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1 Introduction and preliminaries

The monograph [5] by Dan Henry is devoted to the study of semilinear parabolic differential
equations, where these equations are studied in the framework of so-called mild solutions
of abstract evolution equations. The mild solutions are given as solutions of some Volterra
integral equations with weakly singular kernels. One of the basic tools used there is a linear
integral inequality with a weakly singular kernel, for which a generalization of the Gronwall
inequality is proved (see [5, Lemma 7.1.1]). This result is being frequently quoted as Henry’s
lemma. Currently, this method is also applied in the theory of fractional differential equations.
The first nonlinear version of the Henry’s integral inequality is proved in the paper [12] by a
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new method, often referred to as the desingularization method. In this paper, we apply it to
the following nonlinear integral inequalities:

u(t) ≤ a(t) + b(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)ω(u(s))ds, t ∈ [t0, T]; (1.1)

u(t) ≤ a(t) +
n

∑
i=1

bi(t)
∫ t

t0

[Ψ(t)− Ψ(s)]αi−1Ψ′(s)Fi(s)ωi(u(s))ds, t ∈ [t0, T]; (1.2)

u(t) ≤ a(t) + b1(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F1(s)ω1(u(s))ds

+ b2(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)c(s)

×
∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)F2(σ)ω2(u(σ))dσ ds, t ∈ [t0, T];

(1.3)

u(t) ≤ a(t) + b1(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F1(s)ω1(u(s))ds

+ b2(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F2(s)

× ω2

(
b3(s)

∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)F3(σ)ω3(u(σ))dσ

)
ds, t ∈ [t0, T].

(1.4)

For the readers’ convenience, we recall the following definitions from the tempered Ψ-
fractional calculus.

Definition 1.1 ([4,16]). Let α > 0, λ ≥ 0, x be a continuous function on [t0, T], and Ψ ∈ C1[t0, T]
satisfy Ψ′(t) > 0 for all t ∈ [t0, T]. Tempered Ψ-Hilfer fractional integral of order α > 0 is
defined by

Iα,λ,Ψ
t0

x(t) =
1

Γ(α)

∫ t

t0

(Ψ(t)− Ψ(s))α−1 e−λ(Ψ(t)−Ψ(s)) Ψ′(s) x(s) ds

for t ∈ [t0, T], where Γ(·) is the Euler gamma function.

Definition 1.2 ([19]). Let Ψ ∈ Cn[t0, T], n ∈ N be such that Ψ′(t) > 0 for all t ∈ [t0, T]. For
n − 1 < α < n, λ ≥ 0, tempered Ψ-Caputo fractional derivative of order α of x ∈ Cn−1[t0, T] is
defined by

CDα,λ,Ψ
t0

x(t) = RLDα,λ,Ψ
t0

x(t)− e−λΨ(t)
n−1

∑
k=0

x[k]λ,Ψ(t0)

k!
(Ψ(t)− Ψ(t0))

k


for t ∈ [t0, T] whenever the right side makes sense, where

x[n]λ,Ψ(t) =
(

1
Ψ′(t)

d
dt

)n (
eλΨ(t) x(t)

)
and

RLDα,λ,Ψ
t0

x(t) = e−λΨ(t)
(

In−α,λ,Ψ
t0

x(t)
)[n]

λ,Ψ

=
e−λΨ(t)

Γ(n − α)

(
1

Ψ′(t)
d
dt

)n ∫ t

t0

(Ψ(t)− Ψ(s))n−α−1Ψ′(s) eλΨ(s) x(s) ds

is the tempered Ψ-Riemann–Liouville fractional derivative of order α.
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It is worth to note that if x ∈ Cn[t0, T], then CDα,λ,Ψ
t0

x(t) may be expressed as

CDα,λ,Ψ
t0

x(t) =
e−λΨ(t)

Γ(n − α)

∫ t

t0

(Ψ(t)− Ψ(s))n−α−1Ψ′(s)x[n]λ,Ψ(s) ds

(see [16,19]). In this case, since x[n]λ,Ψ ∈ C[t0, T], Lemma 1 of [20] yields that CDα,λ,Ψ
t0

x ∈ C[t0, T].
We refer the reader to papers [4,16,18–20] for the properties of these operators. The above

notions generalize Ψ-Hilfer fractional integral from [7], Iα,Ψ
t0

= Iα,0,Ψ
t0

, and Ψ-Caputo fractional
derivative from [1], CDα,Ψ

t0
= CDα,0,Ψ

t0
, which we use in this paper.

In the paper [18], the following integral inequality with the tempered Ψ-Hilfer fractional
integral is studied:

u(t) ≤ a(t) + b(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1 e−λ[Ψ(t)−Ψ(s)] Ψ′(s)F(s)ω(u(s))ds, t ∈ [t0, T).

The obtained Henry–Gronwall inequality is proved under the assumption λ > 0. The method
of desingularization applied in the proof is not suitable for the inequality with λ = 0, i.e., for
inequality (1.1). In this case, we need to apply a modification of the desingularization method
proposed in the paper [12].

In [21, Theorem 3], inequality (1.1) is studied for ω(u) = u, F(t) ≡ 1 and an estimation of
u is obtained in a form of a series. Here, we investigate nonlinear analogues (see Corollaries
2.5, 2.13). Similarly, Corollaries 2.7, 2.15 generalize e.g. [11, Theorem 1.4], where inequality
(1.2) is investigated with Ψ(t) = t, Fi(t) ≡ 1 and ωi(u) = u for each i = 1, 2, . . . , n.

Inequality (1.1) with α ∈ (0, 1), Ψ(t) = t, a(t) = at−µ, and b(t) = bt−ν with various values
of parameters µ, ν is studied in [6,23–25]. In [9], inequality (1.1) is investigated with Ψ(t) = t,
α ∈ (0, 1), but instead of non-decreasing ω, ω̂ is considered such that ω̂p(u) ≤ ω(up) for
p > 1/α and some non-decreasing ω. In [22], (1.1) is studied with Ψ(t) = t, α ∈ (0, 1),
F(t) = t−γ, γ ≥ 0 and 1 − α + γ < 1; also the case a(t) = at−µ is considered.

Other integral inequalities useful for fractional calculus can be found e.g. in [2, 19].
Throughout the whole paper, for generality, we consider inequality (1.1) as well as others

on an interval [t0, T] for some t0 < T ≤ ∞, where the case T = ∞ is understood as [t0, ∞).
We use the notation N for the set of all positive integers, and ∥ · ∥ for any vector norm in RN ,
N ∈ N.

The paper is structured as follows. In the next section, we derive the main results of the
paper – the nonlinear integral inequalities for weakly singular integrals. We apply two types
of desingularization, namely with inserting an auxiliary exponential function and without
it. The inequalities are applied in Section 3 to obtain boundedness results for solutions of
nonlinear fractional differential equations, and sufficient conditions for the non-existence of
solutions blowing-up in a finite time. Lastly, Section 4 concludes the results and sketches
directions of future research.

