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Abstract. In this paper, we consider the following Schrédinger-Poisson system with
critical-concave nonlinearity:

—Au+1(x)pu = |ul*u + ph(x)|ul">u in RS,
—Ap = 1(x)u? in R3,

where ¢ > 0, 1 < g < 2 and the functions [, satisfy some mild conditions. By
constraining the energy functional of the above problem on a closed subset of the sign-
changing Nehari manifold, we obtain a sign-changing solution with positive energy for
u > 0 small enough.
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1 Introduction and main results

This paper focuses on standing waves of the following nonlinear Schrodinger—Poisson system:
{iwt = —Ap+9(x)p — g(x,p), a1
—Bg =y,

where ¢ € C(R3® x C,R) and ¢ : R3 x [0,T] — C. Such systems arise as electromagnetic
field models in quantum mechanics and has a strong physical background. The first equation
of system (1.1) describes the evolution of the quantum state of microscopic particles (such
as electrons) over time, while the second equation (i.e. Poisson equation) is often used to
describe the relationship between the electrostatic potential and the charge distribution. The
interaction of charge particles with electromagnetic field can be described by coupling the
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nonlinear Schrodinger equation and the Poisson equation. For more physical backgrounds of
Schrodinger-Poisson system, we recommend readers to refer to [2,6].
In the past decades, many mathematicians studied the standing wave solution of type
¥(x,t) = eMu(x) for system (1.1), which corresponds to a solution u of the elliptic system
_ h R3
{ iu j:u 2+ pu = g(x,u) %n ]RS, 1.2)
—Ap=u in R°.

For the case of g(x,u) = |u|P~2u, D’Aprile and Mugnai [7] showed that system (1.2) has no
nontrivial solution once p > 6 or p < 2 by establishing a related PohoZaev identity, Ruiz [18]
showed that system (1.2) does not admit any nontrivial solution if p < 3 and has positive
solution if p € (3,6), in this case ground state solution was further proved by Azzollini and
Pomponio in [1]. Afterwards, Schrodinger-Poisson systems with Sobolev critical exponent
and subcritical perturbation were investigated by many scholars. For example, see the cases
of superlinear perturbations in [1,25], the cases of sublinear perturbations in [13] and the
references therein. As we will recall below, various existence results of sign-changing solutions
for Schrodinger-Poisson systems were widely studied in [4,5,8-12,15,17,19-21,23, 24,26, 27].
More precisely, for the Schrodinger-Poisson system

{—Au + V(x)u+ ¢u = K(x)f(u) inR?, (1.3)

—Ap = u? in R?,

lanni [10] studied the case of V. = K = 1, f(u) = |u|f~?u and p € [4,6), by the heat flow
method he got a radially nodal solution changing sign exactly k — 1 times for every integer
k > 2. Meanwhile, Kim and Seok [12] proved the similar results to [10] for p € (4,6) by
using the variational methods. Wang and Zhou assumed K = 1, f(u) = |u|P~2u, p € (4,6)
and V satisfies compactness condition in [21], where they proved a sign-changing solution
of system (1.3) by combining the constraint minimization argument and the Brouwer degree
theory. In [19], by using a quantitative deformation lemma, Shuai and Wang extended the
results in [21] to the case of general nonlinearity f, which satisfies an increasing condition.
If V,K satisfy some vanishing conditions, Liang et al. [15] proved system (1.3) has a sign-
changing solution. Chen and Tang [4] assumed that f € C(R,R) satisfies a weaker condition
than the increasing condition, by using a direct approach they obtained a ground state sign-
changing solution with precisely two nodal domains. After this, Chen and Tang assumed that
f satisfies asymptotically cubic or super-cubic conditions in [5], where they proved a sign-
changing solution with precisely two nodal domains under mild assumptions on asymptotic
behaviors of V,K. When K = 1 and f satisfies super-cubic conditions, via the method of
invariant sets of descending flow, Liu et al. [17] proved that system (1.3) has infinitely many
sign-changing solutions. In [26], Zhong and Tang studied the system

—Au+V(x)u+¢u = |ul*u+ ph(x)u in R3,
—Ap = u? in R3,

where V € C(IR3,IR™) satisfies a compactness condition and h € L2 (R3) \ {0} is nonnegative,
by using the sign-changing Nehari manifold they got a ground state sign-changing solution
for any u € (0,u1), with py denoting the first eigenvalue of —Au + u = ph(x)u in H'(R?). In
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[8], Gu et al. considered the following system with subquadratic or quadratic nonlinearity:

—Au+V(x)u+Adu = f(u) inR>
—Ap = u? in R3,
where V € C(IR?,R") is radial if f is subquadratic and coercive if f is quadratic, by following
the ideas of [17] they verified the existence and multiplicity of sign-changing solution for
A > 0 small enough.
As for the existence of sign-changing solutions for the critical Schrédinger—Poisson system

{—Au—l—V(x)u+K(x)4)u = |ul*u+g(x,u) inR3 (1.4)

—A¢p = K(x)u? in R3,

there are seldom results proved in [9,11,20,27]. In [27], Zhong and Tang studied the case
of V. =1 and g(x,u) = ph(x)u, under some mild conditions on K, g, by combining the
variational methods and sign-changing Nehari manifold they obtained a ground state sign-
changing solution of system (1.4) for any u € (0,11), where y; is the first eigenvalue of
—Au+u = ph(x)u in H'(R3). When K = 1, f(x,u) = uf(u) satisfies an increasing condition
and V satisfies compactness condition, Wang et al. [20] proved that system (1.4) has a least-
energy sign-changing solution for u > 0 large enough. Later, Kang et al. [11] concerned with
the following Schrodinger-Poisson system with steep well potential:

—Au+ (AV(x) + Vu+ ¢pu = |ul*u + |u|P?u in R5,
—Ap = u? in R?,

where p € (5,6), by combining constrained minimization arguments and Hofer’s deformation
lemma, they proved the existence and concentration of ground sign-changing solution for
A > 0 large enough. Subsequently, Huang et al. [9] extended the results in [11] to the case of
general perturbed nonlinearity.

