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Abstract. The existence and asymptotic behavior of positive decreasing solutions to the
cyclic second-order nonlinear difference system

∆(pi(n)|∆xi(n)|αi−1∆xi(n)) = qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1), i = 1, N,

are studied, where xN+1 = x1, pi = {pi(n)} and qi = {qi(n)} are positive real se-
quences, and the constants αi and βi, i = 1, N are positive and satisfy the sublinear
condition α1α2 · . . . · αN > β1β2 · . . . · βN . Two distinct types of positive decreasing so-
lutions are considered, depending on whether the series ∑∞

n=1 pi(n)−1/αi is divergent
or convergent. In the first case, necessary and sufficient conditions for the existence
of solutions tending to a positive constant as well as solutions tending to zero, while
their associated quasi-differences approach a nonzero limit, are rigorously derived us-
ing fixed point techniques. In the second case, the analysis is focused on solutions
whose components and quasi-differences both tend to zero. Under the additional as-
sumption that the coefficient sequences are regularly varying, necessary and sufficient
conditions for the existence of such solutions are obtained, and their precise asymptotic
behavior is determined using the theory of discrete regular variation.

Keywords: cyclic system of difference equations, Emden–Fowler type difference equa-
tion, nonlinear difference equations, decreasing solutions, asymptotic behavior, regu-
larly varying sequence.
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1 Introduction

The cyclic second-order nonlinear system of difference equations examined in this paper is of
the following form:

∆(pi(n)|∆xi(n)|αi−1∆xi(n)) = qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1), (SE)

where i = 1, N, xN+1 = x1, n ∈ N, and following conditions hold:
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(a) αi and βi, i = 1, N are positive constants such that

α1α2 · . . . · αN > β1β2 · . . . · βN ;

(b) pi = {pi(n)} and qi = {qi(n)} are positive real sequences;

(c) All pi, i = 1, N simultaneously satisfy either

(I) Si =
∞

∑
n=1

1
pi(n)1/αi

= ∞,

or

(II) Si =
∞

∑
n=1

1
pi(n)1/αi

< ∞.

If (I) holds, the following notation will be used

Pi(n) =
n−1

∑
k=1

1
pi(k)1/αi

, i = 1, N (1.1)

while if (II) holds, the following notation will be used

πi(n) =
∞

∑
k=n

1
pi(k)1/αi

, i = 1, N (1.2)

System (SE) is referred to as sublinear if the condition (a) holds. When the opposite
inequality is satisfied, the system is termed superlinear. If α1α2 · . . . · αN = β1β2 · . . . · βN , then
system is called half-linear.

Over the past fifty years, the application of difference equations in solving problems
throughout statistics, engineering, and various scientific disciplines has significantly expand-
ed. The development of high-speed digital computer technology has motivated the applica-
tion of difference equations to ordinary and partial differential equations. Apart from this,
difference equations are very useful for analyzing electrical, mechanical, thermal and other
systems, the behavior of electric-wave filters and other filters, insulator strings, crankshafts of
multi-cylinder engines among others.

As the generalization of the most studied second-order nonlinear differential equation,
known as Emden–Fowler type equation, many authors have studied the differential equation(

p(t)|x′(t)|α−1x′(t)
)′ ± q(t)|x(t)|β−1x(t) = 0,

whose properties such as existence, uniqueness and continuity of the solution, oscillatory and
nonoscillatory behavior of solutions have been examined in monographs [15, 27] as well as in
papers [9, 10, 22, 35, 49]. The discrete counterpart of this equation

∆(p(n)|∆x(n)|α−1∆x(n))± q(n)|x(n + 1)|β−1x(n + 1) = 0, (1.3)

has also attracted many researchers, see e.g. [11–14] and monographs [1, 3].
The qualitative analysis of second-order nonlinear difference equations was further ex-

tended to the study of two-dimensional first-order and second-order nonlinear difference sys-
tems [4, 21, 28, 30, 31], as well as to symmetric and close-to-symmetric systems of difference
equations [6, 41, 42, 44–46].
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As a further development of the research on second-order difference equations of Em-
den–Fowler type, the consideration of cyclic second-order systems of difference equations was
naturally imposed. The study of such systems was first suggested in [17], and further atten-
tion has been given to them and to the close-to-cyclic difference equations in [29,38–40,43,47],
in addition to the already quoted papers. A system of the form (SE) could be observed in the
analysis of numerical methods for heat and fluid transfer in layered materials (e.g., cylindrical
thermal insulation or heat transfer through geological layers).

In the continuous case, this type of system has been studied by Jaroš and Kusano in
[18–20]. However, in the existing literature, there are no results concerning asymptotic analysis
of solutions of a cyclic system of second-order difference equations, except in the work of
Kapešić [23]. In this regard, the first task will be to classify positive decreasing solutions
based on their behavior at infinity. Finding the necessary and sufficient conditions for the
existence of all possible types of positive decreasing solutions is the second task. The last and
most challenging task is obtaining the precise asymptotic formulas of these solutions.

It should be mentioned that the obtained results can be applied to cyclic systems of N
first-order difference equations, in the case N is even.

2 Classification of positive decreasing solutions

By a solution of (SE)we mean a vector sequence

x = (x1, x2, . . . , xN) ∈ NR × . . . × NR, xi = {xi(n)}n∈N

where NR = { f | f : N → R}, whose components xi = {xi(n)}n∈N, i = 1, N satisfy
(SE) . In what following, we will observe sequences xi for sufficiently large n, i.e. n ≥ n0,
for some n0 ∈ N. Therefore, we introduced notation Nn0 R = { f | f : Nn0 → R}, where
Nn0 = {n ∈ N | n ≥ n0}.

A solution x is called nonoscillatory if all its components are eventually of one sign. Be-
cause of sign condition on the coefficients, if one component is nonoscillatory, then all compo-
nents are nonoscillatory and eventually monotone, and therefore they have limit. A nonoscil-
latory solution is called positive if all its components are eventually positive. Our aim is to
study the existence and asymptotic behavior of positive decreasing solutions of (SE) , that is,
solutions whose components are both eventually positive and decreasing, i.e. satisfying

xi(n) > 0, ∆xi(n) < 0, for n ≥ n0, i = 1, N. (2.1)

We denote by DS the set of all the solutions of (SE)whose components are all eventually
positive decreasing. From (2.1), for xi, i = 1, N, one of the following two cases holds:

(i) lim
n→∞

xi(n) = ki, ki > 0 or (ii) lim
n→∞

xi(n) = 0.

For every component of any solution x of (SE) , let we denote by x[1]i =
{

x[1]i (n)
}

its quasi-

difference x[1]i (n) = pi(n)|∆xi(n)|αi−1∆xi(n), i = 1, N. Then, for x[1]i , i = 1, N, one of the
following two cases holds:

(iii) lim
n→∞

x[1]i (n) = −ωi, ωi > 0 or (iv) lim
n→∞

x[1]i (n) = 0.

However, if (I) holds, then only (iv) may hold. Indeed, if (iii) holds, then −pi(n)(−∆xi(n))αi ≤
−ωi, n ≥ n0 i.e. xi(n) ≤ xi(n0)− ω1/αi

i ∑n−1
k=n0

pi(k)−1/αi . As the right-hand side tends to −∞
contradicts positivity of xi, we have the desired conclusion.
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These leads to the following classification of positive decreasing solution: if (I) holds, each
component xi of positive decreasing solution x satisfies:

(SD1) limn→∞ xi(n) = limn→∞ x[1]i (n) = 0,

(AC) limn→∞ xi(n) = ki > 0 ⇔ xi(n) ∼ ki, n → ∞,

while if (II) holds each component xi of positive decreasing solution x satisfies

(SD2) limn→∞ xi(n) = limn→∞ x[1]i (n) = 0,

(P1) limn→∞ xi(n) = 0, limn→∞ x[1]i (n) = −ωi < 0,

⇔ xi(n) ∼ Wi πi(n), n → ∞, Wi = ω1/αi
i

(AC) limn→∞ xi(n) = ki > 0 ⇔ xi(n) ∼ ki, n → ∞,

where the following asymptotic relation has been used

f (n) ∼ g(n), n → ∞ ⇔ lim
n→∞

f (n)
g(n)

= 1.

