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Abstract. In this paper, existence results are obtained for a system of second order
boundary value problems

u′′
g (t) = f (t, u(t), u′

g(t)), µg -a.e. t ∈ [0, 1)

u(0) = α

u(1) + ku(θ) = β,

with Stieltjes derivatives with respect to different derivators on different coordinates.
Using an appropriate Green function and Schauder’s fixed point theorem, a very

general existence result is obtained, thus overcoming several outcomes in literature.
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1 Introduction

The interest for second order differential equations with multi-point boundary conditions has
robust roots in engineering (e.g. [17]) and it was, therefore, intensively studied. We refer
the reader to [17, 31, 33] and the references therein and to [7] or [1, 24] for the framework of
impulsive problems, respectively of dynamic equations on time scales.

At the same time, problems involving the Stieltjes derivative with respect to nondecreas-
ing functions have recently found significant applications in studying real processes where
stationary intervals and abrupt changes are equally present (see [11–13, 18] or [19]); this kind
of behaviour was investigated through the theory of measure differential equations (e.g. [6])
and inclusions (for instance, [4] or [5]). Starting with the paper [16] (following an idea in
[32]), a more convenient, equivalent writing using the Stieltjes derivative became increasingly
popular (see [8, 9, 11, 12, 20, 23, 27, 28] for the single-valued case or [26, 29] for the set-valued
setting).
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Second order equations with Stieltjes derivative were considered, to the best of the author’s
knowledge, only in the linear case with initial value boundary conditions in [8, 9] and in the
nonlinear case with periodic conditions in [22].

When speaking about systems of differential problems, as described in [12, 14, 19] or [21],
it is important to allow the variation speed of different unknown variables to depend on
different nondecreasing functions and thus, to have different impulsive moments or stationary
intervals of time; this means to consider a vector-valued derivator.

With all these in mind, we hereby develop a study of systems of nonlinear second order
Stieltjes differential equations with three-point boundary conditions and several derivators:

u′′
g (t) = f (t, u(t), u′

g(t)), µg -a.e. t ∈ [0, 1)

u(0) = α

u(1) + ku(θ) = β.

Inspired by [33], a Green’s function is adapted to the present framework, allowing one to
get existence and uniqueness for single-valued linear second order equations on the real line.
A fixed point theorem is then applied to get an existence result in the nonlinear case for
systems of second order Stieltjes differential problems with three-point boundary conditions
and several derivators.

It is well-known that the theory of Stieltjes differential equations is strongly related to other
types of problems: generalized differential equations ([30]), impulsive differential equations
([16]) or dynamic problems on time scales ([6]); consequently, the outcomes presented here
can be used to get existence and uniqueness results for systems of second-order equations
with three-point boundary conditions in the mentioned settings.

2 Notations and auxiliary results.

Let g : [0, 1] → R be a nondecreasing left-continuous function. Without any loss of generality,
one may suppose that g(0) = 0. The g-measurability means the measurability with respect
to (shortly, w.r.t.) the σ-algebra defined by g, µg is the Stieltjes measure generated by g
(see [10]) and the Lebesgue–Stieltjes (shortly, LS-) integrability w.r.t. g is the abstract Lebesgue
integrability w.r.t. the measure µg. Let L1

g([0, 1]) be the space of real LS-integrable functions
w.r.t. g with its natural topological structure given by the norm

∥ f ∥1 =
∫
[0,1)

| f (t)|dg(t).

Consider the following sets:

Dg = {t ∈ [0, 1] : g(t+)− g(t) > 0}

and
Cg = {t ∈ [0, 1] : g is constant on (t − ε, t + ε) for some ε > 0}

along with
Ng = {un, vn : n ∈ N} \ Dg,

where Cg =
⋃

n∈N(un, vn) with (un, vn)n pairwise disjoint. Let N−
g = {un : n ∈ N} \ Dg

and N+
g = {vn : n ∈ N} \ Dg. As µg(Cg) = µg(Ng) = 0 (proved in [16]), these two sets are

irrelevant in the study of differential equations. Note also that Dg ∩ Cg = ∅.
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Let us now recall the notion of differentiability related to Stieltjes integrals introduced in
[8] (which extends that in [16] in such a way that the points in Cg are also covered).

Definition 2.1. Let g : [0, 1] → R be a nondecreasing left-continuous function such that 0 /∈ N−
g

and 1 /∈ Cg ∪ N+
g . The derivative with respect to g (or the g-derivative) of f : [0, 1] → R at

t ∈ [0, 1] is defined by

f ′g(t) = lim
t→t

f (t)− f (t)
g(t)− g(t)

if t /∈ Dg ∪ Cg,

f ′g(t) = lim
t→t+

f (t)− f (t)
g(t)− g(t)

if t ∈ Dg,

f ′g(t) = lim
t→vn+

f (t)− f (vn)

g(t)− g(vn)
if t ∈ (un, vn) ⊆ Cg,

if the limits exist. In this case f is said to be g-differentiable at t.
The points of Ng must be approached in the following manner:

f ′g(t) = lim
t→t+

f (t)− f (t)
g(t)− g(t)

if t ∈ N+
g ,

f ′g(t) = lim
t→t−

f (t)− f (t)
g(t)− g(t)

if t ∈ N−
g .

