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Abstract. In this article, we prove the existence of a weak solution to the sub-elliptic
problem

R U [T

in the Heisenberg group HN, where 0 < & < 4, Q = 2N +2, Q} = 2QQ:2“, pe(2,Q),
V is a non-negative continuous function that can vanish at infinity and K is continuous

non-negative bounded function. We establish the existence of a weak solution by em-
ploying the penalization method in conjunction with the mountain pass theorem.
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1 Introduction

In this paper, we study the existence of a weak solution to the problem:

Qx x
—Apu+ V(&)u = (/HN lu(n)| ]qfli(g’yu(ﬂﬂpd’o <Q;|M|Q“_2u+pK(C)!u|p_2u> (1.1)

in the Heisenberg group HY, where 0 < & < 4, Q = 2N +2, Q} = Zgjf,p €(2,Q;),Visa
non-negative continuous function that can vanish at infinity and K is continuous non-negative
bounded function.

The Heisenberg group has found significant attraction due to its rich geometry, leading
to various applications in the field of partial differential equations. In one of the pioneering

works, Garofalo and Lanconelli [20] obtained the existence of a solution for a semilinear
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subelliptic PDE in the Heisenberg group via a variational technique. Since then, a wide range
of results have been obtained, see [7,8,13,21,25,36,39] and references therein.
The equation (1.1) is analogous to the well-known steady state Schrodinger equation

AY + V()Y = (Z(x) * [¥|)[¥]"?¥Y inRY, (1.2)

where V is the potential, and Z is the response function describing the mutual interaction
between the bosons. When Z(x) = |x|1, (1.2) reduces to the Choquard equation. A typical
model, corresponding to g = 2, is
1 2 RN
-AY+Y = W*H’\ Y inRY,
which was originally introduced in the context of polaron models [19,33]. For a comprehensive
overview of Choquard-type problems in RY, see [31].
On setting the response function Z(x) to be the Dirac-delta function in (1.2), we obtain the
Schrodinger equation in the following form:

—Au+V(x)u= f(x,u) inRY, (1.3)

where u > 0,V is a continuous function and f is a non-linear function. The function V is
commonly referred to as the potential function. Equation (1.3) has been extensively studied
under various assumptions on V and f. For bounded, coercive potentials V, see [15,30,34,36].
For vanishing potentials (V(x) — 0 as |x| — o0), notable contributions include [3-5,24,29].
Other situations such as constant, periodic, asymptotically constant, asymptotically periodic,
and radial potentials have also been addressed (see [1,2,10,32,40]). For the vanishing potential
case Alves-Souto [4], Alves-Figueiredo-Yang [3] employed a penalization technique inspired
by Del Pino-Felmer [16].

In recent years, considerable progress has been made on critical Choquard-type prob-
lems in the Heisenberg group. Goel and Sreenadh [21] established a Brezis-Nirenberg type
result for Choquard equations in QO C HY. Sun et al. [36] developed a concentration-
compactness lemma for the Choquard equation and applied it to obtain weak solutions of a
Kirchhoff-Choquard problem with the critical Hardy-Littlewood-Sobolev exponent. Sub-
sequent works extended and refined these results: Bai et al. [7] proved existence of weak
solutions to Kirchhoff-Choquard equations with the same critical exponent in bounded do-
mains, recovering compactness through suitable conditions on the Kirchhoff term, while Sun
et al. [36] investigated Kirchhoff-—Choquard systems in bounded domains of HN. Yang et
al. [38] studied (p, q)-type Choquard equations in HY, focusing on cases where the Choquard
term is subcritical. Liang et al. [26] extended the concentration-compactness approach of [36]
to the p-sub-Laplacian framework. Further contributions include Bai et al. [6], who considered
critical Choquard-type problems with lower-order perturbation terms that may be sublinear
or superlinear. Bai et al. [9], who established results for fractional p-sub-Laplacian equations
with critical Choquard non-linearities. Most recently, Liang et al. [27] proved the existence of
normalized solutions for critical Choquard-type equations with logarithmic perturbations in
bounded domains of HY.

From the above survey, we conclude, to the best of our knowledge, that there are no ex-
isting works addressing problems involving vanishing potentials in the Heisenberg group.
Moreover, we are not aware of any research in the Heisenberg group that employs the pe-
nalization technique. Although Li et al. [24] studied a problem similar to (1.1) in RV for the
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Laplacian, their approach did not involve the penalization method. Furthermore, to the best
of our knowledge, Choquard-type problems have not been investigated via the penalization
technique either in RN or in HY. In this article, we obtain an existence result for (1.1) by
employing the penalization method, inspired by the works of Alves et al. [3,4].

Before stating our main result, we specify our assumptions on V and K :

(1) V: HY — R, is continuous, non-negative, V € L*(HN) N L%(]HN ) and there exists
#>0,A>0and R > 0 such that

inf [Z'V(@) > A

(Zp) K: HY — R is continuous, non-negative, bounded and K € L%, where Q* = QZ—%
From (X1), we have V € L%(H—IN ) by interpolation of the Lebesgue spaces L®(HY) and
L% (HN).

Next, we present and example of V and K satisfying (¥1) and (%), respectively.

Example 1.1. Let R = 1. Define

e éW &€ HY\Bi(0), a>2,
L (8) =

1,  &eBy0).

