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Abstract. This paper analyzes the oscillation of the second-order neutral differential
equation in noncanonical form[

r(t)
(
(x(t) + p(t)x(π(t)))′

)α]′
+ k(t)xβ(η(t)) = 0.

Using a combination of the linearization technique and the monotonicity properties of
the neutral term, we derive new conditions for the studied equation to be oscillatory.
Our findings provide new results applicable to linear, sublinear, superlinear, half-linear
and other nonlinear forms of the studied equation, and moreover, for all these cases,
the oscillation of the studied equation is attained via only one condition. Further, we
illustrate the significance of our results with various examples, highlighting their supe-
riority over known criteria in the existing literature.
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1 Introduction

The purpose of the present paper is to investigate the oscillatory behavior of solutions to
the second-order noncanonical differential equation with bounded and unbounded neutral
coefficients [

r(t)
(
(x(t) + p(t)x(π(t)))′

)α]′
+ k(t)xβ(η(t)) = 0, t ∈ I0 := [t0, ∞), (1.1)

where t0 ∈ R+ := (0, ∞), α and β are the ratios of odd positive integers with α ≥ 1. We also
assume that:
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(C1) r ∈ C (I0, R+) satisfies ∫ ∞

t0

1
r1/α(t)

dt < ∞; (1.2)

(C2) p, k ∈ C (I0, R0), p(t) ≥ ℓ > 1, and k does not vanish eventually;

(C3) π, η ∈ C (I0, R), π(t) ≤ t, π is strictly increasing, η is nondecreasing, η(t) ≤ π(t), and
limt→∞ π(t) = limt→∞ η(t) = ∞.

For simplicity, we put z(t) := x(t) + p(t)x(π(t)). Under a solution of (1.1), we mean a function
x ∈ C (Ix, R), Ix := [tx, ∞) for some tx ≥ t0 such that z ∈ C1 (Ix, R), r (z′)α ∈ C1 (Ix, R) and x
satisfies (1.1) on Ix. Since we are only interested in the oscillatory behavior of solutions, every
solution x(t) of (1.1) considered here is assumed to be continuable and nontrivial, i.e., x(t)
exists on some half-line Ix and supt≥T {| x(t)|} > 0 for any T ≥ tx. We say that a solution of
(1.1) is oscillatory if it has an unbounded set of zeros on Ix; it is called nonoscillatory, otherwise.
The equation itself is called oscillatory if all its solutions oscillate.

Neutral differential equations are a type of functional differential equations in which the
highest-order derivative of the unknown function appears both with and without deviating
arguments. Equations of this type have attracted the interest of researchers not only from a
theoretical point of view, but also because of their numerous applications in different fields.
Those interested in the applications of such equations can refer to [17, 18] for some classical
applications and to [7, 12] for more recent applications.

It is clearly observed from the literature review that the oscillation theory is one of the con-
tinuously developing important branches of the qualitative theory of differential equations. Its
foundations are based on the pioneering work of Sturm [23] on well-known results concerning
the zeros of solutions of second-order self-adjoint differential equations. Since then, oscillation
criteria have been established for various classes of differential equations by researchers using
different techniques and/or methods and the interesting results obtained have contributed
significantly to the growth and development of this theory. There are different techniques
and/or methods to establish oscillation criteria; among them, Riccati technique, integral av-
eraging technique, comparison theorems and linearization techniques are some of the most
influential; see, e.g., the books by Agarwal et al. [2,3], the papers [1,5,6,9–11,13,15,16,20–22,24]
and the references quoted there.

We would like to point out that Eq. (1.1) is said to be in noncanonical form if (1.2) is
satisfied, and Eq. (1.1) is said to be in canonical form if∫ ∞

t0

1
r1/α(t)

dt = ∞. (1.3)

In particular, for the delay differential equation in canonical form

x′′(t) + k(t)x(η(t)) = 0, (1.4)

Koplatadze et al. [19] presented the following interesting oscillation criterion of lim sup-type

lim sup
t→∞

{
η(t)

∫ ∞

t
k(s)ds +

∫ t

η(t)
η(s)k(s)ds +

1
η(t)

∫ η(t)

t0

sη(s)k(s)ds
}

> 1. (1.5)

Later, Baculikova [4] extended the technique developed by Koplatadze et al.[19] to the second-
order differential equation with deviating argument in noncanonical form

(r(t)x′(t))′ + k(t) f (x(η(t))) = 0, (1.6)
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where f is nondecreasing and covers sublinear and linear cases ( f (u) = uβ with β ∈ (0, 1])
and provided new oscillation criteria for equation (1.6).

Grace et al. [14] applied the same technique to the second-order neutral differential equa-
tion in noncanonical form[

r(t) (x(t) + p(t)x(π(t)))′
]′
+ k(t)xβ(η(t)) = 0, (1.7)

where 0 ≤ p(t) ≤ d < 1 and β ∈ (0, 1], and derived new oscillation results for (1.7).
Tunç et al. [25] implemented the same technique to the equation with distributed deviating

arguments in noncanonical form[
r(t) (x(t) + p(t)x(π(t)))′

]′
+
∫ c2

c1

k(t, ϱ)xβ(ϕ(t, ϱ))dϱ = 0, (1.8)

where 0 < c1 < c2 < ∞, p(t) ≥ ℓ > 1 and β ∈ (0, 1], and established novel criteria for the
oscillation of (1.8).

