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Abstract. This article proposes a non-autonomous mathematical model of confrontation
between two countries and examines the influence of the factor of hostility between
countries on the stability of the equilibrium state. Namely, conditions for stability
(asymptotic stability) at zero hostility have been established; an estimate was found for
the total level of armament of the two countries, provided that the zero equilibrium
state is stable in the linear approximation of the model; conditions for stability under
parametric disturbances in the linear approximation of the model are established. For
a non-autonomous quasi-linear model of confrontation between two countries, a new
estimate of the deviation of the weapons vector from the equilibrium ray is obtained
and stability conditions are indicated.
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1 Introduction

Mathematical modeling of the arms race process goes back to the original work of Richardson
[20] published in 1960. Over the past period of time, many researchers have developed the
Richardson model or proposed alternative models. See, for example, [1,3,5,18,21-25,29,31]
and the references therein.

These works are of theoretical importance, since they contain general conditions for which
arms race can be controlled (stable) or can lead to real conflict between opposing countries.
It is not by chance that the authors in [6] discussed the “responsibility of mathematicians
and mathematics educators for achieving peace and dignity for mankind via mathematics
(research and development) and mathematics education”.

The question of reinterpreting and improving the mathematical models of the arms race
has become very relevant recently against the background of the increasing number of con-
flicts between two countries. In fact, the relevance of research in the field of stability of the
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equilibrium of opposing countries and their alliances increases significantly, including analy-
sis of the strategy of countries that own atomic weapons. This motivate numerous researchers
to extend the existing models and advance the theory. For example, in [4] mathematical mod-
els of confrontation between two and n countries, including countries with nuclear weapons,
have been proposed and analyzed. As a result of the analysis, stability conditions of the equi-
librium state of the warring countries are established, and also the influence of hostility on the
decrease (increase) in the norm of the vector of weapons n countries participating in alliances
is considered. The edited by Gleditsch book [8] presents a very good overview of the recent
research directed on the development of the Richardson arms race models. The paper [19]
applied the fractional-order approach to extend the classical arms race model.

Most of the above papers investigated the stability behavior of the corresponding models.
In fact, stability analysis is a fundamental approach in a wide range of fields in control theory
and the qualitative theory of differential equations [11,13,26,28]. This analysis is of a signif-
icant importance in the study of the patterns of many real world phenomena and opens the
possibilities of additional knowledge about their behavior [7,9,10,27].

One of the more strong and effective approaches applied in the stability analysis of systems
is the second method of Lyapunov or the method of Lyapunov-like functions [2,12,30]. This
interesting and fruitful technique is gaining more and more importance and gives a decisive
impetus for the modern development of the stability theory of differential equations and their
applications.

The Lyapunov-like function method has been applied in the recent paper [4] to establish
conditions for the stability of the zero equilibrium state of a quasi-linear mathematical model
of the confrontation between two countries.

The aim of this paper is to analyze the influence of the level of hostility between two
opposing countries on the stability of the equilibrium state based on a non-autonomous quasi-
linear model that generalizes the Richardson arms race model. In the article [4], such an
analysis was started based on a quasi-linear model with an autonomous linear approximation.

In this case, the factor of hostility between opposing countries is filled with expanded
content. In addition, it is noted that hostility between countries is formed by the media in
order to control public opinion about the arms race of opposing countries. Thus, the dynamic
properties of the model proposed in the article are rich and meaningful, which can motivate
its future analysis, as well as the application of the obtained results in the study of arms race
processes.

The analysis of the proposed mathematical model of confrontation is carried out using the
Lyapunov function method and nonlinear integral inequalities [14-17].

The paper is arranged using the following agenda. Section 1 provides a generalized non-
autonomous mathematical model of confrontation between two countries. Section 2 discusses
the stability of the equilibrium state under zero hostility and under parametric perturbations
of the weapon matrix. Section 3 discusses the mathematical model of confrontation with
neutral stability of the linear approximation of the original Richardson’s model of confronta-
tion between countries. Section 4 examines the general problem of stability in a generalized
Richardson’s arms race model. In Section 5, for the non-autonomous quasi-linear model of
confrontation between two countries conditions for the stability of weapon vector evasion
from the beam balance of arms are established. The final Section 6 provides comments on the
results obtained. Some future directions for research are also discussed.
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2 Generalized Richardson model of arms race

The classical Richardson’s model of a two country arms race is given by a system of differential
equations:

dx dy
E—ky—ax%—g, E—lx—by—i—h, (2.1)

where x(t) and y(t) represents the armament expenditures (or armament levels) of two coun-
tries (nations) at time ¢, ‘;—’; or X is the rate of change in expenditures over time for the country

Ni, and % or y is the rate of change in expenditures over time for the country Ny, k, [, a, b
are positive constants and g, h are real constants. The constants k and ! describe mutual fear;
the constants 2 and b measure proportionality factors for the “internal brakes” to further arms
increases (economic burden parameters, called “fatigue and expense” initially by Richardson).
Positive values for g and & correspond to underlying factors of ill will or distrust that would
persist even if arms expenditures dropped to zero. Negative values for ¢ and h represent a
contribution based on good will [20].

