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Abstract. A classical result in the theory of stability of nonautonomous linear systems is
that the uniform exponential decay of its corresponding transition matrix is equivalent
to the uniform asymptotic stability of the trivial solution. The aim of this article is to
extend this equivalence for non-exponential decays h(t). In this article we prove that,
in some suitable cases, the function h(t) allows the construction of a topological abelian
group that makes possible to formulate a more general definition of uniform stability
which is equivalent with a decay dominated by h(t). Moreover, we can use this group
to establish the necessary elements to develop a theory of h-stable systems. As a first
step in this direction, we provide integral conditions on the solutions of a uniformly
asymptotically h-stable system.
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1 Introduction and motivation

1.1 Preliminaries

This article provides new results about the property of uniform asymptotic h-stability of the
nonautonomous linear system of ordinary differential equations:

ẋ = A(t)x for any t ∈ J := (a,+∞), (1.1)

where a can be either a real number or a = −∞, A : J → Mn(R) is a piecewise continuous
matrix valued function. Moreover, Φ(t) and Φ(t, s) = Φ(t)Φ−1(s) will denote respectively
a fundamental matrix of (1.1) and its corresponding transition matrix. The solution of (1.1)
passing through x0 at time t = t0 > a will be denoted by t 7→ x(t, t0, x0) := Φ(t, t0)x0. For a
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given norm ∥ · ∥ on Rn and any matrix U ∈ Mn(R), the induced operator norm is defined as
∥U∥L := sup{∥Ux∥ : ∥x∥ ≤ 1}.

The stability and asymptotic stability of the nonautonomous linear systems (1.1) are classic
research topics and there exists a myriad of asymptotic stabilities whose classification and
description has been carried out in authoritative monographs as [5, 9, 14]. In particular, the
uniform asymptotic h-stability is defined as follows:

Definition 1.1. The nonautonomous system (1.1) is uniformly asymptotically h-stable if there
exist constants K ≥ 1 and α > 0 and a function h : J → (0,+∞) such that:

∥Φ(t, t0)∥L ≤ K
(

h(t0)

h(t)

)α

for any t ≥ t0 > a, (1.2)

where h(·) is continuous, surjective and strictly increasing.

To the best of our knowledge, the above definition has been introduced by M. Pinto in
[13] in a more general context, including the nonlinear case and considering α = 1. This
definition of stability has been explored by the current research, either by considering a fixed
function h(·) such as in the cases of polynomial stability [7] or algebraic dichotomy [11], or by
considering a large family of functions, such as in [12].

The previous definition is a particular case of the uniform stability and encompasses a
wide range of well known stabilities, for example, the classical property of uniform asymptotic
stability, which is ubiquitous in theoretical and applied research and will be recalled to make
this article self contained:

Definition 1.2 ([2, Ch. III.1]). The nonautonomous linear system (1.1) is uniformly stable if any
solution t 7→ x(t) := x(t, t0, x0) satisfies the following property:

a) For each ε > 0 there is a δε > 0 such that if ∥x(t0)∥ < δε for some t0 ∈ J then ∥x(t)∥ < ε

for all t ≥ t0.

The nonautonomous system (1.1) is uniformly asymptotically stable if it is uniformly stable and
in addition:

b) There is a δ0 > 0 such that for all ε > 0 there exists a constant Tε ∈ (0,+∞) such that if
∥x(t0)∥ < δ0 then ∥x(t)∥ < ε for all t ≥ t0 + Tε.

The proof that the uniform asymptotic stability described in Definition 1.2 is a particu-
lar case of the uniform asymptotic h-stability follows from the following results considering
h(t) = et:

Proposition 1.3 ([9, Prop.3.3.1]). The nonautonomous linear system (1.1) is uniformly stable if and
only if there exists a constant K ≥ 1 such that:

∥Φ(t, s)∥L ≤ K for all t ≥ s > a.

