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Abstract. In this paper, we consider the following Schrödinger–Poisson system with
critical-concave nonlinearity:{

−∆u + l(x)ϕu = |u|4u + µh(x)|u|q−2u in R3,
−∆ϕ = l(x)u2 in R3,

where µ > 0, 1 < q < 2 and the functions l, h satisfy some mild conditions. By
constraining the energy functional of the above problem on a closed subset of the sign-
changing Nehari manifold, we obtain a sign-changing solution with positive energy for
µ > 0 small enough.
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1 Introduction and main results

This paper focuses on standing waves of the following nonlinear Schrödinger–Poisson system:{
iψt = −∆ψ + ϕ(x)ψ − g(x, ψ),

−∆ϕ = |ψ|2,
(1.1)

where g ∈ C(R3 × C, R) and ψ : R3 × [0, T] → C. Such systems arise as electromagnetic
field models in quantum mechanics and has a strong physical background. The first equation
of system (1.1) describes the evolution of the quantum state of microscopic particles (such
as electrons) over time, while the second equation (i.e. Poisson equation) is often used to
describe the relationship between the electrostatic potential and the charge distribution. The
interaction of charge particles with electromagnetic field can be described by coupling the
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nonlinear Schrödinger equation and the Poisson equation. For more physical backgrounds of
Schrödinger–Poisson system, we recommend readers to refer to [2, 6].

In the past decades, many mathematicians studied the standing wave solution of type
ψ(x, t) = eiλtu(x) for system (1.1), which corresponds to a solution u of the elliptic system{

−∆u + u + ϕu = g(x, u) in R3,

−∆ϕ = u2 in R3.
(1.2)

For the case of g(x, u) = |u|p−2u, D’Aprile and Mugnai [7] showed that system (1.2) has no
nontrivial solution once p ≥ 6 or p ≤ 2 by establishing a related Pohožaev identity, Ruiz [18]
showed that system (1.2) does not admit any nontrivial solution if p ≤ 3 and has positive
solution if p ∈ (3, 6), in this case ground state solution was further proved by Azzollini and
Pomponio in [1]. Afterwards, Schrödinger–Poisson systems with Sobolev critical exponent
and subcritical perturbation were investigated by many scholars. For example, see the cases
of superlinear perturbations in [1, 25], the cases of sublinear perturbations in [13] and the
references therein. As we will recall below, various existence results of sign-changing solutions
for Schrödinger–Poisson systems were widely studied in [4, 5, 8–12, 15, 17, 19–21, 23, 24, 26, 27].
More precisely, for the Schrödinger–Poisson system{

−∆u + V(x)u + ϕu = K(x) f (u) in R3,

−∆ϕ = u2 in R3,
(1.3)

Ianni [10] studied the case of V = K = 1, f (u) = |u|p−2u and p ∈ [4, 6), by the heat flow
method he got a radially nodal solution changing sign exactly k − 1 times for every integer
k ≥ 2. Meanwhile, Kim and Seok [12] proved the similar results to [10] for p ∈ (4, 6) by
using the variational methods. Wang and Zhou assumed K = 1, f (u) = |u|p−2u, p ∈ (4, 6)
and V satisfies compactness condition in [21], where they proved a sign-changing solution
of system (1.3) by combining the constraint minimization argument and the Brouwer degree
theory. In [19], by using a quantitative deformation lemma, Shuai and Wang extended the
results in [21] to the case of general nonlinearity f , which satisfies an increasing condition.
If V, K satisfy some vanishing conditions, Liang et al. [15] proved system (1.3) has a sign-
changing solution. Chen and Tang [4] assumed that f ∈ C(R, R) satisfies a weaker condition
than the increasing condition, by using a direct approach they obtained a ground state sign-
changing solution with precisely two nodal domains. After this, Chen and Tang assumed that
f satisfies asymptotically cubic or super-cubic conditions in [5], where they proved a sign-
changing solution with precisely two nodal domains under mild assumptions on asymptotic
behaviors of V, K. When K = 1 and f satisfies super-cubic conditions, via the method of
invariant sets of descending flow, Liu et al. [17] proved that system (1.3) has infinitely many
sign-changing solutions. In [26], Zhong and Tang studied the system{

−∆u + V(x)u + ϕu = |u|2u + µh(x)u in R3,

−∆ϕ = u2 in R3,

where V ∈ C(R3, R+) satisfies a compactness condition and h ∈ L
3
2 (R3) \ {0} is nonnegative,

by using the sign-changing Nehari manifold they got a ground state sign-changing solution
for any µ ∈ (0, µ1), with µ1 denoting the first eigenvalue of −∆u + u = µh(x)u in H1(R3). In
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[8], Gu et al. considered the following system with subquadratic or quadratic nonlinearity:{
−∆u + V(x)u + λϕu = f (u) in R3,

−∆ϕ = u2 in R3,

where V ∈ C(R3, R+) is radial if f is subquadratic and coercive if f is quadratic, by following
the ideas of [17] they verified the existence and multiplicity of sign-changing solution for
λ > 0 small enough.

As for the existence of sign-changing solutions for the critical Schrödinger–Poisson system{
−∆u + V(x)u + K(x)ϕu = |u|4u + g(x, u) in R3,

−∆ϕ = K(x)u2 in R3,
(1.4)

there are seldom results proved in [9, 11, 20, 27]. In [27], Zhong and Tang studied the case
of V = 1 and g(x, u) = µh(x)u, under some mild conditions on K, g, by combining the
variational methods and sign-changing Nehari manifold they obtained a ground state sign-
changing solution of system (1.4) for any µ ∈ (0, µ1), where µ1 is the first eigenvalue of
−∆u + u = µh(x)u in H1(R3). When K = 1, f (x, u) = µ f (u) satisfies an increasing condition
and V satisfies compactness condition, Wang et al. [20] proved that system (1.4) has a least-
energy sign-changing solution for µ > 0 large enough. Later, Kang et al. [11] concerned with
the following Schrödinger–Poisson system with steep well potential:{

−∆u + (λV(x) + 1)u + ϕu = |u|4u + |u|p−2u in R3,

−∆ϕ = u2 in R3,

where p ∈ (5, 6), by combining constrained minimization arguments and Hofer’s deformation
lemma, they proved the existence and concentration of ground sign-changing solution for
λ > 0 large enough. Subsequently, Huang et al. [9] extended the results in [11] to the case of
general perturbed nonlinearity.

Recently, sign-changing solutions on the Schrödinger–Poisson systems with concave-
convex nonlinearity have attracted wide attention. Yang and Ou [24] studied the Schrödinger–
Poisson system −∆u +

1
4π

∫
Ω

u2(y)
|x − y|dyu = |u|q−2u + µ|u|p−2u in Ω,

u(x) = 0 on ∂Ω,
(1.5)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 1 < p < 2 and 4 < q < 6. By
using constrained variational method and quantitative deformation lemma, they proved that
there exists some constant µ∗ > 0 such that system (1.5) has a sign-changing solution with
positive energy for any µ < µ∗. After this work, Yang and Tang [23] studied the Schrödinger–
Poisson system {

−∆u + V(x)u + ϕu = |u|p−2u + µK(x)|u|q−2u in R3,

−∆ϕ = u2 in R3,

where 1 < q < 2, 4 < p < 6, K ∈ L
6

6−q (R3) and V ∈ C(R3, R) satisfies a weakly coercive
assumption. By constructing a nonempty closed subset of the sign-changing Nehari manifold,
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they obtained a sign-changing solution with positive energy provided µ < µ∗ for some µ∗ > 0.
Inspired by the above works, we are interested in whether the critical-concave Schrödinger–
Poisson system has sign-changing solution. In this paper, we consider sign-changing solution
of the following Schrödinger–Poisson system:{

−∆u + l(x)ϕu = |u|4u + µh(x)|u|q−2u in R3,

−∆ϕ = l(x)u2 in R3,
(1.6)

where 1 < q < 2, µ > 0, 0 < l(·) ∈ L2(R3) ∩ L3(R3) and the potential function h satisfies the
condition

(H) 0 < h(·) ∈ L
6

6−q (R3) and there exists some β ∈
(
3 − 2q

3 , 3 − q
2

)
such that h(x) ≥ 1

|x|β for
all |x| ≤ 1.