Recently, sign-changing solutions on the Schrodinger—Poisson systems with concave-
convex nonlinearity have attracted wide attention. Yang and Ou [24] studied the Schrodinger—
Poisson system

1 1 u’(y) _ - .
— _ — q—2 p—2
Au+47r/g x y|dyu |u|T™%u + plulP~“u in Q, (1.5)

u(x) =0 on d(),

where Q) C R® is a bounded domain with smooth boundary 90, 1 < p < 2and 4 < q < 6. By
using constrained variational method and quantitative deformation lemma, they proved that
there exists some constant * > 0 such that system (1.5) has a sign-changing solution with
positive energy for any pu < p*. After this work, Yang and Tang [23] studied the Schrédinger—
Poisson system

—Au+V(x)u+ ¢u = |u|P?u+ uK(x)|ul"?u  inR5,
—Ap = u? in R?,

where 1 < g <2, 4<p<6,KEe L&(IR?’) and V € C(R? R) satisfies a weakly coercive
assumption. By constructing a nonempty closed subset of the sign-changing Nehari manifold,
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they obtained a sign-changing solution with positive energy provided y < u* for some p* > 0.
Inspired by the above works, we are interested in whether the critical-concave Schrodinger—
Poisson system has sign-changing solution. In this paper, we consider sign-changing solution
of the following Schrodinger-Poisson system:

{—Au+l(x)qbu = Ju)*u + ph(x)|u|"%u  in RS, 16

—Ap = 1(x)u? in IR3,

where 1 < g < 2,4 >0,0<1(-) € L>(R*) N L3(IR?) and the potential function h satisfies the
condition

(H) 0 < h() € Lﬁ(]RS) and there exists some € (3 — 23—”7,3 — 1) such that h(x) > ﬁ for
all |x] <1.

As is well known, the Poisson equation is uniquely solvable. Indeed, for any u € D?(R3),
define the linear functional

L,(v) = /3 1(x)u’vdx, Vv € D2(R?).
R
It follows from | € L?(IR?), the Holder and Sobolev inequalities that
_3
ILu(0)] < [l2[ufglols < S72[1]a[lul o]

Then, by the Lax-Milgram theorem, there exists a unique ¢, € D'? (R®) such that —A¢, =
I(x)u? in [D'2(R®)]", where

_ 1 Uy (y)
Pu0) = T o eyl

Therefore, system (1.6) can be reduced to the semilinear Schrodinger equation with a non-local
term

—Au+1(x)pyu = ul*u + ph(x)|u|"?u  in R, (1.7)

Then, we say that u € D'? (IR®) satisfying (1.7) is a weak solution of system (1.6) for short.
Moreover, the solution u of system (1.6) is called as a sign-changing solution of system (1.6)
once u™ # 0, where

ut(x) :=max{u,0} and u (x):=min{u,0}.

By the variational methods, weak solution of system (1.6) correspond to critical point of the
functional

_1ln 1 2, 1 6 _E/ q 12 /13
I#(u)—zHuH —|—4/]R3l(x)cpuu dx 6/]RS\u| dx p ]R3h(x)]u] dx, YV ue D (R’).

Based on [14, Lemma 2.3], it is standard to verify that the functional 7, is well-defined in
D¥?(RR®) and is of class C!. Naturally, we introduce the Nehari manifold of system (1.6) as
follows:

Ny = {u € D2 (R?) \ {0} : <I]’4(u),u> = O}.
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As we will see, NV, is closely related to the behavior of the fiber map o, : t — I, (tu), which
is defined for any u € D'? (R®) and t > 0 by

o, 2 6 Kt
Pul) = S P+ [ 1 dx—6u|6—q/]RSh(x)|u|qu.

By a simple calculation, we obtain

Put) = tullP+ £ [ 1G)gudx — lul§ -t [ nolupiax
R R
and
Pi0) = ) +32 [ 1) urdx =56 ulf = (g = Dpt2 [ ()|l ax

Clearly, for any u € D'?(IR%) \ {0}, there holds ¥, (t) = 0 iff tu € N,,. Specially, ¢/, (1) = 0 iff
u € Ny. To search for sign-changing solutions of system (1.6), we introduce the sign-changing
Nehari manifold

M, = {u € D'2(R®) : u* # 0, (T, (u),u™) = o}.
Now we present our main result of this paper.

Theorem 1.1. Assume (H) holds, then there exists some u* > 0 such that system (1.6) possesses a
sign-changing solution u, with positive energy for any u € (0, u*).

Remark 1.2. Our result extends the works [23,24] to critical-concave Schrodinger—Poisson
systems. The methods of studying subcritical concave-convex case in [23,24] are invalid for
critical-concave case, we need to search for a sign-changing Palais-Smale sequence and esti-
mate the corresponding level less than a prescribed threshold to recover the loss of compact-
ness. As we know, the Nehari manifold is a good choice to look for two positive solutions
of system (1.6) by splitting the manifold into two parts and using minimization arguments
on each parts. However, this idea cannot be directly used to prove sign-changing solutions,
since we may not verify that the corresponding parts of the sign-changing Nehari manifold
are complete. Thus we work in a closed subset of the one part of M. Moreover, we propose a
question whether system (1.6) has (ground state) sign-changing solution with negative energy.