The model (2.1) has been generalized and modified in different directions. In [4], the
following generalization is studied:

CZ =ky —ax+g(t,x,y), il]i{ =Ix—by+h(txy), (2.2)
where t € Ry, T is a finite number or the symbol +co, x,y € IRy represent measures of
the levels of the countries” N; and N, armament, correspondingly, the parameters k > 0 and
I > 0 describe the “threat” between the countries, parameters a > 0, b > 0 characterize the
“expenses” of each from countries to maintain the level of their armament. The functions
<(t,x,y) and h(t, x,y) characterize the factor of “hostility” between the countries Ny and N>,
which depends on the level of public opinion about the confrontation between countries and
their armament.

In this paper, we will extend the model (2.2) considering the non-autonomous quasi-linear
system of differential equations:

dx
T k(y —alx st ry),  xlto) =1,

(2.3)
d
= itx—by+hitxy),  ylt) = o,
where fy € Ry, all the parameters k(t) > 0, I(t) > 0, a(t) > 0 and b(t) > 0 are supposed to be
bounded for all ¢ € R, and the rest of the parameters are as in [4].

Remark 2.1. The proposed model (2.3) extends and improve the classical Richardson’s model
[20] and numerous related models [1, 3,5, 8, 25,31] in which all the parameters k(t), I(t),
a(t) and b(t) are positive constants and the hostility functions g(,x,y) and h(t, x,y) are real
constants, too. The model (2.3) extends also the recent model proposed in [4] in which the
parameters k(t), I(t), a(t) and b(t) are positive constants.

Remark 2.2. If the countries N; and N, possess nuclear weapons, then the parameters k(t)
and [(t) can take arbitrarily large values for any ¢t € R while remaining bounded.

From a practical point of view, we will also assume that hostility between countries N;
and N, does not exceed some threshold level b = (by,b;)" on any finite time interval at any
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level of armament of the opposing countries. Thus, for the components of the hostility vector
function (g(t,x,y),h(t,x,y))T there exist constants b; > 0 and b, > 0 such that

gt y) <b1i, bt x,y) <D (24)
forallt € Ry and x,y € Ry..

Remark 2.3. As noted in [4], limit values of permissible hostility by and b, between the coun-
tries Ny and N, should be under the control of the civil society of these countries and/or
international organizations, given that modern means of influence on the human psyche have
reached the level of criminality.

3 Stability conditions for time-zero hostility

In this section, together with system (2.3) we will consider the following system

d d
dilf = k(t)y —a(t)x, d% = 1(t)x — b(t)y, (3.1)

with zero hostility g(t,x,y) = 0and h(t,x,y) =0 forall t € Rr and x,y € Ry.
It is clear that (x,y)T = (0,0)7 is an equilibrium for the model (3.1).

Proposition 3.1. If the model’s parameters k(t),a(t),1(t),b(t) in (3.1) are such that:

(Hy) —a(t) <0 forallt € Ry,
(Hy) a(H)b(t) — (k(t) +1(1))> >0 forall t € Ry,

then its zero equilibrium (x,y)T = (0,0)7 is stable.

Proof. Consider a Lyapunov-like function

Vixy) == (2 +17).

N —

For the derivative of the above function with respect to the system (3.1), we have

TV () = Tt Wy = x (k(t)y — alt)) +y ((0)x — b(1)y). 62)

Conditions (H;) and (H>) of Proposition 3.1 imply that %V(x,y) is non-negative, i.e., the
zero equilibrium (x,y)T = (0,0)7 is stable by Lyapunov [12,30]. O

Proposition 3.2. If for the model’s parameters k(t),a(t),1(t),b(t) in (3.1) there exist positive con-
stants w, B such that:

(H3) —a(t) < —a forallt € Ry,
(Hy) a(Hb(t) — (k(H) +1(1))> > B forall t € Ry,

then its zero equilibrium (x,y)T = (0,0)7 is asymptotically stable.
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Proof. 1f we apply again the Lyapunov-like function