Then V; satistfies (21) for any u > a with A = 1.
Examples for K.
(i) Define
6 c HN\Bl(O), a> Q(ro — p)[

1
Ky (&) = ¢ 1617 Q

11 C € Bl(o)l

20 —«
pe <2, 02 ) .
Then, K; satisfies (X).

(ii) As a different example, consider

where

Kp(¢) = e I,
Then K, also satisfies (2,).
Now, we state the main result of this paper:

Theorem 1.2. Let the conditions (X1), (X2) hold. Then, there exists a constant «y such that (1.1) admits
a positive weak solution u € E (see Section 2 for the definition of E) for any A > yR¥.

We have organized the paper as follows. Section 2 gives the preliminaries for the Heisen-
berg group and some primary results on the Heisenberg group. Further, Section 3 converts
the main problem into an auxiliary problem and describes its variational framework. In the
last section, we prove Theorem 1.2.
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2 Preliminaries

We recall some terminologies and definitions related to the Heisenberg group
HY = (R?*N*1,0) , where ‘o’ denotes the group operation defined as

Fol =(x+x,y+y, t+t+2(x - y—vy -x)), forevery&= (x,yt),& = (x,y,t') c HY,

where x,y, %",y € RN, t,t' € R. {1 = —¢ is the inverse, and therefore (¢') o 1= (¢o¢) L

The natural group of dilations on HY is defined as 6;(&) = (sx, sy, s*t), for every s > 0.
Hence, 65(¢' 0 &) = 65(¢") 0 65(¢) and 65(65(&)) = ds (&), for s,s" > 0. It can be easily proved
that the Jacobian determinant of dilations s : HY — HY is constant and equal to s9, for every
& = (x,y,t) € HYN. The natural number Q = 2N + 2 is called the homogeneous dimension of
HY. The homogeneous norm on HY is defined as follows

1
6 = 1¢lm = [(Jx* +|y*)* + £]*, for every ¢ € HV,

By definition, the homogeneous degree of the norm is 1, in terms of dilations. The following
vector fields

0 0 0 0 ) ,

generate the real Lie algebra of left-invariant vector fields. The vector fields, T, X;,Y; satisfy
the following relations:
[Xi, Vil = =463 T, [V;, Y] = [X, Xi] = [V}, T] = [X;, T] = 0.
The Heisenberg gradient on HY is given by
Vhu = (X1, X2, , XN, Y1, Y2, -+, YN),

and the Kohn-Laplacian on H" is given by

N
— 2 2 __
AH—Z%Xj+1g—

N 2 aZ aZ 2 2
j= =1

I Y P 2 2y 2
a2 o T Wianar  Faar T TV e

]

The Haar measure on HY coincides with the Lebesgue measure and is Q-homogeneous
with respect to dilations. More precisely, it is consistent with the (2N + 1)-dimensional
Lebesgue measure. Consequently, the topological dimension of HY is 2N + 1, which is strictly
smaller than its Hausdorff dimension Q = 2N + 2.

For a measurable set O C HY, we denote by |Q)| its (2N + 1)-dimensional Lebesgue
measure. Then, for every s > 0, we have

16:(Q)] = s°1Q,  d(6:(¢)) =s2dE, and |B,(§)| = agr?,

where ao = |B1(0)]. Here, B,(¢) denotes the ball in HY centered at ¢ with radius .
The horizontal Sobolev space is defined as

HW2(HN) = {u e I2(HY) : Xju, Yiu € [X(HN), j= 1,...,N}.
It is a Hilbert space equipped with the inner product

(w,0) = [ Vi(@)- Vuo(@)dz+ [ u(&)o()de,
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which induces the norm

el rawraervy = ( | V@ Pz [ |u<¢>|2d¢)§.

We define
E={uesm): [ v u@i <o},

where S'2(IHY) denotes the completion of C(HY) with respect to the norm

o = [, [Fwe@az)

The space E is a Hilbert space endowed with the inner product

(,0) = [ (Vuu(@) - Varo(@) + V(£ u(@) (&) 4,

which induces the norm

1/2
lull = ( [, (w@P + V@R d )
The continuous embedding
E c SY*(HN) — L9 (HY)

holds (see [22]); that is,
H”HLQ*(HN) < C|lu|l, ue€eE.

Since S2(HN) — L' (HY), we have
Sl oy < [, V(@) Pde,
where S is the best Sobolev constant, defined by

o f]HN ’v]Hu(g)ng
= 7
Sl,Z(IHN)\{O} (f]HN |M|Q* dé)@

It was proved by Jerison and Lee [23] that S is attained by the function

C
U(§) = U(xy,t) = _—

(P4 (a+1a2+ 1)) *

(up to dilation and translation), where C > 0 is a suitable constant.
Now, we state the Hardy-Littlewood-Sobolev inequality.

Lemma 2.1. Let r,s > 1 and 0 < a < Q satisfy

1oa 1,
r Q s



6 V. Y. Naik and G. Dwivedi

If f € L"(HN) and h € L5(HN), then there exists a sharp constant C(r,s,a, Q) > 0, independent of
f and h, such that

/]H ) dndg < C(r,s,0,Q) || fllravy 1ol s vy (2.2)

N Jan |17‘1 OCI”‘

In particular, ifr = s = 2Q , then the sharp constant is given by

)
- (2.3)
)

[44
aN+1 \ Q NIT (%2
C(r,s,a,Q) =C(Qa) = <2N—1N!) 1~2(2(Q—2

where I" denotes the Gamma function.