2 Nonlinear integral inequalities and their corollaries

This section is devoted to integral inequalities (1.1)–(1.4). It is split in two subsections accord-
ing to a method used to desingularize the fractional integral, i.e., to get rid of the singular
kernel.
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For the case of brevity, we introduce the notation for classes of functions,

Pk
M := {φ ∈ Ck(M) | φ′(t) > 0 for all t ∈ M},

O := {φ ∈ C([0, ∞), [0, ∞)) | φ(t) > 0 ∀t > 0, φ is non-decreasing}.

In our proofs, we rely on a generalization of the well-known Bihari’s inequality [3, 10] that
was proved in [9]. Next, we provide its version sufficient for our purposes.

Theorem 2.1. Let a, b, F be non-negative, continuous functions on [t0, T]. Let ω ∈ O and u be a
non-negative continuous function on [t0, T], satisfying

u(t) ≤ a(t) + b(t)
∫ t

t0

F(s)ω(u(s)) ds, t ∈ [t0, T].

Then
u(t) ≤ Ω−1

(
Ω(A(t)) + B(t)

∫ t

t0

F(s) ds
)

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

F(s) ds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
ω(σ)

dσ for v ≥ v0 > 0, Ω−1 is the inverse of Ω, A(t) = sups∈[t0,t] a(s), B(t) =

sups∈[t0,t] b(s).

It should be noted that in [9, Theorem 1] the latter result is proved for positive functions a
and b, and with F ∈ L1[t0, T] positive on a set of positive measure. Then, in [9, Remark 1], a
is allowed to be non-negative if ω(t) > 0 for all t > 0. Since we use continuous functions, if
there does not exist a set of positive measure where F is positive, then F ≡ 0 and the statement
holds trivially. Next, if b(t0) > 0 then B(t0) > 0 which is sufficient for the proof to work. If
b(t) = 0 for all t ∈ [t0, t0 + h] for some h > 0 then, again, the statement clearly holds for all
those t. Moreover, if

∫
0

1
ω(σ)

dσ converges, one can set v0 = 0. Therefore, we allow v0 ≥ 0 in
this paper.

2.1 Parametric desingularization

Here we apply a parameter-dependent modification of the desingularization method from
[12], where an exponential function was added and the Hölder inequality was applied to
tame the weakly singular integral kernel. So, we are able to prove the following nonlinear
Henry–Gronwall type inequality.

Theorem 2.2. Let α ∈ (0, 1), αq > 1, µ > 0, a, b and F be non-negative, continuous functions on
[t0, T], and Ψ ∈ P1

[t0,T]. Let ω ∈ O and u be a non-negative continuous function on [t0, T], satisfying
inequality (1.1). Then

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)q e−qµΨ(s) ds
)]1/q

, t ∈ [t0, t1], (2.1)

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)F(s)q e−qµΨ(s) ds ∈ Dom Ω−1, (2.2)
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Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

A(t) = 2q−1 sup
s∈[t0,t]

a(s)q, B(t) = 2q−1Mq
p,µ,α sup

s∈[t0,t]

{
b(s)q eqµΨ(s)

}
,

Mp,µ,α =

(
Γ(p(α − 1) + 1)
(pµ)p(α−1)+1

)1/p

, p =
q

q − 1
.

(2.3)

In the proof of this theorem, we will need the following generalization of the inequality
from [12, page 354].

Lemma 2.3. Let α ∈ (0, 1), p > 0, p(α − 1) + 1 > 0, µ > 0, and Ψ(t) ∈ P1
[t0,T]. Then

∫ t

t0

[Ψ(t)− Ψ(s)]p(α−1) epµΨ(s) Ψ′(s)ds ≤ Mp
p,µ,α epµΨ(t), t ∈ [t0, T], (2.4)

where Mp,µ,α is given by the formula (2.3).

Proof. Using the substitution Ψ(t)− Ψ(s) = σ one can rewrite the left-hand side of inequality
(2.4) as∫ t

t0

[Ψ(t)− Ψ(s)]p(α−1) epµΨ(s) Ψ′(s)ds =
∫ Ψ(t)−Ψ(t0)

0
σp(α−1) epµ(Ψ(t)−σ) dσ

= epµΨ(t)
∫ Ψ(t)−Ψ(t0)

t0

σp(α−1) e−pµσ dσ ≤ epµΨ(t)
∫ ∞

0
σp(α−1) e−pµσ dσ = Mp

p,µ,α epµΨ(t) .

Now, we present the proof of Theorem 2.2.

Proof of Theorem 2.2. First notice that q > 1
α > 1. Thus, p(α − 1) + 1 > 0 and Mp,µ,α is well

defined. Since 1
p +

1
q = 1, we can write Ψ′(t) = Ψ′(t)1/pΨ′(t)1/q. Using the Hölder inequality

and Lemma 2.3, we derive∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)ω(u(s))ds

=
∫ t

t0

[Ψ(t)− Ψ(s)]α−1 eµΨ(s) Ψ′(s)1/pF(s) e−µΨ(s) Ψ′(s)1/qω(u(s))ds

≤
(∫ t

t0

[Ψ(t)−Ψ(s)]p(α−1) epµΨ(s) Ψ′(s)ds
)1/p(∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

≤ Mp,µ,α eµΨ(t)
(∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

.

(2.5)

Hence, this inequality along with (1.1) yield

u(t) ≤ a(t) + b(t)Mp,µ,α eµΨ(t)
(∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

. (2.6)

Using the inequality (b1 + b2)q ≤ 2q−1(bq
1 + bq

2) valid for any b1, b2 ≥ 0, we obtain

v(t) ≤ 2q−1a(t)q + 2q−1b(t)q Mq
p,µ,α eqµΨ(t)

∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds

= 2q−1a(t)q + 2q−1b(t)q Mq
p,µ,α eqµΨ(t)

∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(v(s)1/q)qds,
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where v(t) = u(t)q. Consequently, Theorem 2.1 implies

v(t) ≤ Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ds
)

,

where A, B, Ω and Ω−1 are as in the theorem. This proves inequality (2.1).

Remark 2.4. Since functions A, B, Ω are non-decreasing and Ψ′(t)F(t)q e−qµΨ(t) ≥ 0 for all
t ∈ [t0, T], condition (2.2) is equivalent to

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)q e−qµΨ(s) ds ∈ Dom Ω−1

for all t ∈ [t0, t1].

Some of corollaries of Theorem 2.2 are explicitly stated below.

Corollary 2.5. Let the assumptions of Theorem 2.2 be fulfilled with ω(u) = u, i.e., let u satisfy

u(t) ≤ a(t) + b(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)u(s)ds, t ∈ [t0, T].

