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Abstract. In this paper, we discuss the resonance phenomena in linear and weakly
nonlinear impulsive differential equations. Using a topological approach, we obtain
the Landesman-Lazer type necessary and sufficient conditions for the existence of peri-
odic solutions and extend the Fredholm alternative for linear equations with impulses.
Moreover, we show the coexistence of periodic and unbounded solutions of weakly
nonlinear impulsive differential equations through the use of the successor map and a
Lyapunov function.
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1 Introduction

In this paper, we focus on the second-order impulsive ordinary differential equations

u"—l—f(t u) =0,
Au(tj) = Jj(u(t;), w'(£)), (1.1)
Au'(t) = Qiu(ty), u' (7)), j = £1,£2,...,

where f : R x R — R is continuous, 27t-periodic with respect to first variable, 0 < t; <

- < b < 2m, Au(ty) = u(tj*) —u(t;), Au'(t)) = u’(t;r) —u'(t), T Qj R? — R are

continuous for j = £1,+2,... Moreover, we assume that the impulsive time is 27t-periodic,
thatis, tj y =t; + 27, forj = +1,+2,...

There are many interesting results on the existence and multiplicity of periodic solutions

of impulsive differential equations. Various methodologies include fixed point theory [12-14],

the Leray—Schauder continuation method of topological degree [5,19], the variational method
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[4,15,21,22], the Poincaré—Birkhoff twist theorem [8, 18], and Moser’s twist theorem for the
Lagrange stability of impulsive differential equations [16,20].

Regarding the existence of periodic solutions for impulsive differential equations, several
significant results have been achieved. However, compared to non-impulsive differential equa-
tions, many unresolved issues remain that are worthy of further investigation. For the linear
equation

u’ +n*u=p(t), (1.2)

where p(t) € C([0,27]) is 27r-period. The so-called phenomenon of linear resonance arises
whenever 7 is a positive integer. In other words, periodic solutions and unbounded solutions
cannot coexist for the linear equation (1.2). This implies that all solutions of (1.2) are either
periodic or unbounded. This is also known as the Fredholm alternative. However, slightly
different equations do not have such strong conclusions. For instance, Alonso and Ortega [2]
proved that similar results fail to hold for piecewise linear equations

" +aut —bu = p(t),

where u™ = max{u,0}, u~ = max{—u,0} and 4, b are different and satisfy

1 1
NG + 7 € Q. (1.3)
They deduced that periodic and unbounded solutions can coexist when (1.3) holds and a # b
in [2].

Meanwhile, under the influence of impulses, the resonance phenomenon in linear equa-
tions has attracted significant attention. Similarly, the coexistence of periodic solutions with
unbounded solutions in weakly linear equations has been a focus of recent studies. Recently,
Drabek and Langerova [6] obtained the Fredholm alternative type results for linear equa-
tions with bounded impulses. They applied critical point theory to provide the necessary
and sufficient conditions for the existence of a solution when solutions satisfying the impulse
conditions in the derivative:

SEI:EOOI]'(S) = I](:]:OO), I](+OO) < I](S) < I]'(—OO), j: 1,...,k.
In their work [15], they also mentioned employing similar approaches to analyze the necessary
and sufficient conditions for the periodic solutions of linear equations. However, we note that
when applying variational methods or critical point theory to impulsive equations, due to the
limitations of these methods, it is necessary to transform the periodic solution or boundary
value problem into a functional critical point. In such cases, the impulses must satisfy

Au(tj) =0, Au'(t;) = T](u(t]’))

An interesting question is whether we can overcome this limitation and obtain the neces-
sary and sufficient conditions for the existence of periodic solutions of linear equations under
more general impulsive conditions. One of the main results of this paper is to relax the im-
pulse restrictions established in [6], via topological framework, allowing for impulses in both
the function and its derivative.
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We consider the following impulsive equation

u’(t) +nu(t) = pt), te0,2n], t#t;
Au(t;) = (' (t7)), Du'(t) = Qi(u(t;)), j=1,....k (1.4)
u(0) =u(27), u'(0) =u'(2n).

Suppose that

(Hy) Forj=1,...,k there exist limits

lim Ji(s) = Ji(+eo),  lim Qj(s) = Qj(Fo),

s—+oo s—+oo

and the following inequalities hold:
Ji(+o0) < Ji(s) < Jj(—00), Qj(—o0) < Qj(s) < Qj(+00), s €R.

That gives our Landesman-Lazer type condition.
(Hp) For any 0 € R, p(t) satisfies

k k k
n Z Ji(—00) cos™ (ntj+6) —n Z Jj(4-00) cos™ (nt; 4 60) + Z Qj(+00)sin™ (nt; + )

j=1 j=1 j=1
k o k
— Y Qj(—o0) sin* (nt; +0) > /02 sin(nt + 0)p(t)dt > n)_ Jj(+o0) cos* (ntj 4 6)
=1 =1
k k k
—n)_ Ji(—o0)cos™ (ntj+6) — Y Qj(+00) sin® (nt; +6) + ) Qj(—oco)sin™ (ntj +0).
=1 =1 =1

Theorem 1.1. Assume that (Hy) holds. Then (1.4) has a 27t-periodic solution if and only if p(t)
satisfies (Hy). Moreover, if (1.4) has no periodic solutions then every solution must be unbounded.

Remark 1.2. Theorem 1.1 provides the necessary and sufficient conditions for impulses in
both the function and its derivative, and also discusses unbounded solutions, extending the
results in [6].

And we illustrate our results with an example.

Example 1.3. Let n = 2 in (1.4), the impulse time t; = 7, to = 7 and the impulse condition
is of the form J;(u') = —arctanu’, Q;j(u) = arctanu, j = 1,2. Then (1.4) has a 27r-periodic

solution if p(t) = cos 2t + sin 2t.