From the above observations, it is clear that the results in [4, 14, 25] only cover the linear
and sublinear cases, i.e., the results in [4, 14, 25] are only applicable to the cases (α = β = 1)
and (α = 1 and β < 1); and so they provide no information for the superlinear case (α = 1
and β > 1), half-linear case (β = α ̸= 1) and the other nonlinear cases such as (1 ̸= α ̸= β) and
(α > 1 and β = 1).

Motivated by the above mentioned researches; using a combination of the linearization
technique and the monotonicity properties of the neutral term, our goal here is to establish
new oscillation criteria for Equation (1.1) that are applicable not only to the linear and sublin-
ear cases, but also to the superlinear, half-linear and the other nonlinear cases the mentioned
above. Furthermore, in contrast to the results reported in [14, 25], a key feature of our results
is that the oscillation of the equation considered here is ensured through only one condition.
It should also be noted that, as can be seen from the details in the proofs, the proofs for all
these cases of α and β are not straightforward and require considerable effort. On the other
hand, since we focus on the cases 1 < p(t) < ∞ and p(t) → ∞ as t → ∞, our current re-
sults cannot be applied to the case 0 ≤ p(t) < 1. However, with some standard calculations,
the criteria here can be adjusted for the case 0 ≤ p(t) < 1 as well. Additionally, a series of
carefully selected examples are provided to illustrate the significance of our results and their
superiority over known criteria in the existing literature.

We wish also point out that if x is a solution of (1.1), under our assumptions, −x is also
a solution of (1.1). Therefore, when considering nonoscillatory solutions, it is sufficient to
consider only positive ones since the proofs for negative solutions are similar due to the form
of (1.1).

2 Oscillation results for (1.1) in the case where β ≤ α

In this section, we present the oscillation results for (1.1) in the case where β ≤ α. For
notational purposes, it would be convenient to set:

κ = (ℓ− 1)βℓ−β, b(t) = π−1(η(t)), A(t) =
∫ t

t∗

1
r1/α(s)

ds, t∗ ∈ I0, λ(t) =
∫ ∞

t

1
r1/α(s)

ds.

Lemma 2.1. Let x be an eventually positive solution of (1.1) on I0. If∫ ∞

t0

λα(t)k(t)p−β(b(t))dt = ∞, (2.1)
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then the corresponding function z(t) = x(t) + p(t)x(π(t)) belongs to the class N0 eventually, where

z(t) ∈ N0 ⇔ z(t) > 0, r1/α(t)z′(t) < 0,
(

r1/αz′
)′

(t) ≤ 0.

Proof. Since x is an eventually positive solution of (1.1) on I0, there exists a t1 ∈ I0 such that
x(t) > 0 for t ≥ t1. In view of limt→∞ π(t) = limt→∞ η(t) = ∞, we can choose t2 ≥ t1 such
that x(π(t)) > 0 and x(η(t)) > 0 for t ≥ t2. Now, for t ≥ t2, z(t) > 0 and(

r(z′)α
)′
(t) = −k(t)xβ(η(t)) ≤ 0,

which implies that z′ is of one sign eventually, i.e., either z′(t) > 0 or z′(t) < 0 eventually.
We claim that z′(t) < 0 eventually. If this is not the case, then there exists a t3 ≥ t2 such that
z′(t) > 0 for t ≥ t3. Applying the chain-rule to (r(z′)α)′ (t) yields

(
r(z′)α

)′
(t) = α

(
r1/α(t)z′(t)

)α−1 (
r1/α(t)z′(t)

)′
. (2.2)

From (2.2) and the fact that α is the ratio of odd positive integers, we deduce that

sgn
(

r1/α(t)z′(t)
)′

= sgn
(
r(t)(z′(t))α

)′ .

Hence
z(t) > 0, r1/α(t)z′(t) > 0,

(
r1/αz′

)′
(t) ≤ 0 for t ≥ t3.

Now

z(t) ≥
∫ t

t3

r1/α(s)z′(s)
r1/α(s)

ds = A(t)r1/α(t)z′(t),

which implies that (
z(t)
A(t)

)′
≤ 0,

for t ≥ t4 for some t4 > t3, i.e., z(t)/A(t) is nonincreasing for t ≥ t4. The definition of z leads
to

x(t) =
1

p(π−1(t))

[
z(π−1(t))− x(π−1(t))

]
≥ z(π−1(t))

p(π−1(t))
− z(π−1(π−1(t)))

p(π−1(t))p(π−1(π−1(t)))
. (2.3)

By (C3), we see that π−1 is increasing, t ≤ π−1(t), and

π−1(t) ≤ π−1(π−1(t)). (2.4)

(2.4) together with the noincreasing nature of z/A yields

z
(

π−1(π−1(t))
)
≤

A
(
π−1(π−1(t))

)
z(π−1(t))

A (π−1(t))
. (2.5)

Using (2.5) in (2.3) gives

x(t) ≥ z(π−1(t))
p(π−1(t))

[
1 − A(π−1(π−1(t)))

A(π−1(t))
1

p(π−1(π−1(t)))

]
for t ≥ t4. (2.6)
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By (C2) and that

lim
t→∞

A(π−1(t))
A(t)

= 1,

we see that there exists t5 ≥ t4 such that for any ϵ ∈ (0, ℓ− 1) and t ≥ t5,

A(π−1(π−1(t)))
A(π−1(t))

1
p(π−1(π−1(t)))

≤ 1 + ϵ

ℓ
.

