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Abstract. This paper presents a systematic method to address the complete stability
problem of delayed neural networks with heterogeneous free parameters. First, we
adopt an algebraic method to investigate the complete stability problem with respect
to the free delay parameter τ. Then, the stability analysis is extended to the scenario
with additional free system parameters, denoted by a vector X. We can investigate the
complete root classification for the auxiliary characteristic equation in the entire (X, τ)-
space. As a result, we can analytically calculate the number of stability τ-intervals and
characterize all classifications of stability property over the whole (X, τ)-space. Finally,
we will give a systematic method for determining the stability set in the whole (X, τ)-
space. Some representative examples show the effectiveness of the approach.
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1 Introduction

During the last four decades, the interest in investigating the stability of neural networks
(NNs) has steadily increased since the pioneering work of Hopfield (see [19]). Based on the
Hopfield NN model, Marcus and Westervelt incorporated time delays in an NN model (see
[32]). Since then, various types of delayed NN models have been proposed, and various issues
of these models (including stability, periodic solution, and bifurcation, etc.) have been studied
extensively by many researchers (see e.g., [1–3, 7, 12, 15, 16, 18, 20, 23, 28, 40, 42, 44, 45, 47]).

The appearance of delays causes a dynamical system to be infinitely dimensional. Hence,
the stability analysis for a time delay system will usually be much more complicated than that
for a delay-free system (see e.g., [14, 34, 37]).
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From a practical point of view, besides a time delay, a system usually involves a number
of parameters. One can design the system parameters to render the system asymptotically
stable (see e.g., [36, 41] for the controller design, [22] for the economic system, [48] for the
laser system, and [4] for the biological system).

The stability problem becomes much more complex if the system contains the delay free
parameter as well as additional system free parameters (i.e., heterogeneous free parameters).

For delayed NNs, the stability set of delay τ subject to the form τ ∈ [0, τ) is extensively
addressed. Such a τ is termed the delay margin (see [14]), a notion widely used in the field of
time-delay systems. See, for instance, [5] and [21] for delayed Hopfield NNs, [9] and [38] for
delayed bidirectional associative memory (BAM) NNs, and [8] and [46] for delayed NNs with
an annular topology.

Recently, the complete stability problem w.r.t. the delay parameter τ* has been studied for
NNs in [24]. It is found therein that a delayed NN may have more than one stability τ-interval
including or excluding τ = 0.

Nevertheless, the problem considered in [24] contains only a free delay parameter τ. In this
paper, for the delayed NN, we will address the complete stability problem with heterogeneous
free parameters, including a delay parameter τ and additional system parameters (throughout
this paper, we denote them by a vector X).

It will be interesting to see in this paper that the stability parameter space of a delayed NN
may have multiple disjoint parts.

As far as we know, the complete stability problem of delayed NNs with heterogeneous
free parameters has not been well investigated. In our opinion, the difficulties in studying this
problem mainly come from two aspects:

(i) The free parameter space is multiple-dimensional.

(ii) The free parameters are of heterogeneous types.

To the best of the authors’ knowledge, the above two technical points can not be appropriately
covered by the existing results for delayed NNs. In order to solve such a complete stability
problem, we will develop a systematic approach.

First, for the case where τ is the only free parameter, an algebraic approach will be em-
ployed for the complete stability analysis w.r.t. τ of the NN.

Notably, the above approach covers the general case (to be explained in Remark 3.7).
Next, in the scenario where the free parameters contain delay parameter τ plus system

parameter vector X, we will employ the discrimination system, a mathematical tool for poly-
nomial algebra. Then, we can obtain the complete root classification (CRC) for the auxiliary
characteristic equation.

Consequently, we are able to characterize the stability property over the entire (X, τ)-
space. To be more precise, we can calculate the possible number of stability τ-intervals and
analytically calculate them.

Combining the abovementioned results, we will develop a systematic method to identify
the stability set in the whole (X, τ)-space.

This systematic method can contribute to a more refined design process. It offers a possible
“stabilization” way such that a pair of (X, τ) can be found under which a practical NN system
can be stable.

*We call the problem of analyzing the stability property along the entire positive τ-axis as the complete stability
problem w.r.t. τ (see e.g., [26]).
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We will present some examples with different NN architectures and show that all clas-
sifications of stability property can be characterized in the entire (X, τ)-space by using our
approach. It will be seen in the examples that a very small change of the vector X may make
the NU(τ) distribution (NU(τ) stands for the number of characteristic roots in C+) have a
structural variation.

This paper is organized as follows. In Section 2, three types of delayed NNs and the
corresponding characteristic functions are reviewed. The main results are proposed in Section
3. Illustrative examples are presented in Section 4. Finally, the paper concludes in Section 5.

Notations: Throughout the paper, the following standard notations are used. R (R+) is the
set of (positive) real numbers. N stands for the set of non-negative integers. C represents the
set of complex numbers. We use C− and C+ respectively to denote the left half-plane and the
right half-plane in C. deg(·) is the degree of a polynomial. Finally, ⌈γ⌉ stands for the smallest
integer greater than or equal to γ, where γ ∈ R.

2 Neural network models and characteristic functions

We will review in this section three types of delayed NN models, including the Hopfield NN
model, the bidirectional associative memory (BAM) NN model, and the NN model with an
annular topology. In recent years, these NN models have attracted much attention.

We will show that the local stability is determined by the corresponding characteristic
function f (λ, τ).

2.1 Delayed Hopfield neural network model

The first model to be recalled in this paper is the delayed Hopfield NN model (see e.g., [5]
and [21]):

ẏi(t) = −µiyi(t) +
n

∑
j=1

cij f (yj(t − τij)), i = 1, . . . , n, (2.1)

where yi(t) stands for the voltage on the input of the i-th neuron at time t; µi ∈ R+ is a
positive constant; cij ∈ R represents the connection weight of the unit j on the unit i; f is the
activation function; τij ∈ R+ ∪ 0 denotes the signal transmission delay.