1
Vixy) =5 (& +y"),

its derivative with respect to the system (3.1) will be strictly negative under the conditions
(H3) and (Hy) of Proposition 3.2, which guarantees the asymptotic stability (by Lyapunov) of
the zero equilibrium (x,y)T = (0,0)T [12,30]. O

Next, we will rewrite system (3.1) in the matrix form ‘%" = A(t)w and consider the initial

value problem (IVP)

i;f = A(t)w, w(ty) = wy, (3.3)
where the initial time ty) € Ry, w = (x,y)T and A(t) is a (2 x 2) bounded weapon matrix.
We will study the stability of the equilibrium state (x,y)T = (0,0)T of (3.3) for parametric
perturbations of the weapons matrix. The initial value w(ty) denotes the levels of the two
countries” armament at time t = tg, the beginning of the interaction between the two actors.

Let at the moment f = t* € R the matrix A(t*) has an eigenvalue A, that satisfies
ReA < —ua, i.e., the equilibrium state (x,y)T = (0,0)T of (3.3) with the weapon matrix A(t*) is
asymptotically stable.

System (3.3) can be represented in the form

i;f =A(w+ AA(Hw, w(t') =w", (34)
where we denote AA(t) = A(t) — A(t).
For system (3.4) we will consider a Lyapunov-like function V(w) = w’w and the following
conditions:

(Hs) wT (AT(t*) + A(t*)> w < —AywTw forall t € Ry;
(He) w! <AAT(t) + AA(t)) w < up(Hw'w forall t € Ry,

where Ay is the greatest eigenvalue of the matrix AT (#*) + A(t*) and up(t) is the greatest
eigenvalue of the matrix AAT (t) + AA(t) for all t € R.

Proposition 3.3. If conditions (Hs) and (Hg) are satisfied for the model’s parameters in (3.4), and for
any € > 0 there exists a 6 = §(t*, &) > 0 such that:

t
exp <—/\M(t — ) + /t ],tM(s)ds> < g forall t € Ry,

then the zero equilibrium w = 0 of (3.4) is stable.

T

Proof. For the total derivative of the positive definite Lyapunov function V(w) = w'w with

respect to system (3.4) under the hypotheses (Hs) and (Hg), we have

(jtv(w(t)) < (=Am+ pum(D))V(w(t) forall t € Ry. (3.5)

From estimate (3.5) it follows that

Vi) < V(@) e ( [

F*

t
(—Am + ptM(s))ds) for all t € Ry.

Hence, if the conditions of Proposition 3.3 are met, then the equilibrium state w = 0 of
system (3.4) is stable under parametric perturbations of the weapons matrix A(t*). O
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4 Stability conditions for a neutral linear approximation of the
model

In this section, we will consider the case where at time t, € R; the linear approximation of
system (2.3) is neutral stable. In this case,

k(t:)y —a(t)x =0, I(t;)x —b(t,)y =0, 4.1)
and, the mathematical model of confrontation between two countries (2.3) takes the form

dx , d .
Fesltxy), xt)=xi S =htxy), yt) =y 42)

where t > t,.
Let us assume that the hostility functions g(¢, x,y), h(t,x,y) are essentially nonlinear (do
not contain linear approximations). Denote by

(x(1),y(1)" = (x(titr, ), y(Etr )"

the solution of the model (4.2).

System (4.2) will be unstable if its solutions (x(t),y(t))? increase for all t > t, and for
arbitrarily small initial conditions (x6,y6)T att =t,.

We associate the positive and bounded Lyapunov function V(x,y) = xy, x > 0,y > 0 to
the system of equations (4.2) and prove that the following statement is true.

Proposition 4.1. Let the hostility functions in the mathematical model of confrontation (4.2) are such
that g(t,x,y) # 0and h(t,x,y) # 0 for all t > t,. If there exists a positive function 6y = 6y(t), with
o~ 0(s)ds = co for which the inequality

§(t,x,y)y + h(t,x,y)x = Oo(t)xy, (4.3)
holds for any t > t,, x,y > 0, then the system (4.2) is unstable.

Proof. When inequality (4.3) is satisfied, the total derivative of the Lyapunov function V(x,y) =
xy on the solutions of system (4.2) is an increasing function

t
V0, 5(0) 2 Vrle) vt exp ([ oofe)as)
for any t > t,.
It follows that for a given ¢ > 0, for any ¢ > 0 such that x(t,)y(t,) < J, there exists a value
t* > t, such that x(t*)y(t*) > e. Consequently, the system (4.2) is unstable according to the
first theorem on Lyapunov instability (see [12]). O

Remark 4.2. If the condition g(t,x,y)y + h(t,x,y)x > 0 hold, then the system (4.2) may be
stable.