As is well known, the Poisson equation is uniquely solvable. Indeed, for any u ∈ D1,2(R3),
define the linear functional

Lu(v) =
∫

R3
l(x)u2vdx, ∀ v ∈ D1,2(R3).

It follows from l ∈ L2(R3), the Hölder and Sobolev inequalities that

|Lu(v)| ≤ |l|2|u|26|v|6 ≤ S− 3
2 |l|2∥u∥2∥v∥.

Then, by the Lax–Milgram theorem, there exists a unique ϕu ∈ D1,2 (R3) such that −∆ϕu =

l(x)u2 in
[
D1,2(R3)

]∗, where

ϕu(x) =
1

4π

∫
R3

l(y)u2 (y)
|x − y| dy.

Therefore, system (1.6) can be reduced to the semilinear Schrödinger equation with a non-local
term

−∆u + l(x)ϕuu = |u|4u + µh(x)|u|q−2u in R3. (1.7)

Then, we say that u ∈ D1,2 (R3) satisfying (1.7) is a weak solution of system (1.6) for short.
Moreover, the solution u of system (1.6) is called as a sign-changing solution of system (1.6)
once u± ̸= 0, where

u+(x) := max {u, 0} and u−(x) := min {u, 0} .

By the variational methods, weak solution of system (1.6) correspond to critical point of the
functional

Iµ(u) =
1
2
∥u∥2 +

1
4

∫
R3

l(x)ϕuu2dx − 1
6

∫
R3

|u|6dx − µ

q

∫
R3

h(x)|u|qdx, ∀ u ∈ D1,2(R3).

Based on [14, Lemma 2.3], it is standard to verify that the functional Iµ is well-defined in
D1,2(R3) and is of class C1. Naturally, we introduce the Nehari manifold of system (1.6) as
follows:

Nµ =
{

u ∈ D1,2 (R3) \ {0} :
〈
I ′

µ(u), u
〉
= 0

}
.
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As we will see, Nµ is closely related to the behavior of the fiber map ψu : t → Iµ (tu), which
is defined for any u ∈ D1,2 (R3) and t > 0 by

ψu(t) =
t2

2
∥u∥2 +

t4

4

∫
R3

l(x)ϕuu2dx − t6

6
|u|66 −

µtq

q

∫
R3

h(x)|u|qdx.

By a simple calculation, we obtain

ψ′
u(t) = t∥u∥2 + t3

∫
R3

l(x)ϕuu2dx − t5|u|66 − µtq−1
∫

R3
h(x)|u|qdx

and

ψ′′
u (t) = ∥u∥2 + 3t2

∫
R3

l(x)ϕuu2dx − 5t4 |u|66 − (q − 1)µtq−2
∫

R3
h (x) |u|q dx.

Clearly, for any u ∈ D1,2(R3) \ {0}, there holds ψ′
u(t) = 0 iff tu ∈ Nµ. Specially, ψ′

u (1) = 0 iff
u ∈ Nµ. To search for sign-changing solutions of system (1.6), we introduce the sign-changing
Nehari manifold

Mµ =
{

u ∈ D1,2(R3) : u± ̸= 0, ⟨I ′
µ(u), u±⟩ = 0

}
.

Now we present our main result of this paper.

Theorem 1.1. Assume (H) holds, then there exists some µ∗ > 0 such that system (1.6) possesses a
sign-changing solution uµ with positive energy for any µ ∈ (0, µ∗).

Remark 1.2. Our result extends the works [23, 24] to critical-concave Schrödinger–Poisson
systems. The methods of studying subcritical concave-convex case in [23, 24] are invalid for
critical-concave case, we need to search for a sign-changing Palais–Smale sequence and esti-
mate the corresponding level less than a prescribed threshold to recover the loss of compact-
ness. As we know, the Nehari manifold is a good choice to look for two positive solutions
of system (1.6) by splitting the manifold into two parts and using minimization arguments
on each parts. However, this idea cannot be directly used to prove sign-changing solutions,
since we may not verify that the corresponding parts of the sign-changing Nehari manifold
are complete. Thus we work in a closed subset of the one part of Mµ. Moreover, we propose a
question whether system (1.6) has (ground state) sign-changing solution with negative energy.

The rest of this paper focus on proving Theorem 1.1 in Sect. 2. Throughout the present
paper, we acknowledge the following notations:

• Lp(R3) is the usual Lebesgue space with the norm |u|p =
(∫

R3 |u|pdx
) 1

p for p ∈ [1,+∞).

• C∞
0 (R3) consists of infinitely times differentiable functions with compact support in R3.

• D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm ∥u∥ =

(∫
R3 |∇u|2dx

) 1
2 .

• The best Sobolev constant S = inf
{
∥u∥2 : u ∈ D1,2(R3) \ {0}, |u|6 = 1

}
.

• For r > 0 and y ∈ R3, Br(y) :=
{

x ∈ R3 : |x − y| < r
}

and Bc
r(y) = R3 \ Br(y).

• Ci (i ∈ N+) denotes positive constant and R+ = (0,+∞).

• o(1) denotes a quantity tending to 0 as n → ∞.
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2 Proof of Theorem 1.1

In this section, we will present some preliminary lemmas before completing the proof of our
main result. For any u ∈ D1,2(R3) with u± ̸= 0, let the function fu: [0,+∞)× [0,+∞) → R be
defined as fu(s, t) = Iµ(su+ + tu−). From the Fubini theorem, we get

fu(s, t) =
s2

2
∥u+∥2 +

s4

4

∫
R3

l(x)ϕu+ |u+|2dx − s6

6
|u+|66 −

µsq

q

∫
R3

h(x)|u+|qdx

+
t2

2
∥u−∥2 +

t4

4

∫
R3

l(x)ϕu− |u−|2dx − t6

6
|u−|66 −

µtq

q

∫
R3

h(x)|u−|qdx

+
1
2

s2t2
∫

R3
l(x)ϕu+ |u−|2dx.