Here, we consider a simplified Hopfield NN model, which has three neurons in series (see
Fig. 2.1 (a) borrowed from [29]):

ẏ1(t) = −µ1y1(t) + c12 f (y2(t − τ12)),

ẏ2(t) = −µ2y2(t) + c21 f (y1(t − τ21)) + c23 f (y3(t − τ23)),

ẏ3(t) = −µ3y3(t) + c32 f (y2(t − τ32)),

(2.2)

where cij = 0 if i = j, f ∈ C1, and f (0) = 0.
For the sake of simplicity, we assume that both the loops between neurons have the same

sum of delays, i.e., τ12 + τ21 = τ23 + τ32. We denote this value by τ.
It is not hard to see that for NN (2.2), the origin is the equilibrium and the linearization is

ẏ1(t) = −µ1y1(t) + h12y2(t − τ12),

ẏ2(t) = −µ2y2(t) + h21y1(t − τ21) + h23y3(t − τ23),

ẏ3(t) = −µ3y3(t) + h32y2(t − τ32),
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Figure 2.1: Architectures of three delayed NN models.

where hij = cij f ′(0).
The corresponding characteristic function is

a0(λ) + a1(λ)e−τλ, (2.3)

where a0(λ) = ∏3
i=1 (λ + µi), a1(λ) = −(h21h12 + h23h32)λ − h21h12µ3 − h23h32µ1. It follows

that deg(a0(λ)) = 3 and deg(a1(λ)) = 1.
For such a Hopfield NN model, the coefficients µi and hij are allowed to have free system

parameters (as mentioned previously, we denote them by a vector X). In Example 4.1 of this
paper, we will choose X = (h21) and study the whole stability set in (h21, τ)-plane.

2.2 Delayed bidirectional associative memory (BAM) neural network model

Next, we recall the BAM NNs (see e.g., [9] and [38]).
A delayed BAM NN is described by the model{

ẋi(t) = −µixi(t) + ∑m
j=1 cji fi(yj(t − τ2)),

ẏj(t) = −νjyj(t) + ∑n
i=1 dijgj(xi(t − τ1)),

(2.4)

where xi(t) and yj(t) are the state of the neurons in the I-layer and the J-layer at time t,
respectively (i = 1, . . . , n, j = 1, . . . , m, n and m denote the numbers of neurons); fi and gj
are the activation functions; cji ∈ R and dij ∈ R are the connection weights; τ1 and τ2 are
the signal transmission delays; µi ∈ R+ and νj ∈ R+ describe the stability of internal neuron
process.

Here, we consider the case where n = 1 and m = 3 (the architecture of this model is
described in Fig. 2.1 (b)).

For simplicity, we redefine µ2 = ν1, µ3 = ν2, µ4 = ν3, c21 = c11, c31 = c21, c41 = c31,
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c12 = d11, c13 = d12, c14 = d13, f2 = g1, f3 = g2, f4 = g3. Then, the BAM NN model (2.4) reads:
ẋ1(t) = −µ1x1(t) + c21 f1(y1(t − τ2)) + c31 f1(y2(t − τ2)) + c41 f1(y3(t − τ2)),

ẏ1(t) = −µ2y1(t) + c12 f2(x1(t − τ1)),

ẏ2(t) = −µ3y2(t) + c13 f3(x1(t − τ1)),

ẏ3(t) = −µ4y3(t) + c14 f4(x1(t − τ1)),

(2.5)

where fi ∈ C1 and fi(0) = 0, i = 1, 2, 3, 4.
By letting u1(t) = x1(t − τ1), u2(t) = y1(t), u3(t) = y2(t), u4(t) = y3(t), and τ = τ1 + τ2,

the BAM NN model (2.5) may be rewritten as the following model
u̇1(t) = −µ1u1(t) + c21 f1(u2(t − τ)) + c31 f1(u3(t − τ)) + c41 f1(u4(t − τ)),

u̇2(t) = −µ2u2(t) + c12 f2(u1(t)),

u̇3(t) = −µ3u3(t) + c13 f3(u1(t)),

u̇4(t) = −µ4u4(t) + c14 f4(u1(t)).

(2.6)

Then, the linearization of the model (2.6) at the equilibrium (0, 0, 0, 0) is
u̇1(t) = −µ1u1(t) + h21u2(t − τ) + h31u3(t − τ) + h41u4(t − τ),

u̇2(t) = −µ2u2(t) + h12u1(t),

u̇3(t) = −µ3u3(t) + h13u1(t),

u̇4(t) = −µ4u4(t) + h14u1(t),

(2.7)

where hij = cij f ′j (0).
The corresponding characteristic function is

a0(λ) + a1(λ)e−τλ, (2.8)

where a0(λ) = λ4 + (µ1 + µ2 + µ3 + µ4)λ
3 + (µ1µ2 + µ3µ4 + µ1µ3 + µ1µ4 + µ2µ3 + µ2µ4)λ

2 +

(µ1µ2µ3 +µ1µ2µ4 +µ1µ3µ4 +µ2µ3µ4)λ+µ1µ2µ3µ4 and a1(λ)=−(h12h21 + h13h31 + h14h41)λ
2−

(h12h21µ3 + h12h21µ4 + h13h31µ2 + h13h31µ4 + h14h41µ2 + h14h41µ3)λ−(h12h21µ3µ4 + h13h31µ2µ4 +

h14h41µ2µ3). It follows that deg(a0(λ)) = 4 and deg(a1(λ)) = 2.
For this BAM NN model, the coefficients µi and hij are allowed to have free system pa-

rameters. In Examples 3.12 and 4.2 of this paper, we will choose X = (h12, h21) and study the
whole stability set in (h12, h21, τ)-space. In Example 4.2, we will also obtain the stability set in
the corresponding 4D parameter space.

2.3 Delayed annular neural network model

Finally, we recall the delayed annular NN model (see e.g., [8] and [46]). Now consider the
following NN model with five neurons:

ẋ1(t) = −µ1x1(t) + α1 f (x1(t)) + β1g(x5(t − τ5)),

ẋ2(t) = −µ2x2(t) + α2 f (x2(t)) + β2g(x1(t − τ1)),

ẋ3(t) = −µ3x3(t) + α3 f (x3(t)) + β3g(x2(t − τ2)),

ẋ4(t) = −µ4x4(t) + α4 f (x4(t)) + β4g(x3(t − τ3)),

ẋ5(t) = −µ5x5(t) + α5 f (x5(t)) + β5g(x4(t − τ4)),

(2.9)
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where xi(t) stands for the voltage on the input of the ith neuron at time t; µi ∈ R+ denotes the
ratio of the capacitance to the resistance; τi represents the signal transmission delay; αi and βi
are the nonzero connection weights; the activation functions f and g are assumed to satisfy
f , g ∈ C1 and f (0) = g(0) = 0.

The above model (2.9) represents the dynamics of a ring of neurons, and the architecture
of this model is described in Fig. 2.1 (c).