Note that if t ∈ Dg, the g-derivative f ′g(t) exists if and only if the right limit f (t+) exists,
and in this case

f ′g(t) =
f (t+)− f (t)
g(t+)− g(t)

,

while if t ∈ (un, vn) ⊆ Cg the g-derivative f ′g(t) exists if and only if there exists the right
g-derivative at vn.

The g-derivative is very useful when trying to solve many interesting problems where
abrupt modifications (corresponding to discontinuity points of g) and stationary times (cor-
responding to intervals where g is constant) are both part of the state behaviour, such as in
[11, 12] or [13].

Connecting Stieltjes integrals and the Stieltjes derivative is one of the main technical issues
of the theory; such connections are provided by Fundamental Theorems of Calculus ([16,
Theorems 5.4, 6.2, 6.5]).

In order to state them, let us remind the reader (e.g. [16]) that f is called g-absolutely
continuous ( f ∈ ACg([0, 1])) if for every ε > 0 there exists δε > 0 such that

m

∑
j=1

| f (bj)− f (aj)| < ε

for any set {(aj, bj); j = 1, . . . , m} of disjoint subintervals of [0, 1] satisfying

m

∑
j=1

(g(bj)− g(aj)) < δε.
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Theorem 2.2.

a) ([16, Theorem 2.4]) Let f : [0, 1] → R be LS-integrable with respect to g. Then

F(t) =
∫
[0,t)

f (s) dg(s), t ∈ [0, 1]

defines a map g-absolutely continuous and µg-a.e. g-differentiable on [0, 1) with the property that
F′

g(t) = f (t), µg-a.e.

b) ([16, Theorem 5.4], see also [11, Theorem 5.1]) If F : [0, 1] → R is g-absolutely continuous, then
F′

g exists µg-a.e. and

F(t) = F(0) +
∫
[0,t)

F′
g(s) dg(s) for every t ∈ [0, 1].

Remark 2.3. It easily follows that if f ∈ L1
g([0, 1]),

F̃(t) =
∫
[t,1)

f (s) dg(s), t ∈ [0, 1)

defines a map µg-a.e. g-differentiable with the property that F̃′
g(t) = − f (t), µg-a.e.

Let us also recall ([11]) that a map f : [0, 1] → R is g-continuous at a point t ∈ [0, 1] if for
every ε > 0 one can find δt,ε > 0 such that

s ∈ [0, 1], |g(t)− g(s)| < δt,ε ⇒ | f (t)− f (s)| < ε

and that g-continuity on [0, 1] means g-continuity at every t ∈ [0, 1].
Any g-absolutely continuous function is g-continuous and it was proved in [16, Proposition

5.3] that g-absolutely continuous functions are left-continuous and constant on the intervals
where g is constant.

Note that g-continuous functions are not necessarily bounded, this is the reason to consider
the space BCg([0, 1]) of functions which are bounded and g-continuous ([11]). It is a Banach
space when endowed with the norm

∥u∥C = sup
t∈[0,1]

|u(t)|

and ACg([0, 1]) ⊂ BCg([0, 1]).
We add to Theorem 2.2 the result below.

Lemma 2.4. Let F : [0, 1] → R be g-absolutely continuous such that there exists f ∈ BCg([0, 1])
satisfying

F′
g(t) = f (t), µg-a.e.

Then F is g-differentiable everywhere and F′
gt) = f (t) for every t ∈ [0, 1].

Proof. By Theorem 2.2.b), for every t ∈ [0, 1],

F(t) = F(0) +
∫
[0,t)

F′
g(t)dg(t)

whence, by hypothesis,

F(t) = F(0) +
∫
[0,t)

f (t)dg(t), for every t ∈ [0, 1].

Applying [8, Lemma 3.14] we obtain that F is g-differentiable everywhere and F′
gt) = f (t) for

every t ∈ [0, 1].
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The following consequence of [8, Proposition 3.9] (see [9, Remark 2.11]) provides a useful
rule for the g-derivative of a product.

Lemma 2.5. Let f1, f2 : [0, 1] → R be g-continuous and g-differentiable at the point t ∈ [0, 1]. Then

( f1 f2)
′
g(t) = ( f1)

′
g(t) f2(t) + f1(t)( f2)

′
g(t) + ( f1)

′
g(t)( f2)

′
g(t)∆g(t∗),

where ∆g(t∗) = g(t∗+)− g(t∗) is the jump of g at the point

t∗ =

{
t, if t /∈ Cg

vn, if t ∈ (un, vn) ⊂ Cg.

The recent works [8, 9] opened the way to study higher order differential equations with
Stieltjes derivative. The space BC1

g([0, 1]) was defined as the space of functions f : [0, 1] → R

such that f is g-differentiable everywhere on [0, 1] and its g-derivative f ′g is bounded and
g-continuous. Endowed with the norm

∥ f ∥BC1
g([0,1]) = ∥ f ∥C + ∥ f ′g∥C

it is, by [8, Theorem 3.15], a Banach space.
The matter of compactness in BCg([0, 1]) was addressed in [11].

Theorem 2.6 ([11, Proposition 5.6]). Let S ⊂ ACg([0, 1]) be such that {u(0) : u ∈ S} is bounded
and there exists ϕ ∈ L1

g([0, 1])satisfying

|u′
g(t)| ≤ ϕ(t), µg-a.e. in (0, 1] and for all u ∈ S .

Then S is relatively compact in BCg([0, 1]).