Frank and Lieb [18] proved that the equality holds in (2.2) if and only if f,h & L= (HN)
defined as f(&) = cW (d (771 0¢)), h(Z) = /W (S (7' 0¢&)), where ¢ € C,0 > 0, and
1 € HN(unless f = 0 or ¢ = 0) and

_2Q-«
WE) = Wiy t) = (P+ 1+ xR+ [y?)°) ", forallg=(xyt) e H,

Syc is defined as

Sy [ VHu(Z)[2dE
SHG :slz(ﬁrflvf\{o} N 1) % (2|2 o
(foow oo 8= e )

Goel and Sreenadh [21] proved that Sy is attained by the function U (defined in (2.1)), up to
the translation and dilation.(cf [21, Lemma 2.1]) and

Sucg =S (C(Q/“)_Ql;> ,

where C(Q, «) is defined in (2.3).

To deal with the lack of compactness caused by the term with critical exponent, we use
the Concentration-Compactness Principle, which was given by Lions [28] in the Euclidean
framework and by Ivanov et al. [22] in the Carnot groups setting. We state the lemma in the
Heisenberg group setting.

Lemma 2.2 ([22, Lemma 1.4.5]). Let {u,} be a bounded sequence in S**(HN) converging weakly
and a.e. to some u € SV2(HVN). |Vhuua|? = w, |uy| — { weakly in the sense of measures where w
and { are bounded non-negative measures on HN. Then we have:

(1) there exists some at most countable set I, a family {z; : i € I} of distinct points in HY, and a
family {{; : i € 1} of positive numbers such that

g = ‘M|Q* + Zgiézi/

iel

where & is the Dirac-mass of mass 1 concentrated at & € HN.
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(2) In addition, we have
w > [Vaul* + Y w;é,

iel

for some family {w; : i € I}, w; > 0 satisfying
L*
SC¥ <wj, foralliel

2
In particular, Y ;1 {2 < oo.

We next recall the Concentration-Compactness Principle to handle Choquard-type prob-
lems in the Heisenberg group:

Lemma 2.3 ([36, Theorem 3.1]). Let {u,} be a bounded sequence in S*(IHN) converging weakly
and a.e. to some u and w, { be the bounded nonnegative measures in Lemma 2.2. Assume that

/]HN <Méd’7) |1 (8)|% — v

weakly in the sense of measure where v is a bounded positive measure on HN. Then, there exists a
countable sequence of points {z;}ic; C HN and families of positive numbers {v; :i € I}, {{;:i € I}
and {w; : i € 1} such that

v= ([ ) @)1+ T, L <o

N |’771 OC|“ iel iel

w > |Vuul? + sz‘(szi/

i€l

¢> ‘“’Q* ‘f’zgifszw

iel

and

2 0 s
Syt < w;, v9" < C(Q,a)2w(;,

1

where & is the Dirac-mass of mass 1 concentrated at & € HN.

Lemma 2.4 ([21, Lemma 2.5]). Let 0 < a < Q. If {uy} is a bounded sequence in L3 (HN) such
that u, — u a.e. in HN as n — oo. Then as n — oo, the following holds:

[ (127 ] )

Q gz — — Qi _ oy
ag— [ (1817 i — %) ey = u] % d
= [ (Il s i) ) .

By following the proof of [11, Proposition 2.2], we get the following embedding result:

Lemma 2.5. Let g € L"(HN), where m = 5%—,q € [1,Q"). Then S'"2(HN) — LI(HY,[g|)
compactly, where L1(IHY, |g|) = {u is a measurable function | [pn glu()]1dE < oo}
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3 Auxiliary problem and variational framework

In this section, adapting the arguments in [3,29], we study the existence of a weak solution
to an auxiliary problem associated with (1.1). Throughout this and the following sections, we

use C to denote a generic constant, whose value may change from line to line.

Let f(&u) = Qilu(&)|%2u(¢) + pK(¢&)|u(&)|P~?u(Z). We penalize the left hand side

of (1.1)
Define, for / > 1 and R > 1,

and

From (3.1) and (3.2), it follows that

fE ) <fgr), vieH,
sen <9y =g
G(Et) =F(t), [CI<R
cen< e jg=r

20

where F(¢,t) = fo f(&,s)ds, and G(¢,t) = fo (&,s)ds.
We consider the following auxiliary problem associated with (1.1):

@+ viou© = ([ TH Uy ) gcue) i

T ted

The energy functional | : E — R associated with (3.4) is given by

=32 =5 [ (o 55Dy ) 66 ute)de

One can verify that | is a C!-functional and its derivative is given by
J'(w),0) = [ (Veu(@): Viro(@) + V(©u(@)o(@)) dg
Gy, u(n))
—/]HN </]HN |’710§’“d17> 8(&,u(g))o(g)ds.

We now present the result that constitutes the core of this paper.

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Theorem 3.1. Let the conditions (1), (X) hold. Then, (3.4) admits a positive weak solution u € E.

To prove Theorem 3.1, we first prove a series of lemmas.