Using this in (2.6) gives

x(t) ≥ d
z(π−1(t))
p(π−1(t))

for t ≥ t5, (2.7)

where d = 1 − (1 + ϵ)/ℓ > 0. Substituting (2.7) into (1.1) yields(
r(z′)α

)′
(t) + dβk(t)p−β(π−1(η(t)))zβ

(
π−1(η(t))

)
≤ 0, (2.8)

for t ≥ t6. For t ≥ t6, we have z(t) ≥ z(t6) := c > 0, and so inequality (2.8) leads to(
r(z′)α

)′
(t) + cβdβk(t)p−β(b(t)) ≤ 0 for t ≥ t7 ≥ t6. (2.9)

Since λ is positive, decreasing and limt→∞ λ(t) = 0, we can choose a sufficiently large t∗ ∈ I0

such that
0 < λ(t) < 1 for t ≥ t∗. (2.10)

Let t8 = max{t7, t∗}. Integrating (2.9) from t7 to ∞ and taking (2.10) into account, we obtain

r(t7)(z′(t7))
α ≥ cβdβ

∫ ∞

t7

k(t)p−β(b(t))dt ≥ cβdβ
∫ ∞

t8

k(t)p−β(b(t))dt

≥ cβdβ
∫ ∞

t8

λα(t)k(t)p−β(b(t))dt,

which is impossible in view of (2.1) and so z′(t) < 0 eventually and thus the proof ends.

Lemma 2.2. Suppose that x is an eventually positive solution of (1.1) on I0. If (2.1) holds, then the
following are satisfied eventually:

(i) z(t) + λ(t)r1/α(t)z′(t) ≥ 0;

(ii) z(t)
λ(t)

is nondecreasing;

(iii)
(

z(b(t))
r1/α(t)z′(t)

)α−1

≥ λα−1(t);

and

(iv) lim
t→∞

z(t) = 0.

Proof. Pick a t1 ∈ I0 such that x(t) > 0, x(π(t)) > 0 and x(η(t)) > 0 for t ≥ t1. Proceeding
similarly as in the proof of Lemma 2.1, we again see that the corresponding function z(t)
belongs to the class N0 eventually, say for t ≥ t2, for some t2 ≥ t1. Since r1/αz′ is negative and
decreasing,

z(t) ≥ −
∫ ∞

t

r1/α(s)z′(s)
r1/α(s)

ds ≥ −λ(t)r1/α(t)z′(t), (2.11)
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which means that part (i) is fulfilled.
From (2.11), (

z(t)
λ(t)

)′
=

λ(t)r1/α(t)z′(t) + z(t)
λ2(t)r1/α(t)

≥ 0,

i.e., part (ii) holds.
Since b(t) ≤ t, we get

z(b(t)) ≥ z(t). (2.12)

By (2.11) and (2.12), we observe that(
z(b(t))

r1/α(t)z′(t)

)α−1

≥ λα−1(t), (2.13)

which proves part (iii).
Finally, we will show that part (iv) is true. From the monotonic properties of z on [t2, ∞),

we can choose a constant L1 ≥ 0 such that

lim
t→∞

z(t) = L1.

We will show that L1 = 0. If L1 > 0, then there exists a T1 ≥ t2 such that for any ϵ > 0,

L1 < z(t) < L1 + ϵ for t ≥ T1. (2.14)

By (2.4) and z′(t) < 0,
z(π−1(t)) ≥ z(π−1(π−1(t))). (2.15)

Using (2.15) in (2.3) leads to

x(t) ≥ 1
p(π−1(t))

[
1 − 1

p(π−1(π−1(t)))

]
z(π−1(t)) for t ≥ t2, (2.16)

which together with (C2) yields

x(t) ≥ κ1/β z(π−1(t))
p(π−1(t))

for t ≥ t2, (2.17)

Substituting (2.17) into (1.1) gives(
r(z′)α

)′
(t) + κk(t)p−β(b(t))zβ(b(t)) ≤ 0, (2.18)

for t ≥ t3, for some t3 ≥ t2. In view of (2.2), we can rewrite (2.18) in the form(
r1/αz′

)′
(t) +

κ

α

zα−1(b(t))

(r1/α(t)z′(t))α−1 k(t)p−β(b(t))zβ−α+1(b(t)) ≤ 0. (2.19)

By virtue of (2.13) and (2.19), we obtain(
r1/αz′

)′
(t) +

κ

α
λα−1(t)k(t)p−β(b(t))zβ−α+1(b(t)) ≤ 0 for t ≥ t3. (2.20)

Let t4 = max{t3, T1}. Then, from (2.14) and (2.20), we observe that(
r1/αz′

)′
(t) + dλα−1(t)k(t)p−β(b(t)) ≤ 0 for t ≥ t4, (2.21)
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where d = κL1+β
1 /α(L1 + ϵ)α > 0. Integrating (2.21) two times gives

z(t4) ≥ d
∫ ∞

t4

1
r1/α(u)

∫ u

t4

λα−1(s)k(s)p−β(b(s))dsdu

= d
∫ ∞

t4

λα(s)k(s)p−β(b(s))ds = ∞,

which is a contradiction. The contradiction obtained proves that L1 = 0. The proof is over.