Besides,

Lemma 2.7 ([15, Lemma 3.8]). Let (uk)k ⊂ ACg([0, 1]) be pointwise convergent to u : [0, 1] → R.
If there exists ϕ ∈ L1

g([0, 1]) such that for all k ∈ N,

|(uk)
′
g(t)| ≤ ϕ(t), µg-a.e. in (0, 1],

then u is also g-absolutely continuous.

3 Main results

3.1 Second order linear Stieltjes differential equations with a single derivator

The aim of this subsection is to study the linear single-valued setting, namely the problem
u′′

g (t) = f (t), µg-a.e. t ∈ [0, 1)

u(0) = α

u(1) + ku(θ) = β

(3.1)

where g : [0, 1] → R is a nondecreasing left-continuous function, k ∈ R and θ ∈ (0, 1) satisfy
g(1) + kg(θ) ̸= 0 and α, β ∈ R.
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Definition 3.1. A function u ∈ BC1
g([0, 1)) is a solution of (3.1) if it verifies the boundary

conditions u(0) = α and u(1) + ku(θ) = β, its first g-derivative u′
g is g-absolutely continuous

on [0, 1) and its second g-derivative (which is well defined µg-a.e. by Theorem 2.2) satisfies

u′′
g (t) = f (t), µg-a.e. in [0, 1).

The existence result given below involves a Green-type function appropriate for the present
framework, inspired by [33].

Theorem 3.2. Let f : [0, 1] → R be LS-integrable with respect to the nondecreasing left-continuous
function g : [0, 1] → R. Then u f : [0, 1] → R,

u f (t) =
∫
[0,1)

G(t, s) f (s)dg(s)− χ(θ,1](t) · A(g(t)− g(θ))

+
g(1)− g(t) + k(g(θ)− g(t))

g(1) + kg(θ)
α +

g(t)
g(1) + kg(θ)

β̃

is a solution of (3.1).
Here G : [0, 1]× [0, 1] → R is defined as follows: if t ≤ θ,

G(t, s) =


−g(s)[g(1)−g(t)+k(g(θ)−g(t))]

g(1)+kg(θ) − ∆g(s∗), if 0 ≤ s < t

−g(t)[g(1)−g(s)+k(g(θ)−g(s))]
g(1)+kg(θ) , if t ≤ s < θ

−g(t)(g(1)−g(s))
g(1)+kg(θ) , if θ ≤ s ≤ 1,

while if t > θ,

G(t, s) =


−g(s)[g(1)−g(t)+k(g(θ)−g(t))]

g(1)+kg(θ) − ∆g(s∗), if 0 ≤ s < θ

−g(s)(g(1)−g(t))+kg(θ)(g(t)−g(s))
g(1)+kg(θ) − ∆g(s∗) if θ ≤ s < t

−g(t)(g(1)−g(s))
g(1)+kg(θ) , if t ≤ s ≤ 1.

Besides,

χ(θ,1](t) =

{
0, if 0 ≤ t ≤ θ

1, if θ < t ≤ 1,

A =
−k

g(1) + kg(θ)

∫
[0,θ)

f (s)(g(s) + 1)dg(s)

and
β̃ = β +

(∫
[0,1)

∆g(s∗) f (s)dg(s) + k
∫
[0,θ)

∆g(s∗) f (s)dg(s) + A(g(1)− g(θ))
)

.

Proof. Let us first note that if t ≤ θ,

u f (t) =
∫
[0,t)

−g(s) f (s)dg(s) +
g(t)

g(1) + kg(θ)

∫
[0,t)

g(s)(1 + k) f (s)dg(s)−
∫
[0,t)

∆g(s∗) f (s)dg(s)

− g(t)
g(1) + kg(θ)

∫
[t,θ)

[g(1)− g(s) + k(g(θ)− g(s))] f (s)dg(s)

− g(t)
g(1) + kg(θ)

∫
[θ,1)

(g(1)− g(s)) f (s)dg(s)

+
g(1)− g(t) + k(g(θ)− g(t))

g(1) + kg(θ)
α +

g(t)
g(1) + kg(θ)

β̃.
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Then, using Theorem 2.2.a) and Lemma 2.5, u f is g-absolutely continuous on [0, θ] and µg-a.e.
on [0, θ),

(u f )
′
g(t) = − g(t) f (t) +

1 + k
g(1) + kg(θ)

∫
[0,t)

g(s) f (s)dg(s) +
g2(t)

g(1) + kg(θ)
(1 + k) f (t)

+
1

g(1) + kg(θ)
g(t)(1 + k) f (t)∆g(t∗)− ∆g(t∗) f (t)

− 1
g(1) + kg(θ)

∫
[t,θ)

[g(1)− g(s) + k(g(θ)− g(s))] f (s)dg(s)

+
g(t)

g(1) + kg(θ)
[g(1)− g(t) + k(g(θ)− g(t))] f (t)

+
g(1)− g(t) + k(g(θ)− g(t))

g(1) + kg(θ)
f (t)∆g(t∗)

− 1
g(1) + kg(θ)

∫
[θ,1)

(g(1)− g(s)) f (s)dg(s)− (1 + k)α − β̃

g(1) + kg(θ)
.