Proposition 1.4 ([10, Th.4.11]). The nonautonomous linear system (1.1) is uniformly asymptotically
stable if and only if it is uniformly exponentially stable, namely, there exist constants K ≥ 1 and α > 0
such that:

∥Φ(t, s)∥L ≤ Ke−α(t−s) for all t ≥ s > a. (1.3)

Another equivalent characterization of uniform asymptotic stability in terms of the transi-
tion matrix is given by:
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Proposition 1.5. The nonautonomous linear system (1.1) is uniformly asymptotically stable if and
only if it is uniformly stable and there exists a constant T ∈ (0,+∞) such that

sup
s∈J

∥Φ(T + s, s)∥L < 1. (1.4)

The step proving the necessity of the above result can be found as an intermediate step in
the proof of Proposition 1.4 given by [2, Ch. III.1] and as Lemma 5 in [6], while the sufficiency
step of the is an immediate consequence of Proposition 1.4.

1.2 Novelty of the article and main results

We stress that the equivalence between the ε–δ characterization of uniform asymptotic stability
stated in Definition 1.2 and the estimations for the transition matrices given by Propositions
1.4 and 1.5 is a classical topic in stability theory. Nevertheless, a generalization for decays
described by h(·) functions has not been addressed and is the aim of this article.

A possible way to study the uniform asymptotic h-stability is to introduce the change of
time variables

t = h−1(et̃) and t̃ = log(h(t)) with log(h(a+)) < t̃ < +∞, (1.5)

and the matrix Φh(ũ):

Φh(ũ) = Φ(h−1(eũ)) for any ũ > log(h(a+)). (1.6)

These change of variables allow to reinterpret the estimation (1.2) as follows:

∥Φh(t̃, t̃0)∥L ≤ Ke−α(t̃−t̃0) for any t̃ ≥ t̃0 > log(h(a+)). (1.7)

Notice that the right-hand side of the inequalities (1.3) and (1.7) describes a similar expo-
nential decay. Nevertheless, we warn that this analogy could induce the erroneous belief that
the uniform asymptotic h-stability can be trivially revisited as a uniform exponential stabil-
ity via a suitable change of variables. To support this warning, we state that the columns of
the transformed matrix Φh(·) are not a basis of solutions and the left side of (1.7) as well as
(1.5)–(1.6) do not have an intuitively clear meaning. These issues deserve a meticulous study
and a big contribution of this article is to show that any function h(·) allows to construct a
topological group (J, ∗) such that the change of variables described by (1.5) can be seen as the
commutative diagrams of isomorphisms of topological groups such that

(R,+) (R+, ·)

(J, ∗)

e

h−1 and

(J, ∗) (R+, ·)

(R,+),

h

log

where the isomorphism h : (J, ∗) → (R+, ·) verifies h(t ∗ s) = h(t)h(s), which mimics the
exponential identity et+s = etes.

The above described approach will enable to state the main results of this article:

• To provide an ε–δ definition of uniform asymptotic h-stability generalizing the one de-
scribed in Definition 1.2.

• To generalize the Proposition 1.5 for the uniformly asymptotically h-stable case.
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• To deduce integral characterizations for the uniform asymptotic h-stability which gener-
alizes those obtained for the uniform asymptotic stability.

We stress that Definition 1.2 and Proposition 1.5 are stated in term of the additive group
(R,+) whereas its generalization will be carried out in terms of the additive structure of
(J, ∗). We stress the originality of this approach, its remarkable simplicity and its potential
application for the study of h-dichotomies.

1.3 Structure of the article

In Section 2 we provide examples of systems which are uniformly h-stable but not uniformly
asymptotically stable. Section 3 is devoted to the construction the topological group (J, ∗), an
invariant measure on J under the action of this group, and the study of their properties. In
Section 4 we state and prove the main results, namely, the generalization of the equivalences
between Definition 1.2 and Propositions 1.4 and 1.5 to the uniform h-stability framework.
Finally, in Section 5 we generalize, to uniform h-stable systems, a pair of results characterizing
the uniform exponentially stable systems in terms integral conditions.

2 Examples of uniform asymptotic h-stability

We will consider simple h-stable scalar equations and use them to show the existence of an
equation that is logarithmically stable but not exponentially.

Example 2.1. Given h : J → (0,+∞) continuously differentiable, surjective and strictly in-
creasing, together with a constant α > 0, let us consider the equation:

x′ = −α

(
h′(t)
h(t)

)
x,

which provides a simple example of h-stability. Indeed, the transition matrix is given by

Φ(t, s) =
(

h(s)
h(t)

)α

,

and the Definition 1.1 is verified with K = 1.