Using the Stolz–Cesàro Theorem (see Theorem 4.5), solutions satisfying (SD1) and (SD2) can
be characterized as

(SD1) xi(n) ≺ Pi(n), n → ∞, (SD2) xi(n) ≺ πi(n), n → ∞,

where the following asymptotic relation has been used

f (n) ≺ g(n), n → ∞ ⇔ lim
n→∞

f (n)
g(n)

= 0.

Solutions of type (P1) and (AC) are called primitive solutions, while solutions (SD1), (SD2)
are called strongly decreasing. Necessary and sufficient conditions for the existence of primitive
solutions will be established in the Section 5. On the other hand, the existence and precise
asymptotic formulas of strongly decreasing solutions are not easy to determine in the general
case. Therefore, in Section 6, we will assume that the coefficients of the system are regu-
larly varying sequences and thus, restricting consideration to the class of regularly varying
solutions, we provide necessary and sufficient conditions for the existence of such solutions.

3 Regularly varying sequences

The theory of regularly varying sequences, often called Karamata sequences (see [26]), was
developed during the seventies by Galambos, Seneta and Bojanić in [8, 16]. However, until
the appearance of the paper of Matucci and Řehák [32], the connection between regularly
varying sequences and difference equations was not considered. In this paper, as well as in the
following ones [33, 34, 36, 37], the theory of regularly varying sequences is further developed
and applied in the asymptotic analysis of linear and half-linear difference equations of the
second-order, giving necessary and sufficient conditions for the existence of regularly varying
solutions of these equations. After this, further development of the discrete theory of regular
variation, as well as its application to nonlinear difference equations of type Emden–Fowler
type, can be found in [5], as well as in [24].
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In this section, we present basic definitions and properties of regularly varying sequences
that will be used in the main results. For a thorough discussion of regular variation, the reader
is referred to Bingham et al. [7].

There are two main approaches in the basic theory of regularly varying sequences: the ap-
proach due to Karamata [26], based on a definition that can be understood as a direct discrete
counterpart of simple and elegant continuous definition (Definition 3.1), and the approach due
to Galambos and Seneta [16], based on purely sequential definition (Definition 3.2). Bojanić
and Seneta have shown in [8] the equivalence of these two definitions.

Definition 3.1 (Karamata [26]). A positive sequence y = {y(k)}, k ∈ N is said to be regularly
varying of index ρ ∈ R if

lim
k→∞

y([λ k])
y(k)

= λρ for ∀λ > 0,

where [n] denotes the integer part of n.

Definition 3.2 (Galambos and Seneta [16]). A positive sequence y = {y(k)}, n ∈ N is said to
be regularly varying of index ρ ∈ R if there exists a positive sequence {α(k)} satisfying

lim
k→∞

y(k)
α(k)

= C, 0 < C < ∞, lim
k→∞

k
∆α(k − 1)

α(k)
= ρ .

If ρ = 0, then y is said to be slowly varying. The sets of regularly varying sequences with
index ρ and slowly varying sequences are denoted RV(ρ) and SV , respectively.

The concept of normalized regularly varying sequences was introduced by Matucci and
Rehak in [33], where they also offered a modification of Definition 3.2, i.e. they proved that
the second limit in Definition 3.2 can be replaced with

lim
k→∞

k
∆α(k)
α(k)

= ρ .

Definition 3.3. A positive sequence y = {y(k)}, k ∈ N is said to be normalized regularly varying
of index ρ ∈ R if it satisfies

lim
k→∞

k∆y(k)
y(k)

= ρ.

If ρ = 0, then y is called a normalized slowly varying sequence.

The notations NRV(ρ) and NSV are most commonly used to denote the set of all nor-
malized regularly varying sequences of index ρ and the set of all normalized slowly varying
sequences, respectively.

Typical examples are:

{log k} ∈ NSV , {kρ log k} ∈ NRV(ρ), {1 + (−1)k/k} ∈ SV \ NSV .

In order to present results for a system of difference equations, we need to define a regu-
larly varying vector x ∈ NR × . . . × NR, where NR = { f | f : N → R}.

Definition 3.4. A vector x ∈ NR× . . .×NR, x = ({x1(n)}, . . . , {xN(n)}) is said to be regularly
varying of index (ρ1, ρ2, . . . , ρN) if xi = {xi(n)} ∈ RV(ρi) for i = 1, N. If all ρi are positive
(or negative), then x is called regularly varying vector sequence of positive (or negative) index
(ρ1, ρ2, . . . , ρN). The set of all regularly varying vectors of index (ρ1, ρ2, . . . , ρN) is denoted by
RV(ρ1, ρ2, . . . , ρN).
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Various necessary and sufficient conditions for a sequence of positive numbers to be reg-
ularly varying have been established (see [8, 16, 32, 33]) and consequently, any of these can be
used to define regularly varying sequence. The one that is the most important is the follow-
ing Representation theorem (see [8, Theorem 3]), while some other representation formula for
regularly varying sequences was established in [33, Lemma 1].

Theorem 3.5 (Representation theorem). A positive sequence {y(k)}, k ∈ N is said to be regularly
varying of index ρ ∈ R if and only if there exists sequences {c(k)} and {δ(k)} such that

lim
k→∞

c(k) = c0 ∈ (0, ∞) and lim
k→∞

δ(k) = 0,

and

y(k) = c(k) kρ exp

(
k

∑
i=1

δ(i)
i

)
.

In [8], a very useful embedding theorem was proved, which gives the possibility of using
the continuous theory in developing a theory of regularly varying sequences. However, as
noted in [8], such development is not generally straightforward and sometimes far from a
simple imitation of arguments for regularly varying functions.

Theorem 3.6 (Embedding Theorem). If y = {y(n)} is regularly varying sequence of index ρ ∈ R,
then function Y(t) defined on [0, ∞) by Y(t) = y([t]) is a regularly varying function of index ρ.
Conversely, if Y(t) is a regularly varying function on [0, ∞) of index ρ, then a sequence {y(k)}, y(k) =
Y(k), k ∈ N is regularly varying of index ρ.

Next, we state some important properties of RV sequences useful for the development of
the asymptotic behavior of solutions of (SE) in the subsequent sections (for more properties
and proofs see [8, 32]).

Theorem 3.7. The following properties hold:

(i) y ∈ RV(ρ) if and only if y(k) = kρ l(k), where l = {l(k)} ∈ SV .

(ii) Let x ∈ RV(ρ1) and y ∈ RV(ρ2). Then, xy ∈ RV(ρ1 + ρ2), x + y ∈ RV(ρ), ρ =

max{ρ1, ρ2} and 1/x ∈ RV(−ρ1).

(iii) If y ∈ RV(ρ), then limk→∞
y(k+1)

y(k) = 1.

(iv) If l ∈ SV and l(k) ∼ L(k), k → ∞, then, L ∈ SV .

(v) If l ∈ SV , then for any ε > 0,

lim
k→∞

kεl(k) = ∞, lim
k→∞

k−εl(k) = 0,

(vi) If y ∈ NRV(ρ), then {k−σy(k)} is eventually increasing for each σ < ρ and {k−µy(k)} is
eventually decreasing for each µ > ρ.