Lemma 2.3. Let x be an eventually positive solution of (1.1) on I0. If (2.1) holds, then the corre-
sponding function z satisfies the linear inequalities(

r1/αz′
)′

(t) +
κ

α
λα−1(t)k(t)p−β(b(t))z(b(t)) ≤ 0 (2.22)

and (
z + λr1/αz′

)′
(t) +

κ

α
λα(t)k(t)p−β(b(t))z(b(t)) ≤ 0, (2.23)

eventually.

Proof. Following again the same arguments in the proof of Lemma 2.2, we arrive at (2.20) for
t ≥ t3. Since z is positive, decreasing and limt→∞ z(t) = 0, there exists a sufficiently large
t4 ≥ t3 such that

0 < z(t) < 1 for t ≥ t4. (2.24)

By (2.24) and β ≤ α, we have
zβ/α(t) ≥ z(t) for t ≥ t4. (2.25)

From (2.24) and the fact that β − α ≤ 0, we obtain

zβ−α(t) ≥ z(β−α)/α(t) for t ≥ t4. (2.26)

Using (2.26) in (2.20) gives(
r1/αz′

)′
(t) +

κ

α
λα−1(t)k(t)p−β(b(t))zβ/α(b(t)) ≤ 0 (2.27)

for t ≥ t5, for some t5 ≥ t4. Using (2.25) in (2.27) leads to(
r1/αz′

)′
(t) +

κ

α
λα−1(t)k(t)p−β(b(t))z(b(t)) ≤ 0 for t ≥ t5, (2.28)

which proves (2.22).
From (2.28) and the fact that(

z + λr1/αz′
)′

(t) = λ(t)
(

r1/α(t)z′(t)
)′

, (2.29)

we observe that(
z + λr1/αz′

)′
(t) +

κ

α
λα(t)k(t)p−β(b(t))z(b(t)) ≤ 0 for t ≥ t5, (2.30)

i.e., (2.23) holds. The proof is complete.

We are now ready to give the oscillation results for (1.1) in the case where β ≤ α based on
Lemmas 2.1–2.3.
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Theorem 2.4. If

lim sup
t→∞

W(t) >
α

κ
, (2.31)

where

W(t) := λ(t)
∫ t

t0

λα−1(s)k(s)p−β(b(s))ds +
1

λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(π(t)) > 0 and x(η(t)) > 0
for t ≥ t1, for some t1 ≥ t0. It follows from (2.31) that there exists a positive constant k such
that

lim sup
t→∞

W(t) ≥ k. (2.32)

We now assert that (2.32) implies (2.1). Indeed, if not, then∫ ∞
λα(t)k(t)p−β(b(t))dt < ∞.

Thus, there exists a sufficiently large t2 ∈ [t1, ∞) such that∫ ∞

t2

λα(t)k(t)p−β(b(t))dt <
k
4

. (2.33)

Recalling again that λ is positive, decreasing and limt→∞ λ(t) = 0, we again see that there
exists a sufficiently large t∗ ∈ [t0, ∞) such that (2.10) holds. Let t3 = max{t2, t∗}. Then, for
t ≥ t3, it follows from (2.10) and (2.33) that

λ(t)
∫ t

t1

λα−1(s)k(s)p−β(b(s))ds = λ(t)
∫ t3

t1

λα−1(s)k(s)p−β(b(s))ds

+ λ(t)
∫ t

t3

λα−1(s)k(s)p−β(b(s))ds

≤ λ(t)
∫ t3

t1

λα−1(s)k(s)p−β(b(s))ds

+
∫ t

t3

λα(s)k(s)p−β(b(s))ds

≤ λ(t)
∫ t3

t1

λα−1(s)k(s)p−β(b(s))ds +
k
4

. (2.34)

Also, for t ≥ t3,

1
λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds ≤

∫ ∞

t
λα(s)k(s)p−β(b(s))ds

≤
∫ ∞

t3

λα(s)k(s)p−β(b(s))ds <
k
4

. (2.35)

From (2.34) and (2.35), we deduce that

lim sup
t→∞

W(t) ≤ k
2

,
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which contradicts (2.32), and the contradiction obtained shows that (2.32) implies (2.1). There-
by, all results of Lemmas 2.1–2.3 are fulfilled. Proceeding similarly as in proof in Lemma 2.3,
we again arrive at (2.28) and (2.30) for t ≥ t5. Integrating (2.30) from t(≥ t5) to ∞ leads to

(z + λr1/αz′)(t) ≥ κ

α

∫ ∞

t
λα(s)k(s)p−β(b(s))z(b(s))ds. (2.36)

An integration of (2.28) from t5 to t gives

−(λr1/αz′)(t) ≥ κ

α
λ(t)

∫ t

t5

λα−1(s)k(s)p−β(b(s))z(b(s))ds. (2.37)

From (2.36) and (2.37), we obtain

z(t) ≥ κ

α
λ(t)

∫ t

t5

λα−1(s)k(s)p−β(b(s))z(b(s))ds

+
κ

α

∫ ∞

t
λα(s)k(s)p−β(b(s))z(b(s))ds. (2.38)

In view of the monotonicity properties of z, b and z/λ, we obtain

∫ t

t5

λα−1(s)k(s)p−β(b(s))z(b(s))ds ≥
(∫ t

t5

λα−1(s)k(s)p−β(b(s))ds
)

z(t), (2.39)

and

∫ ∞

t
λα(s)k(s)p−β(b(s))z(b(s))ds =

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))

z(b(s))
λ(b(s))

ds

≥
(

1
λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds

)
z(t). (2.40)

Using (2.39) and (2.40) in (2.38), we arrive at

α

κ
≥ λ(t)

∫ t

t5

λα−1(s)k(s)p−β(b(s))ds +
1

λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds.