Through direct computations, we have

∂ fu

∂s
(s, t) = s∥u+∥2 + s3

∫
R3

l(x)ϕu+ |u+|2dx + st2
∫

R3
l(x)ϕu+ |u−|2dx

− s5|u+|66 − µsq−1
∫

R3
h(x)|u+|qdx, (2.1)

∂ fu

∂t
(s, t) = t∥u−∥2 + t3

∫
R3

l(x)ϕu− |u−|2dx + ts2
∫

R3
l(x)ϕu+ |u−|2dx

− t5|u−|66 − µtq−1
∫

R3
h(x)|u−|qdx, (2.2)

∂2 fu

∂s2 (s, t) = ∥u+∥2 + 3s2
∫

R3
l(x)ϕu+ |u+|2dx + t2

∫
R3

l(x)ϕu+ |u−|2dx

− 5s4|u+|66 − µ(q − 1)sq−2
∫

R3
h(x)|u+|qdx, (2.3)

∂2 fu

∂t2 (s, t) = ∥u−∥2 + 3t2
∫

R3
l(x)ϕu− |u−|2dx + s2

∫
R3

l(x)ϕu+ |u−|2dx

− 5t4|u−|66 − µ(q − 1)tq−2
∫

R3
h(x)|u−|qdx (2.4)

and

∂2 fu

∂s∂t
(s, t) =

∂2 fu

∂t∂s
(s, t) = 2st

∫
R3

l(x)ϕu+ |u−|2dx. (2.5)

It is easy to see that

∂ fu

∂s
(s, t) =

〈
I ′

µ(su+ + tu−), u+
〉

and
∂ fu

∂t
(s, t) =

〈
I ′

µ(su+ + tu−), u−
〉

,

which indicate that, for any u ∈ D1,2(R3) with u± ̸= 0, su+ + tu− ∈ Mµ if and only if
∂ fu
∂s (s, t) = 0 and ∂ fu

∂t (s, t) = 0, that is

Mµ =

{
u ∈ D1,2(R3) : u± ̸= 0,

∂ fu

∂s
(1, 1) = 0,

∂ fu

∂t
(1, 1) = 0

}
.
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Moreover, for any u ∈ Mµ, by (2.1)–(2.4) we have

∂2 fu

∂s2 (1, 1) = ∥u+∥2 + 3
∫

R3
l(x)ϕu+ |u+|2dx +

∫
R3

l(x)ϕu+ |u−|2dx

− 5|u+|66 − µ(q − 1)
∫

R3
h(x)|u+|qdx

= (2 − q)∥u+∥2 + (4 − q)
∫

R3
l(x)ϕu+ |u+|2dx

+ (2 − q)
∫

R3
l(x)ϕu+ |u−|2dx − (6 − q)|u+|66

= − 4∥u+∥2 − 2
∫

R3
l(x)ϕu+ |u+|2dx − 4

∫
R3

l(x)ϕu+ |u−|2dx

− µ(q − 6)
∫

R3
h(x)|u+|qdx (2.6)

and

∂2 fu

∂t2 (1, 1) = ∥u−∥2 + 3
∫

R3
l(x)ϕu− |u−|2dx +

∫
R3

l(x)ϕu+ |u−|2dx

− 5|u−|66 − µ(q − 1)
∫

R3
h(x)|u−|qdx

= (2 − q)∥u−∥2 + (4 − q)
∫

R3
l(x)ϕu− |u−|2dx

+ (2 − q)
∫

R3
l(x)ϕu+ |u−|2dx − (6 − q)|u−|66

= − 4∥u−∥2 − 2
∫

R3
l(x)ϕu− |u−|2dx − 4

∫
R3

l(x)ϕu+ |u−|2dx

− µ(q − 6)
∫

R3
h(x)|u−|qdx. (2.7)

To begin with, we give some useful properties for the non-local term in the following

Lemma 2.1. For the unique solution ϕu of the Poisson equation, there hold

(1) ϕu(·) ≥ 0 for any u ∈ D1,2(R3);

(2) ϕtu = t2ϕu for any t > 0 and u ∈ D1,2(R3);

(3)
∫

R3 l(x)ϕuu2dx ≤ |ϕu|6 |lu2| 6
5
≤ S−1|l|22|u|46;

(4)
∫

R3 l(x)ϕuu2dx ≤ |ϕu|6 |lu2| 6
5
≤ S−1|l|23|u|44 for any u ∈ L4(R3);

(5) if un ⇀ u in D1,2 (R3), then ϕun ⇀ ϕu in D1,2 (R3);

(6) if un ⇀ u in D1,2 (R3), then
∫

R3 l(x)ϕun u2
ndx →

∫
R3 l(x)ϕuu2dx.

Proof. (1)–(4) are easily verified. (5) and (6) were proved in [14], we omit the details here.

Lemma 2.2. There exists some µ1 > 0 such that, for any u ∈ D1,2(R3) with u± ̸= 0, there holds that

(1) if µ ∈ (0, µ1), then fu(s, t) has exactly two critical points 0 < s1(t) < s2(t) for any fixed t ≥ 0,
where s1(t) is the minimum point and s2(t) is the maximum point;

(2) if µ ∈ (0, µ1), then fu(s, t) has exactly two critical points 0 < t1(s) < t2(s) for any fixed s ≥ 0,
where t1(s) is the minimum point and t2(s) is the maximum point.
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Proof. (1) For any u ∈ D1,2(R3) with u± ̸= 0, by (2.1) we get

∂ fu

∂s
(s, t) = sq−1

(
s2−q∥u+∥2 + s4−q

∫
R3

l(x)ϕu+ |u+|2dx

+ s2−qt2
∫

R3
l(x)ϕu+ |u−|2dx − s6−q|u+|66 − µ

∫
R3

h(x)|u+|qdx
)

.

Define the function βt(s) : [0,+∞) → R by

βt(s) = s2−q∥u+∥2 + s4−q
∫

R3
l(x)ϕu+ |u+|2dx

+ s2−qt2
∫

R3
l(x)ϕu+ |u−|2dx − s6−q|u+|66 − µ

∫
R3

h(x)|u+|qdx.

For any fixed t ≥ 0, we deduce ∂ fu(s,t)
∂s = 0 iff βt(s) = 0 on (0,+∞). By direct calculation, we

derive

β′
t(s) = (2 − q)s1−q∥u+∥2 + (4 − q)s3−q

∫
R3

l(x)ϕu+ |u+|2dx

+ (2 − q)s1−qt2
∫

R3
l(x)ϕu+ |u−|2dx − (6 − q)s5−q|u+|66

= s1−q
[
(2 − q)∥u+∥2 + (4 − q)s2

∫
R3

l(x)ϕu+ |u+|2dx

+ (2 − q)t2
∫

R3
l(x)ϕu+ |u−|2dx − (6 − q)s4|u+|66

]
.

Then, for any fixed t ≥ 0, it is easy to obtain that βt(s) has exactly one critical point smax > 0
and βt is increasing in (0, smax) while decreasing in (smax,+∞). Moreover, we define γt(s) :
[0,+∞) → R by

γt(s) = s2−q∥u+∥2 − s6−q|u+|66 − µ
∫

R3
h(x)|u+|qdx.

By direct computation, we have

γ′
t(s) = (2 − q)s1−q∥u+∥2 − (6 − q)s5−q|u+|66.

Obviously, γt takes the maximum at s̄ =
[ (2−q)∥u+∥2

(6−q)|u+|66

] 1
4 and

max
s>0

γt(s) = γt(s̄) =
4

6 − q

(
2 − q
6 − q

) 2−q
4 ∥u+∥

6−q
2

|u+|
6−3q

2
6

− µ
∫

R3
h(x)|u+|qdx.

Denote

µ+
1 =

4
6 − q

(
2 − q
6 − q

) 2−q
4

inf
u∈D1,2(R3),u+ ̸=0

∥u+∥
6−q

2

|u+|
6−3q

2
6

∫
R3 h(x)|u+|qdx

.