Then

u(t) ≤ A(t)1/q exp
{

B(t)
q

∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ds
}

, t ∈ [t0, T],

where functions A, B are given by (2.3).

Proof. Putting the particular form of ω in the statement of Theorem 2.2 immediately yields
Ω(v) = ln v

v0
for v ≥ v0 > 0, Ω−1(v) = v0 ev for v ≥ 0, v0 > 0, and the corollary follows from

(2.1).

Corollary 2.6. Let the assumptions of Theorem 2.2 be fulfilled with ω(u) = um for m > 0, m ̸= 1,
i.e., let u satisfy

u(t) ≤ a(t) + b(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)u(s)mds, t ∈ [t0, T].

Then, the following assertions hold:

1. if 0 < m < 1, then

u(t) ≤
(

A(t)1−m + (1 − m)B(t)
∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ds
) 1

q(1−m)

, t ∈ [t0, T];

2. if m > 1, then

u(t) ≤ A(t)1/q(
1 − (m − 1)A(t)m−1B(t)

∫ t
t0

F(s)q e−qµΨ(s) Ψ′(s)ds
) 1

q(m−1)

, t ∈ [t0, t1]

for any t1 ∈ (t0, T] such that∫ t1

t0

F(s)q e−qµΨ(s) Ψ′(s)ds <
1

(m − 1)A(t1)m−1B(t1)
;

where functions A, B are given by (2.3).
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Proof. The statement can be obtained analogously to Corollary 2.5 with ω(u) = um. Note that
here we use the fact that functions A, B are non-decreasing.

Theorem 2.2 can also be easily extended to the case of multiple Ψ-Hilfer fractional inte-
grals:

Corollary 2.7. Let n ∈ N, αi ∈ (0, 1) for i = 1, 2, . . . , n, q mini=1,2,...,n αi > 1, µ > 0, a, bi and Fi be
non-negative, continuous functions on [t0, T] for each i = 1, 2, . . . , n, and Ψ ∈ P1

[t0,T]. Let ωi ∈ O for
each i = 1, 2, . . . , n and u be a non-negative continuous function on [t0, T], satisfying inequality (1.2).
Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)q e−qµΨ(s) ds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)F(s)q e−qµΨ(s) ds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

F = max
i=1,2,...,n

Fi, ω = max
i=1,2,...,n

ωi,

A(t) = 2q−1 sup
s∈[t0,t]

a(s)q, B(t) = 2q−1 sup
s∈[t0,t]

(
n

∑
i=1

Mp,µ,αi bi(s) eµΨ(s)

)q

,

Mp,µ,α =

(
Γ(p(α − 1) + 1)
(pµ)p(α−1)+1

)1/p

, p =
q

q − 1
.

Proof. The right-hand side of inequality (1.2) can be estimated from above by

a(t) +
n

∑
i=1

bi(t)
∫ t

t0

[Ψ(t)− Ψ(s)]αi−1Ψ′(s)F(s)ω(u(s))ds

≤ a(t) +
n

∑
i=1

bi(t)Mp,µ,αi eµΨ(t)
(∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

as in (2.5). Then the proof is finished as the proof of Theorem 2.2.

Next, we give an estimation of function u satisfying inequality (1.3).

Theorem 2.8. Let α, β ∈ (0, 1), α + β < 1, αq > 1, µ > 0, a, b1, b2, c, F1 and F2 be non-negative,
continuous functions on [t0, T], and Ψ ∈ P1

[t0,T]. Let ω1, ω2 ∈ O and u be a non-negative continuous
function on [t0, T], satisfying inequality (1.3). Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)G(s)q e−qµΨ(s) ds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)G(s)q e−qµΨ(s) ds ∈ Dom Ω−1,
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Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

G = max{F1, F2}, ω = max{ω1, ω2}, A(t) = 2q−1 sup
s∈[t0,t]

a(s)q,

B(t) = 2q−1 sup
s∈[t0,t]

{
eqµΨ(s)

(
b1(s)Mp,µ,α + B(α, β)b2(s)Mp,µ,α+β sup

σ∈[t0,s]
c(σ)

)q}
,

Mp,µ,α =

(
Γ(p(α − 1) + 1)
(pµ)p(α−1)+1

)1/p

, p =
q

q − 1
,

(2.7)

B(·, ·) is the Euler beta function.

Proof. By a trivial estimation using functions G and ω, and applying (2.5), we get

u(t) ≤ a(t) + b1(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)G(s)ω(u(s))ds

+ b2(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)c(s)

×
∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)G(σ)ω(u(σ))dσ ds

≤ a(t) + b1(t)Mp,µ,α eµΨ(t)
(∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

+ b2(t) sup
s∈[t0,t]

c(s)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)

×
∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)G(σ)ω(u(σ))dσ ds.

Changing the order of integration and by the change of variable Ψ(t) − Ψ(s) = ρ(Ψ(t) −
Ψ(σ)), we derive∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)
∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)G(σ)ω(u(σ))dσ ds

=
∫ t

t0

Ψ′(σ)G(σ)ω(u(σ))
(∫ t

σ
[Ψ(t)− Ψ(s)]α−1Ψ′(s)[Ψ(s)− Ψ(σ)]β−1ds

)
dσ

=
∫ t

t0

Ψ′(σ)G(σ)ω(u(σ))[Ψ(t)− Ψ(σ)]α+β−1
(∫ 1

0
ρα−1(1 − ρ)β−1dρ

)
dσ

= B(α, β)
∫ t

t0

[Ψ(t)− Ψ(σ)]α+β−1Ψ′(σ)G(σ)ω(u(σ))dσ.

Now, we apply an estimation analogous to (2.5) to estimate the latter right-hand side by

B(α, β)Mp,µ,α+β eµΨ(t)
(∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

.

So, we arrive at

u(t) ≤ a(t) +

(
b1(t)Mp,µ,α + B(α, β)b2(t)Mp,µ,α+β sup

s∈[t0,t]
c(s)

)
eµΨ(t)

×
(∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

,
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which is of the form of (2.6). Hence, the proof is finished by the same way as the proof of
Theorem 2.2.

Finally, we investigate inequality (1.4).