Using Lemma 2.4 we get that for every t ∈ [0, θ),

(u f )
′
g(t) =

1 + k
g(1) + kg(θ)

∫
[0,t)

g(s) f (s)dg(s) (3.2)

− 1
g(1) + kg(θ)

∫
[t,θ)

[g(1)− g(s) + k(g(θ)− g(s)] f (s)dg(s)

− 1
g(1) + kg(θ)

∫
[θ,1)

(g(1)− g(s)) f (s)dg(s)

− (1 + k)α − β̃

g(1) + kg(θ)
.

It is g-absolutely continuous on [0, θ] and for µg-almost every t ∈ [0, θ),

(u f )
′′
g (t) =

1 + k
g(1) + kg(θ)

g(t) f (t) +
g(1)− g(t) + kg(θ)− kg(t)

g(1) + kg(θ)
f (t) = f (t).

Also, for t > θ,

u f (t) =
∫
[0,θ)

−g(s) f (s)dg(s) +
g(t)

g(1) + kg(θ)

∫
[0,θ)

(g(s)− k) f (s)dg(s)

−
∫
[0,θ)

∆g(s∗) f (s)dg(s) +
∫
[θ,t)

−g(s) f (s)dg(s)

+
g(t)

g(1) + kg(θ)

∫
[θ,t)

(g(s) + kg(θ)) f (s)dg(s)−
∫
[θ,t)

∆g(s∗) f (s)dg(s)

− g(t)
g(1) + kg(θ)

∫
[t,1)

(g(1)− g(s)) f (s)dg(s)

− A(g(t)− g(θ)) +
g(1)− g(t) + k(g(θ)− g(t))

g(1) + kg(θ)
α +

g(t)
g(1) + kg(θ)

β̃.
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Then u f is g-absolutely continuous on (θ, 1) and µg-a.e. on (θ, 1),

(u f )
′
g(t) =

1
g(1) + kg(θ)

∫
[0,θ)

(g(s)− k) f (s)dg(s)− g(t) f (t)

+
1

g(1) + kg(θ)

∫
[θ,t)

(g(s) + kg(θ)) f (s)dg(s)

+
g(t)

g(1) + kg(θ)
(g(t) + kg(θ)) f (t) +

(g(t) + kg(θ)) f (t)
g(1) + kg(θ)

∆g(t∗)− ∆g(t∗) f (t)

− 1
g(1) + kg(θ)

∫
[t,1)

(g(1)− g(s)) f (s)dg(s) +
g(t)

g(1) + kg(θ)
(g(1)− g(t)) f (t)

+
(g(1)− g(t)) f (t)

g(1) + kg(θ)
∆g(t∗)− A − (1 + k)α − β̃

g(1) + kg(θ)
.

Again by Lemma 2.4 we infer that u f is g-differentiable on (θ, 1) and that

(u f )
′
g(t) =

1
g(1) + kg(θ)

∫
[0,θ)

(g(s)− k) f (s)dg(s) (3.3)

+
1

g(1) + kg(θ)

∫
[θ,t)

(g(s) + kg(θ)) f (s)dg(s)

− 1
g(1) + kg(θ)

∫
[t,1)

(g(1)− g(s)) f (s)dg(s)− A − (1 + k)α − β̃

g(1) + kg(θ)
.

Consequently, (u f )
′
g is g-absolutely continuous on (θ, 1) and for µg-a.e. t ∈ (θ, 1),

(u f )
′′
g (t) =

1
g(1) + kg(θ)

(g(t) + kg(θ)) f (t) +
1

g(1) + kg(θ)
(g(1)− g(t)) f (t) = f (t).

On the other hand, if t = θ ∈ Dg, then using (3.2), (3.3) we can see that

(u f )
′′
g (θ) =

(u f )
′
g(θ+)− (u f )

′
g(θ−)

∆g(θ)

=
1

∆g(θ)

(
f (θ)∆g(θ)− k

g(1) + kg(θ)
·
∫
[0,θ)

f (s)(1 + g(s))dg(s)− A
)

= f (θ).

Since in the case where θ /∈ Dg, µg({θ}) = 0, we can conclude that (u f )
′′
g (t) = f (t) for µg-a.e.

t ∈ [0, 1).

Besides, as u f and (u f )
′
g are both continuous at θ if θ /∈ Dg, it follows that u ∈ BC1

g([0, 1])
and (u f )

′
g is g-absolutely continuous on [0, 1].

As for the boundary conditions, it can be easily checked that

u f (0) =
∫
[0,1)

G(0, s) f (s)dg(s) + α = α
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and

u f (1) + ku f (θ) =
∫
[0,1)

G(1, s) f (s)dg(s)− A(g(1)− g(θ)) +
k(g(θ)− g(1))
g(1) + kg(θ)

α +
g(1)β̃

g(1) + kg(θ)

+ k
∫
[0,1)

G(θ, s) f (s)dg(s) + k
g(1)− g(θ)
g(1) + kg(θ)

α + k
g(θ)β̃

g(1) + kg(θ)

= β̃ +
∫
[0,θ)

−kg(s)(g(θ)− g(1)))
g(1) + kg(θ)

f (s)dg(s)−
∫
[0,θ)

∆g(s∗) f (s)dg(s)

+
∫
[θ,1)

kg(θ)(g(1)− g(s))
g(1) + kg(θ)

f (s)dg(s)

−
∫
[θ,1)

∆g(s∗) f (s)dg(s)− A(g(1)− g(θ))

+ k
∫
[0,θ)

−g(s)(g(1)− g(θ))
g(1) + kg(θ)

f (s)dg(s)

− k
∫
[0,θ)

∆g(s∗) f (s)dg(s) + k
∫
[θ,1)

−g(θ)(g(1)− g(s))
g(1) + kg(θ)

f (s)dg(s) = β.