Lemma 3.2. The functional | satisfies the following properties:
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(i) there exist B,r > O such that J(u) > B whenever |u|| = r;
(ii) there exists e € E with ||e|| > p (for some p > 0) such that J(e) < B.
Proof. Consider,

== [ ([ ) o@| an) 66, u(e))de

Euuuz L (mn LD ) F(& e

> e =3 [ (MO ) (o) + k@ o) ) e

= 2l - ;/ /Nw_loa @ anae— [ [ O k@l anae

)l
o L SO uirand - [ SO ey e

Using (2.2), we get

2%& Q-
P 0= —w
/]HN /HN |,7 og|a K(&)u(@)[Pdndf < C (/HN [K(§)[22 [u ()] dC) . (36

By using Holder’s inequality and (%), we get

[ K@) () g < ( / N|z<<<:'>|@‘53dc)
H H

<c(f, @)’

ZO“

On using this in (3.6), we get

/JHN /]HN |;7—1 og|zx K(&)|u(g)[Pdndg < C </1HN |u(§)|Q*d§>Qp* </]H lu (& )’Q d§>Qp

2
= Cllulh, (HY).

Similarly, we have

P p+Qi
A{N /]HN |;7—1 oé|0¢ ( )| dﬂdg < CHMH %

and

Qidydz < C|lu|*%.
Jo o A ) iy < S

Hence,

1 + 20 2
() = S lull? = 5 (lullf5% + Nl 73 + il )
1

1 .
> Sllull? = 5 (Iull*#% + ul?% + [|uf?*).
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Thus for sufficiently small ||u|| =r, J(u) > B.
(ii) For u € C3°(Br \ {0}),

2

J(tu) < % | Viu|? + V(&)u?de
Ig[<R
2 Q; *
- % nI<R </|§§R ) |17+1I(<)(g|l|u(;7)|r’dn> (|”(5)\Q“ +K(C)|M(C)\”d§) .

Thus, we conclude that J(fu) — —oo as t — oo. Hence for some e € E with |l¢| > p such
that J(e) < B. This completes the proof.
O

Lemma 3.3. Let {u,} bea (PS). sequence associated to the functional | in E C SY2(HN). Then {u,}
is bounded.

Proof. Let {u,} be a (PS). sequence associated to the functional J in E C S?(IHY). Then

J(un) — ¢, J'(uy) — 0. (3.7)

Let T(M) f (fHN = 1 §| ) (g u(g))dé{
We prove (¥'(u),u) > 20%(u) > 0, for some 6 € (1,2).
Consider,

ot —voo = [ ([ SOy (e u@- 6@ ) ac

- Z|<R < /]HN (|;;7(7;L;(2|)a) d77> (;éf((:,u)u — ;F(C,u)> a¢
(S ay) (st n@n— 560 u@) ) de

Let,

A={cecH":|o|>Rand £f(o,u) < V(e)u(o)},

B={ccH":|¢| > Rand {f(c,u) > V(c)u(r)}. (358)

We have, uf (&, u) > 0F(&,u). Now for || > R,

o == [ ([ Sy (Lo u@n - J6ue)) de

> [ (] S5 an) (st u@m - 36 ue) ) de

+/B < /HN T,;n'i(gﬂ)d ) <29g(€ u(g))u — ;G(C,u(é'))> dz
(/ Og,a > < g/ (G u)u — ;F(g,m) e
LU

o s dn) (g~ 3¢ Viorae
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Consider,
¢+ [[unllo(1) = J(un) = 55(J (n), tn)

_(L_1 2, Loy _

~ (5 25) lnlP + 5500 ) = ¥
11 ,

> (2o =

> (3-25) Il

Thus, {u,} is bounded. O

Lemma 3.4. Let V and K satisfy (X1), (X2) and let {u,} be as (PS). sequence of ]. Then, there exists
a positive number ¢ > 0 such that for ¢ < cq,

| (10 = )@ |1 — )%
i S et rde =0

Proof. Let {u,} be a (PS). sequence. By Lemma 3.3, the sequence {u,} is bounded in E.
Since E is reflexive, there exists u € E such that, up to a subsequence, u, — u weakly in E.
Consequently, u, — u strongly in L] (HY) for every q € [2,Q"), and u,(&) — u(g) ae. in
HY. Moreover, u, — u in S¥?(IHY), and hence, by Sobolev embedding, u, — u in LY (HN).
Therefore, there exist bounded nonnegative measures w, {, and v such that, as n — oo,

* un Q *
Vil =, @ =g [ @

Therefore by Lemma 2.3, there exists a countable sequence of points {z;};c; C HY and
families of positive numbers {v; :i € I}, {;:i € I} and {w; : i € I} such that

Qx N
u « . ]
Vv = (/I; |(T])|dy> |M(x)’le _|_ ZieIVi(Szi, ZielviQ“ < oo,

N pto gl
w > |[Vaul* + Y w;d,
iel
g 2 |M|Q* + Zgifszi/
iel
and
1 Q

_Q
SHGU < w,, ViZQ% < C(Q/ 0‘)2Q7‘X Cis

where 6 is the Dirac-mass of mass 1 concentrated at ¢ € HV.
Let ¢ € C°(IH") be such that 0 < ¢ <1,

1 ifgeBi(0),
o(8) = {0 if £ € HN \ By(0). (39)