Next, we consider the dynamics in model (4.2) for (¢,x,y) € Ry x Ry x Ry under the
following assumption:
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(H7) There exist non-negative integrable functions ;(t), ¢»(t) such that for (¢,x,y) € R X
R+ x R4 we have

(a) lg(t, x, )yl < P1(t)(xy)?,
(b) [h(t,x,y)x| < a(t)(xy),
(©) g(t, x0,¥0) # 0, h(t, x5, y0) # 0,

wherel <p, 1 <g < co.

Let us introduce the following definition (cf. [30]).

Definition 4.3. The arms race between two countries, described by the system of equations
(4.2) is:

(a) B-bounded, if there exists a constant § > 0 such that
x(t;te, x0)y (t b, v0) < B
for all t > t,, where  may depend on each solution;

(b) equi-B-bounded, if for any « > 0 and ¢, € R there exists a constant B(,,«) > 0 such that
xpyh < a implies x(t; t, x)y(t; tr, yh) < B(t, ) for all t > t,;

(c) uniformly B-bounded, if B(tr, «) in Definition 4.3 (b) is independent on f,.
For the Lyapunov function V(x,y) = xy the following result holds.

Lemma 4.4. Assume that for the model (4.2) the hypothesis (Hy) holds and the inequality

NGt = (0 =2) [V ) [ inods+ (V61! [ aoids]| <1 4

is satisfied for t > t,.
Then, for the Lyapunov function V (x,y) with respect to the solutions of (4.2), the following estimate

V(x(£),y(t)) < V(xb,yp) (1= N(t ;) 72 (4.5)
holds for all t € R-.

Proof. If conditions (a)—(c) of the hypothesis (Hy) are satisfied for the function V(x,y), it is not
difficult to obtain the integral inequality

Vi(x(t),y(t)) < V(XS,I/B)+/trt(lP1(S)V”(X(S), y(s))ds +a(s)VI(x(s), y(s)))ds, >t (4.6)
Next, we represent the resulting inequality in the pseudo-linear form
V(x(t),y(t)
v ! -1 -1 (47)
< V(x0,v0) +/t, ($1()V(x(s), y ()P + 9pa(s)V(x(s), y(s)) ") V(x(s), y(s)) ds

fort > t,.
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Applying the Gronwall-Bellman lemma [16,17] to inequality (4.7), we obtain the estimate
t
V(x(t), y(t)) < V(x0,v0) exp Ut (¥1(5)V (x(),y(8))P " + a(s)V(x(s), y(s))" s | (48)

forall t > ¢,.
From inequality (4.8), we have

t

(V) (0) " < (Vg ) exp | (0 1) [

T ¢2<s><v<x(s>,y<s>>>q%],

($1(s)(V (x(s), ()"

(4.9)

(VEOH0) < (VR exp |- 1) [ (11&V6),5(:))

) V), 96|
for all t > t,.
For p > 1 and g > 1, we have from (4.9) that
(VEOH0) < V5160 exp | (04 0-2) [ 11OV, 561"
) (V (), ()T ),

(4.10)

t
0

(V010 < (VR exp | (95 -2) [ () (V(x(s)y(s))7
#9a(s) (V(x(5), (9 )

for t > t,.
Multiplying both sides of the first inequality from system (4.10) by (p + g — 2);1(t) and

the second by (p +q — 2)§»(t), we obtain
~ VGO R OE+g-Dew [ (-2 [ OV 1)

+¢z<s><v<x<s>,y<s>>>q1>ds} > (V) (p+ g — 2 (0),

(4.11)
~ VGO 20+ =2 exp | = (40 -2) [ (V)36
) (V) y ()T )| =~V )1 (4 0= 20y
for all t > t,.
Hence,
FoP |~ 412 [ POV @) 4 V@ y@) |

> = (V(xg,y0)" " (p+q = 2)1(t) = (V(xg,y0))" (p + 9 = 2)¢a(s)
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forall t > t,.
Integrating both sides of inequality (4.12) from t, to t, we obtain the estimate
t

exp {(P +q-2) /t (P1(s)(V (x(s), ()P~ + 9a(s) (V(x(s), y(5)))T")ds

(4.13)
< (1—=N(tt))?
for all t € Ry such that N(¢,t,) < 1.
Taking into account the estimate (4.13), the estimate (4.8) implies
(V(x(), ()72 (V (x5, yp)) " PH72) < (1= N(t, 1))
or, finally,
V(x(t), y(1) < V(b y5)(1 = N(t ;) 2 (4.14)
for all t € R; for which N(¢,¢,) < 1. O

Remark 4.5. The proof of Lemma 4.4 takes into account the estimation technique for nonlinear
integral inequalities established in [16,17]. The technique is applied to the nonlinear integral
inequality (4.6).