It follows from (H), the Hölder and Sobolev inequalities that

µ+
1 ≥ 4

6 − q

(
2 − q
6 − q

) 2−q
4 S

6−q
4

|h| 6
6−q

=: µ1. (2.8)



Sign-changing solution for critical Schrödinger–Poisson system 9

Then, once µ ∈ (0, µ1), we can deduce βt(smax) ≥ βt(s̄) > γt(s̄) > 0 for any u ∈ D1,2(R3)

with u+ ̸= 0. As a consequence, for any fixed t ≥ 0, if µ ∈ (0, µ1), there exist exactly
s2(t) > s1(t) > 0 such that βt(s1(t)) = 0 and βt(s2(t)) = 0, which imply ∂ fu

∂s (s1(t), t) =
∂ fu
∂s (s2(t), t) = 0. Furthermore, we can easily deduce that fu is decreasing in s ∈ (0, s1(t)),

increasing in s ∈ (s1(t), s2(t)) and decreasing in s ∈ (s2(t),+∞). Thus, s1(t) is the minimum
point and s2(t) is the maximum point, (1) is verified.

(2) Similar to the proof of (1). We define βs(t) : [0,+∞) → R by

βs(t) = t2−q∥u−∥2 + t4−q
∫

R3
l(x)ϕu− |u−|2dx

+ t2−qs2
∫

R3
l(x)ϕu+ |u−|2dx − t6−q|u−|66 − µ

∫
R3

h(x)|u−|qdx.

For any fixed s ≥ 0, we deduce ∂ fu(s,t)
∂t = 0 iff βs(t) = 0. It can be verified that βs(t) has exactly

one critical point tmax > 0 and βs is increasing in (0, tmax) while decreasing in (tmax,+∞).
Denote

µ−
1 =

4
6 − q

(
2 − q
6 − q

) 2−q
4

inf
u∈D1,2(R3),u− ̸=0

∥u−∥
6−q

2

|u−|
6−3q

2
6

∫
R3 h(x)|u−|qdx

.

It is clear that µ+
1 = µ−

1 ≥ µ1. Repeating the discussion in the proof of (1), we may obtain
βs(tmax) > 0 for any µ ∈ (0, µ1). Then, for any fixed s ≥ 0, if µ ∈ (0, µ1), there exist
exactly t2(s) > t1(s) > 0 such that βs(t1(s)) = βs(t2(s)) = 0, which imply ∂ fu

∂t (s, t1(s)) =
∂ fu
∂t (s, t2(s)) = 0. Besides, it is easy to see that fu is decreasing in t ∈ (0, t1(s)), increasing in

t ∈ (t1(s), t2(s)) and decreasing in t ∈ (t2(s),+∞). Naturally, t1(s) is the minimum point and
t2(s) is the maximum point. Thus, (2) is proved.

Lemma 2.3. If 0 < µ < µ1, then ∂2 fu
∂s2 (1, 1) ̸= 0 and ∂2 fu

∂t2 (1, 1) ̸= 0 for any u ∈ Mµ.

Proof. For any u ∈ Mµ, according to Lemma 2.2-(1), fu(s, 1) has exactly two critical points

s1(1) and s2(1), with ∂2 fu
∂s2 (s1(1), 1) > 0 and ∂2 fu

∂s2 (s2(1), 1) < 0. Since u ∈ Mµ, it follows that
∂ fu
∂s (1, 1) = 0. This implies either s1(1) = 1 or s2(1) = 1. Consequently, ∂2 fu

∂s2 (1, 1) ̸= 0.

Analogously, by Lemma 2.2-(2) we conclude ∂2 fu
∂t2 (1, 1) ̸= 0. Thus the proof is completed.

In order to find sign-changing solution of system (1.6), we introduce the following two sets

M−
µ =

{
u ∈ Mµ :

∂2 fu

∂s2 (1, 1) < 0,
∂2 fu

∂t2 (1, 1) < 0
}

and

M∗
µ =

{
u ∈ Mµ :

∂2 fu

∂s2 (1, 1) < 0,
∂2 fu

∂t2 (1, 1) < 0, ψ′′
u (1) < 0

}
. (2.9)

In the following, we will use the properties of fu to show that the set M∗
µ ̸= ∅ and M∗

µ = M−
µ .

Lemma 2.4. There exists some constant c > 0, independent of µ, such that ∥u±∥ ≥ c for all u ∈ M−
µ .

Moreover, the functional Iµ is coercive on M∗
µ.
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Proof. For any u ∈ M−
µ , from ∂2 fu

∂s2 (1, 1) < 0, ∂2 fu
∂t2 (1, 1) < 0, (2.6), (2.7) and the Sobolev inequal-

ity, it follows that

(2 − q)∥u±∥2 < (2 − q)∥u±∥2 + (4 − q)
∫

R3
l(x)ϕu± |u±|2dx + (2 − q)

∫
R3

l(x)ϕu+ |u−|2dx

< (6 − q)|u±|66 ≤ (6 − q)S−3∥u±∥6,

which shows

∥u±∥ >

[
(2 − q)S3

6 − q

] 1
4

=: c > 0.

Moreover, for any u ∈ M∗
µ, by the Hölder inequality one has

Iµ(u) = Iµ(u)−
1
4
〈
I ′

µ(u), u
〉

=
1
4
∥u∥2 +

1
12

|u|66 − µ

(
1
q
− 1

4

) ∫
R3

h(x)|u|qdx

≥ 1
4
∥u∥2 +

1
12

|u|66 − µ

(
1
q
− 1

4

)
|h| 6

6−q
|u|q6

≥ 1
4
∥u∥2 + min

t≥0

[
1

12
t6 − µ

(
1
q
− 1

4

)
|h| 6

6−q
tq
]

≥ 1
4
∥u∥2 − µ

6
6−q

6 − q
6

[(
1
q
− 1

4

)
|h| 6

6−q
(2q)

q
6

] 6
6−q

. (2.10)

As a consequence, we deduce that Iµ is coercive on M∗
µ. Thus this lemma is proved.

Lemma 2.5. There exists µ2 ∈ (0, µ1) such that, once µ ∈ (0, µ2), for any u ∈ D1,2(R3) with
u± ̸= 0, there exists a unique pair (su, tu) ∈ R+ × R+ satisfying suu+ + tuu− ∈ M−

µ . Moreover,

Iµ(suu+ + tuu−) = max
s,t>0

Iµ(su+ + tu−).

Proof. Let 0 < µ < µ1. For any u ∈ D1,2(R3) with u± ̸= 0, by Lemma 2.2, we recall that ∂ fu
∂s

satisfies

(a) ∂ fu
∂t (s, t2(s)) = 0 for all s ≥ 0,

(b) ∂2 fu
∂t2 (s, t2(s)) < 0 for all s ≥ 0,

(c) ∂ fu
∂t (s, t) is continuous and has continuous partial derivatives in [0,+∞)× [0,+∞).

Then, applying the implicit function theorem, we have that ∂ fu
∂t (s, t) = 0 determines an implicit

function t2(s) with continuous derivative on [0,+∞). Similarly, we may deduce that ∂ fu
∂s (s, t) =

0 determines an implicit function s2(t) with continuous derivative on [0,+∞). For any s ≥ 0,
from ∂ fu

∂t (s, t2(s)) = 0 and ∂ fu
∂t (s, t) ≤ 0 for sufficiently large t > 0, we claim that

t2(s) < s for s > 0 large enough. (2.11)

If not, for some sufficiently large s, it follows from the definition (2.2) that ∂ fu
∂t (s, t2(s)) < 0,

which contradicts ∂ fu
∂t (s, t2(s)) = 0. Analogously, there holds that

s2(t) < t for t > 0 large enough. (2.12)
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Hence, by (2.11), (2.12), t2(0) > 0, s2(0) > 0, the continuity of t2(s) and s2(t), we conclude the
curves of t2(s) and s2(t) intersect at some point (su, tu) ∈ R+ × R+. Naturally, ∂ fu

∂s (su, tu) =
∂ fu
∂t (su, tu) = 0. In addition, from (2.5) and (b) it follows that

t′2(s) = −
∂2 fu
∂t∂s (s, t2(s))
∂2 fu
∂t2 (s, t2(s))

> 0 for any s > 0.

