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Abstract. In this paper, we investigate the oscillatory behavior of second-order neutral
delay differential equations with a canonical operator of the form(

a(x)
(
v′(x)

)m
)′

+ C(x, u(φ(x))) = 0.

We introduce new monotonicity properties of the non-oscillatory solutions of these
equations, which are then used to linearize the equations and derive new oscillatory
criteria. The presented results significantly improve upon existing criteria.
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1 Introduction

The aim of our paper is to investigate the asymptotic and oscillatory behavior of solutions for
second-order neutral delay differential equations(

a(x)
(
v′(x)

)m
)′

+ C(x, u(φ(x))) = 0, (1.1)

where v(x) = u(x) + b(x)u(ψ(x)).

We make the following assumptions throughout the paper:

(H1) a(x) ∈ C([x0, ∞), (0, ∞)) and m is a ratio of two positive odd integers,

(H2) c(x), b(x) ∈ C([x0, ∞), (0, ∞)) and C(x,u(x))
um(x) ≥ c(x), b(x) ≤ 1,

(H3) ψ(x) ∈ C([x0, ∞)) and ψ(x) ≤ x, limx →∞ ψ(x) = ∞,

(H4) φ(x) ∈ C([x0, ∞)) and φ(x) ≤ x, limx →∞ φ(x) = ∞.
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Additionally, we require the canonical condition

A(x) =
∫ x

x0

dy
a1/m(y)

→ ∞ as x → ∞ (1.2)

which ensures proper asymptotic behavior of solutions.

A solution of (1.1) is defined to be a function u(x) ∈ C1([T0, ∞)) with T0 ≥ x0, satisfying
a(x)(v′(x))m ∈ C1([T0, ∞)) and equation (1.1) on [T0, ∞). We only consider solutions u(x)
of (1.1) that satisfy sup{|u(x)| : x ≥ T} > 0 for all T ≥ T0, and assume that such solutions
exist. A solution of (1.1) is classified as oscillatory if it has arbitrarily large zeros on [T0, ∞),
and non-oscillatory otherwise. The equation is said to be oscillatory if all of its solutions are
oscillatory.

Second-order delay differential equations have been the focus of significant research for
several decades. Numerous papers have been dedicated to the problem of establishing os-
cillatory criteria for various types of differential equations. Notable monographs in this area
include those by Blanka Baculíková and Josef Džurina [4], Agarwal et al. [1], Došly and Řehák
[5], Erbe et al. [8], Kiguradze and Chanturia [10], Ladde et al. [13], and Győri and Ladas [9],
as well as numerous works [2, 3, 6, 7, 11, 14, 15].

Such a criterion for the second-order delay differential equations, as presented by Ko-
platadze et al. [11], is based on the monotonic properties u(x) ↑ and u(x)

x ↓ of positive solu-
tions of u′′(x) + c(x)u(φ(x)) = 0. These properties have been widely used in the literature to
establish oscillatory behavior in various types of differential equations.

In this paper, we aim to establish new comparison theorems and oscillatory criteria for the
investigation of second-order neutral delay differential equations by utilizing the monotonic
properties of non-oscillatory solutions. Building upon the previous work of Blanka Baculíková
and Josef Džurina [4], we present novel monotonic properties that can be utilized to linearize
the equation, which in turn allows us to deduce the oscillation of the original equation from
its linear forms. Our first objective is to establish new comparison theorems for equation (1.1).
The second objective is to provide oscillatory criteria that consider the linear forms of (1.1).
Finally, we seek to test the strength of the general criteria with an example. The presented
results in this paper significantly enhance the existing oscillatory criteria.

Our work builds upon previous research in the field and provides a novel and useful
contribution to the theory of second-order neutral delay differential equations.

2 Preliminary results

We start with some useful lemmas concerning monotonic properties of nonoscillatory solu-
tions for studied equation.