Let ¢ > 0. For fixed i € I, define
$i(@) = ¢ (02271 00)) -

)
From (3.7), we have |'(u,) — 0 as n — oo. Therefore, (J'(uy), ¢ ittn) — 0 as n — oo. Hence,

lim [ (Vi - Vi (- ei(§)tn + V(E) 1n|*Pei)dE

B, oo
S (L oy ) (6, (9i(E10 = 0

(3.10)
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Next, we claim that
lim lim Uy Vauy VE@e,; = 0. (3.11)

e—~0n—oo JIHN

Indeed, the boundedness of {u,}, combined with Holder’s inequality and the Sobolev em-
bedding theorem, yields

lim lim
e—0 n—oo

/]HN un (&) Vuun(§) - VHei($) dé‘

s lim, lim ( L \vﬁun@rzd@)% ( /. !un@)vm,xaﬁdéf

e—0 n—oo

< lim lim C (/B o |un(€)|2!VH¢g,i(é’)|2d§>2

e—0 n—oo

e—0

<tme(f |u<a>|2|vH¢s,i<¢>|2dc)%

. (7)|Q e Q @
<timc ([ Vapu@I2)" ([ w@l )

One can see that using change of variables, [p B ]VH4)£ i(€)|2 d¢ is bounded as ¢ — 0. Thus,
(3.11) holds. Further, by using (>,) and Lemma 2 5, with m = 2, we have

lim [ V() |ua(§)?dG = lim [ V(§)[u(g)[*dE.

n—oo JIHN n—oo JIHN

So by Holder’s inequality,

tim lim [ V(@) (&) Pei (€ = lim [ V() [u(€) Poes(2)de
| . N
< lim </B£(z,»)’V(g)| ></Be(21‘)‘ © dé) '
Hence,
lim lim [ V() [un(§)P¢ei(8)dE = 0. (3.12)

e—=0 n—oo JIHN

Therefore, using Lemma 2.3, (3.11) and (3.12), we get

w <lim lim | [Vii|?¢e;(€)dE = lim lim / Vi Vi (@i(Oun(©)) d2. (3.13)

e—0 n—oo J|HN e—0 n—oo

Suppose that there exists i € I such that z; € Bg(0). Hence for small ¢ > 0,

Jr (e ot ) (@002

u Qx u )
ELE </|W<R’ 0 |,7Tf§<§|l‘ W‘“’) (Qla(@)1% + PK(E) 1a(©)1")pes(€)d

10 (1) %+ KOl 0D 1\ 1t (11 ) |
+/|5<R(/A Tor dr/) (Q21un(@)|% + pK (D) ua (@) [7)ei(E)dE

Un (1 2 «
/§<R (/ 2€|;7|—1o§)|0|< 77) (Qulun(8)[% + pK(&) |un (E)1P) e, () dE. (3.14)
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We now claim

i ) |un () Plun Q1P
nlgrc}o/§<1z/;7|>1< ly=1ogx ¢ei(G)dids — 0 ase— 0. (3.15)

By the Hardy-Littlewood-Sobolev inequality,

1) 14 () 2|10 () |7 )
,iCddCSCVun Uy .
/M /M ez 9O VInPl,go, | ||L2Qfm(33(2i))

On using Holder’s inequality, Sobolev embedding and (%), we get

2 P
/C<R /17>R 1) [un ()% un (8)] ¢ i (E)dndeE < C|lul|” 20p

lp=1ogl L2047 (B.(z))

Letting ¢ — 0, we prove the claim. Similarly, by the Hardy-Littlewood-Sobolev inequality
and (X;), we have

, ) [un () [PK(E) [un(DP
lim /§|<R /77|<R $ei(E)dnde — 0 ase— 0, (3.16)

n—00 ‘;7—1 OC|’X
i |1 (17) | 9K (E) [un (8) 17
,}5’2‘0/ <R/ n|<R PREYE ¢e,i(E)dndE — 0, ase— 0. (3.17)

Next, we claim that

fim /€|<R/ Dty Plen( )17 a¢e,i(§)d77d§—>0 ase — 0.

=00 [p=togl
.

We have p € ( ZQQ “) KGLQa (HN). Hence, K% e LO 0 M(IHN) By Lemma 2.5,

20
/A (K(7)|un(17) — u()|P)@% =0
as n — o, i.e K|u, |V — K|ul? in ch%v (HN). By the Hardy-Littlewood—-Sobolev inequality, we
e K (1) un ()" K@) |u(m)|?
(ALY [ Kty
e A v o

in L% (HN). Now since u, is a bounded sequence in E, we have f‘§|<R ]un((j)

# 20
(Ps,i)zQ*a dé <
C. Since u, — uin E, as n — 00, |ty (&) (&) — |u(E)|%eei(&) in L20% (|¢] < R). Thus,

[ SR @1tz = [ [ SO o) guieraz

as n — co. Now using the Hardy—Littlewood—SoboleV inequality,

Qi p. . < p Q.
[ S ) i@ < CUKIPY ol

and taking limit as € — 0, we prove the claim. Thus, we have

lim /él/ lun ()14 (8)] ;47&,1'(6)(177[16—)0 as e — 0.

nveo - 1<>f.?|”‘
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Similarly, we can prove

Q*
s un Uy «
o /€<R/ ! ]n—llé’a< 2 Pe,i(§)dndi — 0 ase— 0.

n—o0
Hence, taking limit as ¢ — 0 and n — oo in (3.14) and using Lemma 2.3 we get

i tim [ ([ 2y ) (s (€@

£€—00 N1—00
|t (17) |

. . % Q. :
<timtim ;[ () DLy ) 1% gt
. |t (17)] Qi
raf iy ) (@)1 % s (00

Alp~togl
< Quvi

where we have used (2.2) and Holder’s inequality. Hence, from (3.10) and (3.12)

*
w; < Qu;,
Q-2
20— *
Sucv;~ " < Quui,
Q—a+2

Sue < Quu; 9.

