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Abstract. This study investigates the theoretical and practical aspects of fourth-order
elastic beam equations characterized by variable coefficients and influenced by com-
bined nonlinearities. The equations under consideration arise naturally in the context
of high-order differential problems encountered in material science, particularly in the
study of phase transitions. The research focuses on establishing the existence and mul-
tiplicity of solutions for these equations, which involve both concave and convex non-
linearities. Using advanced mathematical techniques, such as variational methods and
critical point theory, the study provides rigorous proofs for the existence of solutions
under specific conditions. A central result is the application of Bonanno’s local min-
imum theorem, which ensures the existence of at least one solution. Moreover, the
research shows that by imposing additional algebraic conditions, particularly the clas-
sical Ambrosetti–Rabinowitz condition, the presence of two distinct solutions can be
guaranteed. Beyond this, critical point theorems from Averna and Bonanno are em-
ployed to demonstrate scenarios where three solutions are possible.

Keywords: multiple solutions, fourth-order equation, critical point, variational meth-
ods.
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1 Introduction

Elastic beam equations, particularly those of fourth order, represent a cornerstone of modern
theoretical and applied mechanics. These equations are invaluable in modeling the behavior
of elastic materials and structures under various forces, enabling scientists and engineers to
predict deformation, stability, and stress distribution with high precision. Fourth-order elastic
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equations are especially important because they incorporate effects that lower-order models
neglect, such as bending and torsion, and account for variability in material properties and
external forces. The significance of fourth-order differential equations extends across multiple
disciplines. In structural engineering, these equations are essential for analyzing the deflection
and stability of beams and plates, forming the theoretical basis for the design of buildings,
bridges, and other critical infrastructures. The pioneering work of Timoshenko and Gere [21]
introduced a comprehensive framework for understanding elastic stability, which remains rel-
evant for modern engineering practices. In materials science, fourth-order equations play a
central role in studying phase transitions phenomena where materials shift between states,
such as from liquid to solid, under controlled conditions. This is particularly important for
developing advanced materials in industries such as aerospace and automotive, where per-
formance and reliability are critical. These equations’ ability to model real-world conditions,
including variable coefficients and nonlinear behaviors, makes them indispensable for tack-
ling complex scientific and engineering challenges. Despite their utility, solving fourth-order
elastic equations is a mathematically challenging task. These equations often involve non-
linearities, such as concave and convex effects, which significantly complicate the solution
process. Nonlinearities arise in real-world scenarios where material responses to stress are
non-proportional to the applied force. For example, when a beam experiences large deforma-
tions, the relationship between load and deflection becomes nonlinear. Variable coefficients
add another layer of complexity, representing changes in material properties or external con-
ditions over space or time. Traditional analytical methods frequently fall short in addressing
these issues, necessitating the use of advanced techniques such as variational methods and
critical point theory. These tools provide a rigorous framework for proving the existence and
uniqueness of solutions to higher-order differential equations. A key aspect of this study is
the application of variational methods to solve fourth-order elastic equations. These methods
involve reformulating differential equations into problems of finding critical points of associ-
ated functionals. This approach is particularly advantageous for addressing the nonlinearities
and boundary conditions inherent in these equations. Bonanno’s local minimum theorem [3]
and the Ambrosetti-Rabinowitz condition [1] are instrumental in this context, as they provide
conditions under which solutions exist. The Palais–Smale condition, a cornerstone of varia-
tional calculus, ensures that functionals possess the compactness properties needed to identify
critical points. Furthermore, Sobolev spaces offer a robust mathematical framework for han-
dling boundary conditions and variable coefficients with precision. Research by Averna and
Bonanno [2] has demonstrated the power of variational methods in proving not only the exis-
tence but also the multiplicity of solutions. These results highlight the ability of fourth-order
elastic equations to model a range of physical phenomena, from stable configurations to un-
stable states. The practical implications of this research are vast, spanning both theoretical
and applied domains. In materials science, understanding the multiplicity of solutions al-
lows for the prediction of material behavior under different conditions. For instance, during
a phase transition, multiple solutions may correspond to distinct physical states, such as sta-
ble and unstable configurations. This insight is critical for designing materials with tailored
properties, such as high-performance alloys or composites. In structural engineering, these
equations inform the design of beams, plates, and other structural elements to ensure safety
and reliability. For example, aerospace engineers rely on these models to optimize the design
of lightweight yet robust materials for aircraft and spacecraft. By predicting behaviors such
as buckling, vibration, and resonance, fourth-order elastic equations provide the tools needed
to address the demands of modern engineering.
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In this paper, we are going to establish the existence result for the following problem
(p(t)z′′)′′ − (q(t)z′)′ + r(t)z = λh(t, z(t)) + µg(t, z(t)), t ∈ [0, 1],