Lemma 2.1. Let u(x) be a positive solution of (1.1). Then

(i) a(x)(v′(x))m > 0,

(ii) v(x)
A(x) is decreasing

for x ≥ x1 ≥ x0. Moreover if∫ ∞

x0

Am(φ(y))(1 − b(φ(y)))mc(y)dy = ∞ (2.1)

holds, then

(iii) limx→∞
v(x)
A(x) = 0.
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Proof. Suppose that u(x) is a positive solution of (1.1). Then(
a(x)

(
v′(x)

)m
)′

< 0,

and there exists x1 ≥ x0 such that a(x)(v′(x))m has a constant sign for x ≥ x1. Now assume
the opposite, i.e., a(x)(v′(x))m < 0. This implies the existence of a constant k > 0 such that
a(x)(v′(x))m ≤ −k < 0. Integrating the previous inequality from x1 to x and using (1.2), we
obtain

v(x) ≤ v(x1)− k1/m A(x) → −∞ as x → ∞.

Hence, we have shown that assuming a(x)(v′(x))m < 0 leads to a contradiction, and therefore
we can conclude that a(x)(v′(x))m > 0.

Using the monotonicity of a1/m(x)v′(x), we get

v(x) ≥
∫ x

x1

a1/m(y)v′(y)
a1/m(y)

dy ≥ a1/m(x)v′(x)A(x), (2.2)

which implies
( v(x)

A(x)

)′
< 0.

On the other hand, as v(x)
A(x) is a positive and decreasing function, there exists a positive

constant δ such that

lim
x→∞

v(x)
A(x)

= δ ≥ 0.

Assume on the contrary that δ > 0. Then v(x)
A(x) ≥ δ for x ≥ x1. From the definition of v(x) we

have
u(x) = v(x)− b(x)u(ψ(x))

≥ v(x)− b(x)v(ψ(x))

≥ v(x)(1 − b(x)).

(2.3)

Integrating (1.1) from x1 to x, we obtain

a(x1)
(
v′(x1)

)m ≥ δm
∫ x

x1

c(y)Am(φ(y))(1 − b(φ(y)))mdy

which for x → ∞ contradicts with (2.1). So that limx→∞
v(x)
A(x) = 0. The proof is completed.

Since A(x) is increasing, there exists λ ≥ 1 such that

A(x)
A(φ(x))

≥ λ. (2.4)

Theorem 2.2. Let (2.1) hold and there exist a positive constant n such that

1
m

Am(φ(x))a1/m(x)A(x)c(x)(1 − b(φ(x)))m ≥ n for x ≥ x0. (2.5)

If u(x) is a positive solution of (1.1), then

(i) v(x)
A1−n(x) is decreasing for x ≥ x1,

(ii) v(x)
An0 (x) is increasing for x ≥ x1, where n0 = n1/mλn.
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Proof. Assume that u(x) is a positive solution of (1.1). It is important to note that condition
(iii) of Lemma 2.1 implies

lim
x→∞

a1/m(x)v′(x) = 0. (2.6)

Therefore, an integration of (1.1) yields

a1/m(x)v′(x) =
(∫ ∞

x
C(y, u(φ(y)))dy

)1/m

. (2.7)

It is easy to see that[(
a1/m(x)v′(x)

)m]′
= m

(
a1/m(x)v′(x)

)m−1(
a1/m(x)v′(x)

)′
. (2.8)

Setting into (1.1), we have(
a1/m(x)v′(x)

)′
+

1
m

(
a1/m(x)v′(x)

)1−m
C(x, u(φ(x))) = 0. (2.9)

Then w(x) = a1/m(x)v′(x) is positive decreasing and satisfies

w′(x) +
1
m

w1−m(x)C(x, u(φ(x))) = 0,

and from (H2) we get

w′(x) +
1
m

w1−m(x)c(x)um(φ(x)) ≤ 0. (2.10)

On the other hand, (2.2) and (2.3) implies

v(x) ≥ a1/m(x)v′(x)A(x)

v(x) ≥ w(x)A(x)
u(x)

(1 − b(x))
≥ w(x)A(x)

and so

u(φ(x)) ≥ w(x)A(φ(x))(1 − b(φ(x))). (2.11)

Substituting the last inequality into (2.10), we get

w′(x) +
1
m

c(x)Am(φ(x))(1 − b(φ(x)))mw(x) ≤ 0

and

w′(x) +
n

A(x)a1/m(x)
w(x) ≤ 0

which implies

−w′(x)A(x) ≥ n
a1/m(x)

w(x) = nv′(x).