The following theorem can be seen as the discrete analog of the Karamata’s integration theorem
and plays a central role in proving this paper main results. Proof of this theorem can be found
in [24]. Also, some parts of this theorem’s proof can be found in [8] and [36].
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Theorem 3.8. Let l = {l(n)} ∈ SV .

(i) If α > −1, then limn→∞
1

nα+1l(n) ∑n
k=1 kαl(k) = 1

1+α ;

(ii) If α < −1, then limn→∞
1

nα+1l(n) ∑∞
k=n kαl(k) = − 1

1+α ;

(iii) If ∑∞
k=1

l(k)
k < ∞, then S⋆(n) = ∑∞

k=n
l(k)

k , S⋆ ∈ SV and limn→∞
S⋆(n)
l(n) = ∞;

(iv) If ∑∞
k=1

l(k)
k = ∞, then S⋆(n) = ∑n

k=1
l(k)

k , S⋆ ∈ SV and limn→∞
S⋆(n)
l(n) = ∞.

Remark 3.9. It is easy to see, in view of Theorem 3.7-(iii) and Theorem 3.8-(i), that for l ∈ SV ,
if α > −1, we have

n−1

∑
k=1

kαl(k) ∼ (n − 1)α+1l(n − 1)
α + 1

∼ nα+1l(n)
α + 1

∼
n

∑
k=1

kαl(k), n → ∞,

and since limn→∞ ∑n−1
k=1 kαl(k) = ∞, we also get

n

∑
k=n0

kαl(k) ∼
n

∑
k=1

kαl(k), n → ∞.

If limn→∞ ∑n
k=1 k−1l(k) = ∞, we have

n

∑
k=n0

k−1l(k) ∼
n

∑
k=1

k−1l(k), n → ∞.

4 Basic concepts

In this section, we will state the basic notation and assertions necessary for the proofs of the
main results in the following sections.

The existence of solutions will be demonstrated using fixed point techniques. Actually, the
following two fixed point theorems will be applied throughout the paper.

Theorem 4.1 (Knaster–Tarski fixed point theorem [2]). Let X be a partially ordered Banach space
with ordering ≤ . Let M be a subset of X with the following properties: The infimum of M belongs
to M and every nonempty subset of M has a supremum which belongs to M. Let F : M → M be an
increasing mapping, i.e. x ≥ y implies Fx ≥ Fy. Then F has a fixed point in M.

Theorem 4.2 (Schauder–Tychonoff fixed point theorem [2]). Let S be closed, convex, nonempty
subset of a locally convex topological vector space X. Let T be a continuous mapping from S to itself,
such that TS is relatively compact. Then T has a fixed point.

To prove that appropriately constructed operator T is continuous, we will apply the fol-
lowing theorem.

Theorem 4.3 (Discrete Lebesgue’s dominated convergence theorem [1]). Let {a(m)(k)} be a
double real sequence, a(m)(k) ≥ 0 for m, k ∈ N such that limm→∞ a(m)(k) = A(k), for every k ∈ N.
Assume that the series ∑∞

k=1 a(m)(k) is totally convergent, that is, there exists a sequence {α(k)} such
that a(m)(k) ≤ α(k) for all m, k ∈ N, with ∑∞

k=1 α(k) < ∞. Then, the series ∑∞
k=1 A(k) converges and

lim
m→∞

∞

∑
k=1

a(m)(k) =
∞

∑
k=1

A(k).
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To apply the Schauder–Tychonoff fixed point theorem, relatively compactness of the set
TS must be verified and for that purpose the following statement will be used. This theorem
represent a discrete version of the Arzelà–Ascoli theorem and it is known as Cheng–Patula
theorem (see [14]).

Theorem 4.4. A bounded, uniformly Cauchy subset Ω of l∞ is relatively compact.

For the proof of regularity of solutions, Stolz–Cesàro Theorem will be used. Therefore, we
recall two variants of the Stolz–Cesàro theorem (see [48]).

Theorem 4.5. If f = { f (n)} is a strictly increasing sequence of positive real numbers, such that
limn→∞ f (n) = ∞, then for any sequence g = {g(n)} of positive real numbers one has the inequalities:

lim inf
n→∞

∆ f (n)
∆g(n)

≤ lim inf
n→∞

f (n)
g(n)

≤ lim sup
n→∞

f (n)
g(n)

≤ lim sup
n→∞

∆ f (n)
∆g(n)

.

In particular, if the sequence {∆ f (n)/∆g(n)} has a limit, then

lim
n→∞

f (n)
g(n)

= lim
n→∞

∆ f (n)
∆g(n)

. (4.1)

Theorem 4.6. Let f = { f (n)}, g = {g(n)} be sequences of positive real numbers, such that

(i) limn→∞ f (n) = limn→∞ g(n) = 0;

(ii) the sequence g is strictly monotone;

(iii) the sequence {∆ f (n)/∆g(n)} has a limit.

Then, a sequence { f (n)/g(n)} is convergent and (4.1) holds.

In Section 6 analyzing the regularly varying solutions of the system with regularly varying
coefficients, we assume pi ∈ RV(λi), qi ∈ RV(µi), i = 1, N and express them as follows:

pi(n) = nλi li(n), qi(n) = nµi mi(n), li, mi ∈ SV , i = 1, N, (4.2)

while components of the regularly varying solutions x ∈ RV(ρ1, ρ2, . . . , ρN) of the observed
system are expressed in the form

xi(n) = nρi ξi(n), ξi ∈ SV , i = 1, N. (4.3)

We also assume that all sequences pi, i = 1, N satisfy either (I) or (II). Condition (I) is
satisfied if and only if index of regularity λi satisfies either

λi < αi, (4.4)

or

λi = αi and Si =
∞

∑
n=1

n−1li(n)
− 1

αi = ∞. (4.5)

Using Theorem 3.8, if (4.4) holds, the following asymptotic relation is obtained for the se-
quence Pi = {Pi(n)} defined by (1.1):

Pi(n) ∼
αi

αi − λi
n

αi−λi
αi li(n)

− 1
αi , n → ∞, (4.6)
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implying that Pi ∈ RV
( αi−λi

αi

)
. Clearly, if (4.5) holds, Pi ∈ SV . Condition (II) is satisfied if and

only if either
λi > αi, (4.7)

or

λi = αi and Si =
∞

∑
n=1

n−1li(n)
− 1

αi < ∞. (4.8)

If (4.7) holds, using Theorem 3.8, the following asymptotic relation is obtained for the se-
quence πi = {πi(n)} defined by (1.2):

πi(n) ∼
αi

λi − αi
n

αi−λi
αi li(n)

− 1
αi , n → ∞, (4.9)

implying that πi ∈ RV
( αi−λi

αi

)
. If (4.8) holds, πi ∈ SV .

Also, to simplify notation we denote AN = α1α2 · . . . · αN , BN = β1β2 · . . . · βN and use
matrix

M =



1 β1
α1

β1β2
α1α2

. . . β1β2·...·βN−2
α1α2·...·αN−2

β1β2·...·βN−1
α1α2·...·αN−1

β2β3·...·βN
α2α3·...·αN

1 β2
α2

. . . β2β3·...·βN−2
α2α3·...·αN−2

β2β3·...·βN−1
α2α3·...·αN−1

β3β4·...·βN
α3α4·...·αN

β3·...·βN β1
α3·...·αNα1

1 . . . β3β4·...·βN−2
α3α4·...·αN−2

β3β4·...·βN−1
α3α4·...·αN−1

...
...

...
. . .

...
...