Corollary 3.3. A map u : [0, 1] → R is a solution of (3.1) if and only if

u(t) =
∫
[0,1)

G(t, s) f (s)dg(s)− χ(θ,1](t) · A(g(t)− g(θ))

+
g(1)− g(t) + k(g(θ)− g(t))

g(1) + kg(θ)
α +

g(t)
g(1) + kg(θ)

β̃

Proof. One implication is proved in Theorem 3.2; as for the other one, suppose u1, u2 are two
solutions of the considered problem. Then

(u1 − u2)′′g (t) = 0, µg-a.e. t ∈ [0, 1)

(u1 − u2)(0) = 0

(u1 − u2)(1) + k(u1 − u2)(θ) = 0.

(3.4)

Using the g-absolute continuity of (u1 − u2)′g one infers that for every t ∈ [0, 1],

(u1 − u2)
′
g(t) = (u1 − u2)

′
g(0) +

∫
[0,t)

(u1 − u2)
′′
g (s)dg(s) = (u1 − u2)

′
g(0)

and so, by the g-absolute continuity of u1 − u2,

(u1 − u2)(t) = (u1 − u2)(0) +
∫
[0,t)

(u1 − u2)
′
g(s)dg(s) = (u1 − u2)(0) + (u1 − u2)

′
g(0) · g(t).

Now the boundary conditions lead us to

(u1 − u2)(0) = 0

respectively
(u1 − u2)

′
g(0) · (g(1) + kg(θ)) = 0.

It follows that (u1 − u2)′g(0) = 0 and, consequently, u1(t) = u2(t) for every t ∈ [0, 1].



10 B. Satco

Remark 3.4. Taking into account that, by Lemma 2.5, s = s∗ µg-almost everywhere, in Theo-
rem 3.2 the following expression could have been used instead for G(t, s):
if t ≤ θ,

G(t, s) =


−g(s)[g(1)−g(t)+k(g(θ)−g(t))]

g(1)+kg(θ) − ∆g(s), if 0 ≤ s < t

−g(t)[g(1)−g(s)+k(g(θ)−g(s))]
g(1)+kg(θ) , if t ≤ s < θ

−g(t)(g(1)−g(s))
g(1)+kg(θ) , if θ ≤ s ≤ 1,

while if t > θ,

G(t, s) =


−g(s)[g(1)−g(t)+k(g(θ)−g(t))]

g(1)+kg(θ) − ∆g(s), if 0 ≤ s < θ

−g(s)(g(1)−g(t))+kg(θ)(g(t)−g(s))
g(1)+kg(θ) − ∆g(s), if θ ≤ s < t

−g(t)(g(1)−g(s))
g(1)+kg(θ) , if t ≤ s ≤ 1.

3.2 Second order linear Stieltjes differential systems with several derivators

As described in [12, 19] or [21], differential systems with several derivators naturally occur
when investigating physical processes; more precisely, it leads to studying the existence (and
uniqueness) of u : [0, 1] → Rd such that

u′′
g (t) = f (t), µg -a.e. t ∈ [0, 1)

u(0) = α

u(1) + ku(θ) = β

(3.5)

where g = (g1, . . . , gd) : [0, 1] → Rd with gi left-continuous and nondecreasing for each
i ∈ {1, . . . , d}, f : [0, 1] → Rd, α = (α1, . . . , αd), β = (β1, . . . , βd) ∈ Rd and θ ∈ (0, 1) satisfy the
assumption: gi(1) + kgi(θ) ̸= 0 for each i ∈ {1, . . . , d}.

The g-derivative is to be understood as the vector ((u1)
′
g1

, . . . , (ud)
′
gd
), thus the system (3.5)

must be understood as: 
(ui)

′′
gi
(t) = fi(t), µgi -a.e. t ∈ [0, 1)

ui(0) = αi

ui(1) + kui(θ) = βi

(3.6)

for every i = 1, . . . , d.
Denote (as in [19, page 6]) by

BCg([0, 1], Rd) =
d

∏
i=1

BCgi([0, 1]),

by

BC1
g([0, 1], Rd) =

d

∏
i=1

BC1
gi
([0, 1]),

respectively by

ACg([0, 1], Rd) =
d

∏
i=1

ACgi([0, 1]).
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Definition 3.5. A function u ∈ BC1
g([0, 1], Rd) is a solution of (3.5) if for each i it verifies

the boundary conditions ui(0) = αi and ui(1) + kui(θ) = βi, the first gi-derivative (ui)
′
gi

is
gi-absolutely continuous and its gi-derivative (which is well defined µgi -a.e.) satisfies

(ui)
′′
gi
(t) = fi(t), µgi -a.e. in [0, 1).

Reasoning componentwise, Theorem 3.2 and Corollary 3.3 involve the following result.