Lemma 4.4 allows us to establish new boundedness conditions for the arms race of two

opposite countries.

Proposition 4.6. Assume that conditions of Lemma 4.4 for the model (4.2) are met. In addition,
assume that for initial weapon levels xj), y for any « > 0, x{yp < « we have:

(1) N(t,t,) < 1forallt >t

(2) for a given B = B(a) > 0 we have

1

<1 — N(t,tr)>_w2 < @

o

forall t > t, , where

N t) = (p+q—2) [(a)P—l /t f 1 (s)ds + (a)7~! /t f lpz(s)ds} (4.15)

Then the arms race of the two opposing countries is uniformly B-bounded.

Proof. Proposition 4.6 follows directly from estimate (4.5). O

5 Stability analysis of the generalized Richardson model

The unlimited growth of hostility between the countries N; and N, (lack of restrictions (2.4))
can lead to a real conflict with unpredictable consequences. Here, we will consider some cases
of stability (instability) of the equilibrium state in model (2.3) with time-varying hostility.

We will consider the system of equations (2.3) in which the functions g(t, x,y) and h(t, x,y)
are defined in the region t > 0 and x < H, y < H, where H is a positive constant, are
continuous and satisfy the condition under which equations (2.3) have a unique solution
under given initial conditions. The functions g(t, x,y) and h(t, x,y), in contrast to the linear
approximation of system (2.3), always remain unknown. We will assume that they are small
and satisfy the next condition:
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(Hg) In the region t > 0 and x < H, y < H, the hostility functions g(t, x,y), h(t, x,y) are such
that

g(t,x,y) #0, h(t,x,y) #0, t € Re.
The linear approximation of system (2.3)

dx d
L =ky—alt)x, x(to) =xo, T _1thx—blt)y, y(to) = yo, (5.1)
has a zero solution, the stability (instability) of which we will study further under the influence
of hostility functions.

Definition 5.1. The state x = y = 0 of the system (5.1) will be stable under the influence
of hostility g(t,x,y), h(t,x,y) if for any ¢ > 0 and fp > 0 one can specify three numbers
m1(to,€), 12(to,€), and 13(to, €) such that any solution (x(t,to, x0),y(t, to,y0))" satisfying the
initial condition |xg + yo| < 11 (to, €) with hostility g(t,x,y), h(t, x,y), satisfying in the region
t > tp and |x +y| < H the condition |g(t,x,y)| < n2(to,€) , |h(t, x,y)| < n3(to, €), satisfies the
inequality (x(t,to, x0) + y(t,to, y0)) < € for all t > ¢.

We will show that the following statement holds.

Proposition 5.2. Assume that for the model (2.3) hypothesis (Hg) holds and there exist positive func-
tion 61 (t) such that for t € Ry, x,y > 0 the next inequality

gt x,y)x + h(t,x, )y + (k) + 1()xy — a(t)x — b()y? < 61 (1) +17),

holds for / 61(s)ds = L1 < o0

fo

(5.2)

then the state equilibrium (x,y)T=(0,0)T of the system (5.1) is stable under the influence of hostility.

Proof. The stability of the system (2.3) will be analyzed by the use of the Lyapunov function
2V(x,y) = (2 +y).
The total derivative of the function V(x,y) with respect to system (2.3) has the form

;tV(x,y) = xi; + yig = g(t,x,y)x +h(t,x,y)y + (k(t) +1(t))xy — a(t)x®> — b(t)y*. (5.3)

From this equality and condition (5.2) follows the estimate

t
V(0 5(0) < Vx(t0) u(t)) exp (| 210 )
0
< V(x(to),y(to)) exp?™t,  t>t.
The stability of the equilibrium state (x,y)? = (0,0)T of the system (5.1) follows from the

fact that the function V(x(t),y(t)) does not increase on the solutions of system (2.3) for any
t >t O

Corollary 5.3. If the equilibrium state (x,y)T = (0,0)T of the linear approximation (5.1) of system
(2.3) is asymptotically stable, then it is stable under the influence of hostility g(t,x,y), h(t, x,y).
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Example 5.4. Let us consider the system of equations (2.3) with the linear approximation (5.1)
which has the following parameters: a(t) = b(t) = k(t) = I(t) = 1+t fort > t; > 0 and
hostility functions g(¢, x,y) and h(t, x,y) satisfying the conditions (2.4).