The rest of this paper focus on proving Theorem 1.1 in Sect. 2. Throughout the present
paper, we acknowledge the following notations:

LP(R?) is the usual Lebesgue space with the norm |u|, = ([gs ]u|”dx)% for p € [1,4o0).

C5°(R?) consists of infinitely times differentiable functions with compact support in R3.
D'?(R%) is the completion of C3°(R?) with respect to the norm ||u|| = ([gs |Vu\2dx)%.
The best Sobolev constant S = inf {||u||* : u € D?(R?) \ {0}, |uls¢ = 1}.

Forr>0andy € R3 B,(y) := {x e R®: [x —y| < r} and B(y) = R®\ B, (y).

C; (i € N4 ) denotes positive constant and R™ = (0, +c0).

0(1) denotes a quantity tending to 0 as n — oo.
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2 Proof of Theorem 1.1

In this section, we will present some preliminary lemmas before completing the proof of our
main result. For any u € DV?(R%) with u® # 0, let the function f,: [0, +00) x [0, +00) — R be
defined as f(s,t) = Z,(su™ + tu~). From the Fubini theorem, we get

s
Fulss ) = S+ [ 100 o Pt = a8 = 2 ot
q JR
4 6 q
v [ <x>¢u|u-|2dx—t6!u-|2—ﬁ [ nlu

1 2,2 —12
+ 5%t /]R3l(x)q‘)u+|u 2dx.

Through direct computations, we have

9 .
£‘(s,t) = sflut|?+ 53 /R3l(x)¢u+|u+|2dx+st2 /1R31(x)¢u+|u 2dx
=St — st [ n()lut rdx, 2.1
R
dfu —12 . .3 2 2 2
(s, t) = Hlu P48 [ 1000w P+ 152 [ 10y u P
Pt [ ), 22)
R
3 f,
(s t) = [t + 382 /R I x)¢u+yu+|2dx+t2/RSZ(x)¢u+\u*|2dx
=55t ut [ — (g = Dt 2 [ n(x)lu* i, 3
R
aqu —112 2 —12 2 —12
(st = I[P+ [ 1)y lu”Pax+52 [ 1) Ju” Plx
—5t4lu’|2—ﬂ(q—l)f"’Z/Sh(x)!u’l"dx (2.4)
R
and
azfu azfu -2
St (s, = S0 (s ) = 20t /R 1)y [ P 2.5)

It is easy to see that

%J;u(slt) — <I;(su+ + tu*),u+> and zf:(s,t) = <I]’1(qur + tu*),u*>,

which indicate that, for any u € D?(R®) with u* # 0, su™ +tu~ € M, if and only if

%(Sr t) =0 and %(S, t) = 0, that is

MV:{uEDl'Z(]R3) u® #£0, af”(1 1) =0, aft”(1 1)_0}
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Moreover, for any u € M, by (2.1)~(2.4) we have

& fu +112 +2
B = P43 [ 10ge P+ [ 10090l P

=5l g —nlg—1) [ h()lu* rdx
_ _ +1|2 _ N +12
= @)t P+ =) [ 100 | P
+@=q) [ 1000 uPdx— (6=l
— 4fjut | - 2/ X) @+ |ut 2dx—4/ X) s |u [Pdx
—n(q—6) [ h(x)|u* 26)

and

0 fy
DI = P43 [ 109w Paxt [ 109 e Pax
=Sl (g —1) [ B 7

= @=q)lu P+ @—q) [ 1004, |u Pdx
F2=q) [ 1000 uPdx— (6=l

= — 4w P =2 [ 1@ lumPax—4 [ 100)g,-|u” P
~ (g =6) [ h(x)lu |z @7)

R

To begin with, we give some useful properties for the non-local term in the following
Lemma 2.1. For the unique solution ¢, of the Poisson equation, there hold
(1) ¢u(-) >0 for any u € DV?*(R3);
(2) ¢ = t*¢py for any t > 0and u € DV?(IR3);
(3) Jgs 1(x)punPdx < |Puls |l”2’é < S5 |ulg
4) [igo 1(x)puri?dx < |ulg |lu2]6 < S7Y13|ul} for any u € L4(R3);
(5) if uy — uin D2 (IR?), then ¢y, — ¢y in D2 (R3);
(6) if uy — uin D2 (R3), then [gs 1(xX)Pu,u3dx — [go 1(x)Puudx.
Proof. (1)—(4) are easily verified. (5) and (6) were proved in [14], we omit the details here. [J
Lemma 2.2. There exists some p1 > 0 such that, for any u € DV?(R3) with u* # 0, there holds that

(1) if u € (0, 1), then f,(s,t) has exactly two critical points 0 < s1(t) < sp(t) for any fixed t > 0,
where s1(t) is the minimum point and s, (t) is the maximum point;

(2) ifu € (0, 1), then f,(s,t) has exactly two critical points 0 < t1(s) < ta(s) for any fixed s > 0,
where t1(s) is the minimum point and to(s) is the maximum point.
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Proof. (1) For any u € D'?(R®) with u* # 0, by (2.1) we get

%(s,t) =g7"1 <52‘7Hu+H2 —1—54*5’/ l(x)4>u+\u+]2dx
aS R3

45202 /W 1(x) s |1 [Pz — 8~ )urt |6 — ],t/]RSh(x)|u+|‘7dx>.
Define the function B;(s) : [0, +o0) — R by
Bu(s) = Tt | +54 [ 1) Pelx
JIR
45202 /IR 1(2) s |1 [z — 09 urt ]S — y/ﬁ{ah(x)\uﬂqu.