Theorem 3.6. Let g = (g1, . . . , gd) : [0, 1] → Rd where gi is left-continuous and nondecreasing for
each i ∈ {1, . . . , d} and let f ∈ L1

g([0, 1], Rd) = ∏d
i=1 L1

gi
([0, 1]). Then u : [0, 1] → Rd is a solution

of (3.5) if and only if for every i ∈ {1, . . . , d}:

ui(t) =
∫
[0,1)

Gi(t, s) fi(s)dg(s)− χ(θ,1](t) · Ai(gi(t)− gi(θ))

+
gi(1)− gi(t) + k(gi(θ)− gi(t))

gi(1) + kgi(θ)
αi +

gi(t)
gi(1) + kgi(θ)

β̃i, ∀ t ∈ [0, 1],

where Gi : [0, 1]× [0, 1] → R is defined as follows: if t ≤ θ,

Gi(t, s) =


−gi(s)[gi(1)−gi(t)+k(gi(θ)−gi(t))]

gi(1)+kgi(θ)
− ∆gi(s∗i ), if 0 ≤ s < t

−gi(t)[gi(1)−gi(s)+k(gi(θ)−gi(s))]
gi(1)+kgi(θ)

, if t ≤ s < θ

−gi(t)(gi(1)−gi(s))
gi(1)+kgi(θ)

, if θ ≤ s ≤ 1,

while if t > θ,

Gi(t, s) =


−gi(s)[gi(1)−gi(t)+k(gi(θ)−gi(t))]

gi(1)+kgi(θ)
− ∆gi(s∗i ), if 0 ≤ s < θ

−gi(s)(gi(1)−gi(t))+kgi(θ)(gi(t)−gi(s))
gi(1)+kgi(θ)

− ∆gi(s∗i ), if θ ≤ s < t

−gi(t)(gi(1)−gi(s))
gi(1)+kgi(θ)

, if t ≤ s ≤ 1,

Ai =
−k

gi(1) + kgi(θ)

∫
[0,θ)

fi(s)(gi(s) + 1)dgi(s)

and

β̃i = βi +

(∫
[0,1)

∆gi(s∗i ) fi(s)dgi(s) + k
∫
[0,θ)

∆gi(s∗i ) fi(s)dgi(s) + Ai(gi(1)− gi(θ))

)
.

3.3 Existence result for systems of nonlinear second order boundary value equa-
tions

In this subsection, we focus on nonlinear differential problems of second order with boundary
value conditions 

u′′
g (t) = f (t, u(t), u′

g(t)), µg -a.e. t ∈ [0, 1)
u(0) = α

u(1) + ku(θ) = β,
(3.7)

with g = (g1, . . . , gd) : [0, 1] → Rd such that gi is left-continuous and nondecreasing for
each i ∈ {1, . . . , d}, α = (α1, . . . , αd), β = (β1, . . . , βd) ∈ Rd and k ∈ R, θ ∈ (0, 1) satisfy the
assumption: gi(1) + kgi(θ) ̸= 0 for each i ∈ {1, . . . , d}.
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Definition 3.7. A function u ∈ BC1
g([0, 1], Rd) is a solution of (3.7) if u(0) = α, u(1) + ku(θ) =

β, its first g-derivative u′
g ∈ ACg([0, 1], Rd) and its second g-derivative satisfies

u′′
g (t) = f (t, u(t), u′

g(t)), µg -a.e. in [0, 1),

i.e. for every i ∈ {1, . . . , d}:

(ui)
′′
gi
(t) = fi(t, u(t), u′

g(t)), µgi -a.e. in [0, 1).

Theorem 3.8. Let f : [0, 1]×Rd ×Rd → Rd satisfy, for each i ∈ {1, . . . , d}, the following conditions:

(1) there exists Mi ∈ L1
gi
([0, 1]) such that

| fi(t, x, y)| ≤ Mi(t), µgi -a.e. t ∈ [0, 1], ∀ x, y ∈ Rd;

(2) fi(·, x, y) is gi-measurable, for every x, y ∈ Rd;

(3) fi(t, ·, ·) is continuous on Rd × Rd, for µgi -almost every t ∈ [0, 1].

Then the problem (3.7) has solutions.

Proof. Let us prove that the set

K =
{

u ∈ BC1
g([0, 1], Rd); |(ui)

′′
gi
(t)| ≤ Mi(t), µgi -a.e., ∀ i and u(0) = α, u(1) + ku(θ) = β

}
is nonempty, convex and compact in BC1

g([0, 1], Rd).
First, note that any map f ∈ L1

g([0, 1], Rd) such that | fi(t)| ≤ Mi(t) for all i ∈ {1, . . . , d}
provides, thanks to Theorem 3.2, an element of K (which is, therefore, nonempty) and that
the convexity can be easily checked.

Then, let us see that K is compact in BC1
g([0, 1], Rd).