βN−1βN
αN−1αN

βN−1βN β1
αN−1αNα1

βN−1βN β1β2
αN−1αNα1α2

. . . 1 βN−1
αN−1

βN
αN

βN β1
αNα1

βN β1β2
αNα1α2

. . . βN β1·...·βN−2
αNα1·...·αN−2

1


, (4.10)

whose elements will be denoted by M = (Mij). The i-th row of (Mij) is obtained by shifting
the vector(

1,
βi

αi
,

βiβi+1

αiαi+1
, . . . ,

βiβi+1 · . . . βi+(N−2)

αiαi+1 · . . . αi+(N−2)

)
, αN+j = αj, βN+j = β j, j = 1, N − 2

(i − 1)-times to the right cyclically, so that elements Mij, Mji, i > j, satisfy the relation

Mij Mji =
β1β2 · . . . · βN

α1α2 · . . . · αN
, i > j, i = 2, N.

It is easy to see that elements of matrix M satisfy for i = 1, N, j = 1, N

Mi+1,i
βi

αi
=

BN

AN
, Mi+1,j

βi

αi
= Mij for j ̸= i, MN+1,j = M1,j. (4.11)

The next matrix also plays important note in the proof of main results:

A =



1 − β1
α1

0 . . . 0 0
0 1 − β2

α2
. . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . 1 − βN−1
αN−1

− βN
αN

0 0 . . . 0 1


. (4.12)

Since,

det(A) = 1 − β1β2 · . . . · βN

α1α2 · . . . · αN
> 0 ,
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the matrix A is invertible and its inverse matrix is given by

A−1 =
AN

AN − BN
M . (4.13)

Throughout the text, n ≥ n0 means that n is sufficiently large so that n0 need not to be the
same at each occurrence.

5 Existence of primitive decreasing solutions

The asymptotic behavior of primitive solutions is evident from the classification itself. The
following theorems provide necessary and sufficient conditions for the existence of these so-
lutions, using Fixed point theory and without the assumption that coefficients are regularly
varying sequences.

Theorem 5.1. The system (SE) has a solution x ∈ DS with each component satisfying (AC) if and
only if

∞

∑
n=1

(
1

pi(n)

∞

∑
k=n

qi(k)

) 1
αi

< ∞, i = 1, N. (5.1)

Proof. The “only if” part: Let x = (x1, x2, . . . , xN) ∈ DS be a solution of (SE)with each com-
ponent satisfying limn→∞ xi(n) = ci. Then, there exist n0 ∈ N such that xi(n) ≥ ci, n ≥ n0,
i = 1, N.

If (I) holds, as previously shown limn→∞ x[1]i (n) = 0, i = 1, N. By summing equations of
(SE) twice, first from n to ∞, and then from n0 to ∞, we derive that

xi(n0) = ci +
∞

∑
n=n0

(
1

pi(n)

∞

∑
k=n

qi(k)xi+1(k + 1)βi

) 1
αi

≥ c
βi
αi
i+1

∞

∑
n=n0

(
1

pi(n)

∞

∑
k=n

qi(k)

) 1
αi

,

for i = 1, N. From the previous equation, we see that condition (5.1) is satisfied.
If (II) holds, then, since x[1]i , i = 1, N are eventually negative and increasing, we may

assume that x[1]i (n) ≤ −ωi ≤ 0 for n ≥ n0, i = 1, N. By summing equations of (SE) from n0 to
n, we obtain for i = 1, N

−ωi − x[1]i (n0) ≥ x[1]i (n)− x[1]i (n0) =
n

∑
k=n0

qi(k)xi+1(k + 1)βi ≥ cβi
i+1

n

∑
k=n0

qi(k), n ≥ n0.

Letting n → ∞, we find
∞

∑
n=n0

qi(n) < ∞, i = 1, N,

which together with (II) yields that the condition (5.1) is satisfied.
The “if” part: Suppose that (5.1) holds. Then, there exists n0 ∈ N such that

∞

∑
n=n0

(
1

pi(n)

∞

∑
k=n

qi(k)

) 1
αi

< 21− βi
αi , i = 1, N. (5.2)

Denote by Ln0 the space of all vectors x = (x1, x2, . . . , xN), such that xi = {xi(n)} ∈ Nn0 R,
i = 1, N are bounded. Then, Ln0 is a Banach space endowed with the norm
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∥x∥ = max
1≤i≤N

{
sup
n≥n0

|xi(n)|
}

. (5.3)

Set
Λ1 =

{
x ∈ Ln0

∣∣∣ ci ≤ xi(n) ≤ 2ci, n ≥ n0, i = 1, N
}

, (5.4)

where ci, i = 1, N are positive constants such that

ci ≥ 2c
βi
αi
i+1, i = 1, N, cN+1 = c1. (5.5)

Define operators Fi : Nn0 R → Nn0 R by

Fix(n) = ci +
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)x(s + 1)βi

) 1
αi

, n ≥ n0, i = 1, N, (5.6)

and the mapping Θ : Λ1 → Ln0 by

Θ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1. (5.7)

We will show that Θ has a fixed point by using Schauder–Tychonoff fixed point theorem.
Namely, the operator Θ has the following properties:

(i) Θ maps Λ1 into itself: Let x ∈ Λ1. Then, using (5.2), (5.4), (5.5) and (5.6), we see that

ci ≤ Fixi+1(n) ≤ ci + (2ci+1)
βi
αi

∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)

) 1
αi

≤ ci + 2
βi
αi · ci

2
· 21− βi

αi = 2ci,

for i = 1, N and n ≥ n0.

(ii) Θ is continuous: Let ε i > 0, i = 1, N and {x(m)}m∈N =
{
(x(m)

1 , x(m)
2 , . . . , x(m)

N )
}

m∈N
, be a

sequence in Λ1 which converges to x = (x1, x2, . . . , xN) as m → ∞. Since, Λ1 is closed, x ∈ Λ1.
The rest of the proof does not depend on i, so let i ∈ {1, 2, . . . , N} be arbitrary fixed. For every
n ≥ n0, we have∣∣∣Fix

(m)
i+1(n)−Fixi+1(n)

∣∣∣
≤

∞

∑
k=n

1

pi(k)
1
αi

∣∣∣∣∣∣
(

∞

∑
s=k

qi(s)x(m)
i+1(s + 1)βi

) 1
αi

−
(

∞

∑
s=k

qi(s)xi+1(s + 1)βi

) 1
αi

∣∣∣∣∣∣ .

Since (5.1) implies that ∑∞
n=n0

qi(n) is convergent, we conclude that ∑∞
n=n0

qi(n) x(m)
i+1(n + 1)βi

is totally convergent, because qi(n) x(m)
i+1(n + 1)βi ≤ (2ci+1)

βi qi(n), for every n ≥ n0, m ∈ N.
Then, by a discrete analogue of Lebesgue dominated convergence theorem (Theorem 4.3), it
holds for every k ≥ n0

lim
m→∞

∣∣∣∣∣∣
(

∞

∑
s=k

qi(s)x(m)
i+1(s + 1)βi

) 1
αi

−
(

∞

∑
s=k

qi(s)xi+1(s + 1)βi

) 1
αi

∣∣∣∣∣∣ = 0,

which shows that
lim

m→∞
sup
n≥n0

∣∣∣Fix
(m)
i+1(n)−Fixi+1(n)

∣∣∣ = 0.
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Therefore, ∥Θx(m) − Θx∥ → 0 as m → ∞, i.e. Θ is continuous.