Taking lim sup as t → ∞ in the latter inequality, we obtain a contradiction with (2.31). This
completes the proof.

Theorem 2.5. If

lim sup
t→∞

H(t) >
α

κ
, (2.41)

where

H(t) := λ(b(t))
∫ b(t)

t0

λα−1(s)k(s)p−β(b(s))ds +
∫ t

b(t)
λα(s)k(s)p−β(b(s))ds

+
1

λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds,

then (1.1) oscillates.
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Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) such that x(t) > 0, x(π(t)) > 0
and x(η(t)) > 0 for t ≥ t1, for some t1 ≥ t0. As in the proof of Theorem 2.4, it is not difficult
to see that (2.1) holds. Thereby, all results of Lemmas 2.1–2.3 are fulfilled. Using exactly the
same arguments as in the proof of Theorem 2.4, we see that (2.38) holds and leads to

z(b(t)) ≥ κ

α
λ(b(t))

∫ b(t)

t5

λα−1(s)k(s)p−β(b(s))z(b(s))ds

+
κ

α

∫ t

b(t)
λα(s)k(s)p−β(b(s))z(b(s))ds

+
κ

α

∫ ∞

t
λα(s)k(s)p−β(b(s))z(b(s))ds.

In view of the monotonicity properties of z and z/λ, we conclude from the latter inequality
that

α

κ
≥ λ(b(t))

∫ b(t)

t5

λα−1(s)k(s)p−β(b(s))ds +
∫ t

b(t)
λα(s)k(s)p−β(b(s))ds

+
1

λ(b(t))

∫ ∞

t
λα(s)k(s)p−β(b(s))λ(b(s))ds.

The remainder of the proof follows from that of Theorem 2.4.

Theorem 2.6. If

lim sup
t→∞

∫ t

b(t)
λα(s)k(s)p−β(b(s))ds >

α

κ
, (2.42)

then equation (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) such that x(t) > 0, x(π(t)) > 0
and x(η(t)) > 0 for t ≥ t1, for some t1 ≥ t0. It is obvious that (2.42) implies (2.1). Thereby, all
results of Lemmas 2.1–2.3 are fulfilled. By Lemma 2.3, we again have (2.30). Setting

y(t) := z(t) + λ(t)r1/α(t)z′(t),

and taking 0 ≤ y(t) ≤ z(t) into account, we observe from (2.30) that

y′(t) +
κ

α
λα(t)k(t)p−β(b(t))y(b(t)) ≤ 0.

Integrating the latter inequality from b(t) to t gives

y(b(t)) ≥ κ

α

∫ t

b(t)
λα(s)k(s)p−β(b(s))y(b(s))ds

≥
(

κ

α

∫ t

b(t)
λα(s)k(s)p−β(b(s))ds

)
y(b(t)),

from which
α

κ
≥
∫ t

b(t)
λα(s)k(s)p−β(b(s))ds.

Taking the lim sup as t → ∞, we find a contradiction to (2.42). The proof is complete.
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3 Oscillation results for (1.1) in the case where β > α

In this section, we will establish the oscillation criteria for the case when β > α. While in the
previous section we have established the oscillation criteria via z(t) → 0 as t → ∞; in this
section we will establish the oscillation criteria via z(t)/λ(t) → ∞ as t → ∞.

Lemma 3.1. Let x be an eventually positive solution of (1.1) on I0. If∫ ∞

t0

λβ(t)k(t)p−β(b(t))dt = ∞, (3.1)

then z(t) ∈ N0 and

lim
t→∞

z(t)
λ(t)

= ∞.

Proof. Recalling again the monotonic properties of λ, we again see that there exists a suffi-
ciently large t∗ ∈ [t0, ∞) such that (2.10) holds. By (2.10) and β > α, we have

λβ(t) ≤ λα(t) for t ≥ t∗, (3.2)

from which,
λβ(t)k(t)p−β(b(t)) ≤ λα(t)k(t)p−β(b(t)). (3.3)

Now, in view of (3.3), it is clear that (3.1) implies (2.1). So, all results of Lemma 2.1 and lemma
2.2 are fulfilled. Following similar arguments as in the proof of Lemma 2.2, we see that (2.18)
holds. Since λ(t) → 0 as t → ∞ and z(t) → 0 as t → ∞, by L’Hôpital’s rule,

lim
t→∞

z(t)
λ(t)

= lim
t→∞

−r1/α(t)z′(t).

We now will show that limt→∞ −r1/α(t)z′(t) = ∞. Suppose to the contrary that positive
and increasing function −r1/α(t)z′(t) has finite limit. This assumption implies that there is a
constant b1 > 0 such that

−r1/α(t)z′(t) ≤ b1 < ∞.