Furthermore, the Fredholm alternative does not hold for nonlinear equations. There is
no similar theorem even for piecewise linear equations, as shown by Alonso and Ortega [2].
Fonda and Mawhin [7] proved all solutions of Jii = VH(u) + f(u) + p(t) are bounded in
the past, and those with sufficiently large amplitude are unbounded in the future. Qian [17]
showed that the coexistence of periodic solution and unbounded solution, the infinity of large
amplitude subharmonics for asymmetric weakly nonlinear oscillator There is no similar the-
orem even for piecewise linear equations by Alonso and Ortega [2]. Fonda and Mawhin [7]
proved all solutions of Ju = VH (u) + f(u) + p(t) are bounded in the past, and those with suf-
ficiently large amplitude are unbounded in the future. Qian [17] showed that the coexistence
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of periodic solution and unbounded solution, the infinity of large amplitude subharmonics
for asymmetric weakly nonlinear oscillator

X" +a*x T — x4+ h(x) = p(t),

with h(4o00) = 0 and xh(x) — 4oo(x — o0). For the other discussion of the coexistence
of unbounded solutions and periodic solutions, we refer the reader to [3,9,10]. Thus the
coexistence of periodic solution and unbounded solution is a typical nonlinear phenomenon.
We consider the following weakly nonlinear impulsive equation

{u"u) +rPu(t) + h(u(t)) = ”“3,? te (0,27, t# b (1.5)

Au(ty) = Ji(u(t,),u'(£7),  Ad'(t) = Qi(u(t;),u'(t))), j=1,....k

where 0 < t; < --- < fx < 27, h : C[0,27t] — C[0,27], p(t) € C([0,27]) is 27t-periodic and
Ji,Qj : R?* — R are continuous, j = 1,..., k. Suppose that

(D1) h(u) satisfies

(i) h(doo) =lim, 1o h(u) =0,

(ZZ) lim|u‘_m uh(u) = —+-o00.

(Dz) Impulsive terms satisfy

wu=oflt () =of L =
]](u,u)—O(r>, Q](u,u)—O Y j=1,...,k
where r = /|ul2+[u'[2 f = O(2) for r — co means that /(1) is bounded for all

sufficiently large r.

Theorem 1.4. Assume that (D) and (Dy) hold. Then there exists qo > 0, such that (1.5) has both
27t-periodic solution and unbounded solution provided that p(t) satisfies

where

M, = max

27
t)si t+0)dt|.
0€[0,27] /0 P( )Sln(n + )

Example 1.5. Let h(u) = 43 and the impulse condition is given by Q;(u,u’) = J;(u,u') =

1 . . . .

T Then (1.5) has both 27t-periodic solution and unbounded solution.

The rest of the paper is organized as follows. In Section 2, we discuss the necessary and
sufficient conditions for the existence of periodic solutions of linear impulsive equations via
constant variation method and degree theory. Moreover, we prove that all solutions are un-
bounded when the periodic solution does not exist by the method of variation of constants. In
Section 3, we consider weakly nonlinear impulsive equations and introduce the successor map
to prove the existence of a periodic solution. The proof of the existence of the unbounded so-
lution is mainly using Poincaré map to construct a Liapunov function that makes the solution
grow infinitely along the orbit. So that the solution of the equation is unbounded.
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2 Resonance and the existence of periodic solutions

In this section, we discuss a linear equation with impulses and provide necessary and suffi-
cient conditions for the existence of a 27r-periodic solution under assumptions (H;) and (H»).
Furthermore, we prove the existence of unbounded solutions and then complete the proof of
Theorem 1.1.

Consider the linear periodic boundary value problem

u’ (t) + n*u(t) = p(t), tE[OZn] t#£t;
Au(ty) = Ji(u(t;),u'(t7), du'(t) = Qiu(t; ) u'(t)), j=1,....k (2.1)
u(0) = u(2m), u'(0) =u'(2n).

where 0 < t; < .-+ < t < 27, p(t) € C(R,R), p(t) is 27r-periodic and the impulses J;,
Qi:RxR—R,j=1,...,k are continuous.

2.1 The necessary condition

For a general case, we consider the following impulsive equation

() = AX(H) +P(t), £t
Ax(tj) = Li(x(t7)), j=1....k 2.2)
x(0) = x(2m),

where 2 x 2 matrix A is constant, two-dimensional vector P(t) is continuous, Ax(t;) = x(tj*) —
x(tj_), I; are continuous, j = 1,... k.

For simplicity, we set tp = 0 and t;,q = 27. It is well known that the solutions of (2.2)
which include instantaneous impulses result in jump discontinuities in both velocity and po-
sition at times t = t;, j = 1,... ,k. In other words, any motion of the solution is the same as
the motion of the corresponding equation without impulses until it meets the next impulse
time. Hence, we first consider the differential equation without impulses

x'(t) = Ax(t) + P(t). (2.3)

Fixed any j € {0,1,...,k}. Suppose that equation (2.3) satisfies the initial condition x(t;) =
x(t]?L). By the method of variation of parameters, we have

t
x(t) = D(t) (cpl(ﬁ)x(ﬁ) +/ CI>1(s)P(s)ds> . te(H ),
J / i ]t
where ®(t) is the fundamental matrix of (2.3) that satisfies ®(0) = ®(27r) = E. In particular,

]+1

J 1

x(t,) = ®(t,) <<I>‘1(t]-+)x(t]-+) ® (s >P<s>ds> .