Example 2.2. The above example allows us to construct a nonautonomous linear equation
whose solutions t 7→ x(t, s, x0) asymptotically approach the origin but are not uniformly
exponentially stable. In fact, when considering h(t) = log(1 + t), the previous example says
that the corresponding transition matrix is given by

Φ(t, s) =
(

log(1 + s)
log(1 + t)

)α

,

this system is uniformly asymptotically log-stable and for any s ∈ J := (0,+∞) and x0 ∈ R it
follows that

lim
t→+∞

Φ(t, s)x0 = lim
t→+∞

(
log(1 + s)
log(1 + t)

)α

x0 = 0.

However, for any pair of positive numbers α and β > 0, we have the estimation

lim
t→+∞

log(1 + t)e−t β
α = 0.
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Hence for a fixed s ∈ J and K > 1 there exists t large enough such that

log(1 + t)e−t β
α < K−1 log(1 + s)e−s β

α ,

and we can rearrange this inequality to obtain

Keβ(s−t) <

(
log(1 + s)
log(1 + t)

)α

,

which shows that the inequality (1.3) is not true for all pairs t ≥ s and the uniform exponential
stability described by (1.3) cannot be verified.

3 A topological group induced by h(·)

The conditions we have given to the function h(·) on Definition 1.1 are enough to carry out
a deep study of the solutions of (1.1). In fact, as any continuous bijection between two open
intervals is an homeomorphism, the function h : (a,+∞) → (0,+∞) has a continuous inverse
h−1(·). Then, we introduce the operation

t ∗ s := h−1(h(t)h(s)), (3.1)

on J = (a,+∞), namely, the domain of h. To distinguish ∗ from the usual operations on R,
we will denote the integer powers of t as t∗n. This operation is associative and commutative,
it has an identity element defined by

e∗ = h−1(1)

and each t ∈ J has an inverse

t∗−1 = h−1
(

1
h(t)

)
. (3.2)

These properties, alongside the continuity of h and h−1, imply that (J, ∗), with the standard
real open interval topology, is a locally compact abelian topological group.

Example 3.1. Let h(t) = log(t) on the interval (1,+∞). The corresponding group operation is

t ∗ s = elog(t) log(s) = tlog(s) = slog(t),

and the identity on this group is h−1(1) = e1 = e.

It is straightforward to deduce the following properties as a consequence of (3.1) and (3.2):

h(t ∗ s) = h(t)h(s)

h−1(t) ∗ h−1(s) = h−1(ts)

h(s ∗ t∗−1) =
h(s)
h(t)

.

(3.3)

The first two identities of (3.3) imply that the function h : J 7→ R+ is an isomorphism
of topological groups between (J, ∗) and the multiplicative group of positive real numbers
(R+, ·). Due to this isomorphism, we may understand properties of (J, ∗) by first considering
the analogous case on (R+, ·) and passing from one group to the other by using the functions
h and h−1.
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Remark 3.2. In the case of uniform exponential stability, namely, when h(t) = et, this opera-
tion becomes t ∗ s = log(etes) = t + s and, consequently, the group (R, ∗) coincides with the
additive group (R,+).

Remark 3.3. Note that inequality (1.2), which defines uniform asymtptotic h-stability, can be
seen from another perspective by using the identity (3.3) as follows:

∥Φ(t, s)∥L ≤ Kh(s ∗ t∗−1)α for all t ≥ s > a.

We also can define a measure µ∗ on the interval J, which is invariant under the action of
elements of (J, ∗). This is an absolutely continuous measure whose Radon–Nikodym deriva-
tive is the logarithmic derivative of h, that is, for a Borel measurable set A ⊂ J we define its
measure µ∗ as

µ∗(A) =
∫

A

h′(u)
h(u)

dm(u), (3.4)

where m(·) is the Lebesgue measure. To see that this is an invariant measure, it is enough to
prove that it is invariant for compact intervals, as these sets generate the Borel σ-algebra.

Lemma 3.4. Given a compact interval [s, t] ⊂ J, its measure is invariant under translation by elements
of (J, ∗), that is, for any γ ∈ J

µ∗([s, t]) = µ∗([γ ∗ s, γ ∗ t])

Proof. The measure of the interval [s, t] ⊂ J is

µ∗([s, t]) =
∫ t

s

h′(u)
h(u)

dm(u) = log
(

h(t)
h(s)

)
. (3.5)

Notice that, given any constant γ ∈ J, by (3.3) we have

µ∗([γ ∗ s, γ ∗ t]) = log
(

h(γ ∗ t)
h(γ ∗ s)

)
= log

(
h(t)
h(s)

)
= µ∗([s, t]).