We introduce the notation R(t,x,y) = g(t,x,y)x + h(t, x,y)y < n2(to,€)x + y3(to, €)y for
t > tr > 0in the region t > ty and |x +y| < H.

The total derivative of the function 2V (x,y) = (x? 4+ y*) with respect to system (2.3) has

the form p p p p
X Yy
EV(x(t),y(t))\(z@ =X +VE = EV(X(t),y(t))le.l) + R(t,x,y)

= —(1+t)(x —y)> + R(t, x,y).

(5.4)

We assume that the hypothesis (Hg) holds for the hostility functions g(t, x,y) and h(t, x,y)

EEDIES

and calculate 7 = max{#2(to, €),3(to,€)}. Thenif 7j < iy

d

V0¥l < -1+ H(x—y) +7(x+y) <0. (5.5)

Hence, by Lyapunov’s first theorem on stability it follows that the zero equilibrium of (5.1) is
stable under the influence of hostility.

Next, we establish the conditions for the instability of the equilibrium state (x,y) = (0,0)”
of the system of equations (5.1) under the assumption (Hg)

Proposition 5.5. Assume that for the model (2.3) hypothesis (Hg) holds and there exist positive func-
tion 0 = 0(t) such that for t € Ry, x,y > 0 the next inequality

g(t,x,y)y +h(t, x,y)x — (a(t) +b(t))xy + 1(t)x* + k(t)y* > 62(t)xy,
holds for /oo 62 (s)ds = oo,

fo

(5.6)

then the state equilibrium (x,y)T=(0,0)7 of the system (2.3) is unstable under the influence of hostility.

Proof. The instability of the system (2.3) will be analyzed by the use of the Lyapunov function

V(x,y) = xy.
The total derivative of the function V(x,y) with respect to system (2.3) has the form
d _dx dy
at "y = Yty 5.7)
=gt x,y)y+h(tx,y)x — (a(t) + b(t))xy + 1(t)x* + k(t)y*.

If condition (5.6) is satisfied, then the equilibrium state (x,y) = (0,0)7 of the system (5.1)
is unstable under the influence of hostility due to the increase of the function V(x,y) = xy on
the solutions of system (2.3):

t
V(0 5(0) = Vst vt exp ( [ oa(s)ds)
for t — oo (see [12] and Proposition 4.1). O

Example 5.6. Let us consider the system of equations (2.3) with the linear approximation (5.1)
which has the following parameters: a(t) = b(t) =1/2, k(t) =1(t) =1 for t > 0.
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Consider hostility functions g(t,x,y) and h(t, x,y) that satisfy hypothesis (Hg), and intro-
duce the notation Q(t,x,y) = g(t,x,y)y + h(t, x,y)x < n2(to, €)x + n3(to, €)y for t >t > 0in
the region t > ty and |x +y| < H.

For the total derivative of the function V(x,y) = xy with respect to system (2.3) we have

d d d d
SV (), y(1)l s =y + x50 = TV, y(1)|en +Qtx,Y)

= x? +y2 —xy+ Q(tx,y) > Q(t, x,y) + xy.

(5.8)

If there exists a positive function 6, = 6,(t), such that Q(t,x,y) > (62 — 1)xy, then

ZV(x(t),y(t))kQ,g) > 60x(t)xy forallt € Ry, x,y > 0.

Hence, by Proposition 5.5 it follows that the zero equilibrium of (5.1) is unstable.

Next, we will consider the case, where at time t. € R; the hostility functions g(t, x,y),
h(t,x,y) are equivalent in influence to the level of threats, i.e. the following condition holds.

(Hy) The hostility functions g(t,x,y), h(t,x,y) are such that

g(t,x,y)—k(t)y=0, h(t,xy)—I1(t)x=0, teR; x,y€Ry.

Proposition 5.7. Assume that for the model (2.3) hypotheses (Hs) and (Hy) are satisfied.
Then, the levels of armament of opposing countries are decreasing exponentially.

Proof. If the assumption (Ho) is satisfied, then the mathematical model (2.3) degenerates into
the model

d d
ditc = —a(t)x, x(t) = xoc; d—}: =—b(t)y, y(t) = yo.. (5.9)

Using a Lyapunov function of the form V(x,y) = xy it is not difficult to show that

x(t;te, x00)y (£ te, Yoo ) = Xocyoc exp (—(a(t) + b(t))(t —tc)) (5.10)
or
x(t; te, Xoc) = Xocexp (—a(t —t¢)), y(t;te, Yoc) = Yocexp (—b(t —tc)) (5.11)
forall t > t. € R;.