(iii) Θ(Λ1) is relatively compact: To show this, by Theorem 4.4, it is sufficient to show that
Θ(Λ1) is uniformly Cauchy in the topology of Ln0 . For x ∈ Λ1 and m > n ≥ n0 we have

|Fixi+1(m)−Fixi+1(n)| =

∣∣∣∣∣∣
m−1

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)xi+1(s + 1)βi

) 1
αi

∣∣∣∣∣∣
≤

m−1

∑
k=n

1

pi(k)
1
αi

∣∣∣∣∣ ∞

∑
s=k

qi(s)xi+1(s + 1)βi

∣∣∣∣∣
1
αi

≤ (2ci+1)
βi
αi

m−1

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)

) 1
αi

.

According to (5.1) it follows that Θ(Λ1) is uniformly Cauchy.
Therefore, all the hypotheses of Schauder–Tychonoff fixed point theorem are fulfilled im-

plying the existence of a fixed point x ∈ Λ1 of the mapping Θ, which satisfies

xi(n) = ci +
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)xi+1(s + 1)βi

) 1
αi

, n ≥ n0, i = 1, N.

It is clear that x is a positive decreasing solution of (SE)whose all components tend to con-
stants.

Theorem 5.2. Let (II) hold. The system (SE) has a solution x ∈ DS with each component satisfying
(P1) if and only if

∞

∑
n=1

qi(n)πi+1(n + 1)βi < ∞, i = 1, N. (5.8)

Proof. The “only if” part: Let x = (x1, x2, . . . , xN) ∈ DS be a solution with each component
satisfying (P1). Since x[1]i , i = 1, N are eventually negative and increasing, we may assume

that x[1]i (n) ≤ −ωi < 0 for n ≥ n0, i = 1, N. Then, for n ≥ n0, we have

xi(n) =
∞

∑
k=n

(
−x[1]i (k)

)1/αi

pi(k)1/αi
≥ ω

1
αi
i πi(n), i = 1, N.

Summing equations of the system (SE) from n0 to n we get for n ≥ n0,

−ωi − x[1]i (n0) ≥ x[1]i (n + 1)− x[1]i (n0) =
n

∑
k=n0

qi(k)xi+1(k + 1)βi ≥ ω

βi
αi+1
i+1

n

∑
k=n0

qi(k)πi+1(k + 1)βi

(5.9)
Letting that n → ∞ in (5.9), we conclude that (5.8) holds.

The “if” part: Suppose that (5.8) holds. Then, there exists n0 ∈ N such that

∞

∑
n=n0

qi(n)πi+1(n + 1)βi < 2αi−βi (2αi − 1) , i = 1, N. (5.10)
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Denote by Xn0 the space of all vectors x = (x1, x2, . . . , xN), xi ∈ Nn0 R, i = 1, N, such that
{xi(n)/πi(n)}, i = 1, N are bounded. Then, Xn0 is a Banach space endowed with the norm

∥x∥ = max
1≤i≤N

{
sup
n≥n0

∣∣∣∣ xi(n)
πi(n)

∣∣∣∣
}

. (5.11)

Further, Xn0 is partially ordered, with usual pointwise ordering ≤: for x, y ∈ Xn0 , x ≤ y means
xi(n) ≤ yi(n) for all n ≥ n0 and i = 1, N. Set

Λ2 =
{

x ∈ Xn0

∣∣∣ ciπi(n) ≤ xi(n) ≤ 2ciπi(n), n ≥ n0, i = 1, N
}

, (5.12)

where ci, i = 1, N are positive constants which satisfy (5.5). For any subset B of Λ2, it is
obvious that sup B ∈ Λ2 and inf B ∈ Λ2.

Let Θ : Λ2 → Xn0 be the mapping given by (5.7), where Fi : Nn0 R → Nn0 R is operator
defined by

Fix(n) =
∞

∑
k=n

(
1

pi(k)

(
cαi

i +
∞

∑
s=k

qi(s)x(s + 1)βi

)) 1
α i

, n ≥ n0, i = 1, N, (5.13)

We will show that Θ has a fixed point by using Theorem 4.1. Namely, the operator Θ has
the following properties:

(i) Θ maps Λ2 into itself: Let x ∈ Λ2. Then, using (5.5), (5.10), (5.12) and (5.13), we see that for
n ≥ n0

ciπi(n) ≤ Fixi+1(n) ≤
∞

∑
k=n

(
1

pi(k)

(
cαi

i + (2ci+1)
βi

∞

∑
s=k

qi(s)πi+1(s + 1)βi

)) 1
αi

≤
∞

∑
k=n

(
1

pi(k)

(
cαi

i + 2αi (2αi − 1) cβi
i+1

)) 1
αi

≤
∞

∑
k=n

(
1

pi(k)
(
cαi

i + (2αi − 1) cαi
i

)) 1
αi
= 2ciπi(n),

(ii) Θ is increasing, i.e. for any x, y ∈ Λ2, x ≤ y implies Θx ≤ Θy.

Thus, all the hypotheses of Theorem 4.1 are fulfilled, implying the existence of a fixed
point x ∈ Λ2 of the mapping Θ. It is easy to see that x is a positive decreasing solution of the
system (SE) and that its components satisfy (P1).

6 Existence and asymptotic behavior of strongly decreasing
RV -solutions

This section is devoted to the problem of existence and asymptotic behavior of strongly de-
creasing solutions for system (SE) . Every strongly decreasing solution of (SE) is a solution of
the system

xi(n) =
∞

∑
k=n

(
1

pi(k)

∞

∑
j=k

qi(j)xi+1(j + 1)βi

) 1
αi

, i = 1, N, n ≥ n0, (6.1)
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for some n0 ∈ N. We consider existence and asymptotic behavior of strongly decreasing RV-
solutions with a negative index of regularity. However, due to computing difficulties, the
existence problem and asymptotic behavior of strongly decreasing slowly varying solutions
will be excluded for the time being.

Assuming that condition (I) is satisfied and that coefficients are regularly varying, the
following theorem gives the necessary and sufficient conditions for a system (SE) to posses
a regularly varying solution x of a negative index (ρ1, ρ2, . . . , ρN) of regularity and moreover
determine their asymptotic behavior at infinity precisely.

Theorem 6.1. Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1, N. Suppose that (I) holds. The system (SE) has
a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi < 0, i = 1, N if and only if

N

∑
j=1

Mij
αj − λj + µj + 1

αj
< 0, i = 1, N (6.2)

holds, in which case ρi are uniquely determined by

ρi =
AN

AN − BN

N

∑
j=1

Mij
αj − λj + µj + 1

αj
, i = 1, N (6.3)

and the asymptotic behavior of each component of any such solution is governed by the unique formula

xi(n) ∼

 N

∏
j=1

n
αj+1

αj pj(n)
− 1

αj qj(n)
1
αj

Dj


Mij


AN
AN−BN

, n → ∞, i = 1, N, (6.4)

where
Dj =

(
αj − λj − αjρj

) 1
αj (−ρj), j = 1, N. (6.5)

Proof. The “only if” part: Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi < 0 be a solution of (SE) . Then,
by Theorem 3.7-(vi) and Theorem 3.7-(v) each xi satisfies (2.1) and xi(n) → 0, n → ∞. Also,
since (I) holds, as shown in Section 2 we have that x[1]i (n) → 0, as n → ∞.