We now calculate the associated characteristic function.
For NN model (2.9), the origin is the equilibrium and the linearization is

ẋ1(t) = (s1 − µ1)x1(t) + h1x5(t − τ5),

ẋ2(t) = (s2 − µ2)x2(t) + h2x1(t − τ1),

ẋ3(t) = (s3 − µ3)x3(t) + h3x2(t − τ2),

ẋ4(t) = (s4 − µ4)x4(t) + h4x3(t − τ3),

ẋ5(t) = (s5 − µ5)x5(t) + h5x4(t − τ4),

(2.10)

where si = αi f ′(0), hi = βig′(0), i = 1, . . . , 5.
The corresponding characteristic function is

a0(λ) + a1(λ)e−τλ, (2.11)

where a0(λ) = ∏5
i=1 (λ + µi − si), a1(λ) = −∏5

i=1 (hi), and τ = ∑5
i=1 τi. It follows that

deg(a0(λ)) = 5 and deg(a1(λ)) = 0.
For such an annular NN model, the coefficients µi, si, and hi are allowed to have free

system parameters. In Example 4.3 of this paper, we will choose X = (s1) and study the
whole stability set in (s1, τ)-plane.

2.4 Characteristic function

It is clear that the characteristic functions for abovementioned three types of delayed NNs are
subject to the same form

f (λ, τ) = a0(λ) + a1(λ)e−λτ, (2.12)

where a0(λ) and a1(λ) (deg(a0(λ)) > deg(a1(λ))) are polynomials with real coefficients. The
coefficients may contain free parameters.

The characteristic function f (λ, τ) is a quasipolynomial, and, unsurprisingly, it also covers
many other types of delayed NNs.

The local asymptotic stability of delayed NNs may be analytically determined by the above
characteristic function (2.12). More specifically, the delayed NN is locally asymptotically stable
if all the characteristic roots are located in the left half-plane C−.

3 Main results

The complete stability problem w.r.t. the delay parameter τ has been studied for delayed NNs
by using a frequency-sweeping approach in a very recent paper (see [24]). It is pointed out
that a delayed NN may have more than one stability τ-interval including or excluding τ = 0.

However, the frequency-sweeping approach, as a graphical one, is difficult to apply in the
case with additional free system parameters. When a delayed NN has multiple free param-
eters, we need to study the parameter space and the difficulties mentioned in Introduction
arise.
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In order to study the complete stability problem of delayed NN with heterogeneous free
parameters, we will fulfill a systematic analysis in the whole (X, τ)-space.

More specifically, when τ is the only free parameter, we will adopt an algebraic approach
for the complete stability analysis (to be given in Subsection 3.1), and in the case where the
free parameters include delay parameter τ plus system parameter vector X, we will adopt a
tool for polynomial algebra and develop a method to achieve the CRC of effective W roots (to
be given in Subsection 3.2). Finally, we will present a systematic method to detect the stability
set in the whole (X, τ)-space (to be given in Subsection 3.3).

3.1 Complete stability problem w.r.t. τ

When τ is the only free parameter, we use NU(τ) ∈ N to denote the number of characteristic
roots in C+. NU(τ) may increase or decrease only when τ is a critical delay (CD) where the
system has a critical imaginary root (CIR) λ = jω, ω ∈ R. We call the corresponding pair
(λ, τ) a critical pair.

We denote the CIRs as λα = jωα, α = 0, . . . , u− 1. Concerning a CIR λα = jωα, the CDs
are τα,k = τα,0 +

2kπ
ωα

, k ∈ N, where τα,0 is the minimum CD satisfying

e−τωα j = − a0(jωα)

a1(jωα)
. (3.1)

For a critical pair (λα, τα,k > 0), the influence of the asymptotic behavior on NU(τ) can be
reflected by the notation ∆NUλα

(τα,k) ∈ N, representing the variation of NU(τ) due to λα as
τ is increased from τα,k − ε to τα,k + ε.

First, along the similar idea in [13], we may obtain the following lemma straightforwardly.

Lemma 3.1. For the characteristic function f (λ, τ) of a delayed NN considered in this paper, there
exists a critical imaginary root λ = jω ̸= 0 if and only if (iff) the auxiliary characteristic equation
F (W) = 0 has a positive real root W = ω2, where

F (W) = |a0(jω)|2 − |a1(jω)|2

= (Re(a0(jω)))2 + (Im(a0(jω)))2 − (Re(a1(jω)))2 − (Im(a1(jω)))2.
(3.2)

Remark 3.2. The application of auxiliary characteristic function can be traced back to [13],
with an almost 40-year history. It has been widely used for the stability analysis of time-delay
systems. However, the existing methods have the restriction of not being able to address the
multiple auxiliary characteristic roots. In the sequel, we will give some results covering the
restriction.

For the auxiliary characteristic function (3.2), we are only concerned with the positive real
W roots since W = ω2. Such roots are termed the effective W roots, denoted by Wα, α =

0, . . . , u− 1, with Wα = ω2
α. Without any loss of generality, assume that among Wα, there are

qo ∈ N ones with odd multiplicities (we denote them by Wo
0 , . . . , Wo

qo−1), and qe ∈ N ones
with even multiplicities (we denote them by We

0 , . . . , We
qe−1). We label them as:

Wo
0 > · · · > Wo

qo−1 > 0, We
0 > · · · > We

qe−1 > 0. (3.3)

For each Wo
i and We

i , we use (λo
i = jωo

i , τo
i,k), where ωo

i =
√

Wo
i > 0, and (λe

i = jωe
i , τe

i,k),
where ωe

i =
√

We
i > 0, k ∈ N, respectively to denote critical pairs. The CDs are τo

i,k = τo
i,0 +

2kπ
ωo

i

and τe
i,k = τe

i,0 +
2kπ
ωe

i
, respectively.
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Lemma 3.3. For any ε > 0, when W varies slightly near the effective W root of delayed NNs considered
in this paper, one of the following three cases must happen:

Case (1): For a W = We
i , when W increases from We

i − ε to We
i + ε, the F (W) does not change sign.

Case (2): For a W = Wo
i (i is even), when W increases from Wo

i − ε to Wo
i + ε, the sign of F (W)

changes from negative to positive.

Case (3): For a W = Wo
i (i is odd), when W increases from Wo

i − ε to Wo
i + ε, the sign of F (W)

changes from positive to negative.

Proof of Lemma 3.3. In light of Lemma 3.1, it is clear that F (W) = 0 is a polynomial equation.
If the polynomial equation has a We

i root, the Case (1) is true. For delayed NNs considered in
this paper, the characteristic function (2.12) is satisfied with deg(a0(λ)) > deg(a1(λ)). It can
be seen that F (W) > 0 when W → ∞. Hence, Cases (2) and (3) are true.

Lemma 3.4. Suppose W̃ = (ω̃)2 is the effective W root of delayed NNs considered in this paper.
(λ̃ = jω̃, τ̃) is the critical pair with f (λ̃, τ̃) = 0. As W increases from W̃ − ε to W̃ + ε, we have the
following three results.