For any fixed t > 0, we deduce af“ai(;’t) = 0 iff B¢(s) = 0 on (0, +o0). By direct calculation, we

derive

Bils) = 2= st P+ (4 — )50 [ 1000 ut P

]R3

£ @= )8 [ 1(x)guefu Pdx = (6— )" Iu g
R
=511t P+ = )5 [ 10yl P
R3

+ @) [ 1)l Px — (6 - )5t g

R3

Then, for any fixed t > 0, it is easy to obtain that B;(s) has exactly one critical point smax > 0
and B; is increasing in (0, Smax) While decreasing in (Smax, +00). Moreover, we define (s) :
[0, +00) — R by

7(s) = St P = st g~ [ (ol .
R
By direct computation, we have
Yi(s) = 2= @)s' |2 = (6 — )5 Tu* 5.

1
Obviously, ; takes the maximum at § = [%] *and
6

_ 4 (2—g\ " |lut| 7
ma(9) = 1(6) = g0 (2=0) " L [ e
: |

6-—q\6—¢ wtl” R
Denote
2—q 6—q
T S E e AR, )|
Aul - 6_ 6_ D1,21£3 +-£0 639 ’
q q ucDV2(R3),ut# ’“+‘62 fRSh(x)’u—i-‘qu

It follows from (H), the Holder and Sobolev inequalities that

4 (2-g\7 §%
> — =: . (2.8)
. 6—q<6—q> e M
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Then, once u € (0,1), we can deduce Bt(Smax) > Bt(5) > 7:(5) > 0 for any u € DV?(IR3)
with u™ # 0. As a consequence, for any fixed t > 0, if 4 € (0,u1), there exist exactly
so(t) > s1(t) > 0 such that Bi(s1(t)) = 0 and Bi(s2(t)) = 0, which imply %(51(15),1‘) =
%(sz(t),t) = 0. Furthermore, we can easily deduce that f, is decreasing in s € (0,s1(t)),
increasing in s € (s1(t),s2(t)) and decreasing in s € (s3(t), +00). Thus, s1(t) is the minimum
point and s(t) is the maximum point, (1) is verified.

(2) Similar to the proof of (1). We define Bs(t) : [0, +00) — R by

Bo(t) = 0w |F 4+ 670 [ 1)y u P
R3
+ 2052 [ 1y a0 f—p [ (ol i
R3
For any fixed s > 0, we deduce af”ai(f’t) = 0 iff Bs(t) = 0. It can be verified that Bs(t) has exactly

one critical point tmax > 0 and B is increasing in (0, fmax) While decreasing in (fmax, +00).
Denote

o (2 q)ﬁ " -]
1~z - \z_ . _ 6-37 :
OTANO=A) DDA o B ()l adx

It is clear that i = u; > 1. Repeating the discussion in the proof of (1), we may obtain
Bs(tmax) > 0 for any p € (0,u1). Then, for any fixed s > 0, if u € (0, u1), there exist
exactly f(s) > t1(s) > 0 such that Bs(t1(s)) = Bs(t2(s)) = 0, which imply %(S, f(s)) =
af“ £(s,t2(s)) = 0. Besides, it is easy to see that f, is decreasing in t € (0,1(s)), increasing in
t 6 (t1(s), t2(s)) and decreasing in t € (t2(s), +00). Naturally, 1 (s) is the minimum point and
ta(s) is the maximum point. Thus, (2) is proved. O

Lemma 2.3. If 0 < u < yy, then f(l 1) # 0 and aatf;‘(l 1) # 0 for any u € M,,.

Proof. For any u € /\/lw according to Lemma 2.2-(1), f,(s,1) has exactly two critical points
s1(1) and s5(1), with 22 (s1(1),1) > 0 and £ (s5(1),1) < 0. Since u € M,, it follows that
% (1,1) = 0. This implies either s;(1) = 1 or s(1) = 1. Consequently, af”( 1,1) # 0.
Analogously, by Lemma 2.2-(2) we conclude Bathu (1,1) # 0. Thus the proof is completed. [

In order to find sign-changing solution of system (1.6), we introduce the following two sets

M, = {ueM,, azf”(l 1) <0, a;f”(1 1)<0}
and
M, = {ue/\/l .azf”(1 1) <0, azf“(1 1) <0, v/(1 )<0}. (2.9)

In the following, we will use the properties of f,, to show that the set M}, 7 @ and M}, = M.

Lemma 2.4. There exists some constant ¢ > 0, independent of u, such that ||u*|| > c forall u € M,
Moreover, the functional Z,, is coercive on My,.
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Proof. For any u € M,/ from > f £(1,1) <0, aatfz” (1,1) <0, (2.6), (2.7) and the Sobolev inequal-
ity, it follows that

@= P < @=q)u|P+ (@ —q) [ 10)gu*Pdx+ @ —q) [ 105)gu” Pax
< (6= lw*f; < (6= )5 |,

which shows

[@fgwwi_

Moreover, for any u € M, by the Holder inequality one has

—_

Ty(u) = Zy(u) — 1<I;(u),u>
— 1|]u]|2+ i\u|g —u (; — i) ‘/R3h(x)|u]”/dx
g5l = (5 = 3 ) e ol

2
1 2 1 1
- il Z_Z q
24 ull —i—mm[ B ( )yhhéqt}
6
1 ’ % 6—¢q 1 1 I
—— -1k 2 . 2.10
gl =T [ (2 DY hl s )t @10
As a consequence, we deduce that Zy is coercive on ./\/l;j Thus this lemma is proved. ]

Lemma 2.5. There exists yp € (0, 1) such that, once y € (0,u2), for any u € DY*(R®) with
u® # 0, there exists a unique pair (s,,t,) € R* x R satisfying s,u™ + t,u~ € M. Moreover,

Ty(suu™ + tyu~) = rsr}%(IM(su+ +tu).