The statement of Proposition 5.7 follows from (5.7) and representations (5.8). O

Remark 5.8. The case considered in Proposition 5.7 may indicate some kind of emergency
situation, since in the normal mode of coexistence of opposing countries such a phenomenon
is not observed.

Finally, in this section we will consider the case where at time ¢, € R; the hostility func-
tions g(t,x,y), h(t, x,y) are equivalent in terms of the impact of the level of expenditures of
each country on maintaining its armament, i.e., the following condition holds.

(Hyo) The hostility functions g(t, x,vy), h(t, x,y) are negative and

—g(t,x,y)+a(t)x =0, —h(t,x,y) +b(t)y =0, te Ry, x,y € Ry
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Proposition 5.9. Assume that for the model (2.3) hypotheses (Hg) and (Hyo) are satisfied, and for
all t > t. € Ry each country determines its level of armament based on the level of armament of the
opposite side without taking into account their own economic expenses.

Then, the zero equilibrium (x,y)T = (0,0)T of (2.3) is unstable.

Proof. If the assumption (Hyp) is satisfied, then the mathematical model (2.3) degenerates into

the model p ;
72(_ C\ _ C. l: Cy — 4,
eky, x)=x Y =1 y) =i

For the Lyapunov function V(x,y) = 3(x? + y*) with respect to the system (5.9), we have

V(x(t),y(t)) = V(xg,y0) exp(k(t) +1(£))(t — tc)
for all t > t. € R+, which implies the statement of Proposition 5.9. O

Remark 5.10. The case considered in Proposition 5.9 may correspond to a global militarization
of countries involved in the confrontation.

6 Stability of weapon vector evasion from the equilibrium vector

We rewrite the system of equations (2.3) in the form

il;: = A(t)w+ B(t,w), w(ty) = wo, (6.1)
where w € IR? is the vector of weapons of the two countries, A(t) = [a;;(t)], is a (2 x 2) matrix
with entries a11(t) = —a(t),a12(t) = k(t),a21(t) = I(t),a2(t) = —b(t), which characterizes
the armaments of the two countries changing at time ¢, B(t,w) = (g(t,w), h(t,w))T denotes a
vector function, nonlinear in w, which characterizes the public opinion about the race weapons
and hostility between the two countries.

Suppose that for the two opposing countries there is only one weapon balance beam (ray)
(which is equilibrium vector of (6.1)) on the form L = {w, € K : w, = Ae}, where e = (1,1) €
]Rﬁ, A is a positive constant, K is a cone in ]Ri.

Also, let us assume that the vector functions A(f)w and B(t, w) in the system of equations
(6.1) meet the conditions.

(Hj1) There exist nonnegative functions f1(t), f2(t) such that

(a) d[A(t)w, L] < fi(t)d[w, L] forall t € Rr,and w € R?;
(b) d[B(t,w),L] < fo(t)d*[w,L] forall t € Rra >1 and w € RZ,

where d[, -] is the distance in R3 .

(Hy2) For t € Ry, we have
N(t b)) = (& — 1)d* [wo, L] /ttfz(s) exp ((fx —1) /t fl(r)dr> ds<1. (62

In this section, using a nonlinear integral inequality, we will establish an estimate of the
deviation of the weapon vector w(t) from the equilibrium ray weapons L of system (6.1).
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Lemma 6.1. Assume that for the system (6.1) hypotheses (H11) and (Hy) hold.
Then, the deviation of the arms vector from the equilibrium ray is estimated by the inequality

d[w(t; to, wo), L] < dlwo, L] exp /ttfl(s)ds (1 N(t tg)) =T (6.3)

fort € Re.

Proof. From (6.1), we have
w(t; to,wo) = wo+ | (A(s)w(s)+ B(s,w(s))ds. (6.4)

Hence, using the estimates in (Hj;), we obtain
t
dlw(t; to,wp), L] = d[wo, L] 4+ [ d[(A(s)w(s)+ B(s,w(s)), L]ds

fo

< dlwoo, 1] + [ (Fr(lls, to ), L] + (o) [wo(s o, wo), Lds. (69

From inequality (6.5) it follows

d[w(t; to, wo), L] < dlwo, L] +/t: (fi(s)d[w(s), L] + fa(s)d*[w(s), L])) ds (6.6)

forall t € R+.
We will represent inequality (6.6) in the pseudo-linear form

oot to,wo), 1] < dlwoo, 1]+ [ (1(5) + fo(6)a* eo(s), 1) dla(s to,wo), s (67)

forall t € R+.
Applying the Gronwall-Bellman lemma to inequality (6.7), we obtain an estimate in the
form

t
dlw(t; to, wo), L] < d[wo, L] exp (/t (f1 (s) —l—fg(s)d”‘_l[w(s),L]) ds> (6.8)
0
for all t € R+.
Next, we will apply integral inequalities from [14,15] to evaluate

exp (/t: (fl(s) —I—fz(s)d”‘_l[w(s),L]> ds) . (6.9)

in (6.8).
Namely, we represent inequality (6.8) in the form

d{x_l [w(t; t(), ?/Uo), L]