Therefore, for any s > 0, we obtain that the function t2 is increasing in s ∈ (0,+∞). Similarly,
the function s2 is increasing in t ∈ (0,+∞). Hence, there exists unique pair (su, tu) ∈ R+ ×R+

such that

∂ fu

∂s
(su, tu) =

∂ fu

∂t
(su, tu) = 0

and

∂2 fu

∂s2 (su, tu) < 0,
∂2 fu

∂t2 (su, tu) < 0,

that is, suu+ + tuu− ∈ M−
µ . Moreover, we prove (su, tu) is the unique maximum point of fu

on (R+)2. For this, it suffices to show (1, 1) is the unique maximum point of fu on (R+)2 for
any u ∈ M−

µ . Denote

µ̄2 =
4S

q
2

(6 − q)q|h| 6
6−q

(
qc2

2 − q

) 2−q
2

.

Set µ2 = min {µ1, µ̄2} and let µ ∈ (0, µ2). For any u ∈ M−
µ , we consider the Hessian

matrix

H(u) =

 ∂2 fu
∂s2 (1, 1) ∂2 fu

∂s∂t (1, 1)
∂2 fu
∂t∂s (1, 1) ∂2 fu

∂t2 (1, 1)

 .

With (2.5)−(2.7) in hand, we deduce from Lemma 2.4 and the Hölder inequality that the
determinant

det H(u) =
[

4∥u+∥2 +
∫

R3

(
2l(x)ϕu+ |u+|2 + 4l(x)ϕu+ |u−|2

)
dx − µ(6 − q)

∫
R3

h(x)|u+|qdx
]

×
[

4∥u−∥2 +
∫

R3

(
2l(x)ϕu− |u−|2 + 4l(x)ϕu+ |u−|2

)
dx − µ(6 − q)

∫
R3

h(x)|u−|qdx
]

− 4
(∫

R3
l(x)ϕu+ |u−|2dx

)2

≥
[

4∥u+∥2 + 4
∫

R3
l(x)ϕu+ |u−|2dx − µ(6 − q)S− q

2 |h| 6
6−q

∥u+∥q
]

×
[

4∥u−∥2 + 4
∫

R3
l(x)ϕu+ |u−|2dx − µ(6 − q)S− q

2 |h| 6
6−q

∥u−∥q
]

− 4
(∫

R3
l(x)ϕu+ |u−|2dx

)2

≥

2∥u+∥2 + 4
∫

R3
l(x)ϕu+ |u−|2dx − 4 − 2q

q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q


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×

2∥u−∥2 + 4
∫

R3
l(x)ϕu+ |u−|2dx − 4 − 2q

q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q


− 4

(∫
R3

l(x)ϕu+ |u−|2dx
)2

≥ 4
∫

R3
l(x)ϕu+ |u−|2dx

2c2 − 4 − 2q
q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q


+ 4

∫
R3

l(x)ϕu+ |u−|2dx

2c2 − 4 − 2q
q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q


+

2c2 − 4 − 2q
q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q

×

2c2 − 4 − 2q
q

[
µ(6 − q)q|h| 6

6−q

4S
q
2

] 2
2−q


> 0,

which together with ∂2 fu
∂s2 (1, 1) < 0 implies that H(u) is negative definite. Consequently, there

holds that Iµ(u+ + u−) = maxs,t>0 Iµ(su+ + tu−) for any u ∈ M−
µ . Therefore, the proof is

completed.

Lemma 2.6. Once µ ∈ (0, µ2), then M∗
µ ̸= ∅ and M∗

µ = M−
µ .

Proof. It is obvious that M∗
µ ⊂ M−

µ . Moreover, for any u ∈ M−
µ , it follows from the proof of

Lemma 2.5 that (1, 1) is the unique maximum point of fu(s, t). Observe fu(r, r) = ψu(r), we
know that 1 is a maximum point of ψu. Naturally, ψ′′

u (1) < 0. By the arbitrariness of u ∈ M−
µ ,

we derive M−
µ ⊂ M∗

µ. That is, M−
µ = M∗

µ. Then, due to Lemma 2.5, we know M∗
µ ̸= ∅.

Thus the proof is completed.

In the forthcoming lemmas, we construct a minimizing sequence of Palais–Smale type for

m∗
µ = inf

u∈M∗
µ

Iµ(u).

First, we estimate the level m∗
µ. As we know, the extremal functions of the best Sobolev

constant S are

Uε(·) =
3

1
4 ε

1
2

(ε2 + | · |2)
1
2

, ε > 0.

Choose two cut-off functions φ, ψ ∈ C∞
0
(
R3, [0, 1]

)
such that,

φ(x) =

{
1, x ∈ B1(0),

0, x ∈ Bc
2(0),

and

ψ(x) =


0, x ∈ B2(0),

1, x ∈ B4(0) \ B3(0),

0, x ∈ Bc
5(0).
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Define uε(x) = φ(x)Uε(x), vε(x) = −ψ(x)Uε(x) and wε(x) = uε(x) + vε(x). Clearly, w+
ε (x) =

uε(x) and w−
ε (x) = vε(x). Following the similar calculations to [3], we conclude that, for ε > 0

small enough, 

∫
R3

|∇uε|2dx = S
3
2 + O(ε),∫

R3
|uε|6dx = S

3
2 + O(ε3),∫

R3
|uε|4dx = O(ε),∫

R3
|∇vε|2dx = O(ε),∫

R3
|vε|6dx ∈

[
C1ε3, C2ε3] .

(2.13)

Lemma 2.7. There exists µ3 ∈ (0, µ2) such that 0 < m∗
µ < 1

3 S
3
2 − Dµ

6
6−q for any µ ∈ (0, µ3), where

D = 6−q
6

[(
1
q −

1
4

)
|h| 6

6−q
(2q)

q
6

] 6
6−q .

Proof. Firstly, let

µ < min

µ2,
4q

(4 − q)|h| 6
6−q

(2q)
q
6

[
3c2

4(6 − q)

] 6−q
6

 .