Next, we present the expression for the solutions of the impulsive differential equation
(2.2). Note that @(t;’) = ®o(t)) = CI>(t]._), since ®(t) is continuous. Substituting x(;) into the
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expression for x(t; ) yields
(CIJ YD) x(H) + / )
(CIJ Y ) +Hx(t )+ / )
( (s )P(S)ds+<I>‘1(t1+)11(X(tf))> :

Repeating the above steps by substituting x(¢, ) into the expression for x(t; ), and so on, we
obtain

x(t) = O(t) (x(O) + /Ot O (s)P(s)ds + Y le(tj)Ij(x(tj))) . (2.4)

t>tj

In particular,

x(2m) = ! ( +/ %+2® 4@@»)

=

(2.5)
27'[
+/ 5)ds + 2@ E)L(x(E)).
j=
Since x(0) = x(27), it follows that
T k
/02 @1 (s)P(s)ds + ) @7 () [(x(t)) = 0. (2.6)

j=1

Recall that the equation (2.1). We set x1(t) = u(t), xa(t) = u'(t), x(t) = (x1(t), x2(t))7,
P(t) = (0,p(t)", L= (J, Q)T,j=1,...,k and A = ( 0, 1). Obviously,

1 .
CD(t) _ cos nt Esmnt ‘
—nsinnt cosnt

Then, plugging these expression back into (2.6), we obtain

T k

/Oz p(t) sinntdt = n];]j(u(t].—),u’( ~)) cosntj — ZQJ t)) sinnt;,
T k

/02 p(t) cosntdt = —HJZ; ]j(u(t;),u ) sinnt; — 2 Qj(u 4 )) cos nt;.

We now assume that the impulses affect only one component of the system. Consider the
following linear periodic boundary value problem

W (1) rPu(t) = p(t), te(02n], t £t

Au(t)) = [;(u'(t7)), du'(t) = Qu(t))), j=1....k 2.7)
u(0) = u(2m), u'(0) =u'(2n).
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where the impulses satisfies (Hj).
Similarly, we have

/0271 p(t)sinntdt = n ZI] t;)) cosntj — Z Qj(u(t7)) sinnt),

27
/0 p(t) cos ntdt = —nZ]] : smnt—ZQ] ) cos nt;.

Choose any 6 € R. Multiplying the above two expressions by cos f and sin 6, respectively, and
adding them together, we obtain

/027-[ p(t) 51n<71t—|—9 dt =n Z]] i ))COS nt —|—0 ZQ] f S]n(nt _|_9)

=n ]j(u'(tj_))(cos+(ntj +60) —cos™ (nt; +6))

.M» &M»

Il
—

]

Qj(u(t;))(sin+(ntj +0) —sin™ (nt; +0)),
)

where f* = max{f, 0} and f~ = max{0, —f}.
By combining (Hj ), we finally obtain

k k
ny_ Jj(—oo)cost (nt;+6) —n)  Jj(+00)cos™ (nt; +6)
j=1 j=1
k
+ Y Qj(400) sin” (nt; +6) — ZQ] )sin® (nt; + )
j=1

27
>/ sin(nt 4 0)p(t)dt
0

>nY _ Ji(+oo) cos™ (nt; +0) —nZ]] )cos™ (nt; +0)

=

— Y Qj(+oco)sin® (nt; + 6) + Z Qj(—o0) sin™ (ntj +6),

j=1 j=1

~.
HI" =
= =

which is exactly assumption (Ha).
2.2 The sufficient condition

For the Banach space

X = {x:[0,271] — R?: x(t) is continuous for ¢ # t;, x(t;), x(t*) exist,
and x(t]. )=x(t;), j=1,...,k x(0) = x(27)},

we define the norm as

teB i=1

2 2
lx]lx = sup (Z xi(t)2> ,
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where B = [0,27t]\{t,t2, ..., tk}.

The Banach space X is reflexive. Indeed, for any x € X, since the interval [0,27] is
measurable, x(t) is a measurable function in it. It is obvious that f; 2 x%(t)dt < oo which
implies X C L2[0,27]. L?[0,27] is a reflexive Banach space and so is X.

To establish the existence of a periodic solution to (2.7), we make use the homotopy invari-

ance property of Leray-Schauder degree. Consider the following equation
u' (1) + (n* — (1= A)o)u(t) = Ap(t), te0,2m], t # ti;
Au(t;) = /\]]-(u'(tj_)), Au'(t) = AQj(u(tj_)), i=1...k (2.8)
u(0) =u(2m), u'(0) =u'(2n).

and the corresponding homotopy F, : X — X, defined as

T — T :
Fyx = x(0) + 2 o t (/02 (AP(s) + Aprx(s))ds + Z“f(x(fﬂ))

=1

+/ (AP(s) + Apx(s) ds+ZA1 (),

>t
where A, = (_(nz_?l_/\) 5) 0 ) A €[0,1] and § € (0, ) is sufficiently small so that
(n—1)2<n*—(1-1)s < n

It is well known that the 27r-periodic solutions of (2.8) correspond to the fixed points of the
operator F).

Indeed, F)(M) is an equicontinuous family of functions. Let M C X be a bounded set.
For any x € M, F5(x(t)) is continuous, for t # t;, j = 1,...,k. Thus, Fy(x(t)) is uniformly
continuous on each closed subinterval with 0, ¢y, ..., t, 27 as the end point. For any x € M,
x(t) is bounded since x(t) is continuous in [0,27], t # t;. Clearly, P(t) is bounded. Note that
the boundedness of J;(x(t)) and Q;(x(t)) implies the boundedness of I;(x(t)),j =1,..., k. We
conclude from (2.8) that F) x is bounded and hence uniformly bounded. By the Arzela—Ascoli’s
theorem, we conclude that F, (M) is relatively compact and, in consequence, the operator F,
is completely continuous.

It remains to show that there exists Ry > 0, such that forall R > Ry and A € [0,1],if x € X,
llx|| = R, then x — Fyx # 0.