Proof. Let 0 < p < uy. For any u € DY*(IR®) with u™ # 0, by Lemma 2.2, we recall that %
satisfies

(a) 3 fu £(s,t2(s)) = 0 forall s > 0,

(b) aatle, (s,t2(s)) < 0foralls >0,

(¢c) % (s,t) is continuous and has continuous partial derivatives in [0, +-o0) x [0, +-00).

Then, applying the implicit function theorem, we have that af #(s,t) = 0 determines an implicit

function #,(s) with continuous derivative on [0, +c0). Slmﬂarly, we may deduce that % (s,t) =
0 determines an implicit function s (¢) with continuous derivative on [0, +c0). For any s > 0,
from f “ (s,t2(s)) = 0 and %(5, t) < 0 for sufficiently large t > 0, we claim that

tr(s) <s fors > 0 large enough. (2.11)

If not, for some sufficiently large s, it follows from the definition (2.2) that af £(s,ta(s)) <0,
which contradicts f £ (s,t2(s)) = 0. Analogously, there holds that

sp(t) <t fort > 0 large enough. (2.12)
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Hence, by (2.11), (2.12), t2(0) > 0, s(0) > 0, the continuity of #,(s) and s> (), we conclude the
curves of t(s) and s(t) intersect at some point (s, t,) € R* x R*. Naturally, % af “ sy, ty) =
af “ (sy,ty) = 0. In addition, from (2.5) and (b) it follows that

9 fu ¢
th(s) = _ oz (5, 12(5) >0 foranys > 0.

2
2lu(s, ta(s))

Therefore, for any s > 0, we obtain that the function #; is increasing in s € (0, +c0). Similarly,
the function s; is increasing in t € (0, +o0). Hence, there exists unique pair (s,, t,) € RT x Rt
such that

ofu ofu
af;(surtu) = af;(swtu) =0
and
£, 027,
afz (su,ty) <0, atJ;l (su,ty) <0,

that is, s,u™ + t,u~ € M; . Moreover, we prove (s, t,) is the unique maximum point of f,
on (RT)2. For this, it suffices to show (1,1) is the unique maximum point of f, on (R*)? for

any u € M, . Denote
B 453 < gc? >
(6—q)qlh| o \2—9

Set pp = min {1, fi.} and let p € (0,p2). For any u € M,;, we consider the Hessian

matrix
Py Gl
1,1 1,1
H(u) = (aazsz (1,1) 55 ( ))

2—q
7

=i
)

u a u
tos (1’ 1) até (1 1)

With (2.5)—(2.7) in hand, we deduce from Lemma 2.4 and the Holder inequality that the
determinant

detH(u) = |4t [P+ [ L)t o4 416N ™ 2) s = a6 =) [ o) 1]

clat P [ @0 0P a0 dx =l —g) [ bl ]

—4 </1R3 l(x)cpu+|u\2dx)2

[P 4 1) Pt = s — )5 1)

a2 [ el Pt 6 = )4 1]

4 </]RSl(x)4>u+|u\2dx>2

2||u+||2+4/ X) s |u|Pdx —

Y]

L
2—

v

4 —2q [HO—a)qlh]
q 451
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2

4-2g [P‘(6 - Q)L7|h|6gq] =i

x Q2w (P44 [ 100gfu Px

4 ( /IR 3 l(x)cpu+|u_|2dx>2

4-2 n(6— )|h|
>4 2dx { 2¢?
s 10 ™ Pt 4 26 = = [ e

q 453

L
2—

L
2-

(6 —q)qlh] s
+4/ X))y |u™|Pdx { 2 _i- 211
482

%
N 2c2—4_2q n(6— |h’ 44— 26] u(6— )|h|
q 451 451

>0,

L
2—

92

which together with =+ (1,1) < 0 implies that H(u) is negative definite. Consequently, there
holds that Z,, (u* 4 u ) = maxs>0 Zu(su™ +tu~) for any u € M, . Therefore, the proof is
completed. O

Lemma 2.6. Once p € (0, i), then M, # @ and Mj, = M.,

Proof. 1t is obvious that M; C M, . Moreover, for any u € M, it follows from the proof of
Lemma 2.5 that (1,1) is the unique maximum point of f,(s,t). Observe f,(r,r) = ¢, (r), we
know that 1 is a maximum point of . Naturally, ¢;/(1) < 0. By the arbitrariness of u € M,
we derive ./\/l; - ./\/l;‘, That is, ./\/l; = /\/l;j Then, due to Lemma 2.5, we know M;‘, # Q.
Thus the proof is completed. ]

In the forthcoming lemmas, we construct a minimizing sequence of Palais-Smale type for

*= inf T, .
m‘u uér/l\/l;‘l V(u)

First, we estimate the level m;j As we know, the extremal functions of the best Sobolev
constant S are
3lel
U() = —22 e
(82 + ’ . ’2)2

Choose two cut-off functions ¢, € C§° (R, [0,1]) such that,

1, x€ By (O) ,

p(x) = .