Using (4.2) and (4.3), and applying Theorem 3.7-(iii), we obtain

−x[1]i (n) =
∞

∑
k=n

qi(k)xi+1(k + 1)βi ∼
∞

∑
k=n

qi(k)xi+1(k)βi

=
∞

∑
k=n

kµi+βiρi+1 mi(k)ξi+1(k)βi , n → ∞, i = 1, N.
(6.6)

and

−∆xi(n) =

(
1

pi(n)

∞

∑
k=n

qi(k)xi+1(k + 1)βi

) 1
αi

∼ n− λi
αi li(n)

− 1
αi Hi(n)

1
αi , n → ∞, (6.7)

where Hi(n) = ∑∞
k=n kµi+βiρi+1 mi(k)ξi+1(k)βi . As the left-hand side of (6.6) tends to zero as

n → ∞, it must be µi + βiρi+1 ≤ −1, i = 1, N. If µi + βiρi+1 = −1, for some i, then Hi ∈ SV ,
so that summing (6.7) from n to ∞, we obtain

xi(n) ∼
∞

∑
k=n

k−
λi
αi li(k)

− 1
αi Hi(k)

1
αi , n → ∞. (6.8)
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Since xi(n) → 0, n → ∞, using that either (4.4) or (4.5) is satisfied, it is only possible that
λi = αi, in which case xi ∈ SV , contradicting the assumption that ρi < 0. Therefore, it follows
that µi + βiρi+1 < −1 for all i = 1, N. Application of Theorem 3.8 to (6.7) gives for i = 1, N

−∆xi(n) ∼
n

−λi+µi+βiρi+1+1
αi li(n)

− 1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

, (6.9)

as n → ∞. Summing (6.9) from n to ∞, we obtain

xi(n) ∼
∞

∑
k=n

k
−λi+µi+βiρi+1+1

αi li(k)
− 1

αi mi(k)
1
αi ξi+1(k)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

, n → ∞ . (6.10)

Using that xi(n) → 0, n → ∞, we conclude that (−λi + µi + βiρi+1 + 1)/αi ≤ −1, i = 1, N.
All inequalities should be strict, because if the equality holds for some i, then (6.10) leads to
the contradiction that ρi = 0. Therefore, (−λi + µi + βiρi+1 + 1)/αi < −1, i = 1, N. Applying
Theorem 3.8 at (6.10), we conclude that

xi(n) ∼
n

−λi+µi+βiρi+1+1
αi

+1li(n)
− 1

αi mi(n)
1
αi ξi+1(n)

βi
αi

−
(
−λi+µi+βiρi+1+1

αi
+ 1
)
(−(µi + βiρi+1 + 1))

1
αi

, n → ∞, i = 1, N. (6.11)

From the previous relation, we see that

ρi =
−λi + µi + βiρi+1 + 1

αi
+ 1, i = 1, N, ρN+1 = ρ1 (6.12)

which is equivalent to a linear cyclic system of equations

ρi −
βi

αi
ρi+1 =

αi − λi + µi + 1
αi

, i = 1, N, ρN+1 = ρ1. (6.13)

The matrix of the system (6.13) is given by (4.12). As shown in Section 4 the matrix A is
invertible, implying that the system (6.13) has the unique solution (ρ1, . . . , ρN). Using (4.13),
we derive that these ρi are given explicitly by (6.3). It is obvious that ρi < 0, i = 1, N if and
only if (6.2) holds.

Using (4.2) and (4.3), we can transform (6.11) into the following system of asymptotic
relations

xi(n) ∼
n

αi+1
αi pi(n)

− 1
αi qi(n)

1
αi xi+1(n)

βi
αi

Di
, n → ∞, i = 1, N, (6.14)

where Di are given by (6.5). Without difficulty, we can obtain that each component xi of
regularly varying solution x satisfies the explicit asymptotic formula

xi(n) ∼

 N

∏
j=1

n
αj+1

αj pj(n)
− 1

αj qj(n)
1
αj

Dj


Mij


AN
AN−BN

= nρi

 N

∏
j=1

 lj(n)
− 1

αj mj(n)
1
αj

Dj

Mij


AN
AN−BN

, n → ∞, i = 1, N.

(6.15)
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It is clear from (6.15) that the regularity index of each xi is exactly ρi.

The “if” part: Suppose now that (6.2) holds. Define ρi with (6.3) and sequences Xi, i = 1, N, by

Xi(n) =

 N

∏
j=1

n
αj+1

αj pj(n)
− 1

αj qj(n)
1
αj

Dj


Mij


AN
AN−BN

= nρi χi(n), i = 1, N, (6.16)

where Dj, j = 1, N are given by (6.5) and

χi(n) =

 N

∏
j=1

 lj(n)
− 1

αj mj(n)
1
αj

Dj

Mij


AN
AN−BN

, χi ∈ SV .

From, (6.2) we have that ρi < 0, i = 1, N. First, we show that sequences Xi ∈ RV(ρi) satisfy
the system of asymptotic relations

∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

∼ Xi(n), n → ∞, i = 1, N, (6.17)

where XN+1 = X1. To that end, let us note that from “the only if” part we conclude that
(ρ1, . . . , ρN), with ρi given by (6.3) is in fact the unique solution of the linear cyclic system of
equations (6.13). In order to apply Theorem 3.8, it must hold that µi + ρi+1βi < −1, i = 1, N.
From the fact ρi < 0 and (6.12) we have

µi + ρi+1βi = (ρi − 1)αi + λi − 1 < −αi + λi − 1 ≤ −1.

Therefore, using (6.12) and applying Theorem 3.8, we obtain(
1

pi(n)

∞

∑
k=n

qi(k)Xi+1(k + 1)βi

) 1
αi

∼ nρi−1li(n)
− 1

αi mi(n)
1
αi χi+1(n)

βi
αi

(αi − λi − αiρi)
1
αi

, n → ∞,

and

∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

∼ nρi li(n)
− 1

αi mi(n)
1
αi χi+1(n)

βi
αi

Di
, n → ∞. (6.18)

Using relation (4.11) for matrix elements Mij, the right-hand side of the relation (6.18) can be
transformed as follows

li(n)
− 1

αi mi(n)
1
αi

Di
χi+1(n)

βi
αi =

li(n)
− 1

αi mi(n)
1
αi

Di

 N

∏
j=1

 lj(n)
− 1

αj mj(n)
1
αj

Dj

Mi+1,j
βi
αi


AN

AN−BN

=

 N

∏
j=1

 lj(n)
− 1

αj mj(n)
1
αj

Dj

Mij


AN
AN−BN

= χi(n), i = 1, N, χN+1 = χN ,
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so from (6.18), we obtain that Xi, i = 1, N satisfy (6.17).
It follows from (6.17) that there exists n0 > 1 such that for n > n0 holds

1
2

Xi(n) ≤
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

≤ 2Xi(n), i = 1, N. (6.19)

Let we choose positive constants ωi and Wi so that

ωi ≤
1
2

ω
βi
αi
i+1, Wi ≥ 2W

βi
αi

i+1, i = 1, N, ωN+1 = ω1, WN+1 = W1. (6.20)

Consider the space Υn0 of all vectors x = (x1, x2, . . . , xN), xi ∈ Nn0 R, i = 1, N, such that
{xi(n)/Xi(n)}, i = 1, N are bounded. Then, Υn0 is a Banach space endowed with the norm

∥x∥ = max
1≤i≤N

{
sup
n≥n0

∣∣∣∣ xi(n)
Xi(n)

∣∣∣∣
}

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: For x, y ∈ Υn0 , x ≤ y
means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1, N. Define the subset X ⊂ Υn0 with

X =
{

x ∈ Υn0

∣∣∣ ωiXi(n) ≤ xi(n) ≤ WiXi(n), n ≥ n0, i = 1, N
}

. (6.21)

It is easy to see that for any x ∈ X , the norm of x is finite. Also, for any subset B ⊂ X , it is
obvious that inf B ∈ X and sup B ∈ X . We will define the operators Fi : Nn0 R → Nn0 R by

Fix(n) =
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)x(s + 1)βi

) 1
α i

, n ≥ n0, i = 1, N, (6.22)

and define the mapping Φ : X → Υn0 by

Φ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1. (6.23)

We will show that Φ has a fixed point by using Theorem 4.1. Namely, the operator Φ has the
following properties:

(i) Φ maps X into itself: Let x ∈ X . Then, using (6.19)–(6.22), we see that for n ≥ n0,

Fixi+1(n) ≤ W
βi
αi

i+1

∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

≤ 2W
βi
αi

i+1Xi(n) ≤ WiXi(n),

and

Fixi+1(n) ≥ ω
βi
αi
i+1

∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

≥ 1
2

ω
βi
αi
i+1Xi(n) ≥ ωiXi(n).