We can skip the proof of the theorem as it is similar to [4, Theorem 2.3].

The previous results did not distinguish between the cases m < 1 and m ≥ 1. However, in
order to provide oscillatory criteria for (1.1), we need to consider these cases separately.
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3 Oscillatory results for m ≥ 1

To simplify our notation let us denote

κ =
(1 − n)1−mλn(m−1)

m
.

Now we will provide new comparison principles that significantly simplify the examination
of neutral delay differential equations.

Theorem 3.1. Let m ≥ 1, and (2.1), (2.5) hold. Then (1.1) is oscillatory provided that(
a1/m(x)v′(x)

)′
+ κAm−1(φ(x))c(x)(1 − b(φ(x)))mv(φ(x)) = 0 (3.1)

is oscillatory.

Proof. Suppose the opposite of the desired result, namely that u(x) is a positive solution of
(1.1). Since v(x)

A1−n(x) is decreasing, we have the inequality

v(x) ≥ a1/m(x)v′(x)
(1 − n)

A(x), (3.2)

which for m ≥ 1 yields

v1−m(x) ≤
(
a1/m(x)v′(x)

)1−m

(1 − n)1−m A1−m(x).

Hence (
a1/m(x)v′(x)

)1−m
≥ (1 − n)1−m v1−m(x)

A1−m(x)
. (3.3)

Using again the monotonic property of v(x)
A1−n(x) , we get

v1−m(x) ≥ v1−m(φ(x))
A(1−m)(1−n)(φ(x))

A(1−m)(1−n)(x). (3.4)

Substituting (3.4) from (3.3), we have in view of (2.4) that(
a1/m(x)v′(x)

)1−m
≥ (1 − n)1−m A(1−m)(1−n)(x)

A(1−m)(1−n)(φ(x))
v1−m(φ(x))

A1−m(x)

≥ (1 − n)1−mλn(m−1) v1−m(φ(x))
A1−m(φ(x))

.

(3.5)

By combining (2.10) and (3.5), we can derive that v(x) satisfies the linear differential inequality(
a1/m(x)v′(x)

)′
+ κc(x)Am−1(φ(x))(1 − b(φ(x)))mv(φ(x)) ≤ 0. (3.6)

Conversely, by [12, Corollary 1], it is ensured that the corresponding differential equation (3.1)
possesses a positive solution, which contradicts the assumption made earlier, thus completing
the proof.
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We will utilize the outcomes of the previous theorem to establish novel oscillatory criteria.

Theorem 3.2. Let m ≥ 1, and (2.1), (2.5) hold. If

lim sup
x→∞

{
An−1(φ(x))

∫ φ(x)

x1

c(y)A(y)Am−n(φ(y))(1 − b(φ(y)))mdy

+ An(φ(x))
∫ x

φ(x)
c(y)Am−n(φ(y))(1 − b(φ(y)))mdy

+ A1−n0(φ(x))
∫ ∞

x
c(y)Am+n0−1(φ(y))(1 − b(φ(y)))mdy

}
>

1
κ

then (1.1) is oscillatory.

Proof. The proof of the theorem closely follows the approach taken in [4, Theorem 4.1], making
it unnecessary to provide a full proof here.

For practical applications, we often need criteria that are easier to verify. The next theorem
provides such conditions:

Theorem 3.3. Let m ≥ 1, and (2.1), (2.5) hold. If

lim inf
x→∞

∫ x

φ(x)
c(y)Am(φ(y))(1 − b(φ(y)))mdy >

1
κe

then (1.1) is oscillatory.