Theorem 2.9. Let α, β ∈ (0, 1), q min{α, β} > 1, µ > 0, a, b1, b2, b3, F1, F2, F3 be non-negative,
continuous functions on [t0, T], and Ψ ∈ P1

[t0,T]. Let ω1, ω2, ω3 ∈ O and u be a non-negative
continuous function on [t0, T], satisfying inequality (1.4). Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ds

+ C(t)
∫ t

t0

F2(s)q e−qµΨ(s) Ψ′(s)ds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

G(s)q e−qµΨ(s) Ψ′(s)ds + C(t1)
∫ t1

t0

F2(s)q e−qµΨ(s) Ψ′(s)ds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

G = max{F1, F3}, ω = max{ω1, ω2, ω3}, b = max{b1, b3},

A(t) = 3q−1 sup
s∈[t0,t]

a(s)q, B(t) = 3q−1Mq
p,µ sup

s∈[t0,t]

{
b(s)q eqµΨ(s)

}
,

C(t) = 3q−1Mq
p,µ,α sup

s∈[t0,t]

{
b2(s)q eqµΨ(s)

}
, Mp,µ = max{Mp,µ,α, Mp,µ,β},

Mp,µ,α =

(
Γ(p(α − 1) + 1)
(pµ)p(α−1)+1

)1/p

, p =
q

q − 1
.

(2.8)

To prove Theorem 2.9, we need the following auxiliary result.

Lemma 2.10. Let a, b, c, f , g be non-negative, continuous functions on [t0, T]. Let ω ∈ O and u be a
non-negative continuous function on [t0, T], satisfying

u(t) ≤ a(t) + b(t)
∫ t

t0

f (s)ω(u(s))ds

+ c(t)
∫ t

t0

g(s)ω
(

b(s)
∫ s

t0

f (σ)ω(u(σ))dσ

)
ds, t ∈ [t0, T].

(2.9)

Then,

u(t) ≤ Ω−1
(

Ω(ā(t)) + b̄(t)
∫ t

t0

f (s)ds + c̄(t)
∫ t

t0

g(s)ds
)

, t ∈ [t0, t1], (2.10)

where t1 ∈ (t0, T] is such that

Ω(ā(t1)) + b̄(t1)
∫ t1

t0

f (s)ds + c̄(t1)
∫ t1

t0

g(s)ds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

dσ
ω(σ)

for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

ā(t) = sup
s∈[t0,t]

a(s), b̄(t) = sup
s∈[t0,t]

b(s), c̄(t) = sup
s∈[t0,t]

c(s).
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Proof. Let T̃ ∈ (t0, T] be sufficiently small (this is specified later) and fixed. From (2.9), for any
t ∈ [t0, T̃],

u(t) ≤ ā(T̃) + b̄(T̃)
∫ t

t0

f (s)ω(u(s))ds

+ c̄(T̃)
∫ t

t0

g(s)ω
(

b̄(T̃)
∫ s

t0

f (σ)ω(u(σ))dσ

)
ds =: z(t).

It is easy to see that function z is non-negative, non-decreasing, C1, and z(t0) = ā(T̃). Differ-
entiating, we obtain

z′(t) ≤ b̄(T̃) f (t)ω(u(t)) + c̄(T̃)g(t)ω
(

b̄(T̃)
∫ t

t0

f (s)ω(u(s))ds
)

≤ b̄(T̃) f (t)ω(z(t)) + c̄(T̃)g(t)ω(z(t))

for all t ∈ [t0, T̃]. Integrating over [t0, t] yields

z(t) ≤ ā(T̃) +
∫ t

t0

(
b̄(T̃) f (s) + c̄(T̃)g(s)

)
ω(z(s))ds, t ∈ [t0, T̃].

Now, applying Theorem 2.1 results in

u(t) ≤ z(t) ≤ Ω−1
(

Ω(ā(T̃)) +
∫ t

t0

b̄(T̃) f (s) + c̄(T̃)g(s)ds
)

for all t ∈ [t0, T̃]. In particular, this estimation holds for t = T̃ and we obtain (2.10). Now, one
can see that T̃ at the beginning of the proof had to be smaller than or equal to t1.

Proof of Theorem 2.9. Using notation (2.8) and estimation (2.5), inequality (1.4) gives

u(t) ≤ a(t) + b(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)G(s)ω(u(s))ds

+ b2(t)
∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F2(s)

× ω

(
b(s)

∫ s

t0

[Ψ(s)− Ψ(σ)]β−1Ψ′(σ)G(σ)ω(u(σ))dσ

)
ds

≤ a(t) + b(t)Mp,µ eµΨ(t)
(∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ω(u(s))qds
)1/q

+ b2(t)Mp,µ,α eµΨ(t)
(∫ t

t0

F2(s)q e−qµΨ(s) Ψ′(s)

× ω

(
b(s)Mp,µ eµΨ(s)

(∫ s

t0

G(σ)q e−qµΨ(σ) Ψ′(σ)ω(u(σ))qdσ

)1/q
)q

ds

)1/q

.

Using the inequality (a1 + a2 + a3)q ≤ 3q−1(aq
1 + aq

2 + aq
3) valid for any a1, a2, a3 ≥ 0, and the

estimation

b(s)Mp,µ eµΨ(s) ≤
(

3q−1b(s)q Mq
p,µ eqµΨ(s)

)1/q
,
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we obtain

v(t) ≤ 3q−1a(t)q + 3q−1b(t)q Mq
p,µ eqµΨ(t)

∫ t

t0

G(s)q e−qµΨ(s) Ψ′(s)ω(v(s)1/q)qds

+ 3q−1b2(t)q Mq
p,µ,α eqµΨ(t)

∫ t

t0

F2(s)q e−qµΨ(s) Ψ′(s)

× ω

((
3q−1b(s)q Mq

p,µ eqµΨ(s)
∫ s

t0

G(σ)q e−qµΨ(σ) Ψ′(σ)ω(v(σ)1/q)qdσ

)1/q
)q

ds

for all t ∈ [t0, T], where v(t) = u(t)q. This is of the form of (2.9), and the statement follows
from Lemma 2.10.

2.2 Non-exponential desingularization

In this part, we apply the desingularization method without inserting eµΨ(s) e−µΨ(s) prior to
estimating by the Hölder inequality. This can be considered as a limit case µ = 0. Notice
that here, Lemma 2.3 can not be used, since limµ→0+ Mp,µ,α = ∞. The results are analogous
to those of the previous section, therefore the proofs are rather sketchy and only the main
differences are mentioned. It is shown in the next section, that both approaches, µ > 0 and
µ = 0, might give useful and different estimations.

First, we provide an alternative to Theorem 2.2.

Theorem 2.11. Let all the assumptions of Theorem 2.2 be satisfied. Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)qds
)]1/q

, t ∈ [t0, t1], (2.11)

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)F(s)qds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

A(t) = 2q−1 sup
s∈[t0,t]

a(s)q, B(t) = 2q−1 sup
s∈[t0,t]

{b(s)qMp,α(s)q},

Mp,α(t) =

(
[Ψ(t)− Ψ(t0)]p(α−1)+1

p(α − 1) + 1

)1/p

, p =
q

q − 1
.

