
α + pK(ξ)|(un − u)(ξ)|p)dξ.

(3.32)

Now by virtue of Lemma 3.4, Lemma 2.5 and compact embedding in bounded domain,

∫
|ξ|≤2r

(∫
HN

G(η, un − u)
|η−1 ◦ ξ|α dη

)
g(ξ, un − u)(un − u)dξ ≤ ε.

Hence combining the results, we get ∥un − u∥ → 0 in E, as n → ∞. Therefore, by the Moun-
tain Pass Theorem [37, Theorem 1.17], equation (3.4) admits a weak solution. Moreover, the
positivity of the solution follows from the strong maximum principle [12].

4 Proof of Theorem 1.2

In this section, we prove the main result of this paper. The following theorem provides the
L∞-regularity of the weak solution to (3.4). The proof is based on an argument of Brezis–Kato
type, as carried out in RN in [4, Lemma 2.10]. For the adaptation of the Brezis–Kato argument
to the Heisenberg group, we refer to [20, Theorem 4.2]. We omit the details.

Theorem 4.1. Let u be the solution obtained for the equation (3.4). Then, there exists a constant M0,
such that

∥u∥L∞(HN) ≤ M0.

Before presenting the proof of Theorem 1.2, we prove the following lemma:

Lemma 4.2. Let u be a solution of (3.4). Then, there exists ℓ0 > 0 such that

sup
u∈E

H(u)(ξ)
ℓ0

≤ 1
2

,

where H(u)(ξ) =
∫

HN
G(η,u(η))
|η−1◦ξ|α dη

Proof. Consider,

−∆Hu + V(ξ)u =

(∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
g(ξ, u(ξ))

and

−∆Hu =

(
−V(ξ) +

(∫
HN

G(η, u(η))
|η−1 ◦ ξ|α dη

)
g(ξ, u(ξ))

u

)
u.
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One can verify that
∫

HN

(G(η,u(η))
|η−1◦ξ|α dη

) g(ξ,u(ξ))
u ∈ L

Q
2 (HN). Hence by Brezis–Kato argument [35,

Lemma B.3], u ∈ Lt
loc(H

N) for all t < ∞. Consider,

|H(u)(ξ)| =
∣∣∣∣∫

HN

G(η, u(η))
|η−1 ◦ ξ|α dη

∣∣∣∣
≤
∫

HN

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

≤
∫
|η−1◦ξ|α≤1

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη +

∫
|η−1◦ξ|α>1

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη

≤
∫
|η−1◦ξ|α≤1

|u(η)|Q∗
α + K(η)|u(η)|p
|η−1 ◦ ξ|α dη + C

≤
∫
|η−1◦ξ|α≤1

|u(η)|Q∗
α

|η−1 ◦ ξ|α dη + C
∫
|η−1◦ξ|α≤1

|u(η)|p
|η−1 ◦ ξ|α dη + C

≤
(∫

|η−1◦ξ|α≤1
|u(η)|Q∗

αtdη

) 1
t
(∫

|η−1◦ξ|α≤1

1
|η−1 ◦ ξ|αt′ dη

) 1
t′

+ C
(∫

|η−1◦ξ|α≤1
|u(η)|psdη

) 1
s
(∫

|η−1◦ξ|α≤1

1
|η−1 ◦ ξ|αs′ dη

) 1
s′

+ C

where s′, t′ ∈
[
1, Q

α

)
and 1

s′ +
1
s = 1, 1

t′ +
1
t = 1. Hence, by using the Hardy–Littlewood–Sobolev

inequality, we have

|H(u)(ξ)| ≤ C.

Thus, we may choose ℓ0 > 0 such that

sup
u∈E

H(u)(ξ)
ℓ0

≤ 1
2

.

We take ℓ ≥ ℓ0 > 0 and consider the penalized problem.
In order to prove the existence of solution for (1.1), we show that there exists R > 1 such

that u satisfies the inequality

f (ξ, u) ≤ V(ξ)

ℓ
u

for |ξ| ≥ R.

Proof of Theorem 1.2. Let

v(ξ) =
RQ−2∥u∥L∞(HN)

|ξ|Q−2 .

One can verify that v ∈ C∞(HN) \ {0}. Observe that u ≤ v for |ξ| = R. Define

w =

{
(u − v)+ if |ξ| ≥ R,

0 if |ξ| < R.

We see that w = 0 on ∂BR(0), w ≥ 0 and ∆Hv = 0 in HN \ BR(0), since C
|ξ|Q−2 is a fundamental
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solution where C is suitable constant[17, Theorem 2.1]. Therefore,∫
HN

|∇Hw(ξ)|2dξ =
∫

HN
∇H(u − v)(ξ) · ∇Hw(ξ)dξ

=
∫
|ξ|≥R

H(ξ)g(ξ, u(ξ))w(ξ)− V(ξ)u(ξ)w(ξ)dξ

≤
∫
|ξ|≥R

(
H(ξ)

ℓ0
− 1
)

V(ξ)u(ξ)w(ξ)dξ

≤ 0.

Thus w ≡ 0 and hence, u ≤ v ≤ RQ−2 M
|ξ|Q−2 if |ξ| ≥ R. Consider,

f (ξ, u)
u

p ≤ K(ξ)|u|p−2 + Q∗
α|u|Q

∗
α−2

≤ pMp−2K(ξ)
(

R
|ξ|

)(p−2)(Q−2)

+ Q∗
α MQ∗

α−2
(

R
|ξ|

)(Q∗
α−2)(Q−2)

≤ C
(

R
|ξ|

)(p−2)(Q−2)

≤ CℓR(p−2)(Q−2)

ℓ|ξ|(p−2)(Q−2)
.

Let γ = Cℓ, Λ ≥ γRµ and µ = (p − 2)(Q − 2). Then, from (Σ1), we have

f (ξ, u)
u

≤ 1
ℓ

Λ
|ξ|µ ≤ V(ξ)

ℓ
.

This completes the proof.
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