To this aim, consider a sequence (un)n ⊂ K. It can be seen from the proof of Theorem 3.2
that for each i ∈ {1, . . . , n}, if t < θ,

((un)i)
′
gi
(t) =

1 + k
gi(1) + kgi(θ)

∫
[0,t)

gi(s)((un)i)
′′
gi
(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[t,θ)

[gi(1)− gi(s) + k(gi(θ)− gi(s)]((un)i)
′′
gi
(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[θ,1)

(gi(1)− gi(s))((un)i)
′′
gi
(s)dgi(s)−

(1 + k)αi − β̃i

gi(1) + kgi(θ)
,

while if t > θ,

((un)i)
′
gi
(t) =

1
gi(1) + kgi(θ)

∫
[0,θ)

(gi(s)− k)((un)i)
′′
gi
(s)dg(s)− gi(t)((un)i)

′′
gi
(t)

+
1

gi(1) + kgi(θ)

∫
[θ,t)

(gi(s) + kgi(θ))((un)i)
′′
gi
(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(t) + kgi(θ))((un)i)

′′
gi
(t)

− 1
gi(1) + kgi(θ)

∫
[t,1)

(gi(1)− gi(s))((un)i)
′′
gi
(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(1)− gi(t))((un)i)

′′
gi
(t)− Ai −

(1 + k)αi − β̃i

gi(1) + kgi(θ)
.
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Using Theorem 2.6 on each coordinate, ((un)′g)n is relatively compact in the space
BCg([0, 1], Rd). One can choose a subsequence, denoted again by (un)n such that

(
(un)′g

)
n

is uniformly convergent to a function v ∈ ACg([0, 1], Rd).
In both cases, as un(0) = α, ∀ n, (un)n satisfies as well the hypotheses of Theorem 2.6,

therefore one can choose a further subsequence (not re-labelled) such that (un)n uniformly
converges to a function u ∈ ACg([0, 1], Rd).

Since for every i ∈ {1, . . . , d}, the sequence
(
((un)i)

′
gi

)
n uniformly converges to v, we infer

that for each t ∈ [0, 1]: ∫
[0,t)

((un)i)
′
gi
(s)dgi(s) →

∫
[0,t)

v(s)dgi(s)

and remark that, by Theorem 2.2,∫
[0,t)

((un)i)
′
gi
(s)dgi(s) = (un)i(t)− αi → ui(t)− αi;

it follows that
v(t) = u′

g(t).

Moreover, note that ((un)′′g )n is, by hypothesis, relatively weakly compact in L1
g([0, 1], Rd), so

on convex combinations we may suppose that ((un)′′g )n converges pointwise to a function w ∈
L1

g([0, 1], Rd). Applying a dominated convergence theorem one gets for each i ∈ {1, . . . , d}, if
t < θ,

((un)i)
′
gi
(t) → 1 + k

gi(1) + kgi(θ)

∫
[0,t)

gi(s)wi(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[t,θ)

[gi(1)− gi(s) + k(gi(θ)− gi(s)]wi(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[θ,1)

(gi(1)− gi(s))wi(s)dgi(s)−
(1 + k)αi − β̃i

gi(1) + kgi(θ)
.

while if t > θ,

((un)i)
′
gi
(t) → 1

gi(1) + kgi(θ)

∫
[0,θ)

(gi(s)− k)wi(s)dg(s)− gi(t)wi(t)

+
1

gi(1) + kgi(θ)

∫
[θ,t)

(gi(s) + kgi(θ))wi(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(t) + kgi(θ))wi(t)

− 1
gi(1) + kgi(θ)

∫
[t,1)

(gi(1)− gi(s))wi(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(1)− gi(t))wi(t)− Ai −

(1 + k)αi − β̃i

gi(1) + kgi(θ)
.

On the other hand, it was seen that for each i ∈ {1, . . . , d},
(
((un)i)

′
gi

)
n uniformly converges

to (ui)
′
gi

which is equal to

1 + k
gi(1) + kgi(θ)

∫
[0,t)

gi(s)(ui)
′′
gi
(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[t,θ)

[gi(1)− gi(s) + k(gi(θ)− gi(s)](ui)
′′
gi
(s)dgi(s)

− 1
gi(1) + kgi(θ)

∫
[θ,1)

(gi(1)− gi(s))(ui)
′′
gi
(s)dgi(s)−

(1 + k)αi − β̃i

gi(1) + kgi(θ)
.
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if t < θ, respectively to

1
gi(1) + kgi(θ)

∫
[0,θ)

(gi(s)− k)(ui)
′′
gi
(s)dg(s)− gi(t)(ui)

′′
gi
(t)

+
1

gi(1) + kgi(θ)

∫
[θ,t)

(gi(s) + kgi(θ))(ui)
′′
gi
(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(t) + kgi(θ))(ui)

′′
gi
(t)

− 1
gi(1) + kgi(θ)

∫
[t,1)

(gi(1)− gi(s))(ui)
′′
gi
(s)dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(1)− gi(t))(ui)

′′
gi
(t)− Ai −

(1 + k)αi − β̃i

gi(1) + kgi(θ)

if t > θ.
Consequently,

w(t) = u′′
g (t), µg -almost everywhere on [0, 1).

Therefore, |(ui)
′′
gi
(t)| ≤ Mi(t), µgi -a.e., ∀ i and so, u ∈ K. The compactness of K is thus proved.

Let us now check that the operator Ξ : K → K,

Ξ(u) = v ∈ K such that v′′g (t) = f (t, u(t), u′
g(t)), µg -a.e.

satisfies the conditions of Schauder’s fixed point theorem.
At the beginning, note that Ξ is well-defined by Theorem 3.2 and Corollary 3.3, since as in

[11, Lemma 7.2] it can be proved that for any u ∈ K, f (·, u(·), u′
g(·)) ∈ L1

g([0, 1], Rd).
All we have to check now is that Ξ is continuous.
Let (un)n ⊂ K converge to u ∈ K and we aim to prove that (Ξ(un))n = (vn)n converges to

Ξ(u) = v.
As (un)n uniformly converges to u and

(
(un)′g

)
n uniformly converges to u′

g, hypothesis (3)
involves that for each i ∈ {1, . . . , d},(

fi(·, un(·), (un)
′
g(·))

)
n

converges to fi(·, u(·), u′
g(·)), µgi -a.e.