(i) ∆NUjω̃(τ̃k) = 0 iff the F (W) does not change sign.

(ii) ∆NUjω̃(τ̃k) = +1 iff the sign of F (W) changes from negative to positive.

(iii) ∆NUjω̃(τ̃k) = −1 iff the sign of F (W) changes from positive to negative.

Proof of Lemma 3.4. First, letting z = e−λτ, we rewrite the characteristic function (2.12) as
p(λ, z) = a0(λ) + a1(λ)z. For each λ, we have a solution of z such that p(λ, z) = 0. Hence,
we can obtain that z = −a0(λ)/a1(λ), denoted by z(λ). Here, we suppose λ̃ = jω̃ is a
critical imaginary root (calculated by F (W) = 0, W̃ = ω̃2 is the effective W root). The corre-
sponding critical delays are τ̃k = τ̃0 +

2kπ
ω̃ , where τ̃0 is the minimum critical delay satisfying

z(jω̃) = e−τω̃j = −a0(jω̃)/a1(jω̃). It follows that |z(jω̃)| = 1.
Next, for a λ̃, it is clear that under a small perturbation +εj, we hold that |z(j(ω̃ + ε))| =

|a0(j(ω̃ + ε)/a1(j(ω̃ + ε)|. Hence, |z(j(ω̃ + ε))| − |z(jω̃)| > 0(< 0) iff |a0(j(ω̃ + ε))| − |a1(j(ω̃ +

ε))| > 0(< 0), which is the same sign as F ((ω̃ + ε)2). The above analysis also applies when
the small perturbation is −εj.

Finally, as W increases from W̃ − ε to W̃ + ε (ω increases from ω̃ − ε to ω̃ + ε), in accordance
with Section III(B) of [26] and Theorem 1 of [30], we can obtain the value of ∆NUjω̃(τ̃k) by
the sign of |z(j(ω̃ + ε))| − |z(jω̃)| and |z(j(ω̃ − ε))| − |z(jω̃)|. Then the Lemma 3.4 can be
proved.

Following from Lemma 3.3 and Lemma 3.4, we can obtain the algebraic criterion for the
complete stability problem of the delayed NN as follows:

Lemma 3.5. When W̃ = (ω̃+
i )

2 (+ is “o” or “e”) is the effective W root and τ is the only free
parameter for the delayed NN considered in this paper, we have the following three results.

(1) For a λe
i = jω̃e

i (W̃ = We
i = (ω̃e

i )
2), ∆NUjω̃e

i
(τe

i,k) = 0 for all τe
i,k > 0.

(2) For a λo
i = jω̃o

i (W̃ = Wo
i = (ω̃o

i )
2) with i is even, ∆NUjω̃o

i
(τo

i,k) = +1 for all τo
i,k > 0.

(3) For a λo
i = jω̃o

i (W̃ = Wo
i = (ω̃o

i )
2) with i is odd, ∆NUjω̃o

i
(τo

i,k) = −1 for all τo
i,k > 0.

(The λo
i is also listed in order from largest to smallest, with λo

0 (i = 0) being the largest.)
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Remark 3.6. The study on the stability of time-delay systems can be roughly classified into two
types, namely a time domain approach and a frequency-domain approach. For the current
study by the time-domain approach, the Lyapunov–Krasovskii method [14] is widely used,
but it usually yield conservative results and cannot deal with the case when the delay is
a free parameter. Besides the Lyapunov-based methods, the CTCR method [35], the direct
method [39], and the matrix pencil method [10] can effectively analyze the stability of systems.
However, it is difficult to apply these methods to deal with the asymptotic behavior of multiple
CIRs.

In this paper, we address the complete stability problem of the delayed NN. Based on the
perspective of characteristic root, the stability of systems is studied analytically. The conclu-
sion of our approach is almost non-conservative, and it is very easy to obtain the sufficient
and necessary conditions.

Remark 3.7. For the stability analysis of time-delay systems, the asymptotic behavior of mul-
tiple CIRs is essential (see e.g., [6, 11, 25, 26, 33]). It was recently pointed out in [25] that the
appearance of a multiple and degenerate CIR may cause the system to become ‘asymptoti-
cally stable’ from ‘unstable’. As far as we know, in the earlier references of delayed NNs, the
case with multiple and/or degenerate CIRs has not been studied. Our method covers the case
with multiple and/or degenerate CIRs, as such information is not a technical constraint for
Lemma 3.5 (unlike for previous results).

In view of Lemma 3.5, ∆NUλα
(τα,k) is a constant belonging to the set {−1, 0,+1}. Next,

we are able to derive the expression of NU(τ) in view of the root continuity argument.

Theorem 3.8. Consider a delayed NN under consideration in this paper. For any τ > 0 which is not
a critical delay, NU(τ) for the characteristic equation f (λ, τ) = 0 can be explicitly expressed as:

NU(τ) = NU(+ε) + ∑qo−1
i=0 NUo

i (τ), (3.4)

NUo
i (τ) =

0, τ < τo
i,0,

2(−1)i
⌈

τ−τo
i,0

2π/ωo
i

⌉
, τ > τo

i,0,
if τo

i,0 ̸= 0,

NUo
i (τ) =

0, τ < τo
i,1,

2(−1)i
⌈

τ−τo
i,1

2π/ωo
i

⌉
, τ > τo

i,1,
if τo

i,0 = 0.

(In light of Theorem 5.1 in [26], one can calculate the value of NU(+ε).)
The equilibrium corresponding to the characteristic equation f (λ, τ) = 0 is locally asymp-

totically stable if τ is not a CD and belongs to the set with NU(τ) = 0.
In view of the “NU(τ) vs. τ” plot, the equilibrium may undergo a Hopf bifurcation (see

[17] for the Hopf Bifurcation Theorem) as τ is increased near a CD. The stability interval(s)
and bifurcation values of τ can be exhaustively obtained in the whole positive τ-axis.

As mentioned, a delayed NN may contain multiple stability τ-intervals including or ex-
cluding τ = 0. Hence, we introduce a notion from [27] that can be applied in the general
case.

For the case where τ is the only free parameter, without loss of generality, we assume that
the non-empty stability τ-set is subject to the form

τ ∈ (τ1, τ1) ∪ · · · ∪ (τs, τs), (3.5)

plus possible τ = 0, with 0 ≤ τ1 < τ1 < · · · < τs < τs. τs is termed the generalized delay
margin.
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Example 3.9. Consider the delayed BAM NN (2.5) with the activation functions fi(·) =

tanh(·). It is true that hij = cij. Here, we choose the coefficients as: µ1 = 2.46, µ2 = 4.5769,
µ3 = 0.8561, µ4 = 0.9669, h12 = 4.1, h13 = −0.3896, h14 = 2.3488, h21 = −4.57, h31 = −2.8466,
and h41 = 0.7057.