Hence, we conclude that v; > 6 > 0, for some fixed §. Now by Lemma 2.3, we have
2

Yiel viQ“ < o0. Hence, I is finite.

Consider,
c+0(1) = () = 3 (') )
= (H UL ) (306~ 268w
=5 fo ([ P K 4y 2+~ (0 o
+3 o U '””'ﬁ;ii(@l‘””‘pdn) (@3~ 2)lual + (p ~ 2K (@)l

P*\ﬁ\

QO NI= N

/HN (/,7|<R a1 ,;‘Qflug‘(f) *’d’7> $ei(§)dC

(QzZ_ ) /I[—IN </A \Mn(n’;)rl*o é"(o?) fd’?) Pe,i($)dS
Q

N

o
( 20|y~ Knga >((QZ—2)IunIQ3+(P—Z)K(C)\un\’”)dé
)
2
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as ¢ — 0. Therefore,

2Q—uw
. <QZ§ —2) (SHG) e
- 2 Qi

* 20—«
Hence for level less than ¢; = (%) (SQLE) Q-2 [ is empty or v; = 0 for all z; € Bg(0) and

using Lemma 2.4 we get the desired result. ]

Lemma 3.5. Let V and K satisfy (X1), (X2) and {u,} be a (PS). sequence for J. Then, at least for a
subsequence and for any € > O there exists r > R such that, for all r

limsup f (IVHua (@) + V(§)ua(8)?)dS < e.

n—00 |g|>2r

Proof. Forr > R, let ¢, € C®(H") be such that 0 < ¢, <1,

o ifzeB(0),
¥r(8) = {1 £ £ € HV\ By (0), (3.18)
and |V, (&)| < 2. Since J'(u,) — 0as n — oo, (J'(uy), Prtn) — 0 as n — co. Thus,
lim [ Vigua(@) - Vir(un(@)9r(0))dg + Jim [ V@)Iua(€) P (@)
T " G, un)
= tim [ (o) g€ un w0
lim [ V() Pyc(@)de + lim [ V() (@) Pyi(@)a
lim [ (@) Vi (@) - Vg (@)de
T G(17, Un)
=t (2 ) (6w €
Next, we claim that
im Hm [ (&) Vi (&) - Vi, (&)dE = 0. (3.19)

r—oon—oo JJN

Since Vi, (&) = 0 for || < r and || > 2r, it follows from Holder’s inequality, boundedness
of {u,} and compact embedding S*?(HN) — L2 (HV) that

loc

o 00 O Vnen(@) - s @8 < L [ )]V (@) 1

1 1
2 3 b
([ i) ([ 19 pae)
r r<|g|<2r r<|g|<2r
1
2
< ([, uale)
ro\Jrggl<er

r </r§|g§2r |”(‘:)|2d§>; as 1 — oo,

IN
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Thus, we have

1

lim [ (@) Varna@) - Vargr(@)dE < % (/rg§|g2r |u(§)!2d§> }
= % </V<C|<27d§> ) </r<|<";’|<2f |u(€>‘Q*d€> .
=€ </rS§ ‘M(C)’Q%) -

which shows that
lim lim un(é’)V]Hun(C) . V]Hll)r(g)dg =0.

r—oon—oo JJHN

This proves (3.19). Next, we see that

/. ( IR ‘fff'f’o”gfa dﬂ) S(@ (@ < [ ( L. ‘fjf’f'o“g,)a d17> Q& )t (E)dE.

Since r > R, using (3.3), boundedness of {u,}, (X1), and (X;), we have

foo (o et s g @raz

G (1, un) V(&) |un(E)[2
= /|<";'|>r (/I[—IN 1o g\ad’7> 7 dg

[t ()| + K() | (1) [P, V(@) [ (E)?
: /|§|>r </IHN lp=1od|x dﬂ) 7 dg

V(17)|un(n)]? V(&) |un ()2
" /|C>r </1HN 20|lp~togl® dﬂ) 7 ac

2« 2Q—w

<C </|¢zr IV(C)\zéalun(C)lzéidém /IHN <|un(17)|Q* i IK('?)\%IW(U)I%) d;7>2Q

#0{ fop, VO @) ([ V01 i)
20

< ([, @@ Esae) ([ (b0l IKOIES ) ) )

ve ([ werEerta) T ([ voEa) S ([ mmea)

20
Since a € (0,4), it follows that 25904 € (2,Q*). Moreover, as V € L4« (HY), we have

20 o3
v2e-a ¢ L 9207w (V).