Proof. Suppose, for the sake of contradiction, that (1.1) has a positive solution u(x). By Theo-
rem 3.2, equation (3.1) is nonoscillatory, and we can assume that it has an eventually positive
solution v(x). Then, we can define w(x) = a1/m(x)v′(x), which is positive and decreasing.
Therefore, we have

v(x) = v(x1) +
∫ x

x1

v′(y)dy ≥
∫ x

x1

a1/m(y)v′(y)
a1/m(y)

dy

≥ a1/m(x)v′(x)
∫ x

x1

dy
a1/m(y)

= w(x)A(x).

By substituting the expression for v(x) into (3.1), we obtain a first-order differential inequality
of the form

w′(x) + κAm(φ(x))c(x)(1 − b(φ(x)))mw(φ(x)) ≤ 0 (3.7)

with positive solution w(x). According to [13, Theorem 2.1.1], (3.7) has no positive solution if

lim inf
x→∞

∫ x

φ(x)
κc(y)Am(φ(y))(1 − b(φ(y)))mdy >

1
e

.

This contradicts our assumption that (1.1) has a positive solution. Hence, the proof is com-
plete.
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4 Oscillatory results for m ∈ (0, 1)

We now turn our attention to the case where 0 < m < 1. This case requires different tech-
niques due to the different nature of the nonlinearity. The following results parallel those of
the previous section, but with important modifications to account for the changed parameter
range.

To simplify the notation, we define

ω =
n

1−m
m λ1−m

m(1 − n0)
1−m

m
.

Theorem 4.1. Let 0 < m < 1, and (2.1), (2.5) hold. Then (1.1) is oscillatory provided that(
a1/m(x)v′(x)

)′
+ ωAm−1(x)c(x)(1 − b(φ(x)))mv(φ(x)) = 0 (4.1)

is oscillatory.

Proof. Assume the contrary that u(x) is a positive solution of (1.1). Differentiating (2.7) with
respect to x leads to the equation(

a1/m(x)v′(x)
)′

+
1
m

(∫ ∞

x
C(y, u(φ(y)))dy

) 1−m
m

C(x, u(φ(x))) = 0.

Employing the fact that v(x)
An0 (x) is an increasing function, we can rewrite the previous inequality

as follows:(
a1/m(x)v′(x)

)′
+

1
m

v1−m(φ(x))
A(1−m)n0(φ(x))

(∫ ∞

x

c(y)bm
0 (x)dy

A−mn0(φ(y))

) 1−m
m c(x)vm(φ(x))

b−m
0 (x)

≤ 0,

where b0(x) = 1 − b(φ(x)). Consequently, we can conclude that u(x) must satisfy the linear
differential inequality(

a1/m(x)v′(x)
)′

+
1
m

(∫ ∞

x

c(y)bm
0 (y)dy

A−mn0(φ(y))

) 1−m
m bm

0 (x)c(x)v(φ(x))
A(1−m)n0(φ(x))

≤ 0. (4.2)

Additionally, by utilizing (2.4) and (2.5), we can derive∫ ∞

x

c(y)(1 − b(φ(y)))m

A−mn0(φ(y))
dy ≥

∫ ∞

x
mn

Amn0(φ(y))
Am(φ(y))a1/m(y)A(y)

dy

≥ mnλm(n0−1)
∫ ∞

x

Am(n0−1)−1(y)
a1/m(y)

dy

≥ nλm(n0−1)

1 − n0
Am(n0−1)(x).

Substituting (4.2), we get(
a1/m(x)v′(x)

)′
+

n
1−m

m λ1−m

m(1 − n0)
1−m

m

A(1−m)(n0−1)(x)
A(1−m)n0(φ(x))

(1 − b(φ(x)))mc(x)v(φ(x)) ≤ 0.