First, we calculate that NU(0) = 0 by solving the characteristic equation f (λ, 0) = 0.
Then, according to Lemma 3.1, we have F (W)=W4 + 28.6674W3 −82.5660W2 − 0.0347W +

69.9926.
By calculating the roots of equation F (W) = 0, we have two sets of CIRs: λo

0 = 1.4869j
(associated with the CDs τo

0,k = 1.7802 + 4.2258k, k ∈ N) and λo
1 = 1.1136j (associated with

the CDs τo
1,k = 2.6181 + 5.6420k, k ∈ N).

Furthermore, we can obtain that ∆NUλo
0
(τo

0,k) = +1 and ∆NUλo
1
(τo

1,k) = −1 in view of
Lemma 3.5. Next, according to Theorem 3.8, we have the “NU(τ) vs. τ” plot, as shown in
Fig. 3.1.

Consequently, we know that the equilibrium is locally asymptotically stable if τ ∈
[0, 1.7802) ∪ (2.6181, 6.0059) ∪ (8.2602, 10.2317) ∪ (13.9022, 14.4575) and that a Hopf bifurca-
tion may occur when τ = 1.7802, 2.6181, 6.0059, 8.2602, 10.2317, 13.9022 and 14.4575. To
verify the above analysis, we give the simulations for τ = 1.2 (in the first stability τ-interval)
in Fig. 3.2 (a), Fig. 3.2 (d) and Fig. 3.3 (a), τ = 2.3 (between the first and the second stabil-
ity τ-intervals) in Fig. 3.2 (b), Fig. 3.2 (e) and Fig. 3.3 (b), and τ = 5 (in the second stability
τ-interval) in Fig. 3.2 (c), Fig. 3.2 (f) and Fig. 3.3 (c).

0 5 10 15 20 25 30 35 40

τ

0

1

2

3

4

5

6

7

8

N
U

(τ
)

Figure 3.1: NU(τ) vs. τ for Example 3.9.

3.2 Complete root classification (CRC) of effective W roots

We proceed to address the scenario with additional free system parameters. In order to appro-
priately address such a case, we now investigate the real W root classification and the effective
W root classification. The real (effective) W root classification refers to the information about
the numbers and multiplicities of different real (effective) W roots. The complete root classifi-
cation (CRC) of real (effective) W roots is the collection of all possible real (effective) W root
classifications.

In the sequel, we recall a mathematical tool, termed the discrimination system (one may
refer to [31] and [43] for details).
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Figure 3.2: Phase portraits for Example 3.9.
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Figure 3.3: Simulations for Example 3.9.

Let Q(z) be a polynomial with real coefficients,

Q(z) = ζqzq + ζq−1zq−1 + · · ·+ ζ0, ζq ̸= 0. (3.6)

The 2q × 2q matrix M =



ζq ζq−1 ζq−2 . . . ζ0
0 qζq (q − 1)ζq−1 . . . ζ1

ζq ζq−1 . . . ζ1 ζ0
0 qζq . . . 2ζ2 ζ1

...
...

ζq ζq−1 ζq−2 . . . ζ0
0 qζq (q − 1)ζq−1 . . . ζ1


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is the discrimination matrix of Q(z).
The determinant of the submatrix of M consisting of the first 2α rows and the first 2α

columns (α = 1, . . . , q) is represented by Dα. We call the discriminant sequence of Q(z) as
D = [D1, . . . , Dq].

In light of the signs of D1, . . . , Dq, we can obtain the sign list [sign(D1), . . . , sign(Dq)]

(sign(x)= 1(0)[-1] if x > 0(= 0)[< 0]) and then the revised sign list for Q(z) (see [31] for more
details).

Without loss of generality, let F (W) (3.2) be a qth-order polynomial

F (W) = ψqWq + ψq−1Wq−1 + · · ·+ ψ0, ψq ̸= 0, (3.7)

where ψq, ψq−1, . . . , ψ0 are coefficients. These coefficients are allowed to be functions of the
free system parameters denoted by the vector X.

As for the delayed Hopfield NN model where deg(a0(λ)) = 3, the sign list of F (W) is
[sign(D1),sign(D2),sign(D3)]. If sign(D2) = 0, the revised sign list is [sign(D1), −1, sign(D3)].
Otherwise, the revised sign list is exactly the sign list.

As for the delayed BAM NN model where deg(a0(λ)) = 4, the sign list of F (W) is
[sign(D1),sign(D2),sign(D3),sign(D4)]. If sign(Di) = 0, i = 2, 3, the revised sign list is listed
in Table 3.1. Otherwise, the revised sign list is exactly the sign list.

sign(Di) = 0 The revised sign list
sign(D2) = 0 [sign(D1), −1, sign(D3), sign(D4)]
sign(D3) = 0 [sign(D1), sign(D2), −1, sign(D4)]

sign(D2) = 0 and sign(D3) = 0 [sign(D1), −1, −1, sign(D4)]

Table 3.1: The revised sign list with sign(Di) = 0, i = 2, 3 for the delayed BAM
NN model.

As for the delayed annular NN model where deg(a0(λ)) = 5, the sign list of F (W) is
[sign(D1),sign(D2),sign(D3),sign(D4),sign(D5)]. If sign(Di) = 0, i = 2, 3, 4, the revised sign list
is listed in Table 3.2. Otherwise, the revised sign list is exactly the sign list.

sign(Di) = 0 The revised sign list
sign(D2) = 0 [sign(D1), −1, sign(D3), sign(D4), sign(D5)]
sign(D3) = 0 [sign(D1), sign(D2), −1, sign(D4), sign(D5)]
sign(D4) = 0 [sign(D1), sign(D2), sign(D3), −1, sign(D5)]

sign(D2) = 0 and sign(D3) = 0 [sign(D1), −1, −1, sign(D4), sign(D5)]
sign(D2) = 0 and sign(D4) = 0 [sign(D1), −1, sign(D3), −1, sign(D5)]
sign(D3) = 0 and sign(D4) = 0 [sign(D1), sign(D2), −1, −1, sign(D5)]

sign(D2) = 0, sign(D3) = 0, and sign(D4) = 0 [sign(D1), −1, −1, 1, sign(D5)]

Table 3.2: The revised sign list with sign(Di) = 0, i = 2, 3 for the delayed BAM
NN model.