Therefore, by applying Lemma 2.5, we deduce that

tim [ V@) (@) g = [ V(@) fu(e) ¥ de.

e S|z &)=
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Hence,
20 4Q
lim lim V()] [un(g)|72dg = 0.

r—oon—o0 J|z|>r
Substituting this into (3.20), we obtain

. G(n,uy
lim lim i~ (/IHN de’?) g(é, n ) un P, ($)dg = 0.

r—00 N—00

This completes the proof. O

We now find the upper bound for the functional J. Before that, we state some asymptotic
estimates which can be proved similar to [21, Lemma 3.1] and [14, Lemma 1.1]. The minimizer
for the Sobolev inequality

Sl gy < [ [Vun(@)Pdg,

is attained by
C
u) = U(x,y,t) = o7
(2 + A+ [x? +[y2])?)

where C is a suitable positive constant. Let,

C

U:(¢) = = (3.21)

(8 + (e+ [x 2 + [y2))?)

where C is a suitable constant. Hence

Define,

o(2) = {1 if ¢ € By (0),

0 if & € B(0),
ue(g) = Ue()p(E),
ve(€) = te(©) : (3.22)

\Q“Iua( )%

[ ( ZQa
(leN Jun = Tog[e d dé)
HY) and ¢ € C®(HY), we have u, € L> (IHN). Consequently, v, € E.
(P c loc q y

Since S'2(HN) — L2
Further, we have

[ Vae@Pdg =% [ 19nU(@)Pdg +0o(). 623)
HN HN
[ ue@de =% [ ju@)?de+o(). (324
H H
Using the Hardy-Littlewood-Sobolev inequality, we get
Q Q 20 LN\
[ [ PERAO gy < @ ([ @1 ae) T o) 629

Following the calculations in [21, Lemma 3.1], we obtain

1 ()| % ()| & L uem e
Joo o yroge ez e | S it —0). (.26
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Lemma 3.6.
Cef—14+0(1), g€ (2,Q%,

| @< {1v10gk,  g=20-=4,
Ce=% +0(1), =2,0>4

Proof. 1If g € (2,Q*), then

J lue@lde < [ U@l

Q_ Q-2 1
—cef =% | _d¢
I (B4 (L4 32+ [y2)

that is,
/HN ue(&)|dE < Ce2 =14+ 0(1).

For g =2, Q =4, we have

2 2
Jo lue@PE < [ U@

<1+log—
For g =2, Q > 4, we have
Q4
Jo lue@Pig < % [ juc(@)Pas
—4 \Af 1
<Ce 7 (1%—/1 5Q3ds>
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Using these estimates and following the calculations as in [14, Lemma 1.1] we obtain the
following: Using (3.23), (3.25) and (3.26) we get,

[ [Vn0@)PdE = Suc+0(e %), 627)

Using Lemma 3.6, (3.26) and the Hardy-Littlewood-Sobolev inequality,

fu o g e 0 (55 vo (). e
Using Lemma 3.6 and (3.26),
/ ()P4 < Ce (1 +log (%)) iFQ =4, 529
HY o), ifQ > 4 '

Thus, from (3.28) and (3.29), we conclude

. [ve (1 )P |0e(8)” _
ll—l;%/]HN /]HN [p=1og|« dndg =0

and
lim [ |o(€)[?dE = 0.

e—0 JHN

Now, we prove a bound for the energy functional J.

1
Lemma 3.7. There exists v € E,v > 0, such that sup J(tv) < 1(5:) %1 (1 — (Q—)Q“)SQ“
>0 *

Proof. Let ve € E be defined as in (3.22). Define

2 () |PK (&) |ve()| 2Q;
h(t) = %Hvst /§|<R /17|<R ) [oe e ‘10(6‘)’0 (©)] dndé — tT (3.30)

We observe that h(t) > J(tve), with h(t) — 0 ast — 0 and h(t) — —oo as t — oco. Since
2 < 2p < 2Q;, we have h(t) > 0 for small t > 0. Therefore, h attains a global maximum. Let
t. denote a point at which & achieves its global maximum. Then

US pK vg P % *
feet = p Y [ [ e+ Qi

Hence,

Q24 < o2,

1
1 2(Q5-1)
us(me) .
14

Therefore, using this preceding inequality in (3.30),

2 R R )| (i)|PK(E)|0:(8)[P
/|¢SR|VHUS(€)‘ a6 < P< zz”vg“ > /¢<R /rz<R [p~1ogle g

I
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From (3.27) for sufficiently small ¢,

S

Hence,
i) <5 [ Vaod@Pde+C [ ou@)Pd
8_2 El<R IHveg (? /CSRUEC 5
) |oe (1) |PK(&) 0 (&) 129
/g<R/<R [p~togl® e =5

2 2Q%
Let p(7) = T lvel® — 55~
1

1 1
a global maximum. Let 7/ = (@) Qi-1||vg|| %1 be the point at which p attains its maximum.
Hence,
1/ 1 o, 2 1/1\o, 0
Q-1 20y Q-1 2Qn
P =3 ()™ Il & -3 ()™ el
2\ Q; ‘ 2\ Q; ‘

1 _Qr
o (1>Q;1 <1>Qz;1
( Qx X '

Therefore using (3.27), (3.28) and (3.29),

1/1\a1 2% 1\ 2
h <5 (ge) " led@ (1—(@) >+c [ Je@

1) |ve()|PK(&)|0e(8) |7
_C/<R/<R [y Tog e

1 1\a7 1 o %
<7 L i . L ® SQ* ) D
(@) (&)

Proof of Theorem 3.1. Let,

* 20 *1 97; Q;
ommn (%2) () 4 (() - ()7) o
2 Q: 2\ \Q; Q: HG

co > 0. We conclude that from Lemma 3.4, Lemma 3.5 and Lemma 3.6, if ¢ < ¢, then I = @.
To conclude the result, it is enough to prove that the (PS).—sequence {u,} is convergent in E.
From (3.7) we have (J'(u,),u, —u) — 0 and so (J'(u, — u),u, — u) — 0. Hence,

[ st = )@ + V@) (0~ )(@)

- /]HN (/IHN Wd”> §(§, un —u)(un —u)dg — 0.