From (2.10) and Lemma 2.4, it follows that

Iµ(u) ≥
1
4

c2 − µ
6

6−q
6 − q

6

[(
1
q
− 1

4

)
|h| 6

6−q
(2q)

q
6

] 6
6−q

≥ 1
8

c2, ∀ u ∈ M∗
µ,

which implies m∗
µ > 0. Due to Lemma 2.5, there exist some sε, tε > 0 such that sεuε + tεvε ∈

M∗
µ. Observe spt uε ∩ spt vε = ∅, we have

Iµ(sεuε + tεvε) =
s2

ε

2
∥uε∥2 +

s4
ε

4

∫
R3

l(x)ϕuε u
2
ε dx − s6

ε

6
|uε|66 −

µsq
ε

q

∫
R3

h(x)|uε|qdx

+
t2
ε

2
∥vε∥2 +

t4
ε

4

∫
R3

l(x)ϕvε v
2
ε dx − t6

ε

6
|vε|66 −

µtq
ε

q

∫
R3

h(x)|vε|qdx

+
1
2

∫
R3

l(x)ϕsεuε |tεvε|2dx. (2.14)

By the semigroup property of convolution (see [16, Theorem 5.9]) and the Young inequality,
we have ∫

R3
l(x)ϕsεuε |tεvε|2dx

=
1

4π

∫
R3

(
1
|x| ∗ l(x)|sεuε|2

)
l(x)|tεvε|2dx

=
1

4π

∫
R3

(
1

|x|2 ∗ l(x)|sεuε|2
)(

1
|x|2 ∗ l(x)|tεvε|2

)
dx

≤ 1
8π

∫
R3

(
1

|x|2 ∗ l(x)|sεuε|2
)2

+

(
1

|x|2 ∗ l(x)|tεvε|2
)2

dx

=
1

8π

∫
R3

(
1
|x| ∗ l(x)|sεuε|2

)
l(x)|sεvε|2 +

(
1
|x| ∗ l(x)|tεuε|2

)
l(x)|tεvε|2dx

=
s4

ε

2

∫
R3

l(x)ϕuε u
2
ε dx +

t4
ε

2

∫
R3

l(x)ϕvε v
2
ε dx.
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Then, (2.14) can be reduced to

Iµ(sεuε + tεvε) ≤
s2

ε

2

∫
R3

|∇uε|2dx +
s4

ε

2

∫
R3

l(x)ϕuε |uε|2dx − s6
ε

6
|uε|66 −

µsq
ε

q

∫
R3

h(x)|uε|qdx

+
t2
ε

2

∫
R3

|∇vε|2dx +
t4
ε

2

∫
R3

l(x)ϕvε |vε|2dx − t6
ε

6
|vε|66. (2.15)

For convenience, we introduce

J1(ε) =
s2

ε

2

∫
R3

|∇uε|2dx +
s4

ε

2

∫
R3

l(x)ϕuε u
2
ε dx − s6

ε

6
|uε|66 −

µsq
ε

q

∫
R3

h(x)|uε|qdx,

J2(ε) =
t2
ε

2

∫
R3

|∇vε|2dx +
t4
ε

2

∫
R3

l(x)ϕvε v
2
ε dx − t6

ε

6
|vε|66.

By Lemma 2.1-(3) and (2.13), for ε > 0 small enough, we get

J1(ε) ≤ s2
ε S

3
2 + s4

ε |l|22 −
s6

ε

12
S

3
2 , (2.16)

J2(ε) ≤ C3t2
ε ε + C4t4

ε ε2 − C1t6
ε ε3

= C3
(
tε

√
ε
)2

+ C4
(
tε

√
ε
)4 − C1

(
tε

√
ε
)6 .

Define G(t) = C3t2 + C4t4 − C1t6 for t ≥ 0. We infer that G has exactly one critical point
tmax > 0 and G(tmax) > G(0) = 0. Hence,

J2(ε) ≤ max
t≥0

G(t) = G(tmax). (2.17)

Noting m∗
µ ≤ Iµ(sεuε + tεvε), we deduce from (2.15)−(2.17) that sε is bounded from above

and below by positive constants. Namely, there exist S1, S2 > 0 such that S1 ≤ sε ≤ S2 for
ε > 0 small enough. From Lemma 2.5, we know tε = t2(sε) and tε is continuous on [0,+∞).
Therefore, tε is also bounded from above. Then, by (2.15), (2.13) and Lemma 2.1-(4) we can
obtain that, for ε > 0 small enough,

Iµ(sεuε + tεvε)

≤ max
s>0

(
s2

2
∥uε∥2 − s6

6
|uε|66

)
+

S4
2

2

∫
R3

l(x)ϕuε u
2
ε dx −

µSq
1

q

∫
R3

h(x)|uε|qdx + O(ε)

≤ ∥uε∥3

3|uε|36
+

1
2

S4
2S−1|l|23|uε|44 −

µSq
1

q

∫
R3

h(x)|uε|qdx + O(ε)

≤ 1
3

[
S

3
2 + O(ε)

] 3
2[

S
3
2 + O(ε3)

] 1
2
−

µSq
1

q

∫
R3

h(x)|uε|qdx + O(ε)

≤ 1
3

S
3
2 + C5ε −

µSq
1

q

∫
R3

h(x)|uε|qdx.
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Recalling that h(x) ≥ 1
|x|β for all |x| ≤ 1 and some β > 3 − 2q

3 , if letting ε = µ
6

6−q , we conclude

C5ε −
µSq

1
q

∫
R3

h(x)|uε|qdx

≤ C5ε −
µSq

1
q

∫
B1(0)

3
q
4 ε

q
2

|x|β(ε2 + |x|2)
q
2

dx

= C5ε − µε3− q
2−β Sq

1
q

∫
B 1

ε
(0)

3
q
4

|x|β(1 + |x|2)
q
2

dx

≤ C5ε − C6µε3− q
2−β

= µ
6

6−q
[
C5 − C6µ

1+ 6
6−q (2−

q
2−β)

]
< −Dµ

6
6−q

for µ > 0 small enough. Thus, there exists some small

µ3 < min

µ2,
4q

(4 − q)|h| 6
6−q

(2q)
q
6

[
3c2

4(6 − q)

] 6−q
6


such that m∗

µ ≤ Iµ(sεuε + tεvε) <
1
3 S

3
2 − Dµ

2
2−q for any µ ∈ (0, µ3), the proof is completed.

Lemma 2.8. There exists some µ∗ ∈ (0, µ3) such that m∗
µ has a minimizing sequence {un} ⊂ M∗

µ

satisfying I ′
µ(un)

n−→ 0 in [D1,2(R3)]∗ for any µ ∈ (0, µ∗).

Proof. Observe that Iµ is coercive on M∗
µ due to Lemma 2.4, so Iµ is bounded from blow

on M∗
µ. It follows from Lemmas 2.3 and 2.4 that M∗

µ is complete. Then, by the Ekeland
variational principle, there exists a minimizing sequence {un} ⊂ M∗

µ such that

m∗
µ ≤ Iµ(un) ≤ m∗

µ +
1
n

,

Iµ(v) ≥ Iµ(un)−
1
n
∥v − un∥, ∀ v ∈ M∗

µ. (2.18)

For each n and φ ∈ D1,2(R3), we define the functions h±n : R3 → R by

h±n (t, s, τ) =
∫

R3

∣∣∇(un + tφ + su+
n + τu−

n )
±∣∣2 dx

+
∫

R3
l(x)ϕun+tφ+su+

n +τu−
n
|(un + tφ + su+

n + τu−
n )

±|2dx

−
∫

R3

∣∣(un + tφ + su+
n + τu−

n )
±∣∣6 dx − µ

∫
R3

h(x)
∣∣(un + tφ + su+

n + τu−
n )

±∣∣q dx.

It is clear that h±n (0, 0, 0) = 0 and h±n (t, s, τ) are of class C1. Let vn = un + tφ + su+
n + τu−

n .
We have

∂h+n (t, s, τ)

∂s
= 2

∫
R3

∇v+n · ∇u+
n dx + 2

∫
R3

l(x)ϕvn v+n u+
n dx

+ 2
∫

R3
l(x)ϕv+n vnu+

n dx − 6
∫

R3
|v+n |5u+

n dx − µq
∫

R3
h(x)|v+n |q−1u+

n dx.
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Because of {un} ⊂ M∗
µ, there holds

∂h+n (0, 0, 0)
∂s

= 2
∫

R3
l(x)ϕu+

n
|u+

n |2dx − 4|u+
n |66 + µ(2 − q)

∫
R3

h(x)|u+
n |qdx.