We perform the proof via contradiction. Assume that there exist sequences x,, € X,
|Xm|| — oo, m — oo and A, € [0,1] such that x,, = F x,. Define y,, = Hﬁﬁ Then the
equation is equivalent to

x(0) 2m—t [ (27 ( P(s) > LiCen (7))
Fr ym = + / - ds+ )Y A
W= ol T 2w ( o Tl y ]Zl B -
Lo (t;)) '
+/ < + Ay, Ym(s >ds+ Y Am = Y.
" [l mH AR FT
Clearly, H?E )” — 0and P(t )H — 0. By (Hi), we see that W — 0, W — 0 and so

()
(B

—0.
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Since the Banach space X is reflexive and the boundedness of {y,,}, there exists a weakly
convergence subsequence which is still denoted by {y,,}. Assume that y,, — y € X and
Am — A € [0,1]. Since F, is compact, we have F\y,, — Fpy. It then follows from (2.9) that
Ym — y strongly in X.

Passing to the limit as m — oo, we obtain from (2.9) that

2w —t
27

27 t
Fyy = /0 A;Ly(t)dt—i—/o Ayy(tydt =y,

and equivalent to
u’ +(n*— (1= AN)é)u =0,
u(0) =u(2m), u'(0) =u'(2n).
where y = (u,u'), |ly|| = 1, A € [0,1]. By the fact that (n — 1) < n? — (1 — A)§ < n?, the above

equation has a solution if and only if A = 1 and u(t) = cosin(nt + 6p) where ¢y > 0, 6y € R.
The condition ¢y > 0 can be ensured by choosing an appropriate 6. Therefore, we obtain

Mm cosin(nt + 6p), m — oo,
[ 26|
We have
wlh (t) + (1% — (1= Ap)0)um(t) = Amp(t), (2.10)

(1) = () = Al (1)), () =1 (1) = A Qy (7)), j = Loy @11)

which follows from x,, — F), x; = 0.

Choose the test function v : [0,271] — R that is continuously differentiable and satisfies
v(0) = v(2m), ¥ (0) = v'(27r). Multiplying equation (2.10) by v(t) and integrating over B, we
get

27

/Znu%(t)v(t)dﬂr(nz— (1—Am)d) /Znum(t)v(t)dt:/ Amp(H)o(b)dt, (2.12)
JO 0

0
where

27 ty k=1 rto,y 27
/O u;’l(t)v(t)dt:/o u;;(t)z;(t)dtJrZ/+ u;,;(t)v(t)alwr/+ uy, (H)o(t)dt.
j=1"1 b
Then, using integration by parts, we obtain

[ nayoteyd = a ayo) (17— [ s (0 ()

+
j

Combining (2.11), (2.12) and (2.13), we obtain

21 21 k
/O U (00" ()dE+ (1% — (1= A)) /O (D)0 ()E+ A Y (0 ()0 (1)
=
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Now, choose v(t) = ¢ sin(nt + 6p), then,

- k
(- Am)g/()z t(£) sin(nt + 00)dt + Ay Y J;(u}, (£7)) cos(nt; + 6o)
j=1

. . (2.14)
7T
— A Z Qj(um(t].’)) sin(nt; +6p) = /0 Amp(t) sin(nt + 6y)dt.
=1
Notice that ﬁ — cosin(nt + 6p), co > 0, which implies that
m
27T
/ um(t) sin(nt +60)dt >0,  m> 1. (2.15)
0

From (2.14) and (2.15), it follows that

=

T k
/02 p(t)sin(nt +6o)dt <n') ]]-(u;n(t]-_)) cos(ntj+6p) — ) Qj(um(t;")) sin(nt; + 6p).
=1 j=1

Passing to the limit as m — oo, we finally obtain

21 k k
/o p(t)sin(nt + 6p)dt <n Z; Ji(400) cos™ (ntj 4 6y) — n Z; Ji(—c0) cos™ (nt; + o)
= j=
k
- Z Q](+°°) sin™ (ﬂt]' + 90) + Z QJ(—OO) sin~ (nt]' + 90),
j=1 j=1

a contradiction with the assumption (Hj).

We can now choose an appropriate R > 0, such that x — Fyx # 0, for x € X with ||x|| = R.
Define Bg = {x € X | ||x|| < R}. We say that x(t) € dBg if there exists a ty € [0,27], such that
x(t()) = R.

Let x1(t) = rcos ¢, x2(t) = rsin ¢, we have

x1X) + xpx5 (1—n% 4 (1= A)8)x1(t)xa(t) + Ap(t)xa(t)

/.2 2 /.2 2
X7+ x5 X7+ x5

where P = max;cjg2- |p(t)], which implies that for sufficiently large x7 + x3, there exists a
Bp > 0, such that

= < n’r(t) + P,

7 ()] =

(r(to) + Bp)e ™ (=0) < () + Bp < (r(to) + Bp)e™ "0t € [to, o + 271].

This shows that x(fy) — 400 < ||x|| — +oo.
To summarize: there exists a Bg > 0 such that for each x(t) € dBg, x — FA\x # 0, A € [0, 1].
Now, by the Theorem 3 of [11], we have

deg(I — Fy; B, 0) = deg(I — Fy; Bg,0) = (—1)?degp(Ao|gz2; B NR?,0),

where deg(I — Fy; Br,0) denotes the Leray-Schauder degree, and degg(Ag|g2; Bk N R?,0) de-
notes the Brouwer degree.
Let
Aox : R? — R?, (x1,%2) — (x2, —(n® — 8)x1),
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where x = (x1,x2)7.
It is easy to verify that Apx has exactly one zero in Bg N IR. Therefore,

degp(Ao|rz; Bk NIR?,0) = sgn(det(Ag)) = sgn(n® — ) =1,
and consequently,
deg(I — F1,‘ BR,O) = deg(I — P(); BR, 0) = degB(I — FQ; BR,O) =1.

Hence, the original system has at least one 27r-periodic solution.
Finally, we have the following result.