Remark 3.5. The identity (3.5) allows an additional characterization of the uniform asymptotic
h-stability in terms of the measure µ∗ as follows:

∥Φ(t, s)∥L ≤ Ke−αµ∗([s,t]) for all t ≥ s ≥ a.

Remark 3.6. It will be of interest to understand the behavior of the iterates of elements on
(J, ∗) in the sense

J × J → J

(γ, γ) 7→ γ∗2 := γ ∗ γ.

Firstly, by using the isomorphism between (J, ∗) and (R+, ·), it follows that the n-the power
of γ is

γ∗n = h−1 ◦ h(γ∗n) = h−1(h(γ)n). (3.6)

Secondly, given an element γ > e∗ we have that h(γ) > 1, which implies that h(γ)n → +∞
and h(γ)−n → 0 as n → +∞. This means that any forward orbit of the action J → γ ∗ J
approaches +∞ while any backward orbit approaches a.
Analogously, for γ < e∗ forward orbits approach a while backward orbits approach +∞.
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Ref. h(t) J c ∗ d
h′(t)
h(t)

[2] et R c + d 1

[4, 7] t R+ cd
1
t

log(1 + t) R+
(1 + c)log(1+d) − 1

1
(t + 1) log(1 + t)

[11] t +
√

t2 + 1 R c
√

d2 + 1 + d
√

c2 + 1
1√

t2 + 1

Table 3.1: Some examples for functions h(·) with its respective interval of sta-
bility, group operation, and logarithmic derivative.

A useful construction on R is the partition on intervals [k, k+ 1) of equal length, where k ∈
Z. In proofs of exponential stability theory such as [8], this partition allows us to approximate
the continuous system (1.1) by a discretization of Φ(t, s). However, when the decay rate of
Φ(t, s) is given by a function h(·) rather than the exponential function, the notion of length,
given by the invariant measure, changes. For this reason, we propose the following partition:

Lemma 3.7. For any γ ∈ (e∗,+∞) the intervals Jk = [γ∗k, γ∗(k+1)) with k ∈ Z define a partition of
J into sets of constant µ∗ measure.

Proof. The function h−1 is strictly increasing and h(γ) > 1, hence the sequence {γ∗k}k∈Z which
is defined by (3.6), that is, by the identity γ∗k = h−1(h(γ)k), is strictly increasing, which implies
that the intervals Jk are disjoint. It remains to show that the intervals Jk form a covering of J.
Without loss of generality we assume that t ∈ [e∗,+∞). As discussed in Remark 3.6, for any
t ∈ [e∗,+∞) there exists n ∈ N ∪ {0} such that γ∗(n+1) > t. Since the inequality γ∗(n+1) > t
is satisfied by a set of natural numbers, there must be a least element of this set, which we
call m. The number m is the minimal natural such that γ∗(m+1) > t, hence γ∗m ≤ t, that is,
t ∈ Jm.

A noticeable byproduct of the above result is:

Corollary 3.8. The measure µ∗ is σ-finite.

Example 3.9. In the case corresponding to h(t) = t, which defines polynomial stability in
[7] and [1], the operation is defined by t ∗ s = ts, the domain of h is the interval (0,+∞)

and, for any γ > 1, the subintervals {[1, γ), [γ, γ2), [γ2, γ3), . . .}, and {[γ−1, 1), [γ−2, γ−1),
[γ−3, γ−2), . . .} define a uniform partition of (0,+∞). Moreover, given a constant C > 0 and
considering the measure defined by (3.4), we have µ∗([Cγk, Cγk+1)) = µ∗([γk, γk+1)) = log(γ)
for any k ∈ Z.

4 Characterizations of uniform asymptotic h-stability

The main result of this work is a characterization of the uniform asymptotic h-stability which
emulates and generalizes the equivalence between uniform asymptotic stability with Proposi-
tion 1.4 and Proposition 1.5. The group (J, ∗) introduced in the previous section, as well as its
properties, will play an essential role on the proof.