Through direct calculation, we have

∂h+n (t, s, τ)

∂τ
= 2

∫
R3

∇v+n · ∇u−
n dx + 2

∫
R3

l(x)ϕvn v+n u−
n dx

+ 2
∫

R3
l(x)ϕv+n vnu−

n dx − 6
∫

R3
|v+n |5u−

n dx − µq
∫

R3
h(x)|v+n |q−1u−

n dx,

which implies

∂h+n (0, 0, 0)
∂τ

= 2
∫

R3
l(x)ϕu+

n
|u−

n |2dx > 0. (2.19)

Analogously, we can obtain

∂h−n (0, 0, 0)
∂τ

= 2
∫

R3
l(x)ϕu−

n
|u−

n |2dx − 4|u−
n |66 + µ(2 − q)

∫
R3

h(x)|u−
n |qdx (2.20)

and
∂h−n (0, 0, 0)

∂s
= 2

∫
R3

l(x)ϕu−
n
|u+

n |2dx > 0.

Consider the Jacobi determinant

det M =

∣∣∣∣∣ ∂h+(0,0,0)
∂s

∂h+(0,0,0)
∂τ

∂h−(0,0,0)
∂s

∂h−(0,0,0)
∂τ

∣∣∣∣∣ .

It is easy to see that

det M =

[
2
∫

R3
l(x)ϕu+

n
|u+

n |2dx − 4|u+
n |66 + µ(2 − q)

∫
R3

h(x)|u+
n |qdx

]
×

[
2
∫

R3
l(x)ϕu−

n
|u−

n |2dx − 4|u−
n |66 + µ (2 − q)

∫
R3

h(x)|u−
n |qdx

]
− 4

(∫
R3

l(x)ϕu−
n
|u+

n |2dx
)2

.

Since {un} ⊂ M∗
µ, there results that

∥u+
n ∥2 +

∫
R3

l(x)ϕu+
n
|u+

n |2dx +
∫

R3
l(x)ϕu−

n
|u+

n |2dx − |u+
n |66 − µ

∫
R3

h(x)|u+
n |qdx = 0,

∥u−
n ∥2 +

∫
R3

l(x)ϕu−
n
|u−

n |2dx +
∫

R3
l(x)ϕu+

n
|u−

n |2dx − |u−
n |66 − µ

∫
R3

h(x)|u−
n |qdx = 0.

Therefore,

det M =

[
−2∥u+

n ∥2 − 2
∫

R3
l(x)ϕu+

n
|u−

n |2dx − 2|u+
n |66 + µ(4 − q)

∫
R3

h(x)|u+
n |qdx

]
×

[
−2∥u−

n ∥2 − 2
∫

R3
l(x)ϕu+

n
|u−

n |2dx − 2|u−
n |66 + µ(4 − q)

∫
R3

h(x)|u−
n |qdx

]
− 4

(∫
R3

l(x)ϕu−
n
|u+

n |2dx
)2

≥ 4∥u+
n ∥2∥u−

n ∥2 − 2µ(4 − q)
(
∥u−

n ∥2 + |u−
n |66 +

∫
R3

l(x)ϕu+
n
|u−

n |2dx
) ∫

R3
h(x)|u+

n |qdx

− 2µ(4 − q)
(
∥u+

n ∥2 + |u+
n |66 +

∫
R3

l(x)ϕu+
n
|u−

n |2dx
) ∫

R3
h(x)|u−

n |qdx. (2.21)
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Since Lemma 2.7 and (2.10) imply

1
3

S
3
2 ≥ 1

4
∥un∥2 − µ

6
6−q
3

6 − q
6

[(
1
q
− 1

4

)
|h| 6

6−q
(2q)

q
6

] 6
6−q

,

there exists some C7 > 0, independent of µ, such that supn ∥un∥ ≤ C7. Then, by the Hölder
inequality and Lemma 2.1-(3), we have

|u±
n |66 ≤ S−3∥u±

n ∥6 ≤ S−3C6
7

and ∫
R3

h(x)|u±
n |qdx ≤ |h| 6

6−q
|u±

n |
q
6 ≤ S− q

2 |h| 6
6−q

∥u±
n ∥q ≤ S− q

2 |h| 6
6−q

Cq
7,∫

R3
l(x)ϕu+

n
|u−

n |2dx ≤
∣∣ϕu+

n

∣∣
6

∣∣l(x)|u−
n |2

∣∣
6
5
≤ S− 1

2 |l|2
∥∥ϕu+

n

∥∥|u−
n |26 ≤ S−3|l|22C4

7 .

Then, if letting µ < µ∗, where

µ∗ =
c4S

q
2

2(4 − q)|h| 6
6−q

C2+q
7 (1 + S−3C4

7 + S−3|l|22C2
7)

,

by (2.21) and Lemma 2.4, we obtain

det M ≥ 2c4 > 0. (2.22)

Therefore, by the implicit function theorem, there exist δn and two functions sn(t), τn(t) ∈
C1 ((−δn, δn), R) such that sn(0) = τn(0) and for any t ∈ (−δn, δn),

h±n (t, sn(t), τn(t)) = 0, (2.23)

which means that

vn = un + tφ + sn(t)u+
n + τn(t)u−

n ∈ Mµ for t ∈ (−δn, δn).

Further, according to (2.3) and (2.4), by the continuity, there exists some δ′n ∈ (0, δn) such that
∂2 fvn
∂s2 (1, 1) < 0 and ∂2 fvn

∂t2 (1, 1) < 0, i.e.

vn = un + tφ + sn(t)u+
n + τn(t)u−

n ∈ M∗
µ for t ∈ (−δ′n, δ′n). (2.24)

We assert that both
{ s′n(0)

∥φ∥
}

and
{ τ′

n(0)
∥φ∥

}
are bounded for any φ ∈ D1,2(R3) \ {0}. It follows

from (2.23) that 
∂h+n (0, 0, 0)

∂t
+

∂h+n (0, 0, 0)
∂s

s′n(0) +
∂h+n (0, 0, 0)

∂τ
τ′

n(0) = 0,

∂h−n (0, 0, 0)
∂t

+
∂h−n (0, 0, 0)

∂s
s′n(0) +

∂h−n (0, 0, 0)
∂τ

τ′
n(0) = 0,

where

∂h±n (0, 0, 0)
∂t

= 2
∫

R3
∇u±

n · ∇φdx + 2
∫

R3
l(x)ϕu±

n
un φdx

+ 2
∫

R3
l(x)ϕun u±

n φdx − 6
∫

R3
|u±

n |5φdx − µq
∫

R3
h(x)|u±

n |q−1φdx. (2.25)
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By Cramer’s rule, there results

s′n(0) =
1

det M

(
∂h−n
∂t

∂h+n
∂τ

− ∂h+n
∂t

∂h−n
∂τ

) ∣∣∣∣
(0,0,0)

. (2.26)

Recalling sup
n

∥un∥ ≤ C7, from (2.19), (2.20), (2.25), Lemma 2.1 and the Hölder inequality we

deduce ∣∣∣∣∣
(

∂h+n
∂t

∂h−n
∂τ

− ∂h−n
∂t

∂h+n
∂τ

) ∣∣∣∣
(0,0,0)

∣∣∣∣∣ ≤ C8∥φ∥.