(2.12)

Proof. The idea of the proof follows the proof of Theorem 2.2. This time, instead of Lemma 2.3,
we employ the change of the dummy variable Ψ(t)− Ψ(s) = σ to get the equality∫ t

t0

[Ψ(t)− Ψ(s)]p(α−1)Ψ′(s)ds =
∫ Ψ(t)−Ψ(t0)

0
σp(α−1)dσ = Mp,α(t)p.

So, instead of (2.5), we have∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)ω(u(s))ds

≤
(∫ t

t0

[Ψ(t)− Ψ(s)]p(α−1)Ψ′(s)ds
)1/p (∫ t

t0

F(s)qΨ′(s)ω(u(s))qds
)1/q

= Mp,α(t)
(∫ t

t0

F(s)qΨ′(s)ω(u(s))qds
)1/q

.

(2.13)
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Therefore, instead of (2.6), we have

u(t) ≤ a(t) + b(t)Mp,α(t)
(∫ t

t0

F(s)qΨ′(s)ω(u(s))qds
)1/q

.

The proof is then completed as the proof of Theorem 2.2.

Remark 2.12. Let us assume that α ≥ 1. Then the integral in (1.1) does not contain a singular
kernel, so we have

u(t) ≤ a(t) + b(t)(Ψ(t)− Ψ(t0))
α−1

∫ t

t0

Ψ′(s)F(s)ω(u(s))ds, t ∈ [t0, T]

and Theorem 2.1 yields

u(t) ≤ Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)ds
)

, t ∈ [t0, t1], (2.14)

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)F(s)ds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

dσ
ω(σ)

for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

A(t) = sup
s∈[t0,t]

a(s), B(t) = sup
s∈[t0,t]

{b(s)(Ψ(s)− Ψ(t0))
α−1}.

On the other side, the proof of Theorem 2.11 now works for any q > 1, i.e., estimation
(2.11) holds for any q > 1. Taking the limit q → 1+ (i.e., p → ∞) in (2.11) gives exactly (2.14),
since

lim
q→1+

Mp,α(s)q = lim
q→1+

(Ψ(s)− Ψ(t0))qα−1

(p(α − 1) + 1)q−1

= lim
q→1+

(Ψ(s)− Ψ(t0))qα−1(
qα−1
q−1

)q−1 = (Ψ(s)− Ψ(t0))
α−1

if α > 1, and
lim

q→1+
Mp,α(s)q = (Ψ(s)− Ψ(t0))

q−1 = 1

if α = 1.

Analogues of Corollaries 2.5, 2.6, and 2.7 are stated below.

Corollary 2.13. If all the assumptions of Corollary 2.5 are satisfied, then

u(t) ≤ A(t)1/q exp
{
B(t)

q

∫ t

t0

F(s)qΨ′(s)ds
}

, t ∈ [t0, T],

where functions A, B are given by (2.12).

Proof. The statement follows from Theorem 2.11 by setting ω(u) = u (cf. the proof of Corol-
lary 2.5).
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Corollary 2.14. If all the assumptions of Corollary 2.6 are satisfied, then the following assertions hold:

1. if 0 < m < 1, then

u(t) ≤
(

A(t)1−m + (1 − m)B(t)
∫ t

t0

F(s)qΨ′(s)ds
) 1

q(1−m)

, t ∈ [t0, T];

2. if m > 1, then

u(t) ≤ A(t)1/q(
1 − (m − 1)A(t)m−1B(t)

∫ t
t0

F(s)qΨ′(s)ds
) 1

q(m−1)

, t ∈ [t0, t1]

for any t1 ∈ (t0, T] such that∫ t1

t0

F(s)qΨ′(s)ds <
1

(m − 1)A(t1)m−1B(t1)
;

where functions A, B are given by (2.12).

Proof. The statement follows from Theorem 2.11 by setting ω(u) = um (cf. the proof of Corol-
lary 2.6).

Corollary 2.15. If all the assumptions of Corollary 2.7 are satisfied, then

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)F(s)qds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)F(s)qds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

F = max
i=1,2,...,n

Fi, ω = max
i=1,2,...,n

ωi,

A(t) = 2q−1 sup
s∈[t0,t]

a(s)q, B(t) = 2q−1 sup
s∈[t0,t]

(
n

∑
i=1

bi(s)Mp,αi(s)

)q

,

Mp,α(t) =

(
[Ψ(t)− Ψ(t0)]p(α−1)+1

p(α − 1) + 1

)1/p

, p =
q

q − 1
.

Proof. Analogously to the proof of Corollary 2.7, but using estimation (2.13) instead of (2.5),
the right-hand side of (1.2) can be estimated by

a(t) +
n

∑
i=1

bi(t)Mp,αi(t)
(∫ t

t0

F(s)qΨ′(s)ω(u(s))qds
)1/q

.

Then the proof is completed as the proof of Theorem 2.2, by taking the q-th power and using
Theorem 2.1.

Next, we give a result on inequality (1.3).
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Theorem 2.16. Let all the assumptions of Theorem 2.8 be satisfied. Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

Ψ′(s)G(s)qds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

Ψ′(s)G(s)qds ∈ Dom Ω−1,

Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

G = max{F1, F2}, ω = max{ω1, ω2}, A(t) = 2q−1 sup
s∈[t0,t]

a(s)q,

B(t) = 2q−1 sup
s∈[t0,t]

{
b1(s)Mp,α(s) + B(α, β)b2(s)Mp,α+β(s) sup

σ∈[t0,s]
c(σ)

}q

,

Mp,α(t) =

(
[Ψ(t)− Ψ(t0)]p(α−1)+1

p(α − 1) + 1

)1/p

, p =
q

q − 1
.

(2.15)

Proof. We follow the proof of Theorem 2.8. Instead of (2.5), we apply estimation (2.13) to
arrive at

u(t) ≤ a(t) + b1(t)Mp,α(t)
(∫ t

t0

G(s)qΨ′(s)ω(u(s))qds
)1/q

+ B(α, β)b2(t) sup
s∈[t0,t]

c(s)
∫ t

t0

[Ψ(t)− Ψ(σ)]α+β−1Ψ′(σ)G(σ)ω(u(σ))dσ

≤ a(t) + b1(t)Mp,α(t)
(∫ t

t0

G(s)qΨ′(s)ω(u(s))qds
)1/q

+ B(α, β)b2(t)Mp,α+β(t) sup
s∈[t0,t]

c(s)
(∫ t

t0

G(s)qΨ′(s)ω(u(s))qds
)1/q

.

The proof is completed as the proof of Theorem 2.2.

A result on inequality (1.4) follows.