Proposition 3.10 ([43]). Suppose that the revised sign list of F (W) has l non-vanishing members and
the number of sign changes is v. It follows that the number of distinct real roots of F (W) is l − 2v.
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For example, if the revised sign list for F (W) is [1, 1,−1], then v = 1, l = 3, and F (W)

has l − 2v = 1 real W root. If the revised sign list for F (W) is [1, 1, 1, 0], then v = 0, l = 3, and
F(W ) has l − 2v = 3 distinct real W roots. If the revised sign list for F (W) is [1,−1,−1, 1, 0],
then v = 2, l = 4, and F (W) has l − 2v = 0 real W root.

Applying the discrimination system to F (W) (3.7), one can obtain the discriminant se-
quence D = [D1, . . . , Dq] and then the CRC of real W roots.

As earlier mentioned, we are only concerned with the positive real W roots (since W = ω2),
i.e., the effective W roots. We will present a method to examine the CRC of effective W roots.

Theorem 3.11. For the auxiliary characteristic function F (W) (3.7), consider a region partitioned in
view of the CRC of real W roots. If the set ψ0 = 0 separates this region into some subregions in X
space, then the positive real W root classification keeps unchanged in each subregion. Otherwise, in the
whole region, the positive real root classification remains unchanged.

Proof of Theorem 3.11. For F (W), there exists a root W = 0 iff ψ0 = 0. If a point in X space
continuously moves in a region partitioned in view of the CRC of real W roots, all the real W
roots’ signs remain unchanged if it does not cross the set ψ0 = 0.

For each region partitioned in accordance with the CRC of real W roots, we can obtain the
effective W root classifications. According to Theorem 3.11, for each region not separated (or
subregion separated) by the set ψ0 = 0, we can select any point to solve F (W) = 0 and this
point represents the effective W root classification for all the points in the region (subregion).

We follow the notations adopted in [43]. For example: “{1, 1, 1, 1}” stands for four different
simple real W roots; “{2, 1, 1}” stands for one double real W root plus two simple real W roots;
“{ }” stands for no real W root. Furthermore, the effective W root classification is represented
by {·, . . . , ·}+. For example, if a real root classification {2, 1, 1} involves one double negative
real W root and two different simple positive real W roots, it is represented by {1, 1}+ (two
different simple effective W roots).

Example 3.12. Consider the delayed BAM NN of Example 3.9. Here, we choose h12 and h21

as free system parameters, i.e., X = (h12, h21). For simplicity, we study the case (h12, h21) ∈
[1, 6]× [−6,−1].

First, according to Lemma 3.1, we obtain F (W) = W4 + 28.6674W3 + (172.4842− (h12h21 +

2.7666)2)W2 + ((1.6555h12h21 + 22.8053)(h12h21 + 2.7666)− (1.8230h12h21 + 15.1537)2

+ 229.9256)W + 86.8611 − (0.8278h12h21 + 11.4027)2.
Then, applying the discrimination system, the discriminant sequence of F (W) is

[D1, D2, D3, D4], where D1 = 4, D2 = 8h2
12h2

21 + 44.2653h12h21 + 1146.8204, D3 = 8h6
12h6

21 +

132.7960h5
12h5

21 − 316.9872h4
12h4

21 + 2920.3114h3
12h3

21 + 114921.2317h2
12h2

21 + 801885.8568h12h21 +

8309682.1306, and D4 = 0.1632h10
12h10

21 + 11.7962h9
12h9

21 + 1602.5531h8
12h8

21 + 46407.3671h7
12h7

21 +

418378.3143h6
12h6

21 + 2094423.4796h5
12h5

21 + 46116871.4106h4
12h4

21 + 738951226.2778h3
12h3

21+

6714650368.4108h2
12h2

21 + 40072389757.5584h12h21 + 111789468423.0607.
For this example, D1 > 0, D2 > 0 (one may easily prove it), D3 and D4 may represent

different signs w.r.t. X = (h12, h21). We can obtain the CRC of real W roots and thereby
partition the selected domain into five regions, as shown in Fig. 3.4 (a).

Region A with {1, 1, 1, 1}: D3 > 0 ∩ D4 > 0; Region B with {2, 1, 1}: D3 > 0 ∩ D4 = 0;
Region C with {1, 1}: (D3 > 0 ∩ D4 < 0) ∪ (D3 = 0 ∩ D4 < 0) ∪ (D3 < 0 ∩ D4 < 0); Region D
with {2, 1, 1}: D3 > 0 ∩ D4 = 0; Region E with {1, 1, 1, 1}: D3 > 0 ∩ D4 > 0.

Second, the set ψ0 = 0, i.e., the set 86.8611 − (0.8278h12h21 + 11.4027)2 = 0, corresponds to
the red curves in Fig. 3.4 (b).
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Figure 3.4: CRCs of real and effective W roots.

Region A is separated by the set ψ0 = 0 into subregions A1 and A2, and Region E is
separated by the set ψ0 = 0 into subregions E1 and E2.

In accordance with Theorem 3.11, we have the following results: Region A1: {1, 1, 1, 1} →
{1}+; Region A2: {1, 1, 1, 1} → { }+; Region B: {2, 1, 1} → { }+; Region C: {1, 1} → { }+;
Region D: {2, 1, 1} → {2}+; Region E1: {1, 1, 1, 1} → {1, 1}+; Region E2: {1, 1, 1, 1} → {1}+.

Furthermore, we can combine Regions A2, B, and C into one region, labeled by Region
B

′
. Consequently, we may partition the domain into five regions: Regions A1, B

′
, D, E1,

and E2. Region D is the boundary between Regions B
′

and E1, whose analytic condition is
D3 > 0 ∩ D4 = 0.
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Figure 3.5: NU(0) distribution w.r.t. (h12, h21) for Example 3.12.

Next, based on the equation f (λ, 0) = 0, NU(0) distribution w.r.t. (h12, h21) is obtained
(see Fig. 3.5).

According to the above analysis, we can obtain the following results:

(1) In Region A1 (NU(0) = 1): As there does not exist an effective W root, the system is not
asymptotically stable for any τ ∈ [0,+∞).

(2) In Region B
′
(NU(0) = 0): As there does not exist an effective W root, the system is

delay-independently stable.
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Figure 3.6: NU(τ) vs. τ for Example 3.12.

(3) On Region D (NU(0) = 0): As there exists a double effective W root, the system is
asymptotically stable for all τ ≥ 0 except at the CDs.

(4) In Region E1 (NU(0) = 0): As there exist two simple effective W roots, the system may
contain more than one stability τ-interval including τ = 0.

(5) In Region E2 (NU(0) = 0): As there exists one simple effective W root, the system has
only one stability τ-interval of the form [0, τ1).