This shows that Φx ∈ X , that is, Φ is a self-map on X .

(ii) Φ is increasing, i.e. for any x, y ∈ X , x ≤ y implies Φx ≤ Φy.

Thus all the hypotheses of Theorem 4.1 are fulfilled implying the existence of a fixed point
x ∈ X of Φ, which satisfies

xi(n) = Fixi+1(n) =
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)xi+1(s + 1)βi

) 1
α i

, n ≥ n0, i = 1, N.
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It is easy to see that this solution is positive and decreasing. Since x ∈ X , it is clear that
xi(n) → 0, n → ∞. Furthermore, using (6.12), (6.16) and applying Theorem 3.8 we have

pi(n)(−∆xi(n))αi =
∞

∑
k=n

qi(k)xi+1(k + 1)βi ≤ Wβi
i+1

∞

∑
k=n

qi(k)Xi+1(k + 1)βi

∼ Wβi
i+1

n(ρi−1)αi+λi mi(n)χi+1(n)βi

(1 − ρi)αi − λi
, n → ∞, i = 1, N.

Since (ρi − 1)αi + λi < λi − αi ≤ 0, we conclude that x[1]i (n) → 0, n → ∞. This shows that
x ∈ X is a strongly decreasing solution of the system (SE) .

It remains to verify that x ∈ RV(ρ1, ρ2, . . . , ρN). We define

ui(n) =
∞

∑
k=n

(
1

pi(k)

∞

∑
s=k

qi(s)Xi+1(s + 1)βi

) 1
αi

, i = 1, N,

and put

ri = lim inf
n→∞

xi(n)
ui(n)

, Ri = lim sup
n→∞

xi(n)
ui(n)

.

Since ωiXi(n) ≤ xi(n) ≤ WiXi(n), n ≥ n0, i = 1, N and

ui(n) ∼ Xi(n), n → ∞, i = 1, N, (6.24)

it follows that 0 < ri ≤ Ri < ∞, i = 1, N. Using Lemma 4.5 we obtain

ri ≥ lim inf
n→∞

∆xi(n)
∆ui(n)

= lim inf
n→∞

−
(

1
pi(n) ∑∞

k=n qi(k)xi+1(k + 1)βi

) 1
αi

−
(

1
pi(n) ∑∞

k=n qi(k)Xi+1(k + 1)βi

) 1
αi

= lim inf
n→∞

(
∑∞

k=n qi(k)xi+1(k + 1)βi

∑∞
k=n qi(k)Xi+1(k + 1)βi

) 1
αi
=

(
lim inf

n→∞

∑∞
k=n qi(k)xi+1(k + 1)βi

∑∞
k=n qi(k)Xi+1(k + 1)βi

) 1
αi

≥
(

lim inf
n→∞

−qi(n)xi+1(n + 1)βi

−qi(n)Xi+1(n + 1)βi

) 1
αi
= lim inf

n→∞

(
xi+1(n + 1)
Xi+1(n + 1)

) βi
αi
= r

βi
αi
i+1

where (6.24) has been used in the last step. Thus, ri satisfy the cyclic system of inequalities

ri ≥ r
βi
αi
i+1, i = 1, N, rN+1 = r1. (6.25)

Similarly, by taking the upper limits instead of the lower limits, we get that Ri satisfy the cyclic
system of inequalities

Ri ≤ R
βi
αi
i+1, i = 1, N, RN+1 = R1. (6.26)

From (6.25) and (6.26) we easily see that

ri ≥ r
β1β2...βN
α1α2...αN
i , Ri ≤ R

β1β2...βN
α1α2...αN
i ,

whence, because of the hypothesis β1β2 . . . βN/α1α2 . . . αN < 1, we find that ri ≥ 1 and Ri ≤ 1,
i = 1, N. It follows therefore that ri = Ri = 1 i.e. limn→∞ xi(n)/ui(n) = 1 for i = 1, N.
Combined this with (6.24) implies that xi(n) ∼ ui(n) ∼ Xi(n) as n → ∞, which shows that
each xi is a regularly varying sequence of index ρi. Thus, the proof of the “if” part of Theorem
6.1. is completed.



Decreasing solutions of cyclic second-order difference systems 19

Assuming that condition (II) is satisfied, taking into account that (II) is satisfied if and
only if (4.7) or (4.8) holds, the next two theorems provide the necessary and sufficient condi-
tions for a system (SE) to posses a regularly varying solution x with the index of regularity
(ρ1, ρ2, . . . , ρN) such that ρi <

αi−λi
αi

, i = 1, N if (4.7) holds and such that ρi < 0, i = 1, N if (4.8)
holds, and moreover determine their asymptotic behavior at infinity precisely.

Theorem 6.2. Let pi ∈ RV(λi), qi ∈ RV(µi). Suppose that (4.7) holds. The system (SE) has a
regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi <

αi−λi
αi

, i = 1, N if and only if

N

∑
j=1

Mij

(
µj + 1

αj
+

β j(αj+1 − λj+1)

αjαj+1

)
< 0, i = 1, N, αN+1 = α1, λN+1 = λ1, (6.27)

holds, in which case ρi are uniquely determined by (6.3) and the asymptotic behavior of each component
of any such solution is governed by the unique formula (6.4) with Dj, j = 1, N given by (6.5).

Proof. The “only if” part: Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi < (αi − λi)/αi be a solution
of (SE) . Since from (4.7), ρi, i = 1, N are negative, from Theorem 3.7-(v) we have that
xi(n) → 0, n → ∞. Also, we have that πi ∈ RV

( αi−λi
αi

)
, from the asymptotic relation (4.9)

for πi holding if (4.7) is satisfied. Therefore, we conclude that index of regularity of each
xi/πi, i = 1, N is less then zero, implying by Theorem 3.7-(v) that limn→∞ xi(n)/πi(n) = 0.
Therefore, limn→∞ x[1]i (n) = 0. Using (4.2) and (4.3), and applying Theorem 3.7-(iii), we obtain

(6.6). Then, limn→∞ x[1]i (n) = 0 implies that µi + βiρi+1 ≤ −1, i = 1, N. If µi + βiρi+1 = −1
for some i, then as in the proof of Theorem 6.1 we obtain that (6.8) holds. Since (4.7) holds,
application of Theorem 3.8 gives

xi(n) ∼
∞

∑
k=n

k−
λi
αi li(k)

− 1
αi Hi(k)

1
αi ∼ αi

λi − αi
n

αi−λi
αi li(n)

− 1
αi Hi(n)

1
αi , n → ∞,

where Hi(n) = ∑∞
k=n k−1mi(k)ξi+1(k)βi , Hi ∈ SV . Thus, xi ∈ RV

( αi−λi
αi

)
, contradicting the

hypothesis ρi <
αi−λi

αi
. Therefore, µi + βiρi+1 < −1 for all i = 1, N. Proceeding exactly as in the

proof of Theorem 6.1, we get that (6.9) holds and conclude that (−λi + µi + βiρi+1 + 1)/αi ≤
−1 for all i. All inequalities should be strict, because if the equality holds for some i, then
λi − αi = µi + βiρi+1 + 1 < 0, contradicting the assumption (4.7). Thus, (6.11) holds, which
yields that (ρ1, . . . , ρN) is the unique solution of the linear cyclic system of equations (6.13),
so that ρi, i = 1, N are uniquely determined by (6.3). That the asymptotic behavior of each
component of solution x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi < (αi − λi)/αi is governed by the
unique formula (6.4) with Dj, j = 1, N given by (6.5) is obtain as in the proof of Theorem 6.1.