Theorem 2.17. Let all the assumptions of Theorem 2.9 be satisfied. Then,

u(t) ≤
[

Ω−1
(

Ω(A(t)) + B(t)
∫ t

t0

G(s)qΨ′(s)ds

+ C(t)
∫ t

t0

F2(s)qΨ′(s)ds
)]1/q

, t ∈ [t0, t1],

where t1 ∈ (t0, T] is such that

Ω(A(t1)) + B(t1)
∫ t1

t0

G(s)qΨ′(s)ds + C(t1)
∫ t1

t0

F2(s)qΨ′(s)ds ∈ Dom Ω−1,
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Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, Ω−1 is the inverse of Ω, and

G = max{F1, F3}, ω = max{ω1, ω2, ω3}, b = max{b1, b3},

A(t) = 3q−1 sup
s∈[t0,t]

a(s)q, B(t) = 3q−1 sup
s∈[t0,t]

{
b(s)Mp(s)

}q ,

C(t) = 3q−1 sup
s∈[t0,t]

{
b2(s)Mp,α(s)

}q , p =
q

q − 1
,

Mp = max{Mp,α,Mp,β}, Mp,α(t) =

(
[Ψ(t)− Ψ(t0)]p(α−1)+1

p(α − 1) + 1

)1/p

.

(2.16)

Proof. We follow the proof of Theorem 2.9, but now, we apply estimation (2.13) instead of (2.5)
to obtain

u(t) ≤ a(t) + b(t)Mp(t)
(∫ t

t0

G(s)qΨ′(s)ω(u(s))qds
)1/q

+ b2(t)Mp,α(t)
(∫ t

t0

F2(s)qΨ′(s)

× ω

(
b(s)Mp(s)

(∫ s

t0

G(σ)qΨ′(σ)ω(u(σ))qdσ

)1/q
)q

ds

)1/q

.

Taking the q-th power of this inequality and an application of Lemma 2.10 completes the
proof, similarly to the proof of Theorem 2.9.

3 Applications to fractional differential equations with Ψ-Caputo
derivative

In this section, we apply our integral inequalities to various classes of initial value problems
(IVPs) for fractional differential equations with Ψ-Caputo derivative, to derive results on the
boundedness of the solutions and on the non-existence of blowing-up solutions. We note that
in our results, the existence of solutions is assumed. For results on the existence we refer the
reader to [1, 20].

Nevertheless, we start with the following theoretical example to show that, in different
values of t, each one of Theorems 2.2 and 2.11 might give a better estimation than the other.

Example 3.1. Let a and u be non-negative continuous functions on [0, T] for some 0 < T ≤ ∞,
ω ∈ O, and u satisfy

u(t) ≤ a(t) + e−t
∫ t

0
(t − s)−

1
4 ω(u(s))ds, t ∈ [0, T]. (3.1)

In this case, α = 3/4, b(t) = e−t, Ψ(t) = t, F(t) ≡ 1, and t0 = 0. Let us take q = 2,
implying p = 2, and µ > 0. Let Ω, Ω−1, A be as in Theorem 2.2. By (2.3), Mp,µ,α = 4

√
π
2µ and

B(t) = 2
√

π

2µ
sup

s∈[0,t]

{
e−2s e2µs} =


√

2π
µ , 0 < µ ≤ 1,√

2π
µ e2(µ−1)t, µ > 1.
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Hence, Theorem 2.2 gives

Ω(u(t)2)− Ω(A(t)) ≤ B(t)
∫ t

0
e−2µs ds =


√

π
2µ

1−e−2µt

µ , 0 < µ ≤ 1,√
π
2µ

(e2µt −1) e−2t

µ , µ > 1
(3.2)

for all t ∈ [0, t1], where t1 ∈ (0, T] is such that

Ω(A(t1)) +

√
π

2µ

1 − e−2µt1

µ
∈ Dom Ω−1

if 0 < µ ≤ 1, and

Ω(A(t1)) +

√
π

2µ

(e2µt1 −1) e−2t1

µ
∈ Dom Ω−1

if µ > 1.
On the other side, in the notation of (2.12), Mp,α(t) =

4
√

4t and

B(t) = 2 sup
s∈[0,t]

{
2
√

s e−2s} = 4 sup
s∈[0,t]

{√
s e−2s} =

{
4
√

t e−2t, 0 ≤ t ≤ 1
4 ,

2√
e , t ≥ 1

4 .

Therefore, by Theorem 2.11,

Ω(u(t)2)− Ω(A(t)) ≤ B(t)
∫ t

0
1ds =

{
4t

3
2 e−2t, 0 ≤ t ≤ 1

4 ,
2t√

e , t > 1
4

(3.3)

for all t ∈ [0, t1], where t1 ∈ (0, T] is such that

Ω(A(t1)) + 4t
3
2
1 e−2t1 ∈ Dom Ω−1

if t1 ≤ 1
4 , and

Ω(A(t1)) +
2t1√

e
∈ Dom Ω−1

if t1 > 1
4 .

Let us denote E1(t), E2(t) the right-hand sides of estimations (3.2), (3.3), respectively. For
better illustration, graphs of these functions are given in Figure 3.1.

Having a concrete function ω ∈ O in (3.1), one obtains an explicit estimation of u. For
instance, if ω(u) = u, then function Ω(v) = ln v

v0
(see the proof of Corollary 2.5) maps [v0, ∞)

for v0 > 0 onto [0, ∞). Hence,

u(t) ≤
(

v0 eln A(t)−ln v0+Ei(t)
)1/2

=
√

A(t) eEi(t), t ∈ [0, T]

for each i = 1, 2. As another example, consider ω(u) =
√

u. Then, Ω(v) = 2(
√

v −√
v0) maps

[v0, ∞) for v0 ≥ 0 onto [0, ∞). Thus, Ω−1(v) = (
√

v0 + v/2)2 and

u(t) ≤
√

v0 +
1
2

(
2(
√

A(t)−
√

v0) + Ei(t)
)
=
√

A(t) +
Ei(t)

2
, t ∈ [0, T]

for each i = 1, 2.
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Figure 3.1: Graphs of the right-hand sides of (3.2) (µ = 0.8 – green, µ = 1 – red,
µ = 3 – brown) and (3.3) (blue).

Now, we investigate the IVPs with Ψ-Caputo fractional derivative. First, we consider the
following one

CDα,Ψ
t0

x(t) = f (t, x(t)), t > t0, (3.4)

x(t0) = x0 (3.5)

for some constant x0 ∈ RN , N ∈ N, where α ∈ (0, 1), Ψ ∈ P1
[t0,∞), and f ∈ C([t0, ∞) ×

RN , RN).

Definition 3.2. A mapping x ∈ C([t0, t0 + h], RN), 0 < h ≤ ∞ is a solution of IVP (3.4), (3.5), if
CDα,Ψ

a x(t) exists and is continuous on (t0, t0 + h], x fulfills equation (3.4) and initial condition
(3.5). The solution x is called blowing-up, if it is defined on [t0, τ) for some t0 < τ < ∞ and
limt→τ− ∥x(t)∥ = ∞.