For illustrations, we choose a point (h12 = 4.1, h21 = −4.5396) in Region B
′

and a point
(h12 = 4.1, h21 = −4.5397) in Region E1. The corresponding “NU(τ) vs. τ” plots are shown in
Fig. 3.6 (a) and Fig. 3.6 (b), respectively. We can see that the NU(τ) distribution undergoes a
structural variation due to a very small change of h21.

Remark 3.13. The analytic condition for the boundary of different effective W root classifi-
cations is available. As the NU(τ) distribution does not have a structural variation inside a
region with identical effective W root classification, we may study the NU(τ) distribution by
employing the parameter-sweeping technique. It is worth noting that such a technique is not
for the qualitative test, and hence it is not necessary to set a very fine grid in practice.

3.3 Systematic approach for determining stability set in (X, τ)-space

Based on Theorems 3.8 and 3.11, we now propose a systematic approach to investigate the
stability of delayed NNs in the (X, τ)-space, consisting of the following steps.

Step 0: Linearize the delayed NN under consideration at the equilibrium and calculate the
characteristic function f (λ, τ). Next, obtain the analytic expression of auxiliary characteristic
function F (W).

Step 1: Obtain the CRC of real W roots in the entire X space with the aid of discrimination
system.

Step 2: Determine all possible effective W root classifications in accordance with Theorem 3.11
in the whole X space.

Step 3: Obtain the NU(0) distribution in the X space.
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Step 4: Scan the X space. For each point, investigate the complete stability problem w.r.t. τ

using Theorem 3.8.
With the steps above, we are able to determine the stability set in the entire (X, τ)-space.

Moreover, we can characterize all classifications of stability property in the entire (X, τ)-space.

4 Illustrative examples

In this section, we will give some examples with different NN architectures to illustrate the
proposed approach. We adopt the widely-used hyperbolic tangent functions as the activation
functions, i.e., fi(·) = tanh(·), gi(·) = tanh(·), i = 1, 2, . . . , n. Then, fi(0) = gi(0) = 0 and
f ′i (0) = g′i(0) = 1, i = 1, 2, . . . , n.

We will show that an NN with different coefficients can exhibit different classifications
of stability property. It is worth mentioning that a very small change of the vector X may
make the NU(τ) distribution have a structural variation, which may alter the classification
of stability property. This phenomenon demonstrates the necessity of dividing the parameter
space.

Example 4.1. Consider the delayed Hopfield NN (2.2). With the activation functions adopted
in this section, it is true that hij = cij. Here, we choose the coefficients as: µ1 = 1.4147, µ2 =

1.0102, µ3 = 0.4610, h12 = 1.5176, h23 = −1.4432, h32 = 0.9080. We let X = (h21).

Step 0: The characteristic function is given by (2.3). In light of Lemma 3.1, we have F (W) =

W3 + 3.2344W2 + (−2.3031h2
21 + 3.9774h21 + 0.9674)W − 0.4895h2

21 + 2.5940h21 − 3.0027.

Step 1: The discriminant sequence is [D1, D2, D3], where D1 = 3, D2 = 13.8187h2
21−23.8644h21+

15.1182, and D3 = 48.8657h6
21 − 253.1688h5

21 + 490.2890h4
21 − 623.2539h3

21
+ 742.0196h2

21 − 443.8572h21 + 0.0105.
For this example, D1> 0, D2> 0 (one may easily prove it), and D3 may represent different

signs w.r.t. h21. We can obtain the CRC of real W roots: (1) {1,1,1} iff h21 ∈ (−∞, 0.00002373)∪
(1.265628, 1.766693)∪ (2.341787,+∞) (where D3 > 0); (2) {1} iff h21 ∈ (0.00002373, 1.265628)∪
(1.766693, 2.341787) (where D3 < 0); (3) {2,1} iff h21 ∈{0.00002373, 1.265628, 1.766693, 2.341787}
(where D3 = 0).

Step 2: When ψ0 = 0, i.e., −0.4895h2
21 + 2.5940h21 − 3.0027 = 0, we can calculate that h21 =

1.708129 or h21 = 3.591537. Hence, the intervals (1.265628, 1.766693) and (2.341787,+∞) are
respectively separated into (1.265628, 1.708129), (1.708129, 1.766693), (2.341787, 3.591537), and
(3.591537,+∞).

Furthermore, in light of Theorem 3.11, we can obtain the CRC of effective W roots:

(1) h21 ∈ (−∞, 1.708129) ∪ (3.591537,+∞), {1}+;

(2) h21 ∈ (1.708129, 2.341787), { }+;

(3) h21 = {2.341787}, {2}+;

(4) h21 ∈ (2.341787, 3.591537), {1, 1}+.

Step 3: We analyze the NU(0) distribution w.r.t. h21 by solving the characteristic equation
f (λ, 0) = 0. We have that when h21 ∈ (−∞, 2.342233), NU(0) = 0.

In view of the above analysis, we have the following results:

(1) The system contains only 1 stability τ-interval of the form [0, τ1) iff h21 ∈ (−∞, 1.708129);
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(2) The system is delay-independently stable iff h21∈ (1.708129, 2.341787);

(3) The system is asymptotically stable for all τ ≥ 0 except at the CDs iff h21 = 2.341787;

(4) The system may contain more than one stability τ-interval including τ = 0 iff h21 ∈
(2.341787, 2.342233);

(5) The system may contain stability τ-interval(s) excluding τ=0 iff h21∈(2.342233, 3.591537);

(6) The system has no stability τ-interval iff h21 ∈ (3.591537,+∞).

It can be seen that all classifications of stability property can be characterized in the whole
(h21,τ)-plane. To illustrate the above results and to show the qualitative change of stability
property, we next choose some values of h21 and give the detailed results.

At point h21 = 1.70, the system contains only 1 stability τ-interval [0, 32.1647). At point
h21 = 1.71, the system is delay-independently stable.

At point h21 = 2.342, the system has 32 stability τ-intervals including τ = 0 and the
generalized delay margin is 351.8083. At point h21 = 2.343, the system has 13 stability τ-
intervals excluding τ = 0 and the generalized delay margin is 139.7930. To intuitively show
the difference, we give “NU(τ) vs. τ” plots in Fig. 4.1 (a) and Fig. 4.1 (b), respectively.

At point h21 = 3.59, the system contains only 1 stability τ-interval (2.4170, 2.9154). At
point h21 = 3.60, no stability τ-interval exists.
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Figure 4.1: NU(τ) vs. τ for Example 4.1.