Theorem 4.1. Given a nonautonomous system (1.1) with a transition matrix Φ(t, s), the following
statements are equivalent:
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i) The system (1.1) is uniformly asymptotically h-stable.

ii) The system (1.1) is uniformly stable and there exists a constant T ∈ (e∗,+∞) such that

sup
s∈J

∥Φ(T ∗ s, s)∥L < 1. (4.1)

iii) The solutions x(t) = Φ(t, t0)x0 of the system (1.1) satisfy the following two properties:

a) For each ε > 0 there is a δε > 0 such that if ∥x(t0)∥ < δε for some t0 ∈ J then ∥x(t)∥ < ε

for all t ≥ t0.

b) There is a δ0 > 0 such that for all ε > 0 there exists a constant Tε ∈ (e∗,+∞) such that if
∥x(t0)∥ < δ0 then ∥x(t)∥ < ε for all t ≥ t0 ∗ Tε.

Proof. We begin with i) ⇒ ii): Suppose that the system (1.1) is uniformly asymptotically
h-stable. By using (1.2) it follows that an uniformly asymptotically h-stable system always
satisfies the bound ∥Φ(t, s)∥L ≤ K since h(s)

h(t) ≤ 1 for all pairs s, t with a < s ≤ t < +∞,
that is, for any h an uniformly asymptotically h-stable system is also uniformly stable, due to
Proposition 1.3.

Now, note that for all s ∈ J and T ∈ (e∗,+∞), by using (1.2) and (3.3) we have

∥Φ(T ∗ s, s)∥L ≤ K
(

h(s)
h(T ∗ s)

)α

= K
(

h(s)
h(T)h(s)

)α

= K
(

1
h(T)

)α

,

thus, by choosing T ∈ (e∗,+∞) large enough such that K
( 1

h(T)

)α
< 1, we obtain (4.1) since the

right hand of the above inequality is independent of s.
We proceed to prove ii) ⇒ i): Let us consider a pair of values (t, s) such that a < s ≤ t <

+∞, by following a construction analogue to that of Lemma 3.7, we construct a partition of
the interval J into the sets s ∗ An := s ∗ [T∗n, T∗(n+1)) for n ∈ Z. As {s ∗ An}n∈Z is a partition
of J, there must be an unique integer k such that t ∈ s ∗ Ak. We can then rewrite Φ(t, s) as

Φ(t, s) = Φ(t, T∗k ∗ s)Φ(T∗k ∗ s, T∗(k−1) ∗ s) · · ·Φ(T ∗ s, s). (4.2)

On the other hand, due to inequality (4.1) and the uniform stability of the system, we
know that there exists constants θ < 1 and 1 ≤ K respectively, such that

∥Φ(T ∗ s, s)∥L < θ and ∥Φ(t, T∗k ∗ s)∥L ≤ K.

Using these two bounds along with the submultiplicative property of the operator norm
applied to (4.2), we get

∥Φ(t, s)∥L ≤ Kθk = Ke−k| log(θ)|, (4.3)

where log(θ) = −| log(θ)| because θ < 1. As the integer k depends on the values of T, t
and s, we can bound it by a function of these numbers, to do this we notice that t ∈ s ∗ Ak is
equivalent to the inequalities

s ∗ T∗k ≤ t < s ∗ T∗(k+1). (4.4)
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For any γ ∈ J, the group action on J, γ ∗ (·), is an strictly increasing function, as can be seen
by noting that γ ∗ (·) = h−1(h(γ)h(·)), where the left hand side is a composition of increasing
functions. Hence, the action of s∗−1 on (4.4) mantains the inequalities

T∗k ≤ t ∗ s∗−1 < T∗(k+1).

By passing the above inequality through the monotone function u 7→ log(h(u)) combined
with the identities (3.2) and (3.3), we get

k log(h(T)) ≤ log
(

h(t)
h(s)

)
< (k + 1) log(h(T)).

Notice that log
( h(t)

h(s)

)
log(h(T))−1 − 1 < k, then by (4.3) and, due to the fact that the exponent

−k| log(θ)| < 0, we deduce

∥Φ(t, s)∥L ≤ Kθk

≤ Ke−[log( h(t)
h(s) ) log(h(T))−1−1]| log(θ)|

= Ke| log(θ)|
(

h(s)
h(t)

) | log(θ)|
log(h(T))

,

as this is true for any pair (t, s), we have shown that Φ(t, s) is uniformly asymptotically h-
stable with constants Ke| log(θ)| ≥ 1 and | log(θ)|

log(h(T)) > 0.
We now prove i) ⇒ iii): Suppose that the system (1.1) is uniformly asymptotically h-stable.