By Theorem 3.2, for every n ∈ N and i ∈ {1, . . . , d}:

(vn)i(t) =
∫
[0,1)

Gi(t, s) fi(s, un(s), (un)
′
g(s))dgi(s)− χ(θ,1](t) · Ai(gi(t)− gi(θ))

+
gi(1)− gi(t) + k(gi(θ)− gi(t))

gi(1) + kgi(θ)
αi +

gi(t)
gi(1) + kgi(θ)

β̃i

and

vi(t) =
∫
[0,1)

Gi(t, s) fi(s, u(s), u′
g(s))dgi(s)− χ(θ,1](t) · Ai(gi(t)− gi(θ))

+
gi(1)− gi(t) + k(gi(θ)− gi(t))

gi(1) + kgi(θ)
αi +

gi(t)
gi(1) + kgi(θ)

β̃i

for all t ∈ [0, 1].
The hypothesis (1) ensures that the dominated convergence theorem can be applied on

each coordinate and so,
(vn)n → v uniformly on [0, 1].
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Likewise, from the proof of Theorem 3.2 it can be seen that for each i ∈ {1, . . . , n}, if t < θ,

((vn)i)
′
gi
(t) =

1 + k
gi(1) + kgi(θ)

∫
[0,t)

gi(s) fi(s, un(s), (un)
′
g(s))dgi(s)

− 1
gi(1) + kgi(θ)

∫
[t,θ)

[gi(1)− gi(s) + k(gi(θ)− gi(s)] fi(s, un(s), (un)
′
g(s))dgi(s)

− 1
gi(1) + kgi(θ)

∫
[θ,1)

(gi(1)− gi(s)) fi(s, un(s), (un)
′
g(s))dgi(s)−

(1 + k)αi − β̃i

gi(1) + kgi(θ)

while if t > θ,

((vn)i)
′
gi
(t)

=
1

gi(1) + kgi(θ)

∫
[0,θ)

(gi(s)− k) fi(s, un(s), (un)
′
g(s))dg(s)− gi(t) fi(t, un(t), (un)

′
g(t))

+
1

gi(1) + kgi(θ)

∫
[θ,t)

(gi(s) + kgi(θ)) fi(s, un(s), (un)
′
g(s))dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(t) + kgi(θ)) fi(t, un(t), (un)

′
g(t))

− 1
gi(1) + kgi(θ)

∫
[t,1)

(gi(1)− gi(s)) fi(s, un(s), (un)
′
g(s))dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(1)− gi(t)) fi(t, un(t), (un)

′
g(t))− Ai −

(1 + k)αi − β̃i

gi(1) + kgi(θ)
.

Also, if t < θ,

(vi)
′
gi
(t) =

1 + k
gi(1) + kgi(θ)

∫
[0,t)

gi(s) fi(s, u(s), u′
g(s))dgi(s)

− 1
gi(1) + kgi(θ)

∫
[t,θ)

[gi(1)− gi(s) + k(gi(θ)− gi(s)] fi(s, u(s), u′
g(s))dgi(s)

− 1
gi(1) + kgi(θ)

∫
[θ,1)

(gi(1)− gi(s)) fi(s, u(s), u′
g(s))dgi(s)−

(1 + k)αi − β̃i

gi(1) + kgi(θ)

while if t > θ,

(vi)
′
gi
(t) =

1
gi(1) + kgi(θ)

∫
[0,θ)

(gi(s)− k) fi(s, u(s), u′
g(s))dg(s)− gi(t) fi(t, u(t), u′

g(t))

+
1

gi(1) + kgi(θ)

∫
[θ,t)

(gi(s) + kgi(θ)) fi(s, u(s), u′
g(s))dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(t) + kgi(θ)) fi(t, u(t), u′

g(t))

− 1
gi(1) + kgi(θ)

∫
[t,1)

(gi(1)− gi(s)) fi(s, u(s), u′
g(s))dgi(s)

+
gi(t)

gi(1) + kgi(θ)
(gi(1)− gi(t)) fi(t, u(t), u′

g(t))− Ai −
(1 + k)αi − β̃i

gi(1) + kgi(θ)
.

In both cases, again by dominated convergence theorem it follows that ((vn)′g)n uniformly
converges to v′g.

So, Ξ(un) = vn → Ξ(u) = v in BC1
g([0, 1], Rd) and the continuity of Ξ is proved.

In conclusion, Ξ has fixed points which are solutions of the considered problem.
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Remark 3.9. To the best of the author’s knowledge, this is the first study of systems of second
order equations involving Stieltjes derivatives (besides, with several derivators) and three-
point conditions on the boundary.

When g(t) = t on [0, 1] we cover or complement already known results with various
boundary value conditions (e.g. [17,31,33] and their references, see also [2,3,25]). Note finally
that the strong connection between the theory of Stieltjes differential equations and other
types of differential problems implies that the outcomes presented in this work lead to new
results for systems of second-order generalized differential equations, impulsive differential
equations (e.g. [7]) and also dynamic problems on time scales (see [1, 24]) with three-point
boundary conditions.
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