Proposition 2.1. Assume that (Hy) holds. Then (2.7) has a 2rt-periodic solution if and only if p(t)
satisfies (Hy).

Remark 2.2. Suppose that

H}) Forj=1,...,k, there exist limits
1 ]

lim Ji(s) = Ji(£c0), lim Qj(s) = Qj(+o0),

s—+oo s—+oo

and the following inequalities hold:
Ji(=00) < Ji(s) < Jj(+e0), Qj(+e0) < Qj(s) < Qj(—00).

(Hj) For any 6 € R, p(t) satisfies

k k
nY_ Ji(—oo)cos™ (nt;+0) —n)_ Ji(+oo) cos™ (nt;+6)
j=1 j=1
k
+)_ Qj(+o0)sin” (nt; +6) — ZQ] )sin™ (nt; +6)
=1

27
</ sin(nt 4 0)p(t)dt
0

<nY_ Jj(+o0) cos* (nt; + 6) — nZ]] ) cos™ (nt; +0)

~.
Hl" b
=

— Z Qj(—i—oo) sin*(ntj +6)+ Z Qj(—oo) sin~ (nt]- +90).

j=1 j=1
Proposition 2.3. Assume that (H}) holds. Then (2.7) has a 27t-periodic solution if and only if p(t)
satisfies (H}).

The proof of this proposition can be completed using a method similar to the one presented
above.

2.3 The existence of unbounded solutions

This section is to prove that all solutions of (2.7) are unbounded when the periodic solution
does not exist, namely
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Proposition 2.4. Assume that (Hy) holds. There exists 6y € R such that p(t) satisfies either

27 k
/0 p(t) sin(nt + 6p)dt > n Z Ji(—00) cos™ (nt; + 6p) — 21 Jj(400) cos™ (nt; + o)
j= i=
k

k
+ 2 Qj(+00)sin” (ntj 4 6p) — Y Qj(—o0) sin™ (nt; + 6p),

j= j=1
or
27 k k
/0 p(t)sin(nt + 6p)dt < n Z; Ji(400) cos™ (ntj 4 6y) — n Z; Ji(—00) cos™ (nt; +6p)
= =
k
— Y Qj(+o0)sin® (ntj 4 6p) + Y Qj(—o0) sin~ (nt; + ).
j=1 j=1

Then all solutions of (2.7) are unbounded (in the phase plane).

Proof. We denote by u(t) a solution of (2.7). Setting x(t) = (u(t),u’(t))T. Then for any m € N,
by (2.4) we get

2mm
nu(2mrm) = nu(0) — / p(t)sinntdt +n Z]] ) cos nt; — Z Qj(u(t;))sinnt;,
0
2mrt
u'(2mm) = u'(0) + / p(t) cosntdt +n Z]] t;))sinnt; + Z Qj(u(t;)) cosnt;.
Jo

Multiply the two equations above by — cos ), sin 0, respectively, and add them together to
get
u' (2m7t) sin 6y — nu(2m7) cos Oy

2mrt
= 1/(0) sinfy — nu(0) cos Oy + / p(t) sin(nt + 6y)dt
0

mk

_”Z]J )) cos(nt; +6o) —|—ZQ] t;")) sin(nt; + 6o).

j=

Hence, we immediately deduce that
|u' (2m7r) sin g — nu(2m7r) cos by |

mr mk mk
> /02 p(t) sin(nt + 6p) dt—nZ]J , ))cos(nt +6p) + EQ] : ))sm(nt +6p)

— |u’(0) sin 6y — nu(0) cos 90].

Note that
2mr 27
/ p(t) sin(nt + 6)dt = m/ p(t) sin(nt + 6)dt,
0 0

since p(t) sin(nt + 6p) is 27r-periodic.
Assume that the u(t) is bounded. By (H;), for all ti,j=1,2,..., we have

Jil#oo) < Jj(u'(t;)) <Jj(=o00),  Qj(—e0) < Qj(u(t;)) < Qj(+00).
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and ;
gozmin{nZUj(j:oo — Ji(u Z\Q; (£o0) Qj(“(tj))’} > 0.
=1
Fort e 2lm,2(l1+ 1)), 1 =1,2,...,m—1,
27 2(1+1)m
/ sin(nt + 8 p(£)dt = / - sin(ut + 00)p(t)at
0 2l

Ik

Z ]] ) cos (ntj—|—90) —n Z ]j(+oo)cos’(ntj+90)
—1)k J'*(l 1k

Ik
+ Z Qj(+oo)sin’(ntj+90) Z Q] ) sin (ntj+90)
J'*(l 1)k 1)k

Z I] )) cos(nt; + o) — Z Q] )) sin(nt; + 6p),
j=

it follows that

n Ik Ik
/02 p(t)sin(nt +60)dt —n ) Ji(u/'(t7)) cos(nt; +60) + ) Q]( u(t; ) sin(nt; +6o) > o.

j=(1-1)k j=(-1)
Adding the m inequalities above, we get

mk

m/omp(t) sin(nt 4 6p)dt —n Z]] )) cos(nt; + 6g) + Z Qj(u(t;)) sin(nt; + 6o) > mgo,
j=

therefore,
|u' (2m7r) sin 09 — nu(2m7r) cos Op| > méo — |u’(0) sin By — nu(0) cos by
Since

n||x(2mm)||x > n(u2(2mm) + u'>(2mm)): > |u' (2m7) sin by — nu(2m) cos Oy,

which yields
n||x(2mm)||x > m& — |u'(0) sinfy — nu(0) cos by,
hence
n||x(2mm)||x — +oo, m — +oo,
which implies that x(¢) is unbounded in [0, +c0). O

By combining Proposition 2.1 and Proposition 2.4, we have thus proved the Theorem 1.1.