We claim that [j;y (fHN r (1, ”;glf dn)g (&, un —u)(1y —u) — 0as n — oco.

Using Lemma 3.5, for given € > 0, if > R is sufficiently large then for all n > n,,

/§|22r </1HN Wd”> 8(8 un — u)(uy — u)dg <

N ™
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Consider
,/‘g‘SR (/HN %M) 8(& un —u)(un — u)dg
= Jen </|,7<R e ”)(’”'pdn> (Q2 (1 — 1) @)% + PK(@) (1 — 0)(@)P)eE .
* e (./A oo = il = Kot = ”)(””dn) (Q31 (= ) )1+ pK(E) (s — ) (©) V)G

VoDl - 000R, Y o :
e (2O =000 ) (= 0(@1% + K@) 0 = ) @)

Now by virtue of Lemma 3.4, Lemma 2.5 and compact embedding in bounded domain,

/|§|§2r </]HN WUZ”> g(& un —u)(up —u)dg <e.

Hence combining the results, we get ||u, — u|| — 0 in E, as n — oo. Therefore, by the Moun-
tain Pass Theorem [37, Theorem 1.17], equation (3.4) admits a weak solution. Moreover, the
positivity of the solution follows from the strong maximum principle [12]. O

4 Proof of Theorem 1.2

In this section, we prove the main result of this paper. The following theorem provides the
L*-regularity of the weak solution to (3.4). The proof is based on an argument of Brezis-Kato
type, as carried out in RY in [4, Lemma 2.10]. For the adaptation of the Brezis-Kato argument
to the Heisenberg group, we refer to [20, Theorem 4.2]. We omit the details.

Theorem 4.1. Let u be the solution obtained for the equation (3.4). Then, there exists a constant M,
such that

[l oo g2y < Mo.
Before presenting the proof of Theorem 1.2, we prove the following lemma:

Lemma 4.2. Let u be a solution of (3.4). Then, there exists £y > 0 such that

ap HOOE

<
ucE Lo

1
2/

where H(u) () = [ C‘;,;'Z’lt(gz) dn

Proof. Consider,

R CI R a PUEE)

and

e <_V@ .\ </HN C’;ﬂi(g’l)do g(&z(é))) .
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One can verify that [jy ( ‘;_10((:‘) )diy) 8 ( D) ¢ L% (HN). Hence by Brezis—Kato argument [35,

Lemma B.3], u € LI _(H") for all t < cc. Cons1der,

&I= '/HN In‘loé‘l"‘ ’
</ ()| + K(y )Iu(n)lpd,7
~ JuN [p=togl®
Qi Qa p
s/ lu(n)| +1I<( ) ,7 / il +1K( )“\”(77)\ an
‘,wm [n=1og| *1O€|"‘>1 ln=1o¢|
)| +K(n7)u(n)|?
s/ dn + C
*1o¢\*<1 [n=1tog|® 1
n)|% lu(n)|?
s/ BLAVM +c/ BLIVN S
ly-Logle<1 |,7 106!"‘ 1 y-togle<t |77t o g[* 1

1

1
1 7
“an) (f )
(/1o§|ﬂ<1 Ll lp-togle<t |7~ o g|* 1
1 1
s 1 s
([, o rin) ([ rretn)
|rlocwas1’ ()" dn l-togx<t |71 o g|s &

where s, ' € [1, Q) and 1 +1=1,1+1 =1 Hence, by using the Hardy-Littlewood-Sobolev
inequality, we have

IN

[H(u) () < C.

Thus, we may choose ¢y > 0 such that

sup 10U 1 0

N

ucE Lo

We take ¢ > {y > 0 and consider the penalized problem.

In order to prove the existence of solution for (1.1), we show that there exists R > 1 such
that u satisfies the inequality

f(Gu) < V(Eg)u

for || > R.

Proof of Theorem 1.2. Let
RQ_ZH”HLOO(]HN)

5192
One can verify that v € C®(HY) \ {0}. Observe that u < v for |¢| = R. Define

v(¢) =

o — (u—v)y if[J| >R,
0 if |2] < R.

We see that w = 0 on dBg(0), w > 0 and Ao = 0 in HY \ Bg(0), since |Q > is a fundamental

5
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solution where C is suitable constant[17, Theorem 2.1]. Therefore,

[ V(@) = [ Vit —0)(@) - Vew(@)dg
= [ HOZEu@)E) - VEu@wE)de

IgI=R

H() .
/|<.32R( 7 1) V(§u(&)w(g)ds
0.

IN

IN

Thus w = 0 and hence, u < v < Iﬁ% if |¢| > R. Consider,

Py < k@)l =2 + Qplul %2
R\ (-2(Q-2) /RN @D(@Q2)
< pMPK(E) () QMO ()
H H
R\ (-2(Q-2)
<C
<<(g)
C/R(P—2)(Q-2)

= e e
Lety=C{ A>yRFand y = (p —2)(Q — 2). Then, from (X;), we have

flew 1A _VE)

u clgir = ¢

This completes the proof. O
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