Then, (2.22) and (2.26) imply that |s′n(0)| ≤ C9∥φ∥ for any φ ∈ D1,2(R3) \ {0}. Similarly, we
deduce that |τ′

n(0)| ≤ C10∥φ∥ for any φ ∈ D1,2(R3) \ {0}. Due to (2.18), there holds that

Iµ(un)− Iµ

(
un + tφ + sn(t)u+

n + τn(t)u−
n
)
≤ 1

n
∥tφ + sn(t)u+

n + τn(t)u−
n ∥.

Dividing t in both sides of the above inequality and letting t → 0+, by supn ∥un∥ ≤ C7,
|s′n(0)| ≤ C9∥φ∥ and |τ′

n(0)| ≤ C10∥φ∥ we have

〈
I ′

µ(un), φ
〉
≤ 1

n
∥∥φ + s′n(0)u

+
n + τ′

n(0)u
−
n
∥∥ ≤ C11

n
∥φ∥, ∀ φ ∈ D1,2(R3),

which implies ∣∣〈I ′
µ(un), φ

〉∣∣ ≤ C11

n
∥φ∥ , ∀ φ ∈ D1,2(R3).

Consequently, we obtain that I ′
µ(un) → 0 as n → ∞. Thus, the proof is completed.

Lemma 2.9. For any µ ∈ (0, µ∗), every sequence {un} ⊂ M∗
µ such that Iµ(un)

n−→ m∗
µ and

I ′
µ(un)

n−→ 0 has a convergent subsequence. Moreover, up to a subsequence, u±
n

n−→ u±
µ in D1,2(R3).

Proof. Since Lemma 2.4 implies that Iµ is coercive on M∗
µ and Lemma 2.7 implies m∗

µ < +∞,
we deduce that {un} is bounded in D1,2(R3). Up to a subsequence, there exists some uµ ∈
D1,2(R3) such that, as n → ∞,

un ⇀ uµ in D1,2(R3) ∩ L6(R3), (2.27)

un(x) → uµ(x) a.e. in R3. (2.28)

By using standard arguments, we derive I ′
µ(uµ) = 0. From (2.28), it easily follows that

|un|q ⇀ |uµ|q in L
6
q (R3) in the sense of subsequence, which and h ∈ L

6
6−q (R3) imply∫

R3
h(x)|un|qdx n−→

∫
R3

h(x)|uµ|qdx. (2.29)

Let vn = un − uµ. By the Brézis–Lieb lemma [22, Lemma 1.32], (2.29) and Lemma 2.1-(6), we
have

m∗
µ + o(1) = Iµ(un) =

1
2
∥un∥2 +

1
4

∫
R3

l(x)ϕun u2
ndx − 1

6
|un|66 −

µ

q

∫
R3

h(x)|un|qdx

=
1
2
∥vn∥2 − 1

6
|vn|66 + Iµ(uµ) (2.30)
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and

o(1) =
〈
I ′

µ(un), un

〉
= ∥un∥2 +

∫
R3

l(x)ϕun u2
ndx − |un|66 − µ

∫
R3

h(x)|un|qdx

= ∥vn∥2 − |vn|66. (2.31)

Denote lim supn→∞ ∥vn∥2 = a. By (2.31) and the definition of the best Sobolev constant, we
get a ≤ S−3a3, which implies either a = 0 or a ≥ S

3
2 . We claim that a ≥ S

3
2 can’t occur. From

I ′
µ(uµ) = 0, (2.30), (2.31) and (2.10), it follows that

m∗
µ = lim

n→∞

[
1
3
∥vn∥2 + Iµ(uµ)−

1
4
⟨I ′

µ(uµ), uµ⟩
]
≥ 1

3
S

3
2 − Dµ

6
6−q ,

which together with Lemma 2.7 gives a contradiction. Therefore, a = 0. That is, un → uµ in
D1,2(R3).

Further, we prove u±
n → u±

µ in D1,2(R3). It follows from {un} ⊂ M∗
µ and I ′

µ(uµ) = 0 that
∥u±

n ∥2 +
∫

R3
l(x)ϕun |u±

n |2dx = |u±
n |66 + µ

∫
R3

h(x)|u±
n |qdx,

∥u±
µ ∥2 +

∫
R3

l(x)ϕuµ |u±
µ |2dx = |u±

µ |66 + µ
∫

R3
h(x)|u±

µ |qdx.
(2.32)

It is easy to verify that

|u±
n (x)− u±

µ (x)| ≤ |un(x)− uµ(x)|, ∀ x ∈ R3, (2.33)

which and un → uµ in D1,2(R3) lead to∣∣∣|u±
n |6 − |u±

µ |6
∣∣∣6 ≤

∣∣∣u±
n − u±

µ

∣∣∣6
6
≤ |un − uµ|66 ≤ S−3∥un − uµ∥6 n−→ 0. (2.34)

Noting un → uµ in L6(R3), we deduce |u±
n |q ⇀ |u±

µ |q in L
6
q (R3) in the sense of subsequence.

Therefore, ∫
R3

h(x)|u±
n |qdx n−→

∫
R3

h(x)|u±
µ |qdx. (2.35)

Moreover, since l ∈ L2(R3) and |un − uµ|6 → 0 implies that
∣∣|u±

n |2 − |u±
µ |2

∣∣ 6
5 ⇀ 0 in L

5
2 (R3)

up to a subsequence, by the Hölder inequality and Lemma 2.1-(3) we have∣∣∣∣∫
R3

l(x)ϕun

(
|u±

n |2 − |u±
µ |2

)
dx

∣∣∣∣ ≤ |ϕun |6
(∫

R3
|l(x)| 6

5
∣∣|u±

n |2 − |u±
µ |2

∣∣ 6
5 dx

) 5
6

≤ S−1|l|2|un|26
(∫

R3
|l(x)| 6

5
∣∣|u±

n |2 − |u±
µ |2

∣∣ 6
5 dx

) 5
6

n−→ 0. (2.36)

Observe |lu±
µ |2 ∈ L

6
5 (R3), we deduce from (2.27) and Lemma 2.1-(5) that∣∣∣∣∫

R3
l(x)(ϕun − ϕuµ)|u±

µ |2dx
∣∣∣∣ n−→ 0,
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by which and (2.36) we get∫
R3

l(x)ϕun |u±
n |2dx n−→

∫
R3

l(x)ϕuµ |u±
µ |2dx. (2.37)

Now, by combining (2.32), (2.34), (2.35) and (2.37) we conclude ∥u±
n ∥2 → ∥u±

µ ∥2, which to-

gether with (2.27) implies u±
n

n−→ u±
µ in D1,2(R3). Thus the lemma is proved.

Next, with the above preliminary lemmas in hand, we end the proof of our main result.

Proof of Theorem 1.1. For any µ ∈ (0, µ∗), due to Lemmas 2.8 and 2.7, there exists a sequence
{un} ⊂ M∗

µ such that, as n → ∞,

Iµ(un) → m∗
µ ∈

(
0,

1
3

S
3
2 − Dµ

6
6−q

)
and I ′

µ(un) → 0 in
[

D1,2(R3)
]∗

.

According to Lemma 2.9, up to a subsequence, there exists some uµ satisfying un → uµ

and u±
n → u±

µ in D1,2(R3) as n → ∞. Therefore, we get I ′
µ(uµ) = 0 and Iµ(uµ) = m∗

µ.
Moreover, Lemma 2.4 says ∥u±

n ∥ ≥ c > 0, which implies u±
µ ̸= 0. By combining the above

arguments, we know that uµ is a sign-changing solution of system (1.6) with positive energy.
Thus Theorem 1.1 is proved.
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