3 Coexistence of periodic and unbounded solutions

In this section, we consider the coexistence of periodic and unbounded solutions of the fol-
lowing weakly nonlinear impulsive differential equations

{u/’(t)+n2u(t)+h(u(t)) p(t), tel0,2n], t#t;

Aulty) = (), al (), A () = Qu(t ) (6), =Lk O
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where 0 < t; < --- < tf < 27, p(t) is 2mr-periodic and continuous, & is continuous and Jis
Qj: R = R,j=1,...,k are continuous. Assume that (D), (D;) hold.

Let P(t) = (0, p(t) — h(u(t)))" and initial value (u(t; T, w), 1’ (t;T,w)) = (0,w). We con-
clude from (2.4) that

t

u(t) :% sin(nt — nt) + 1 / sin(nt —ns)(p(s) — h(u(s)))ds

nJjr

+ tzt; Ji(u(t;),u'(t;)) cos(nt — nt;) + % tZi.‘:~ Qj(u(t;,),u'(t;)) sin(nt — nt;),

t (3.2)
u'(t) =w cos(nt — nt) +/T cos(nt —ns)(p(s) —h(u(s)))ds

-nY. ]j(u(tj_),u’(t].—)) sin(nt —ntj) + ) Q]-(u(t]-_),u/(t]-_)) cos(nt — nt;).

t>t]' t>tj

The proof of Theorem 1.4 is presented as following. We divide the proof in two steps.
The first one is to prove the existence of the periodic solution using the successor map. The
second step is to construct an auxiliary Lyapunov function that makes the solution grow
infinitely along the orbit, which is motivated by [1]. So that the solution is unbounded.

3.1 The existence of a periodic solution

We assume that hi(u) is locally Lipschitzian which guarantees the uniqueness of the solutions
for the initial value problem associated with (3.1), if necessary. Write g(u) = n?u + h(u),
G(u) = fou g(s)ds. Consider the following equation

u =vo,
v

"= —g(u)+Ap(t), te02n] t#t;
t) = ALj(u(t;),o(t;)), (3.3)

ti) = AQ;(u(t; ), v(t))), j=1,....k

where A € [0,1]. Notice that (3.3) is equivalent to (3.1) when A = 1.

Let (u(t; T, w),v(t;T,w)) denote the solution of (3.3) with the initial point (0, w), w > 1.
We define 7; as the time when (u(t; T, w), v(t; T,w)) intersects the positive v-axis again, and
write w(T; T, w) = w;.

The successor map is defined as S : (7,v) — (1, w1). S is well defined for |w| > 1, and
the uniqueness of the solution for the initial value problem guarantees that S is continuous
and one to one. The periodicity of p(t) implies that S(7 + 27, w) = S(t,w) + (27,0).

Au(
Av(

By the boundedness of | i, Qj and h, we have

Lemma3.1l. 1y — 7 = 2 + O(1).

Now, let u(t) = u(t;T,0), v(t) = v(t;T,v), H(t) = 30%(t) + G(u(t)), and I(t) = \/2H(¢).
Then we have
0= 50| S pOI <P 1A =1k

where P = max;cjo2-{p(t)[}-
From this, it follows that
1(t) = 1(t')| < Pt 1],
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when t,t' € (tj,tjy1), j=1,...,k—=1,0rt,t' € (0,t1), or t,t' € (t,2m).

When t = t;, by (D2), u(t;“) —u(t;) = O(1) and v(t;r) —o(t)) = O(1) for large w. Then
for sufficiently small ¢ > 0, there exists w| > 0, such that for w > wy, u(t;r) = u(tj’) +
e,0(t]) = o(t;) £ . Therefore,

H(E) = 50°(57) + Glu(t)) = 5 (0(t) £ &) + Glu(t)) &)
H( )—|—81,
where ¢; = +o(t £+f ()ds+s

In conclusmn for suff1c1ently large |I(T)|, we have
[1(t) = I(7)| <2(P+1)|t — 1.
Thus, we obtain the following

Lemma 3.2.
[1(t) —w| <2(P+1)T, t—1| < T, w> wp.

Further, we can prove the following lemma.

Lemma 3.3.
T+27” 1
W) —w = Cos(ns—nr)p(s)+0<r>, w>1;
T
T 1 [T I p
T1—T—g—% sin(nt —ns)(h — p(s))ds
——AZ]J t;')) cos(nty — nt;)
>t
TN 1
_%/\t; Qj(u (t]- ))sm(nt—nt]-)+0(r2>, w > 1.

Proof. Without loss of generality, we can assume that there are k; < k impulses in the interval
[T, 71]. The corresponding impulse times are denoted by t1, 5, ..., fy,.

Step 1. We estimate wy —
By the nature of definite integral, we have

T (s s k1
j=

We now begin by estimating Zkl I(t; =1 (7). By definition, we have

1) = 1) = \/v2(t]-+) +2G(u(t))) - \/UZ(t.-) + 2G(u(t.—))

(o(t") +o(t;)) (e(t]) —o(t; +2f( )g s)ds
\/vz(t+)+2G(u () +\/vz ) +2G(u(t;))
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According to the mean value theorem for integrals and (i) of (D), there exists M; such

that f:((tjj)) s)ds = M;(u (t+) u(t;")). Hence, we have

/uu(tj)g(s)ds:/u:t(:j))nzwh(s)ds: (; (u(tf) +u(t;)) + M) (u(tf >‘”(tf_)>’

it follows that

ky ky o(th) + ot ))AQi(u
L)1)~ L e
| 20 (e]) )+ Mt )u(1)
WZ(t;) +2G(u(t))) + \/02( D) +2G(u(t;))
This implies that
fz(tj)—z(tj) :o(i), w1, (3.4)

Combining (3.4), Lemma 3.1 and Lemma 3.2, the further estimate for w; — w is given by

Wy —w = /Trl U<jz§)(5)ds n O(i)

= /:1 <wcos(ns —nT) + /: (cos(ns —ng)(p(Z) —h)) d(f) ;17((ss)>dS * O<71’>

s wcos<n;<;m>p<s>ds +O<1>

T+ 1
—/ cosn S—T)p(s)ds—FO(r), w > 1.