The property a) of iii) is immediately verfied since, as we said in the step i) ⇒ ii), the uniform
h-stability implies the uniform stability from Definition 1.2 which is equivalent to iii).

In order to prove that the solutions x(t) satisfy property b), let us consider δ0 = 1, T ∈
(e∗,+∞) and t0 ∈ (a,+∞). Now, if x(t) is a solution of (1.1) such that ∥x0∥ < δ0 and t ≥ T ∗ t0

by using the fact that (1.1) is uniformly asymptotically h-stable combined with (3.3) we can
deduce that

∥x(t)∥ = ∥Φ(t, T ∗ t0)Φ(T ∗ t0, t0)x0∥
≤ ∥Φ(t, T ∗ t0)∥L · ∥Φ(T ∗ t0, t0)∥L · ∥x0∥

≤ K2
(

h(t0)

h(T ∗ t0)

)α

δ0

= K2
(

1
h(T)

)α

.

As the function h is surjective onto the interval (0,+∞), for any given ε > 0 we can choose a
Tε such that

K2
(

1
h(Tε)

)α

< ε,

which proves property b).
Finally, we need to prove iii) ⇒ ii): If (1.1) satisfies iii) then it has property a), which is the

uniform stability described by Definition 1.2.
We now prove (4.1). Let δ0 be as in property b) of statement iii). Given any 0 < ε < δ0/2

we define θ = ε(2/δ0) < 1. There exists Tε > e∗ such that

∥Φ(Tε ∗ s, s)∥L = sup
∥x∥=1

2
δ0
∥Φ(Tε ∗ s, s)

δ0

2
x∥ < θ,

which proves iii).
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5 Integral conditions

The results proved in the previous sections will allow us to carry out a wider study of the
properties of uniform asymptotic h-stability, we will extend two existing results regarding
necessary and sufficient conditions for uniform exponential stability. One of these theorems
is proved in [9, Th. 3.3.15] in a finite dimensional framework. Besides the case of uniform
exponential stability, these results were proved for uniform polynomial stability in [7], within
the more general framework of evolutionary processes in Banach spaces.

Theorem 5.1. A nonautonomous linear system (1.1) with a transition matrix Φ(t, s) is uniformly
asymptotically h-stable if and only if it is uniformly stable and

sup
s∈J

∫ +∞

s
∥Φ(u, s)x∥dµ∗(u) < +∞ for all x ∈ Rn. (5.1)

Proof. We begin with the forward direction of the equivalence. Let Φ(t, s) be a transition
matrix of an uniformly asymptotically h-stable system. As a uniformly asymptotically h-
stable system is also uniformly stable, we only need to prove (5.1). To do this we can use (1.2)
to bound the integral as follows∫ +∞

s
∥Φ(u, s)x∥dµ∗(u) ≤ K∥x∥

∫ +∞

s

(
h(s)
h(u)

)α h′(u)
h(u)

dm(u)

= K∥x∥h(s)α
∫ +∞

s

h′(u)
h(u)α+1 dm(u)

= Kα−1∥x∥ lim
t→+∞

(
1 − h(s)α

h(t)α

)
= Kα−1∥x∥,

which gives, for each x ∈ Rn, a finite bound that is independent from s and the property (5.1)
is verified.

To prove the backwards direction of the equivalence we will use Theorem 4.1. Given a
compact interval [c, d] ⊂ J, the fact that Φ(t, s) is the transition matrix of an uniformly stable
system implies that there exists a constant K > 1 such that

rcl∥Φ(d, c)∥L ≤ ∥Φ(d, u)∥L · ∥Φ(u, c)∥L
≤ K∥Φ(u, c)∥L for c ≤ u ≤ d.

Given that the integral in (5.1) has a non-negative integrand we have the inequalities

+∞ > sup
s∈J

∫ +∞

s
∥Φ(u, s)x∥dµ∗(u)

≥
∫ d

c
∥Φ(u, c)x∥dµ∗(u)

≥
∫ d

c
K−1∥Φ(d, c)x∥dµ∗(u)

= K−1∥Φ(d, c)x∥µ∗([c, d]).