This together with an integration of (2.18) from t3 to t yields

bα
1 ≥ −r(t)(z′(t))α ≥ κ

∫ t

t3

k(s)p−β(b(s))zβ(b(s))ds

≥ κ
∫ t

t3

λβ(s)k(s)p−β(b(s))
(

z(s)
λ(s)

)β

ds

≥ κ

(
z(t3)

λ(t3)

)β ∫ t

t3

λβ(s)k(s)p−β(b(s))ds,

which contradicts (3.1) and we deduce that

lim
t→∞

z(t)
λ(t)

= lim
t→∞

−r1/α(t)z′(t) = ∞.

Lemma 3.2. Let x be an eventually positive solution of (1.1) on I0. If (3.1) holds, then(
r1/αz′

)′
(t) +

κ

α
λβ(t)k(t)p−β(b(t))

z(b(t))
λ(b(t))

≤ 0 (3.4)

and (
z + λr1/αz′

)′
(t) +

κ

α
λβ+1(t)k(t)p−β(b(t))

z(b(t))
λ(b(t))

≤ 0, (3.5)

eventually.
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Proof. Since (3.1) implies (2.1), we again see that all the results of Lemma 2.1, Lemma 2.2 and
Lemma 3.1 are fulfilled. Following similar arguments as in the proof of Lemma 2.2, we see
that (2.20) for t ≥ t3 is satisfied. Since z(t)/λ(t) → ∞ as t → ∞, there exists a sufficiently
large T1 ∈ [t0, ∞) such that

z(t)
λ(t)

≥ 1 for t ≥ T1. (3.6)

By (3.6) and β > α, (
z(t)
λ(t)

)β/α

≥ z(t)
λ(t)

for t ≥ T1, (3.7)

and
β − α ≥ β − α

α
. (3.8)

Now (3.6) and (3.8) leads to(
z(t)
λ(t)

)β−α

≥
(

z(t)
λ(t)

)(β−α)/α

for t ≥ T1. (3.9)

Since limt→∞ b(t) = ∞, we can choose T2 ≥ T1 such that b(t) ≥ T1 for t ≥ T2 and so from (3.9)(
z(b(t))
λ(b(t))

)β−α

≥
(

z(b(t))
λ(b(t))

)(β−α)/α

for t ≥ T2. (3.10)

Let t4 = max{t3, T2}. Using (3.10) in (2.20) gives

(
r1/αz′

)′
(t) +

κ

α
λα−1(t)k(t)p−β(b(t))λβ−α+1(b(t))

(
z(b(t))
λ(b(t))

)β/α

≤ 0 for t ≥ t4. (3.11)

Using that λ is decreasing, b(t) ≤ t and β > α, it follows from (3.11) that

(
r1/αz′

)′
(t) +

κ

α
λβ(t)k(t)p−β(b(t))

(
z(b(t))
λ(b(t))

)β/α

≤ 0 for t ≥ t4. (3.12)

Using (3.7) in (3.12) yields(
r1/αz′

)′
(t) +

κ

α
λβ(t)k(t)p−β(b(t))

z(b(t))
λ(b(t))

≤ 0 for t ≥ t4, (3.13)

which proves (3.4). Recalling (2.29) again, we can rewrite (3.13) in the form(
z + λr1/αz′

)′
(t) +

κ

α
λβ+1(t)k(t)p−β(b(t))

z(b(t))
λ(b(t))

≤ 0 for t ≥ t4, (3.14)

which proves (3.5). The proof is complete.

Theorem 3.3. If
lim sup

t→∞
K(t) >

α

κ
, (3.15)

where

K(t) := λ(t)
∫ t

t0

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds +
1

λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds,

then (1.1) oscillates.



Oscillation of second-order neutral differential equations 13

Proof. Pick t1 ∈ I0 such that x(t) > 0, x(π(t)) > 0 and x(η(t)) > 0 for t ≥ t1. From (3.15), we
can choose a δ > 0 such that

lim sup
t→∞

K(t) ≥ δ. (3.16)

We now claim that (3.16) implies (3.1). Indeed, if not, then∫ ∞
λβ(t)k(t)p−β(b(t))dt < ∞.

Thus, for a sufficiently large t2 ∈ [t1, ∞),∫ ∞

t2

λβ(t)k(t)p−β(b(t))dt <
δ

4
. (3.17)

Recalling again the monotonicity properties of λ, we see that there exists a sufficiently large
t∗ ∈ [t0, ∞) such that (2.10) holds. Let t3 = max{t2, t∗}. Then, for t ≥ t3, (2.10) and (3.17)
yields

λ(t)
∫ t

t1

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds = λ(t)
∫ t3

t1

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds

+ λ(t)
∫ t

t3

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds

≤ λ(t)
∫ t3

t1

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds

+
∫ t

t3

λβ(s)k(s)p−β(b(s))ds

≤ λ(t)
∫ t3

t1

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds +
δ

4
. (3.18)

Also, for t ≥ t3,

1
λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds ≤

∫ ∞

t
λβ(s)k(s)p−β(b(s))ds

≤
∫ ∞

t3

λβ(s)k(s)p−β(b(s))ds <
δ

4
. (3.19)