Step 2. The estimation of T3 — 7 is given below.
By the definition of 7 and (3.2), we have

%sin(nrl —nt) = 111/ l sin(nt — ns)(h p(s))ds

—AZ]] t;7)) cos(nt — nt;)
- t; Qj(u (t;)) sin(nt — nt;).

Using the Taylor expansion, we obtain

w . w . T
—sin (g —nt) = —sinn (——1 +71
n n n

1
:w(n—T1+T+O(3>).
n r

It follows from Lemma 3.1 that
T 1 [THE

n-T= s ) sin(nt —ns)(h— p(s s——/\t; Ji(u t;')) cos(nty — nt;)
. 1
- %At; Qi(u (t]- )) sin(nt — nt;) + O<r2> , w > 1.
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The proof of Lemma 3.2 is then completed. O

Let

p(t—1) = % sin(nt — nt),

P(t) = 1 /Tt sin(nt — ns)(p(s) —h)ds + ) _ ]j(u(tj_),u’(tj_)) cos(nt — nt;)

n
t>t]'

Y Qult),w(t)) sin(nt — nty).

t>t]‘
It is easy to observe that ¢() is bounded by (D;) and (D).

Lemma 3.4. Assume that (ii) of (D1) holds. For any K > 0, there exists wy = w(K) > 0, such that

/Hf h(wg(s —T) +(s))sinn(s — 7)ds > g, w > wy.

Proof. Without loss of generality, we take T = 0. It is sufficient to prove the inequality:

2

n w K
— si i > — > wWo.
/0 h <n sinns + 1/](5)) sin nsds > o w > wy

By definition of ¢, {(t) is bounded and ¢(t) — 0 as t — 0.
By condition (D), there exists § = O(%) > 0, such that, for 27” >t > 27” -0,

h(% sinnt +(t)) sinnt > 0, which together with (D) yields

21 27175
Wow " w 1
w . : S w . A1
/0 h (n sinns + 1/)(5)) sin nsds /5 h (n sinns + gb(s)) sin nsds O<r> .

Introducing the transformation { sinnt + P(t) = % sinng. Then, there exists w > 1, such
that

w w
w . [ S
h(n smncj) ” sinng > 4M;,.

Therefore,
0w , 1 5w, wsinng — np(t)
/5 h (; sinns + gb(s)) sinnsds = o /7 h (g smné‘) wcosnt £ 9/ () w cos n¢dé
+
n w w
S w . w .
=l h <n smné’) . sinng cos nd¢
_ MMy K
w w
where M = fg%n cos néd(ng). O
8

Introduce the Banach space

X ={x: [0,21r] - R?*: x(t) is continuous for t # t;, x(t]f), x(tf)exist,

and x(t;) = x(t;)j = 1,..., k, x(0) = x(27)},
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and the operator F) : X — X

2w —t

Frx = x(0) + —— </02n(Ap(t) A = Hn A i Ij(X(tj»)
=

+ /Ot()\P(s) + Ax(s) — H(x(s)))ds + A ) Li(x(t)),

t>tj

where H(x(t)) = (0,h(u(t)))!. According to the above we can know F, is completely contin-
uous.

It is clear that (3.3) is equivalent to a fixed point problem, that is x = F,x. We now apply
the topological degree to prove the existence of periodic solutions. Let

Y={(x,A) € Xx[0,1] | F\x = x}.
Lemma 3.5. If there is a bounded open set () C X, such that
ZNoQY =0,

then deg(Fy,Q),0) = deg(Fo, Q),0) = 1, and thus, the equation (3.3) has at least one 27t-periodic
solution.

Similar to the proof of proposition 2.1, we have deg(Fy, (),0) = 1. We now seek an appro-
priate bounded open set. Let

Q) = {(u,v) € X | w(u,v) = %#(t) +Gu(t) < k}.

On the one hand, (u(t),v(t)) € £ Na(Q(k)), for sufficiently large k, then there exists
to € [0,27], such that 3v(tg) + G(u(ty)) = k. By Lemma 3.2, (u(t),v(t)) € R? is in a bounded
set by

{(u,v) eX ko< %vz(t) +G(u(t)) < k+},

where k= = vk £4(P +1)7. Thus (u(t),v(t)) starts from u(t) = 0, v(t) = w, T € [0,27],
w € [k_,ky]. The 2m-periodicity implies that u(t 4 27) =0, v(7 + 27w) = w. Thus,

Tn =T+ 27,

for some m € IN.
On the other hand, by using the variation of constant formula, we obtain u(t) = w¢(t) +
{(t). Combining this with Lemma 3.4, we have

1 427 1
T, —T=2m— — sin(nt —ns)(h—p(s))ds+0<w2>

nw Jr

K M 1
gzn—2+”+0(2> <2,

w w w

where K is sufficiently large, M;, is sufficiently small, such that for some k,

forw € [k_, ky].
Thus, we find that the bounded open set (k) satisfies the condition of Lemma 3.5 and
we have
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Proposition 3.6. Assume that (D1) and (D;) hold. Then there exists qo > 0, such that the equation
(1.5) has 27t-periodic solution provided that p(t) satisfies

Mp < qo,
where

Mp = max
6<(0,27] |.