0, x e B5(0),

and

0, x€By(0),

P(x) =11, x € By(0)\B3(0),
0, x e Bg(0).
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Define ue(x) = @(x)Ue(x), ve(x) = —p(x)Ue(x) and we(x) = ue(x) + ve(x). Clearly, w; (x) =
ue(x) and w, (x) = ve(x). Following the similar calculations to [3], we conclude that, for € > 0
small enough,

( 3
/3 Ve [2dx = S2 + O(e),
R
/RS lue[0dx = 3 + O(e),
| el = o), (2.13)
/RS Vo [2dx = O(e),

/11{3 |ve|0dx € [C1£3, C283] )

\

Lemma 2.7. There exists pz € (0, pa) such that 0 < my, < %S% — Dy% for any u € (0, uz), where

_6

D=1 (3-1) Inle 2]

Proof. Firstly, let
67
< min 44 [ 3¢2 ]6‘7
' sl gt LBE-0] [
—-1q

From (2.10) and Lemma 2.4, it follows that

1 L6 q 1 g6 1
>7 2_ 6— - = >7 2 *
Ty(u) > 2k g [(E/ 4> |h| e (25/)6} > g YueM

which implies m;j > 0. Due to Lemma 2.5, there exist some s;, f, > 0 such that s.u, + t,v, €
M; Observe spt u, N spt v, = &, we have

s
T, (sette + t:0) = £||ugy|2 4/ x)pu u2dx — 5 |u€|g—yq€/wh(x)|ug|‘7dx

B T
S loelP 4 [ 1otz — loclg — 5 [ hx)focltdx
+5 / X) s, |teve|Pdx. (2.14)

By the semigroup property of convolution (see [16, Theorem 5.9]) and the Young inequality,
we have

/]Rsl(x)ﬁbssus’tsvstX

1 (1 : :
= E/W <\x! w 1(x)|[sette] )l(x)|tgv€| dx
1 ) 1 ,
X |5sus’ W*l( )|tsz)€’ dx

; 1)
2 2
’2*l(x)\s€ug]2> —|—(|xl‘2*l(x)\tgvg\2) dx
| *1(x)

1
|x
1
x x |sgu8|2> 1(x)|seve|* + <|x! * l(x)]tgug|2> 1(x)|teve|*dx

/w<|x|2*z
Jo(
o (e

~an

1
< —
— 8
_ 1
- 81

2524/ () g 2dx+2/ X) o, 3.
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Then, (2.14) can be reduced to

s2 st
Ty(seue + teve) < = / | Ve |2 dx + 2/ ¢ue|u8|2dx——€|ug\6 ng /Rah(x)\ug\qu

€ 2 p 5 _i 6
+E/]RS\V05! dx—l—E/RSl(x)(pve\vg] dx 6 |v€’6' (215)

For convenience, we introduce

)= % [ vuPaxs E [ i %Zw—%Jé”&/mmwwn
q Jrs
tz
Tole) = 5 [ |Voedx+ 2/ ¥)ho, V2% — = |vgyg.

By Lemma 2.1-(3) and (2.13), for € > 0 small enough, we get

6
Ji(e) < s257 4+ sH|13 — 5 2, (2.16)

jz(E) < Cgfgé + C4t382 — Cltg 3

= Cs (tev/e)” + Ca (tev/e) " — C1 (tev/E)°.

Define G(t) = Cst?> + Cy4t* — C1t® for t > 0. We infer that G has exactly one critical point
fmax > 0 and G(tmax) > G(0) = 0. Hence,

Jo(e) < max G(t) = G(tmax)- 2.17)

t>0

Noting m;‘l < 7, (Sette + teve), we deduce from (2.15)—(2.17) that s, is bounded from above
and below by positive constants. Namely, there exist S1,52 > 0 such that 51 < s, < S, for
e > 0 small enough. From Lemma 2.5, we know t, = f5(s¢) and f, is continuous on [0, +c0).
Therefore, t; is also bounded from above. Then, by (2.15), (2.13) and Lemma 2.1-(4) we can
obtain that, for € > 0 small enough,

Ty (sette + te0e)

< max (S el — e +S§/ 1(x)¢ uzdx—ysi/ h(x) e "dx + O(e)
— >0 \2"° 6 e 2 JRr3 te'e g Jr3 ¢

o P
3}

Sq
+ # 1Bt = 2L [ () fue|7dx + O(e)
q JR3

1 HSi
3rad . a1y g
[S2+0(e3)]> 1

IN

/ h(x)|ue|7dx + O(e)
R3

S%—I—C5s——/ h(x) |ue | .
g e
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_6

Recalling that h(x) > ﬁ for all |x| <1 and some § > 3 — 2—3’7, if letting € = 57, we conclude

51
C5s—u/ h(x)|ue|7dx
q Jr3

g1 74
<ce-F1 [ S ax
q JB.i0) |x|P(e2 + |x|2)2
q g
= C5€—;Ms3*%*/8i >

[
q /B1(0) |x|B(1+ |x|?)2

< Cse — C6ys3’%’ﬁ

= ‘1,[5%'1 {C5 — C6ﬂ1+ﬁ(27%75)]

6

_D]/lﬁfq

A

for y > 0 small enough. Thus, there exists some small

< min 4q [ i ]66{7
" TR INCHEREICET)

such that my, < Ty, (seute + teve) < %S% — Dyﬁ for any p € (0, u3), the proof is completed. [

Lemma 2.8. There exists some p* € (0, u3) such that my, has a minimizing sequence {u,} C M,
satisfying T, (u,) = 0 in [DV*(R3)]* for any u € (0, p*).