From (3.18) and (3.19), we conclude that

lim sup
t→∞

K(t) ≤ δ

2
,

which contradicts (3.16). The contradiction obtained shows that (3.1) holds, and hence all
results of Lemma 3.1 and Lemma 3.2 are fulfilled. Next, proceeding similarly as in proof in
Lemma 3.2, we arrive at (3.13) and (3.14) for t ≥ t4. Integrating (3.14) from t to ∞ yields(

z + λr1/αz′
)
(t) ≥ κ

α

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds. (3.20)

Integrating (3.13) from t4 to t and then multiplying by λ(t), we get

−
(

λr1/αz′
)
(t) ≥ κ

α
λ(t)

∫ t

t4

λβ(s)k(s)p−β(b(s))
z(b(s))
λ(b(s))

ds. (3.21)
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It follows from (3.20) and (3.21) that

z(t) ≥ κ

α
λ(t)

∫ t

t4

λβ(s)k(s)p−β(b(s))
z(b(s))
λ(b(s))

ds

+
κ

α

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds. (3.22)

In view of the monotonicity properties of z, b and z/λ, we obtain∫ t

t4

λβ(s)k(s)p−β(b(s))
z(b(s))
λ(b(s))

ds ≥
(∫ t

t4

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds
)

z(b(t)), (3.23)

and∫ ∞

t
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds ≥
(

1
λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds

)
z(b(t)). (3.24)

Using (3.23) and (3.24) in (3.22) yields

α

κ
z(t) ≥

(
λ(t)

∫ t

t4

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds
)

z(b(t))

+

(
1

λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds

)
z(b(t)). (3.25)

Using that z is decreasing and b(t) ≤ t, we deduce from (3.25) that

α

κ
≥ λ(t)

∫ t

t4

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds +
1

λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds.

Now take the lim sup as t → ∞, we get a contradiction to (3.15) and complete the proof.

Theorem 3.4. If
lim sup

t→∞
V(t) >

α

κ
, (3.26)

where

V(t) := λ(b(t))
∫ b(t)

t0

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds

+
∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds

+
1

λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds,

then equation (1.1) is oscillatory.

Proof. Pick t1 ∈ I0 such that x(t) > 0, x(π(t)) > 0 and x(η(t)) > 0 for t ≥ t1. As in the proof
of Theorem 3.3, it is not difficult to see that (3.1). Thus, as in the proof of Theorem 3.3, we see
that (3.22) holds and leads to

z(b(t)) ≥ κ

α
λ(b(t))

∫ b(t)

t4

λβ(s)k(s)p−β(b(s))
z(b(s))
λ(b(s))

ds

+
κ

α

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds

+
κ

α

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds. (3.27)
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Using the monotonic properties of z and z/λ, we deduce from (3.27) that

z(b(t)) ≥
(

κ

α
λ(b(t))

∫ b(t)

t4

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds
)

z(b(t))

+

(
κ

α

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds

)
z(b(t))

+

(
κ

α

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds

)
z(b(t))
λ(b(t))

,

from which

α

κ
≥ λ(b(t))

∫ b(t)

t4

λβ(s)k(s)p−β(b(s))λ−1(b(s))ds

+
∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds

+
1

λ(b(t))

∫ ∞

t
λβ+1(s)k(s)p−β(b(s))ds.

The rest of the proof is as that of Theorem 3.3.

Theorem 3.5. If

lim sup
t→∞

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds >

α

κ
, (3.28)

then (1.1) is oscillatory.

Proof. Pick t1 ∈ I0 such that x(t) > 0, x(π(t)) > 0 and x(η(t)) > 0 for t ≥ t1. It is clear that
(3.28) implies that ∫ ∞

t0

λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds = ∞. (3.29)

Using the monotonicity properties of λ and b, we see that∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds ≤

∫ t

b(t)
λβ(s)k(s)p−β(b(s))ds. (3.30)

In view of (3.29) and (3.30), we observe that (3.28) implies (3.1). Thereby, all results of Lemmas
3.1–3.2 are fulfilled. Proceeding as in the proof of Lemma 3.2, we again arrive at (3.14).
Integrating (3.14) from b(t) to t yields

z(b(t)) + λ(b(t))r1/α(b(t))z′(b(t)) ≥ κ

α

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))

z(b(s))
λ(b(s))

ds

≥
(

κ

α

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds

)
z(b(t)),

which, together with z′(t) < 0 , gives

z(b(t)) ≥
(

κ

α

∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds

)
z(b(t)). (3.31)

We now observe from (3.31) that

α

κ
≥
∫ t

b(t)
λβ+1(s)k(s)p−β(b(s))λ−1(b(s))ds.

Taking the lim sup as t → ∞, we get a contradiction to (3.28) and ends the proof.
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4 Examples

Now the applicability of all theorems presented in this article will be demonstrated with
examples for all cases of α and β, i.e., for α = β, β > α and β < α, respectively.

Example 4.1. Let us consider the half-linear equationt10

((
x(t) + 2x

(
t
2

))′
)5
′

+ at4x5
(

t
4

)
= 0, t ≥ 1. (4.1)

Here, r(t) = t10, p(t) = 2, π(t) = t/2, η(t) = t/4, α = β = 5, and k(t) = at4 with a > 0. Then

λ(t) = 1/t, π−1(t) = 2t, b(t) = t/2, and λ(b(t)) = 2/t.