/027T p(t) sin(nt + G)dt' :

3.2 The existence of unbounded solutions

Let us continue our analysis about the above equation. Given a function p(t), we shown in
the previous section that there exists 27t-periodic solution with

max {/Ozn p(t)sin(nt + ¢)dt : ¢ € ]R} >0,

within a sufficiently large disk in the phase plane. Accordingly, we fix some ¢ € R such that
1 2rm
d, = E/ p(t) sin(nt + ¢)dt > 0.
0

Let (u(t;7),u'(t;)) be the solution of (3.1) with the initial condition { = (w,v) € R2. The
associated Poincaré map is defined by P : (w,v) — (u(27;¢),u'(271;C)). To investigate the
existence of unbounded solutions, we introduce the auxiliary function

V:R? =R, V({) := vsin¢$ — nw cos ¢.

First, we verify the following property of V: there exists a constant r, > 0, such that, for
gl =7
V(P(Q) = V({) +d.. (3.5)

Multiplying both sides of (3.1) by sin(nt + ¢) and integrating both sides at [0, 277], we get
27
/ u" (t; Q) sin(nt + ¢)dt = /
0 0
27
- / h(u(t;0)) sin(nt + ¢)dt
0

Using integration by parts we obtain

27

p(t) sin(nt + ¢)dt — n* /Ozn u(t; ¢) sin(nt + ¢)dt

/Oznu”(t; {)sin(nt + ¢)dt = V(F({)) )+n Z]] t;))cos(ntj + ¢)

B E Qj(u t)) sin(nt; + ¢) —n* /Oznu(t; {) sin(nt + ¢)dt

It follows that
27

2
V(F(Q)) - V(C) = /O p(t) sin(nt + p)dt — /O h(u(t:)) sin(nt + ¢)dt
k
_n Z Ji(u t;7)) cos(nt; + ¢) + Z; Qj(u(t; ), u'(t; ) sin(nt; + ¢).
]:

We now estimate the second term on the right-hand side of the above equation.
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Lemma 3.7. There exists a sufficiently large r,. > 0, such that { = (w,v) > r satisfying

d

/Oznh(u(t;g))sin(nt+qb)dt < ?* (3.6)

Proof. By (D), there exists u, > 0, such that for |u(t; Q)| > u., |h(u(t;0))| < g—;. Denote the
upper bound of |h| by M;,.
We take the transformation

u(t;0) = r(t;7) cosb(t;0), u'(t;0) = r(t;0)sin0(t 7).

For r(t;{) > 1, we have

17 (£0)] < (n® + My)r(t0), <050 < (R + M), t£ . e

N —

Analysis similar to that in the proof of Lemma 3.1 shows that, for t € [0,27],t # t1,..., 1,
e 2 EMITL(0;7) < r(t;0) < TEMITH(0;7), (3.7)

—2(n* 4+ M) < 6(2m;7) — 6(0;) < 0. (3.8)

Let 6, > 0 be sulfficiently small such that |cos8(t; ()| < cos(F — d) for 8(t;0) € [mm +
3 — 0y, mm + 5 +0,], m € Z. Define

T T
E = {t € (0,27 : 0(£;0) € [mn—i— 5 — O mut +5*] ,m e z} .
By (3.8), we have mes(E.) < 8(n% + Mj,)d, and
u(t;0)| > r(t;0) cos(g - 5*), t € [0,271] \ E..
By (3.7), we take

d. Uye
0 = , =0 2r=——"7—v/
32(n? + My) M, r=lel=r cos(5 —d4)

then

‘/02” h(u(t; 7)) sin(nt + 4>)dt‘

<

/t _, (u(5:2)) sin(nt + 4>)dt‘ +

/t oz, M) sin(at + 4>)dt‘

d, d, d, d,
< . o By B
< mes(E,)M;, + 27 8 =2 + 1 5 O

On the other hand, from (D), it follows that

k

k
‘—” Z%]j(u(t;),u’(t;)) cos(nt; +¢)+ ) Qj(u(t;),u’(tj’)) sin(ntj 4+ ¢)| < %,
=

j=1

for r(t; {) large enough.
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Combining (3.7) and the boundedness of impulses, we can take || > r, large enough such
that the above inequality holds. Then

d. ds
V(P@) - V(e 2 2. - 5 - = .

Furthermore, we notice that V is bounded above on the bounded set |{| < r,, i.e.

Vi i=sup{V(Q) : |¢| < r«} < +oo.

Write r* = nV, "/ >e"+M)7_ For |Co| > r* and {p = (— cos ¢, sin¢)|lp|, we can see (3.5)
holds. It follows that

V(P(Zo)) > V(Zo) +di > V(o) = cos® ¢ +nsin®¢ > V.,

hence that |P({o)| > 7. by the definition of V..
Then let us denote by {1 = P({p) the new initial point. Likewise,

V(P(C1)) = V(C1) +di > V(Co) + 2d..
Similar arguments apply to the case m € IN. Then we have

V(P(Cmi1)) 2 V() +du = V(Zo) + (m +1)d.,

which implies that ,, — oo, m — oo. If otherwise, then this contradicts the fact that V
is bounded above on the bounded set. From this, we conclude that if |{y| > r* and {p =
(—cos ¢, sin¢)|Zol|, then (u(t; o), u’(t;{o)) is an unbounded solution of (3.1).

If |go| > r* but §o # (— cos ¢, sin)|Zol, by @'(£:C0) > } and r* = nV,' %" M0, then we
find a 19 € [0,47) such that (u(7; o), #'(70; o)) = (— cos ¢, sin)r(1; o) and r(t0; {o) > 7+
Similarly, let Tm = P™(Zo). By the same method as shown before, we have Cm — 00, M — 00,
which implies that (u(t; o), u'(t; (o)) is also an unbounded solution. Therefore, we have the
following assertion.

Proposition 3.8. Assume that (D1) and (D) hold. Then there exists qo > 0, such that the equation
(3.1) has an unbounded solution provided that p(t) satisfies

Combining Proposition 3.6 and Proposition 3.8, we have thus proved the Theorem 1.4.
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