To verify the condition (6.27), let we denote di = ρi + λi/αi − 1, i = 1, N. Then, the linear
system of equations (6.13) is transformed into the system

di −
βi

αi
di+1 =

µi + 1
αi

+
βi(αi+1 − λi+1)

αiαi+1
, i = 1, N, dN+1 = d1. (6.28)

Matrix of the system (6.28) is given by (4.12). Since A is nonsingular, the system (6.28) has the
unique solution di, i = 1, N, where

di =
N

∑
j=1

Mij

(
µj + 1

αj
+

β j(αj+1 − λj+1)

αjαj+1

)
, i = 1, N. (6.29)

Since ρi <
αi−λi

αi
if and only if di < 0, we conclude that the condition (6.27) holds.
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The “if” part: Suppose that (6.27) holds. Define ρi with (6.3) and sequences Xi ∈ RV(ρi),
i = 1, N, by (6.16). The indices of regularity of Xi, are the unique solution of the linear cyclic
system (6.13). According to the assumption (6.27), we conclude that ρi < (αi − λi)/αi < 0, i =
1, N. Then, in a manner similar to that of the previous theorem proof, it can be demonstrated
that Xi, i = 1, N, satisfy the asymptotic relation (6.17). Therefore, the “if” part of the theorem
as well as asymptotic formulas for each component xi of RV-solution x can be obtained as in
the “if” part proof of the previous theorem.

Theorem 6.3. Let pi ∈ RV(λi), qi ∈ RV(µi). Suppose that (4.8) holds. The system (SE) has a
regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi < 0, i = 1, N if and only if

N

∑
j=1

Mij
µj + 1

αj
< 0, i = 1, N (6.30)

in which case ρi are uniquely determined by

ρi =
AN

AN − BN

N

∑
j=1

Mij
µj + 1

αj
, i = 1, N (6.31)

and the asymptotic behavior of any such solution is governed by the unique formulas (6.4) with Dj =(
αj(−ρj)

αj+1)1/αj , j = 1, N.

Proof. The “only if” part: Suppose that the system (SE) has a solution x ∈ RV(ρ1, ρ2, . . . , ρN),
ρi < 0, i = 1, N. The assumption (4.8) implies that

πi(n) =
∞

∑
k=n

k−1li(k)
− 1

αi ,

so that πi ∈ SV , implying that index of regularity of each xi/πi is ρi < 0 for i = 1, N.
Therefore, by Theorem 3.7-(v), we have that limn→∞ xi(n) = 0 and limn→∞ xi(n)/πi(n) = 0,
implying that limn→∞ x[1]i (n) = 0. From (6.6), since the left-hand side tends to zero, we
conclude that it must be µi + βiρi+1 ≤ −1. If µi + βiρi+1 = −1 holds for some i, then as in the
proof of Theorem 6.1 we obtain from (6.8) with Hi ∈ SV , which due to the assumption (4.8)
has the form

xi(n) ∼
∞

∑
k=n

k−1li(k)
− 1

αi Hi(k)
1
αi , n → ∞, i = 1, N,

implying the contradiction xi ∈ SV . Therefore, µi + βiρi+1 < −1 for all i = 1, N. Then as in
the proof of Theorem 6.1 we obtain (6.10) and since xi(n) → 0, n → ∞ it must be

−λi + µi + βiρi+1 + 1
αi

= −1 +
µi + βiρi+1 + 1

αi
≤ −1, i = 1, N.

If equality holds for some i, then (6.10) yields the contradiction xi ∈ SV . Thus, µi + βiρi+1 <

−1, i = 1, N, and applying Theorem 3.8 at (6.10), we conclude that

xi(n) ∼
n

µi+βiρi+1+1
αi li(n)

− 1
αi mi(n)

1
αi ξi+1(n)

βi
αi

− µi+βiρi+1+1
αi

(−(µi + βiρi+1 + 1))
1
αi

, n → ∞, i = 1, N. (6.32)
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Therefore, (6.32) implies that (ρ1, . . . , ρN) is the unique solution of the linear cyclic system of
equations

ρi −
βi

αi
ρi+1 =

µi + 1
αi

, i = 1, N, ρN+1 = ρ1, (6.33)

since the matrix of the system (6.33), given by (4.12), is invertible. Using (4.13), we obtain that
ρi, i = 1, N is given by (6.31). Proceeding exactly as in the proof of Theorem 6.1, we obtain that
the unique asymptotic formula for each xi is given by (6.4), where constants Dj are reduced to
Dj =

(
αj/(−ρi)

αj+1)1/αj , j = 1, N. Since all ρi are negative if and only if (6.30) holds, the “only
if” part of the theorem is proved.

The “if” part of the theorem is proved and the explicit asymptotic formula for each com-
ponent xi of RV-solution x can be obtained as in the proof of Theorem 6.1.

Application. The one-dimensional system with positive coefficients {p(n)}, {q(n)} is in fact
the second-order difference equation of Emden–Fowler type (see (1.3)):

∆(p(n)|∆x(n)|α−1∆x(n)) = q(n)|x(n + 1)|β−1x(n + 1), (6.34)

This equation has been studied in [24, 25]. In this case, Theorems 6.1 and 6.2 reduce to
Theorem 3.8 from [25]. However, since the case where the regularity index of the coefficient
p is equal to α, was not considered neither in [25] nor in the existing literature so far, the
new result is obtained as the corollary of Theorem 6.1 and Theorem 6.3. This result provides
necessary and sufficient condition for the existence of RV strongly decreasing solutions of
type (SD1) if S = ∞ as well as of RV strongly decreasing solutions of type (SD2) if S < ∞,
where S = ∑∞

n=1
1

p(n)α .

Corollary 6.4. Let {p(n)} ∈ RV(α) and {q(n)} ∈ RV(µ). The equation (6.34) possesses a regularly
varying solution of index ρ < 0 if and only if µ < −1, in which case ρ is given by

ρ =
µ + 1
α − β

and the asymptotic behavior of any such solution x is governed by the unique formula

x(n) ∼
[

nα+1 p(n)−1q(n)
α(−ρ)α+1

] 1
α−β

, n → ∞.

Following example illustrate results obtained in the last corollary.

Example 6.5. Consider the difference equation

∆
(
−n2

√
log n(∆x(n))2

)
=

γ(n)
n6 log17/6 n

3
√

x(n + 1), n ≥ 2, (6.35)

where γ(n) is positive real-valued sequence such that limn→∞ γ(n) = δ. In this equation,
α = 3, β = 1

3 , {p(n)} ∈ RV(2), and {q(n)} ∈ RV(−6).
Since µ = −6 < −1, by Corollary 6.4 we conclude that equation (6.35) has a strongly

decreasing RV−solution of index ρ = −3. The asymptotic behavior of such a solution is

x(n) ∼
(

δ

54

) 3
5

n−3(log n)−2, n → ∞.
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If

γ(n) = n2(n + 1)(log n)
9
2 (log(n + 1))

2
3

(
ψ(n)−

(
n

n + 1

)4 √log(n + 1)
log n

ψ(n + 1)

)
,

where

ψ(n) =

((
n

n + 1

)3 1
(log(n + 1))2 − 1

(log n)2

)2

,

then δ = 54 and equation (6.35) has the exact solution x(n) = n−3(log n)−2.
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