Theorem 3.3. Let F be a non-negative continuous function defined on [t0, T], and ω ∈ O be such that

∥ f (t, x)∥ ≤ F(t)ω(∥x∥), t ∈ [t0, T], x ∈ RN .

If x is a solution of (3.4), (3.5) defined on [t0, T], αq > 1, µ > 0, then it satisfies

1. the inequality

∥x(t)∥ ≤
[

Ω−1

(
Ω(2q−1∥x0∥q) +

2q−1Mq
p,µ,α eqµΨ(t)

Γ(α)q

∫ t

t0

Ψ′(s)F(s)q e−qµΨ(s) ds

)]1/q

for all t ∈ [t0, t1], where Mp,µ,α is given by (2.3) and t1 ∈ (t0, T] is such that

Ω(2q−1∥x0∥q) +
2q−1Mq

p,µ,α eqµΨ(t1)

Γ(α)q

∫ t1

t0

Ψ′(s)F(s)q e−qµΨ(s) ds ∈ Dom Ω−1;

2. the inequality

∥x(t)∥ ≤
[

Ω−1

(
Ω(2q−1∥x0∥q) +

2q−1Mp,α(t)q

Γ(α)q

∫ t

t0

Ψ′(s)F(s)qds

)]1/q

for all t ∈ [t0, t1], where Mp,α is given by (2.12) and t1 ∈ (t0, T] is such that

Ω(2q−1∥x0∥q) +
2q−1Mp,α(t1)

q

Γ(α)q

∫ t1

t0

Ψ′(s)F(s)qds ∈ Dom Ω−1,
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where Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, and Ω−1 is the inverse of Ω.

Proof. From [1, Theorem 2] (see also [17, Theorem 2]), we know that x satisfies the integral
equation

x(t) = x0 +
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s) f (s, x(s))ds

for all t ∈ [t0, T]. Then, for the norm of the solution, we have

∥x(t)∥ ≤ ∥x0∥+
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)∥ f (s, x(s))∥ds

≤ ∥x0∥+
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)ω(∥x(s)∥)ds

for any t ∈ [t0, T]. Applying Theorems 2.2, 2.11 proves the first and the second statement,
respectively.

Theorem 3.4. Let all the assumptions of Theorem 3.3 be fulfilled with T = ∞ and∫ ∞

v0

dσ

[ω(σ1/q)]q
= ∞ (3.6)

for some v0 > 0. Then (3.4), (3.5) does not possess a blowing-up solution.

Proof. Let x be a blowing-up solution of (3.4), (3.5) which is defined on [t0, b) for some t0 <

b < ∞, i.e., limt→b− ∥x(t)∥ = ∞. Notice that condition (3.6) means Ω(∞) = ∞ for Ω as in the
Theorem 3.3. In other words, [0, ∞) ⊂ Ω−1, and Statement 1 of Theorem 3.3 holds for any
t1 ∈ [t0, b), µ = 1. But this is equivalent to

Ω(∥x(t)q∥) ≤ Ω(2q−1∥x0∥q) +
2q−1Mq

p,1,α eqΨ(t)

Γ(α)q

∫ t

t0

Ψ′(s)F(s)q e−qΨ(s) ds.

Taking the limit t → b− gives a contradiction, since the right-hand side is bounded. Therefore,
b = ∞ and the proof is complete.

The following example illustrates the use of the latter result.

Example 3.5. Let x be a solution of initial value problem (3.4), (3.5), and the assumptions of
Theorem 3.3 be satisfied with

ω(u) = u
q−1

q (ln(1 + u))
1
q .

Then x is not blowing-up.

Indeed, for v0 > 0, we have∫ ∞

v0

dσ

[ω(σ1/q)]q
= q

∫ ∞

v1/q
0

τq−1dτ

[ω(τ)]q
= q

∫ ∞

v1/q
0

τq−1dτ

τq−1 ln(1 + τ)

= q
∫ ∞

v1/q
0

dτ

ln(1 + τ)
≥ q

∫ ∞

v1/q
0

dτ

τ
= ∞.

So, the assumptions of Theorem 3.4 are satisfied.
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Next, we consider the IVP with a Ψ-Hilfer fractional integral on the right side,

CDα,Ψ
t0

x(t) = f (t, x(t)) + c(t)Iβ,Ψ
t0

g(t, x(t)), t > t0, (3.7)

x(t0) = x0 (3.8)

for x0 ∈ RN , N ∈ N, where α, β ∈ (0, 1), α + β < 1, Ψ ∈ P1
[t0,∞), c ∈ C([t0, ∞), R), and

f , g ∈ C([t0, ∞)× RN , RN).

Theorem 3.6. Let F, G be non-negative continuous functions defined on [t0, T], and ω, ω2 ∈ O be
such that

∥ f (t, x)∥ ≤ F(t)ω1(∥x∥),
∥g(t, x)∥ ≤ G(t)ω2(∥x∥),

t ∈ [t0, T], x ∈ RN .

If x is a solution of (3.7), (3.8) defined on [t0, T], αq > 1, µ > 0, then it satisfies

1. the inequality

∥x(t)∥ ≤
[

Ω−1
(

Ω(2q−1∥x0∥q) + B(t)
∫ t

t0

Ψ′(s)H(s)q e−qµΨ(s) ds
)]1/q

for all t ∈ [t0, t1], where

B(t) = 2q−1 sup
s∈[t0,t]

{
eqµΨ(s)

(
Mp,µ,α

Γ(α)
+

Mp,µ,α+β

Γ(α + β)
sup

σ∈[t0,s]
|c(σ)|

)q}
,

Mp,µ,α is given by (2.7), and t1 ∈ (t0, T] is such that

Ω(2q−1∥x0∥q) + B(t1)
∫ t1

t0

Ψ′(s)H(s)q e−qµΨ(s) ds ∈ Dom Ω−1;

2. the inequality

∥x(t)∥ ≤
[

Ω−1
(

Ω(2q−1∥x0∥q) + B(t)
∫ t

t0

Ψ′(s)H(s)qds
)]1/q

for all t ∈ [t0, t1], where

B(t) = 2q−1 sup
s∈[t0,t]

{
Mp,α(s)

Γ(α)
+

Mp,α+β(s)
Γ(α + β)

sup
σ∈[t0,s]

|c(σ)|
}q

,

Mp,α is given by (2.15), and t1 ∈ (t0, T] is such that

Ω(2q−1∥x0∥q) + B(t1)
∫ t1

t0

Ψ′(s)H(s)qds ∈ Dom Ω−1,

where H = max{F, G}, ω = max{ω1, ω2}, Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, and Ω−1 is the
inverse of Ω.
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Proof. As in the proof of Theorem 3.3, we use the integral equation for the solution of (3.7),
(3.8), and we estimate its norm using the assumptions on f , g to obtain

∥x(t)∥ ≤ ∥x0∥+
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)ω1(∥x(s)∥)ds

+
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1|c(s)|

× 1
Γ(β)

∫ s

t0

[Ψ(s)− Ψ(σ)]β−1G(σ)ω2(∥x(σ)∥)dσ ds

for any t ∈ [t0, T]. The application of Theorems 2.8 and 2.16 proves the statements.