Now, condition (2.31) becomes
lim sup

t→∞
W(t) =

a
16

,

condition (2.41) becomes
lim sup

t→∞
H(t) = a2−5 (2 + ln 2) ,

condition (2.42) becomes

lim sup
t→∞

∫ t

t/2

a2−5

s
ds = a2−5 ln 2.

Next, by applying Theorems 2.4–2.6 to equation (4.1), we deduce that (4.1) is oscillatory by
Theorem 2.4 if a > 2560, Eq. (4.1) oscillates by Theorem 2.5 if a > 1901.4, and (4.1) is oscillatory
by Theorem 2.6 if a > 7386.

Note that none of the results in [4,14,25] can be applied to equation (4.1) since the equation
is half-linear and (α = β = 5). Also, our findings required only one condition to obtain the
result, but the approach in [14, 25] requires two conditions.

Example 4.2. Consider the superlinear equation(
t2
(

x(t) + 4tx
(

t
6

))′
)′

+ at5x3
(

t
8

)
= 0, t ≥ 1. (4.2)

Here r(t) = t2, p(t) = 4t, π(t) = t/6, η(t) = t/8, α = 1, β = 3, and k(t) = at5 with a > 0.
Then

λ(t) = 1/t, π−1(t) = 6t, b(t) = 3t/4, and λ(b(t)) = 4/3t.

Now, condition (3.15) becomes
lim sup

t→∞
K(t) =

a
18

,

condition (3.26) becomes

lim sup
t→∞

V(t) =
a

36
(2 + ln

4
3
),

condition (3.28) becomes

lim sup
t→∞

∫ t

3t/4

a
36s

ds =
a

36
ln

4
3

.
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Next, by applying Theorems 3.3–3.5 to equation (4.2), we deduce that (4.2) is oscillatory by
Theorem 3.3 if a > 128/3 = 42.667, Eq. (4.2) oscillates by Theorem 3.4 if a > 256/3(2 +

ln 4/3) = 37.301, and (4.2) is oscillatory by Theorem 3.5 if a > 296.62.
Note that none of the results in [4,14,25] can be applied to equations (4.2) since the equation

is superlinear (β = 3 > α = 1).

Example 4.3. Consider the nonlinear equationt10

((
x(t) + 10x

(
t
2

))′
)5
′

+ at6x7
(

t
4

)
= 0, t ≥ 1. (4.3)

Here, r(t) = t10, p(t) = 10, π(t) = t/2, η(t) = t/4, α = 5, β = 7, and k(t) = at6. Then

λ(t) = 1/t, π−1(t) = 2t, b(t) = t/2, and λ(b(t)) = 2/t.

Now, condition (3.15) becomes
lim sup

t→∞
K(t) = a10−7,

condition (3.26) becomes
lim sup

t→∞
V(t) = a10−72−1(2 + ln 2),

condition (3.28) becomes

lim sup
t→∞

∫ t

t/2

a10−7

2s
ds = a10−72−1 ln 2.

Next, by applying Theorems 3.3–3.5 to equation (4.3), we deduce that (4.3) is oscillatory by
Theorem 3.3 if a > 1015/2× 97, Eq. (4.3) oscillates by Theorem 3.4 if a > 1015/97(2+ ln 2), and
(4.3) is oscillatory by Theorem 3.5 if a > 1015/97 ln 2.

Example 4.4. Consider the nonlinear equationt6

((
x(t) + 2tx

(
t
3

))′
)3
′

+ at3x
(

t
6

)
= 0, t ≥ 1. (4.4)

Then
λ(t) = 1/t, π−1(t) = 3t, b(t) = t/2, and λ(b(t)) = 2/t.

Now, condition (2.31) becomes
lim sup

t→∞
W(t) = 2a,

condition (2.41) becomes
lim sup

t→∞
H(t) = a(2 + ln 2),

(2.42) becomes

lim sup
t→∞

∫ t

t/2

a
s

ds = a ln 2.

Next, by applying Theorems 2.4–2.6 to equation (4.4), we deduce that (4.4) is oscillatory by
Theorem 2.4 if a > 3, Eq. (4.4) oscillates by Theorem 2.5 if a > 2.2279, and (4.4) is oscillatory
by Theorem 2.6 if a > 8.6562.

Note that none of the results in [4, 14, 25] can be applied to equations (4.3) and (4.4) since
(α = 5 and β = 7) and (α = 3 and β = 1), respectively.

Remark 4.5. It would be of interest to extend the results in [8] to equations of type (1.1) using
the technique in [8].
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5 Conclusion

This study analyzed the oscillation of solutions to a class of second-order differential equa-
tions with bounded and unbounded neutral coefficients in noncanonical form. The oscillation
results were obtained by a combination of the linearization technique and the monotonicity
properties of the neutral term. Our findings advance the current understanding in this area by
providing new results that can be applied to linear (α = β = 1), superlinear (α = 1 and β > 1),
sublinear (α = 1 and β < 1), half-linear (α = β ̸= 1) and the other nonlinear [(1 ̸= α ̸= β) and
(α > 1 and β = 1)] forms of the equation under study. Moreover, the oscillation results for all
these cases are established by means of only one condition. Hence, results designed specif-
ically for different classes are important in their own right and have both weak and strong
points. In some cases, they improve and extend some existing results in the literature; and in
some cases, they are interesting in their own right, i.e., they neither include nor are included
by the existing results, and these differences are explained to some extent by examples.
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