By applying [12, Corollary 1], we can conclude that the corresponding differential equation
(4.1) also has a positive solution. This contradicts the assumption that (4.1) has no positive
solutions, and therefore the proof is complete.
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Theorem 4.2. Let 0 < m < 1, and (2.1), (2.5) hold. If

lim sup
x→∞

{
An−1(φ(x))

∫ φ(x)

x1

A1−n(φ(y))Am(y)c(y)(1 − b(φ(y)))mdy

+ An(φ(y))
∫ x

φ(x)
A1−n(φ(y))Am−1(y)c(y)(1 − b(φ(y)))mdy

+ A1−n0(φ(y))
∫ ∞

x
An0(φ(y))Am−1(y)c(y)(1 − b(φ(y)))mdy

}

>
1
ω

,

then (1.1) is oscillatory.

Proof. The proof of the theorem closely follows the approach used in [4, Theorem 4.2].

Theorem 4.3. Let 0 < m < 1, and (2.1), (2.5) hold. If

lim inf
x→∞

∫ x

φ(x)
A(φ(y))Am−1(y)c(y)(1 − b(φ(y)))mdy >

1
ωe

then (1.1) is oscillatory.

Proof. Since the proof of the theorem closely resembles that of [4, Theorem 4.3], it may be
omitted.

5 Example

Example 5.1. Consider a second-order neutral delay differential equation in the form of a
general Euler differential equation(

xk(v′(x)
)m

)′
+

c0

x(m−k+1)
um(φ0x) = 0, (5.1)

where v(x) = u(x) + b0u(ψ(x)) with c0 > 0, φ0 ∈ (0, 1) and 0 ≤ b0 < 1.

Then

A(x) =
mx(1− k

m )

m − k
, A(φ0x) =

m(φ0x)(1− k
m )

m − k
, λ =

A(x)
A(φ0x)

= φ
( k

m−1)
0 ,

n =
c0φ

(m−k)
0
m

(
m

m − k

)(m+1)

(1 − b0)
m, n0 =

c(
1
m )

0 mφ
(1− k

m )(1−n)
0

(m − k)(1+ 1
m )

(1 − b0)

κ =
(1 − n)(1−m)φ

n(1−m)(1− k
m )

0
m

and

ω =
n

1
m−1φ

(1−m)( k
m−1)

0

m(1 − n0)
1
m−1

.
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Equation (5.1) with m ≥ 1 is oscillatory provided that,

mn

 φ
n( k

m−1)
0
1 − n

+
φ

n( k
m−1)

0 − 1
n

+
1

1 − n0

 >
1
κ

by Theorem 3.2, or

n(m − k) ln
1
φ0

>
1
eκ

by Theorem 3.3.
Equation (5.1) with 0 < m < 1 is oscillatory provided that,

mnφ
(1−m)(1− k

m )
0

 φ
n( k

m−1)
0
1 − n

+
φ

n( k
m−1)

0 − 1
n

+
1

1 − n0

 >
1
ω

by Theorem 4.2 or

n(m − k)φ
(1−m)(1− k

m )
0 ln

1
φ0

>
1

eω

by Theorem 4.3.

6 Conclusion

In this paper, we have established new oscillation criteria for second-order neutral delay dif-
ferential equations by utilizing the monotonic properties of non-oscillatory solutions. Our
approach generalizes previous results by considering a neutral term and a more general non-
linearity. The presented theorems provide effective tools for determining the oscillatory be-
havior of these equations.

It is worth noting that when we set b(x) = 0 (eliminating the neutral term) and
C(x, u(x)) = c(x)um(x), our results reduce to those obtained by Baculíková and Džurina [4].
This confirms the consistency of our approach while demonstrating its broader applicability
to more complex equations.

Declaration of generative AI and AI-assisted technologies in the writ-
ing process

During the preparation of this work, the authors used ChatGPT in order to improve the
readability and language of the article. After using this tool, the authors reviewed and edited
the content as needed and take full responsibility for the content of the published article.
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