As the above inequality is satisfied by all x ∈ Rn and [c, d] ⊂ J, the Banach–Steinhaus theorem
implies the existence of a constant M such that

µ∗([c, d])K−1∥Φ(d, c)∥L ≤ M
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for any compact interval [c, d] ⊂ J.
There exists T ∈ (e∗,+∞) large enough such that MK

µ∗([e∗,T]) < 1. Then, by the invariance of
µ∗ under ∗-translations given for intervals in Lemma 3.4 we have:

∥Φ(T ∗ s, s)∥L ≤ MK
µ∗([s, T ∗ s])

=
MK

µ∗([e∗, T])
< 1,

which due to Theorem 4.1 proves that Φ(t, s) is uniformly asymptotically h-stable.

Theorem 5.2. A nonautonomous system (1.1) with a transition matrix Φ(t, s) is uniformly asymp-
totically h-stable if and only if it is uniformly stable and

sup
t∈J

∫ t

a
∥Φ(t, u)∥Ldµ∗(u) < ∞. (5.2)

Proof. We begin with the forward direction of the equivalence. As uniform asymptotic h-
stability implies uniform stability, we only need to prove that Φ(t, s) satisfies (5.2). For any
t ∈ J = (a,+∞) we replace ∥Φ(t, s)∥L with its bound (1.2) to obtain the inequality

∫ t

a
∥Φ(t, u)∥dµ∗(u) ≤ K

∫ t

a

(
h(u)
h(t)

)α

dµ∗(u)

= K
∫ t

a

(
h(u)
h(t)

)α h′(u)
h(u)

dm(u)

=
K

h(t)α
lim

s→a+

∫ t

s
h(u)α−1h′(u)dm(u)

= Kα−1,

which proves the first part of the theorem.
Now we prove the backward direction of the equivalence. Let K > 0 be the bound of

∥Φ(t, s)∥L obtained by the uniform stability and M > 0 a bound of (5.2). For all a < s ≤ t <
+∞ it is true that

KM > K
∫ t

s
∥Φ(t, u)∥Ldµ∗(u)

>
∫ t

s
∥Φ(t, u)∥L∥Φ(u, s)∥Ldµ∗(u)

≥
∫ t

s
∥Φ(t, s)∥Ldµ∗(u)

= log
(

h(t)
h(s)

)
∥Φ(t, s)∥L.

(5.3)

The function h is upper unbounded, hence there exists T ∈ (e∗,+∞) such that log(h(T)) >

KM. Given any s ∈ J, the inequality (5.3) for the pair (T ∗ s, s) is

∥Φ(T ∗ s, s)∥L ≤ KM
log(h(T))

< 1.

It follows from Theorem 4.1 that Φ(t, s) is uniformly h-stable.
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6 Discussion

In this work, we revisited the property of uniform h-stability for nonautonomous linear sys-
tems and proved a set of properties emulating the classical results for the uniform asymptotic
stability and its equivalence with the uniform exponential one. The main tool was the char-
acterization of h as an isomorphism of topological abelian groups h : (J, ∗) → (R, ·) which, in
the specific case h(t) = et with (J, ∗) = (R,+), recovers the uniform exponential stability and
its characterizations.

To the best of knowledge, there are few results on stability for nonautonomous linear
systems based on group theory. However, the methods we have presented in this paper can be
applied to generalize other existing theorems of the theory of exponential stability to uniform
asymptotic h-stability. In particular, we have obtained preliminary results in the following
topics:

a) The problem of (B,D)-admissibility, that is, if for each f ∈ B the system

ẋ = A(t)x + f (t), (6.1)

has a solution x ∈ D, where B and D are suitable function spaces. An affirmative answer
to this problem, allows us to give a functional characterization of stability properties of
the linear system associated to (6.1).

b) The roughness of uniform asymptotic h-stability, which concerns sufficient smallness
conditions for a matrix valued function B(·) such that the system

ẋ = A(t)x + B(t)x,

is uniformly asymptotically h-stable, provided that (1.1) is a uniformly asymptotically
h-stable system.

To further emphasize the usefulness of the ideas developed in this article, we will also
mention that the function h′(t)

h(t) has been used by other authors to prove theorems regarding
h-stability and dichotomy, see for example [7] and [3]. Despite this, the way it relates to the
algebraic structure of these problems, such as the fact that it defines an invariant measure, has
neither been established nor employed to its further extent in previous works.
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