Proof. Observe that 7, is coercive on M}, due to Lemma 2.4, so Z, is bounded from blow
on M;; It follows from Lemmas 2.3 and 2.4 that M; is complete. Then, by the Ekeland
variational principle, there exists a minimizing sequence {u,} C Mj, such that

Z,(0) zzy<un)—%uv—unll, Vo e M (2.18)
For each n and ¢ € D'?(IR3), we define the functions i : R® — R by
hE(t,s,T) = /]R3 |V (un + te + su;f + Tu,;)ﬂzdx
) LV, sty | (4 b+ sy + 7wy )P

_/1123 \(un+t(p+suj{+Tu;)i}6dx—y/]R3h(x) |(tn + te + su;f + Tuy, )= |7 dx.

It is clear that #;5(0,0,0) = 0 and ki (t,s, T) are of class C'. Let v, = u, + to + su;} + tu,, .
We have

+
sz/ Vol Vufdx+2 [ 1(x)g0,05ufdx
ds R3 R?

4—2/IR3l(x)cpvgvnuf{dx—6/]R3 o, Pu,rdx — ugq /Rsh(x)|vf{|‘7’1uf{dx.
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Because of {u,} C Mj, there holds
oh;5(0,0,0)
OO0 o [ 10 P — a8+ (2~ ) [ (ol 1
Through direct calculation, we have
oh;f (t,s,T)

5 —2/ Vo - Vu, dx—|—2/ X) o, 03 1y, dx

+2 [ 10 pyondx—6 [ Joi Fugdx— g [ h(0lofr uyd,

which implies
oh;(0,0,0) 2
T — 2/ (Pu+ |1/l | dx > O
Analogously, we can obtain

W%gfunzz uw@gWﬂ%x—4WHZ+M@—ﬂ)4jwwWﬂWx

]R3
and

o
‘””J_z/ )yt x> 0.

Consider the Jacobi determinant
oht(0,00) okt (0 0,0)

_ i)
detM = |5, Goo) an (000)
Js aT

It is easy to see that
detM = |2 [ 106)p, o s = 4l [+ (2 = q) [ 0o x|
R " R
2 Pt =t 4 2= ) [ o) 1]

2
—4 </IR3 l(x)(;)u;]u,ﬂzdx) :

Since {u,} C M;, there results that
o 1P+ [ 1G4 [ 160 st Pt =[G = o [ ) 9x = 0,

o 1P+ [ 1G4 [ 1G6) gy Pt = [ 1§ = o [ 1)y P = 0.

Therefore,

detM = | ~2fu |2 =2 [ 10y oy Pt 2l 5+ uh =) [ o) 1]

|2 =2 1) o P = 2l 54 4= ) ) 1]

2
([ 1000, b P )

(2.19)

(2.20)

> i 2 12 = 20— ) (Lo 2+ oy ([ 1009, b P ) [ ol

=2 ) (1 P 5+ 1500 o P ) [ Gl 7

(2.21)
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Since Lemma 2.7 and (2.10) imply

6

3 1 26—q (/1 q |67
34 2 gl =l T | (- ) e nf|

there exists some C; > 0, independent of y, such that sup, ||u,|| < Cy. Then, by the Holder
inequality and Lemma 2.1-(3), we have

16 < 87 | < 5708
and
/3 (o " < |h o 1§ < ST2R| o [luir |7 < S™2h| s CF,
R
J1G0 y Px < [

Then, if letting u < u*, where

u, gs—312c4.
nlé 2“7

o100y [ < 5212\ ¢us

q
c*S2

g 2 y
2(4 - q)lh!ﬁcyﬂ'(l +573C; + S3I3C)

by (2.21) and Lemma 2.4, we obtain
det M > 2¢* > 0. (2.22)

Therefore, by the implicit function theorem, there exist J, and two functions s,(t), T,(t) €
C! ((—6n,61),R) such that s,(0) = 7,(0) and for any t € (—8y,3),

BE(t, 5, (1), Tu(t)) = 0, (2.23)
which means that
Up = Up + t@ + su(t)u + Tu(t)u, € M, fort € (=6, 6,).

Further, according to (2.3) and (2.4), by the continuity, there exists some 9, € (0,J,) such that

2o (1,1) < 0and L2 (1,1) < 0, ie.

Un = Uy +t@ 45y ()1t + T(H)u, € My, for t € (=5, 6,). (2.24)

We assert that both { ol } and { H(PH } are bounded for any ¢ € D?(IR%) \ {0}. It follows
from (2.23) that

ok, (0,0,0) n ah;! (0, O,O)S, n oh;t(0,0,0)

a a5 O+ =m0 =0
oh, (0,0,0) 9h, (0,0,0) , oh,, (0,0,0) B
o5 + s s,(0) + — a0 7,(0) =0,
where
ahﬁ(O 0,0)

82 4 :2/ Vui-Vq)dx+2/ 1(x)@,+ unpdx

+2/ X) o, 1y pdx — 6/ luik P pdx — yq/ ) |uf |7 pdx. (2.25)
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By Cramer’s rule, there results

S

. (2.26)

, 1 (ah; o okt ah,;>
(0,0,0)

”(0>:detM ot 9T ot ot

Recalling sup ||u,|| < Cy, from (2.19), (2.20), (2.25), Lemma 2.1 and the Holder inequality we
n

deduce

Jt ot Jt ot

oht ok ok okt
‘( ) < Csllgl.