Step 4: We can address the whole (h21,τ)-plane and exhaustively determine the stability set.
For a clear demonstration, we provide the stability set with (h21, τ) ∈ [−2, 5] × [0, 50] in
Fig. 4.2.

Example 4.2. For the delayed BAM NN (2.5) in Example 3.12, we here choose a domain
(h12, h21) ∈ [4.1, 4.7]× [−4.9,−4.57] for a clear illustration. Scan the (h12, h21)-plane, and for
each point we calculate the stability set by using Theorem 3.8. Then we can exhaustively
determine the stability set, as shown in Fig. 4.3.

It is interesting to see in Fig. 4.3 that the stability parameter space of the delayed BAM NN
has multiple disjoint parts.

Using the approach proposed in Subsection 3.3, we can also obtain the stability set in
the corresponding 4-D parameter space, as reflected in Fig. 4.4. We here choose a domain
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Figure 4.2: Stability set in the (h21, τ)-plane for Example 4.1.

Figure 4.3: Stability set in the (h12, h21, τ)-space for Example 4.2.

(h12, h13, h14) ∈ [4.1, 4.2]× [−0.38,−0.36]× [2.2, 2.4] and the color information represents the
generalized delay margin. Here, the maximum generalized delay margin is 14.5923. □

Example 4.3. Consider the delayed annular NN (2.9) with coefficients as in [8] and [46]: µi =

2, αi = 1, i = 1, . . . , 5, β1 = 2, β2 = 1, β3 = 1, β4 = 1.3, and β5 = −0.5.
With the activation functions adopted in this section, it is true that si = αi and hi = βi.

Here, we let X = (s1).

Step 0: The characteristic function is given by (2.11). In light of Lemma 3.1, we have that
F (W) = W5 + (s2

1 − 4s1 + 8)W4 + (4s2
1 − 16s1 + 22)W3 + (6s2

1 − 24s1 + 28)W2 + (4s2
1 − 16s1 +

17)W + s2
1 − 4s1 + 2.31.

Step 1: The discriminant sequence is [D1, D2, D3, D4, D5], where D1 = 5, D2 = 4s4
1 − 32s3

1 +

88s2
1 − 96s1 + 36, D3 = 0, D4 = −285.61s4

1 + 2284.88s3
1 − 6283.42s2

1 + 6854.64s1 − 2570.49,
and D5 = −1235.6631s10

1 + 24713.2621s9
1 − 216241.0432s8

1 + 1087383.5315s7
1 − 3472213.3222s6

1 +
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Figure 4.4: Generalized delay margin w.r.t. (h12, h13, h14).

7344781.4902s5
1 − 10416639.9667s4

1 + 9786451.7837s3
1 − 5838508.1664s2

1 + 2001774.2285s1

− 274774.5492.
For this example, D1 > 0, D2 ≥ 0, D3 = 0, D4 ≤ 0 (one may easily prove the properties

concerning the signs of D2 and D4), and D5 may represent different signs w.r.t. s1. We can
obtain the CRC of real W roots: (1) {1,1,1} iff s1 ∈ (−∞, 0.3172) ∪ (3.6828,+∞) (in the case
D1 > 0, D2 > 0, D3 = 0, D4 < 0,D5 < 0); (2) {1} iff s1 ∈ (0.3172, 3.6828) (in the case D1 >

0, D2 > 0, D3 = 0, D4 < 0,D5 > 0 or D1 > 0, D2 = 0, D3 = 0, D4 = 0,D5 > 0); (3) {2,1} iff
s1 ∈ {0.3172, 3.6828} (in the case D1 > 0, D2 > 0, D3 = 0, D4 < 0,D5 = 0).

Step 2: When ψ0 = 0, i.e., s2
1 − 4s1 + 2.31 = 0, we can calculate that s1 = 0.7 or s1 = 3.3. Hence,

the interval (0.3172, 3.6828) is separated into (0.3172, 0.7), (0.7, 3.3), and (3.3, 3.6828).
Furthermore, in light of Theorem 3.11, we can obtain the CRC of effective W roots:

(1) s1 ∈ (0.7, 3.3), {1}+;

(2) s1 ∈ (−∞, 0.7) ∪ (3.3,+∞), {}+.

Step 3: We analyze the NU(τ) distribution w.r.t. s1 through solving the characteristic equation
f (λ, 0) = 0. We have that when s1 ∈ (−∞, 1.6138356), NU(0) = 0.

In view of the above analysis, we have that there are three classifications of stability prop-
erty as described below:

(1) The system is delay-independently stable iff s1 ∈ (−∞, 0.7);

(2) The system contains only one stability τ-interval of the form [0, τ1) iff s1∈ (0.7, 1.6138356);

(3) The system has no stability τ-interval iff s1 ∈ (1.6138356,+∞).

Step 4: We can study the whole (s1,τ)-plane and exhaustively determine the stability set. For a
clear demonstration, we provide the stability set with (s1, τ) ∈ [0.6, 1.7]× [0, 50] in Fig. 4.5 (a).

It can be seen that the system has one stability τ-interval iff s1 ∈ (0.7, 1.6138356). The
boundary of the corresponding stability region is shown in Fig. 4.5 (b).

To illustrate our analysis, we choose some values of s1 and analyze the stability of the
system. We list the details in Table 4.1. □
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Figure 4.5: Stability set and the boundary curve for Example 4.3.

s1 stability τ-set s1 stability τ-set s1 stability τ-set
0.69 [0,+∞) 0.99 [0, 4.7956) 1.61 [0, 0.0139)
0.71 [0, 49.4106) 1 [0, 4.6174) 1.62 ϕ

0.72 [0, 33.4746) 1.01 [0, 4.4477) 1.63 ϕ

Table 4.1: Stability τ-set for Example 4.3.

5 Conclusion and future work

In this paper, we considered the stability of delayed neural networks (NNs) with a free delay
parameter τ and a free system parameter vector X. As far as we know, the complete sta-
bility problem of delayed NNs involving heterogeneous free parameters has not been well
investigated.

We proposed a systematic method to investigate the stability in the (X, τ)-space. As a
consequence, we can exhaustively determine the stability set in the whole (X, τ)-space. The
effectiveness of the approach is illustrated by some numerical examples. It is interesting to
see that the stability parameter space of a delayed NN may have multiple disjoint parts.

Based on the research of this paper, we may further investigate more general delayed NNs.
In this paper, we focus on the case where the characteristic functions are in the form f (λ, τ) =

a0(λ) + a1(λ)e−τλ. A more general form is f (λ, τ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ,
where a0(λ), . . . , aq(λ), q ∈ N+, are polynomials. The stability analysis when q > 1 will be
much more complicated. In the future, we would extend the approach to such a case.
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