< d“’l[wo, L]exp <(1x — 1)/t (fl(s) —|—f2(s)d""1[w(s; tg,wo),L]> ds> )

t
0

(6.10)

Multiplying both parts of inequality (6.10) by the negative factor

=W ep (a1 [ A (st ), L)ds),
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we obtain

— (st o), L s = DO exp (= 1) [ (s fols o w0), Lds)

> (a — 1)d* w, L] fo(f) exp (uc —1) /t:fl(s)ds> . 6.11)
The inequality (6.11) implies
g {exp[@=1) [ Ao s, w), Ljas] |
> (0= D o L exp (0~ ) [ fu(s)ds). (612

Integrating the above inequality from ty to t € R;, we have

exp <—(zx -1) /t:fQ(S)le_l[ZU(S,' to,wo),L]ds>
> 1 — (& — 1)d* [wp, L] /t " fo(s) exp (—(uc —1) /t't F(s)d ao(s; to, wg),L]ds> . (6.13)

where exp{tp} = 1.
Hence,

exp [(oc -1) t: fz(s)d“’l[w(s; to,wo),L]ds}

t . . (6.14)
< {1 — (& — 1)d* wp, L] / fa(s) exp [((X — 1)/ fl(T)dT} ds}
to to
forall t € R-.
Combining (6.10) and (6.14), we get
o ) d*wo, L] exp {(0{ -1) fté f1 (s)ds}
_ _ <
[ZU(t, tO/ wO)/ ] >~ 1— N(t, to) ’
from which, taking into account (Hy;), the deviation of the weapon vector w(t) from the ray
of equilibrium L is estimated by the inequality (6.3). O

Proposition 6.2. Assume that for the system (6.1) hypotheses (Hy1) and (Hip) hold. If for any € > 0
there exists a § = 6(to, &) > 0 such that:

(1) d[wy, L] <6,
(2) N(t, to) = (« —1)5* ! ft’; fa(s)exp ((a—1) ftz fi(t)dt)ds <1 forall t € R,

(3) exp(ftz fi(s)ds) (1= N(t, b)) “7 <&, teRy,
then
d[w(t; to, ZU()),L] <g, teR;. (615)

Proof. Under the conditions of Proposition 6.2 the deviation of the weapon vector from the
equilibrium beam is estimated by inequality (6.3), from which the statement of Proposition
6.2 follows. O

Remark 6.3. Conditions (1)—(3) of Proposition 6.2 are sufficient for the stability of the deviation
of the weapon vector of two countries in model (6.1) from the weapon equilibrium ray L.
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7 Concluding remarks

In this paper, the influence of the hostility factor between countries on the stability of the
equilibrium state is studied in detail for the non-autonomous model (2.3) of confrontation
between two countries. Namely:

¢ the criteria for stability (asymptotic stability) are established under zero hostility;

¢ the criteria for stability (instability) of the arms race between two countries are estab-
lished under the condition of neutral stability of the zero equilibrium state in the linear
approximation of the proposed model (2.3);

¢ the criteria for stability of parametric disturbances of the armament matrix are estab-
lished in the linear approximation of system (2.3);

¢ under various assumptions about the hostility between the two countries changing over
time, the criteria for stability (instability) of the zero equilibrium state are derived;

¢ for the non-autonomous quasi-linear model of confrontation between two countries,
a new estimate of the deviation of the armament vector from the equilibrium ray is
obtained and the conditions for the stability of the equilibrium state are indicated.

The approaches to the analysis of the influence of hostility on the stability of the equilib-
rium state of the extended model (2.3) proposed in this paper are new and contribute to the
development of the theory. It is also expected that this contribution will stimulate further
improvement and analysis of arms race models.

Directions for expanding and increasing the flexibility of models include taking into ac-
count delay factors in the linear approximation of model (2.3), assessing the influence of
control in functions describing hostility, including impulse disturbance. It is of interest to use
fractional analysis or sequential modeling. An interesting direction for future research is also
to consider an arms race model with more than two countries and with periodic coefficients
in the linear approximation. Studying discrete versions of model (2.3) is also important for
numerical modeling.
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