Theorem 3.7. Let all the assumptions of Theorem 3.6 be fulfilled with T = ∞ and Ω(∞) = ∞ for Ω
as in Theorem 3.6. Then (3.7), (3.8) does not possess a blowing-up solution.

Proof. The statement can be proved exactly as Theorem 3.4 with the use of Theorem 3.6 instead
of Theorem 3.3.

Finally, we consider the more general equation with the right-hand side depending on the
fractional integral of the solution,

CDα,Ψ
t0

x(t) = f (t, x(t), Iβ,Ψ
t0

g(t, x(t))), t > t0, (3.9)

x(t0) = x0 (3.10)

for x0 ∈ RN , N ∈ N, where α, β ∈ (0, 1), Ψ ∈ P1
[t0,∞), and f ∈ C([t0, ∞) × RN × RN , RN),

g ∈ C([t0, ∞)× RN , RN).

Theorem 3.8. Let F, G be non-negative continuous functions defined on [t0, T], and ω1, ω2, ω3 ∈ O

be such that

∥ f (t, x, y)∥ ≤ F(t)(ω1(∥x∥) + ω2(∥y∥)), t ∈ [t0, T], x, y ∈ RN ,

∥g(t, x)∥ ≤ G(t)ω3(∥x∥), t ∈ [t0, T], x ∈ RN .

If x is a solution of (3.9), (3.10) defined on [t0, T], q min{α, β} > 1, µ > 0, then it satisfies

1. the inequality

∥x(t)∥ ≤
[

Ω−1
(

Ω(3q−1∥x0∥q)

+ 3q−1Mq
p,µ eqµΨ(t) max

{
1

Γ(α)
,

1
Γ(β)

}q ∫ t

t0

H(s)q e−qµΨ(s) Ψ′(s)ds

+
3q−1Mq

p,µ,α eqµΨ(t)

Γ(α)q

∫ t

t0

F(s)q e−qµΨ(s) Ψ′(s)ds

)]1/q

for all t ∈ [t0, t1], where Mp,µ = max{Mp,µ,α, Mp,µ,β}, Mp,µ,α is given by (2.8), and t1 ∈ (t0, T]
is such that

Ω(3q−1∥x0∥q) + 3q−1Mq
p,µ eqµΨ(t1) max

{
1

Γ(α)
,

1
Γ(β)

}q ∫ t1

t0

H(s)q e−qµΨ(s) Ψ′(s)ds

+
3q−1Mq

p,µ,α eqµΨ(t1)

Γ(α)q

∫ t1

t0

F(s)q e−qµΨ(s) Ψ′(s)ds ∈ Dom Ω−1;
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2. the inequality

∥x(t)∥ ≤
[

Ω−1
(

Ω(3q−1∥x0∥q)

+ 3q−1Mp(t)q max
{

1
Γ(α)

,
1

Γ(β)

}q ∫ t

t0

H(s)qΨ′(s)ds

+
3q−1Mp,α(t)q

Γ(α)q

∫ t

t0

F(s)qΨ′(s)ds

)]1/q

for all t ∈ [t0, t1], where Mp = max{Mp,α,Mp,β}, Mp,α is given by (2.16), and t1 ∈ (t0, T]
is such that

Ω(3q−1∥x0∥q) + 3q−1Mp(t1)
q max

{
1

Γ(α)
,

1
Γ(β)

}q ∫ t1

t0

H(s)qΨ′(s)ds

+
3q−1Mp,α(t1)

q

Γ(α)q

∫ t1

t0

F(s)qΨ′(s)ds ∈ Dom Ω−1

where H = max{F, G}, ω = max{ω1, ω2, ω3}, Ω(v) =
∫ v

v0

1
[ω(σ1/q)]q

dσ for v ≥ v0 ≥ 0, and Ω−1 is
the inverse of Ω.

Proof. Using the estimation

∥ f (t, x(t), Iβ,Ψ
t0

g(t, x(t)))∥ ≤ F(t)
(

ω1(∥x(t)∥) + ω2(Iβ,Ψ
t0

(G(t)ω3(∥x(t)∥)))
)

following from the assumptions on f and g, and an appropriate integral equation (see [17,
Theorem 2] or the proof of Theorem 3.3), we get

∥x(t)∥ ≤ ∥x0∥+
1

Γ(α)

∫ t

t0

[Ψ(t)− Ψ(s)]α−1Ψ′(s)F(s)

×
(

ω1(∥x(s)∥) + ω2

(
1

Γ(β)

∫ s

t0

[Ψ(s)− Ψ(σ)]β−1G(σ)ω3(∥x(σ)∥)dσ

))
ds

for any t ∈ [t0, T]. The statements then follow from Theorems 2.9 and 2.17, respectively.

Theorem 3.9. Let all the assumptions of Theorem 3.8 be fulfilled with T = ∞ and Ω(∞) = ∞ for Ω
as in Theorem 3.8. Then (3.9), (3.10) does not possess a blowing-up solution.

Proof. The statement can be proved exactly as Theorem 3.4 with the use of Theorem 3.8 instead
of Theorem 3.3.

4 Conclusions and discussion

In this paper, the parametrized desingularization method and the desingularization method
without an exponential function have been applied to derive new estimations of functions
satisfying integral inequalities involving integrals with a weakly singular kernel, namely Ψ-
Hilfer fractional integrals of order from (0, 1). More precisely, nonlinear Henry–Gronwall
integral inequalities (Theorems 2.2, 2.11), integral inequalities with an iterated fractional inte-
gral (Theorems 2.8, 2.16), and integral inequalities with a fractional integral of a function of a
fractional integral (Theorems 2.9, 2.17) have been proved.
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It should be mentioned, that all of the results of Section 2 are valid also for α ≥ 1, β ≥ 1,
or α + β ≥ 1 in Theorems 2.8, 2.16, although, in these cases, better estimations might exist,
since the integrals are no more singular.

The integral inequalities have been applied to IVPs for fractional differential equations
with Ψ-Caputo derivatives to obtain bounds for the solutions and to prove sufficient condi-
tions for the non-existence of blowing-up solutions.

Further applications of our integral inequalities may be found in the study of stability or
existence of solutions of generalizations of evolution equations investigated in [8, 13–15].
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[14] M. Medveď, Integral inequalities and global solutions of semilinear evolution equations,
J. Math. Anal. Appl. 267(2002), No. 2, 634–650. https://doi.org/10.1006/jmaa.2001.
7798; MR1888028; Zbl 1028.34055
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