(0,0,0)

Then, (2.22) and (2.26) imply that |s},(0)| < Co| ¢|| for any ¢ € D¥?(IR®) \ {0}. Similarly, we
deduce that |7/, (0)| < Cyo||¢|| for any ¢ € D¥*(IR®) \ {0}. Due to (2.18), there holds that

1
Tu(un) — Ly (un + to + su(B) iy + tu(Huy, ) < Etho + s (t)uyy + T (t)uy, |-

Dividing t in both sides of the above inequality and letting t+ — 07, by sup, |u.|| < Cy,
[54(0)] < Goll@]l and [7;(0)] < Ciol| ]| we have

(T (), 9) < 19+ shO)f + )y || < gl ¥ € DIAR),
which implies
(T ) 9)| < gl v @ € DR,
Consequently, we obtain that Zj (u,) — 0 as n — oo. Thus, the proof is completed. O

Lemma 2.9. For any p € (0,u*), every sequence {u,} C M such that T, (uy) 5 my, and

T, (un) 25 0 has a convergent subsequence. Moreover, up to a subsequence, u; = uf in D2(IR3).

Proof. Since Lemma 2.4 implies that 7, is coercive on M}, and Lemma 2.7 implies mj, < oo,
we deduce that {u,} is bounded in D'?(R%). Up to a subsequence, there exists some u, €
D'2(R?) such that, as n — o,

Uy = Uy, in D?(R%) N L%(R?), (2.27)
up(x) — uy(x) ae in R3. (2.28)

By using standard arguments, we derive Z;(uy,) = 0. From (2.28), it easily follows that

[uu|T — |uy|? in Li (R3) in the sense of subsequence, which and & € L& (R3) imply

/]Rah(x)]un]qu 5 /]R3h(x)]u},]‘1dx. (2.29)

Let v, = u, — uy. By the Brézis-Lieb lemma [22, Lemma 1.32], (2.29) and Lemma 2.1-(6), we
have

* 1 2 1 2 Lo 6 M
mi0(1) = Tuuen) = llunl + [ 1) ididx — glonle =L [ o)l

1 1
= Slloull® = Zloalg + Z () (2.30)
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and

o(1) = (Ty(ua), ) = lualP+ [ 109,12 = ual§ =g | n()lu i
= ||oall* = [valg- (2.31)

Denote limsup,, ., |oa||* = a. By (2.31) and the definition of the best Sobolev constant, we

geta < S7343, which implies either a = 0 or a > S2. We claim that a >S 3 can’t occur. From
I;’l(u;,) =0, (2.30), (2.31) and (2.10), it follows that

. [1 1 1
= lim [3||vn||2 + L, (uy) — 4(Ié(uy),uy>] > §S

_6

— D‘I/l67q’

NIw

n—oo

which together with Lemma 2.7 gives a contradiction. Therefore, 2 = 0. That is, u, — u; in
D2(R3).
Further, we prove u;; — u;; in D'2(R?). It follows from {u,} C M}, and Z),(u,) = 0 that

i1 4 [ 1) Pt = g+ e [ o),
(2.32)
1P+ [ 1) Pt = g+ o [ ) 9.
It is easy to verify that
i (%) — 1 ()] < Jun(x) —up(x)], VxR, (2.33)
which and u, — 1, in D?(RR%) lead to
+ + 6 + + 6 6 -3 6
e — lols| < | = | < futw =l < Sl — 1 ° 25 0 (234)

6
Noting u, — u, in L°(R%), we deduce |u;f|7 — |u?ﬂ”’ in L7(R%) in the sense of subsequence.
Therefore,

/ x)|uk|9dx —>/ |ui\”’dx (2.35)

6
Moreover, since | € L*(R%) and |u, — uyl¢ — 0 implies that |[u;|* — |u;ﬂ2‘5 — 0in L3(R?)
up to a subsequence, by the Holder inequality and Lemma 2.1-(3) we have

5
6 §\°
< urls ([, HOOIE i 2~ P )
5

< S U ]alun 2 (/Rall(xﬂsuuﬂh!“ﬂz‘sdx)

n

= 0. (2.36)

0 s P — P

Observe |lu;—L ? € L3 (R3), we deduce from (2.27) and Lemma 2.1-(5) that

5o,

L) (Puy — ¢u,) |,y |Pdx




20 Y.-R. Liand Y.-Y. Li

by which and (2.36) we get

/IR (@), i P B /R (), lut Plx. (2.37)
Now, by combining (2.32), (2.34), (2.35) and (2.37) we conclude ||u;||*> — ||uf||2, which to-
gether with (2.27) implies ;¥ = u:f in D'?(IR®). Thus the lemma is proved. O

Next, with the above preliminary lemmas in hand, we end the proof of our main result.

Proof of Theorem 1.1. For any y € (0, *), due to Lemmas 2.8 and 2.7, there exists a sequence
{u,} C M;ﬁ such that, as n — oo,

1 6 *
T (n) = my € <0,35% —Dy66q> and T/, (it,) =+ 0 in [DLZ(]R3)} .
According to Lemma 2.9, up to a subsequence, there exists some u, satisfying u, — u,
and u; — uy in D'?(R%) as n — co. Therefore, we get Z),(u,) = 0 and Z,(u,) = m.
Moreover, Lemma 2.4 says |[u;|| > ¢ > 0, which implies uff # 0. By combining the above
arguments, we know that u,, is a sign-changing solution of system (1.6) with positive energy.

Thus Theorem 1.1 is proved. O
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