z(a) = z(b) = 0,

z′′(a) = z′′(b) = 0

(Ph,g)

where λ > 0, µ ≥ 0, h, g are continuous functions, p ∈ C2[0, 1], q ∈ C1[0, 1], r ∈ C[0, 1]
are regular functions with p = ess inf[0,1] p > 0. We aim to advance the understanding of
fourth-order elastic equations by addressing both their theoretical and practical challenges.
Specifically, we seek to: 1. Establish the existence of solutions using variational methods
and critical point theory. 2. Explore conditions that lead to the multiplicity of solutions,
highlighting the influence of nonlinearities and variable coefficients.

The remainder of this paper is organized as follows. Section 2 introduces the necessary
mathematical preliminaries, including definitions, theorems, and frameworks that form the
foundation of the analysis. Section 3 examines the existence of a single solution, employing
foundational techniques such as the Palais–Smale condition. Section 4 extends the discussion
to explore conditions under which multiple solutions arise, with particular attention to non-
linearities and coefficient variations. Section 5 addresses special cases, such as when specific
parameters are set to zero, providing additional insights into the behavior of these equations.
Finally, the study concludes with a discussion of the implications of the findings and potential
directions for future research.

For additional information, we recommend consulting sources such as [7, 9, 11, 13, 14, 22].
For example, Bonanno et al. in [9] applied multiple critical points theorems to demonstrate
the existence of two non-trivial solutions for equation (Ph,g), in the case µ = 0.

2 Preliminaries

For relevant notations and foundational results, we direct the reader to references [17,19]. Let
E be represent a real Banach space. A functional I : E → R, which is continuously Gâteaux
differentiable, is said to satisfy the Palais–Smale condition (shortened as (PS)-condition) if every
sequence {zn} such that {I(zn)} is bounded and limn−→∞ ∥I′(zn)∥E∗ = 0, has a convergent
subsequence. This condition is crucial in the framework of variational methods, as it ensures
that critical points of λ, correspond to solutions of the associated boundary value problem.

Now, consider two continuously Gâteaux differentiable functions Φ, Ψ : E −→ R and the
functional

I = Φ − Ψ.

Let s1, s2 ∈ [−∞, ∞] with s1 < s2. The functional I is said to satisfy the Palais–Smale condition
with bounds s1 and s2 (denoted [s1](PS)[s2]-condition) if any sequence {zn} such that {I(zn)} is
bounded, limn−→∞ ∥I′(zn)∥E∗ = 0 and s1 < Φ(zn) < s2 for each n ∈ N, has a convergent
subsequence.

When s1 = −∞ and s2 = ∞, this condition reduces to the classical (PS)-condition. If
s1 = −∞ and s2 ∈ R, it is referred to as the (PS)[s2]-condition. Similarly, when s1 ∈ R and
s2 = ∞, it is denoted as [s1](PS)-condition. Indeed, if Φ and Ψ be two continuously Gâteaux
differentiable functionals defined on a real Banach space E and fix s ∈ R. The functional
I = Φ − Ψ is said to verify the Palais–Smale condition cut off upper at r (in short (PS)[s])
if any sequence {zn}n∈N in E such that {I(zn)} is bounded, limn−→∞ ∥I′(zn)∥E∗ = 0 and
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Φ(zn) < s for each n ∈ N, has a convergent subsequence. Furthermore, if I satisfies the
[s1](PS)[s2]-condition, it automatically satisfies the [ϱ1](PS)[ϱ2]-condition for all ϱ1, ϱ2 ∈ [−∞, ∞]

such that s1 ≤ ϱ1 < ϱ2 ≤ s2.
Notably, if I adheres to the classical (PS)-condition, it also satisfies [ϱ1](PS)[ϱ2]-condition

for any ϱ1, ϱ2 ∈ [−∞, ∞] with ϱ1 < ϱ2.
The following four theorems will be utilized in proving the results of this paper.

Theorem 2.1 ([5, Theorem 2.3]). Let E be a real Banach space and let Φ, Ψ : E −→ R be two
continuously Gâteaux differentiable functions such that infz∈E Φ(z) = Φ(0) = Ψ(0) = 0. Assume
that there exist s > 0 and z̄ ∈ E, with 0 < Φ(z̄) < s, such that

(a1)
supΦ(z)≤s Ψ(z)

s
<

Ψ(z̄)
Φ(z̄)

,

(a2) for each λ ∈
(

Φ(z̄)
Ψ(z̄)

,
s

supΦ(z)≤s Ψ(z)

)
the functional Iλ = Φ − λΨ satisfies (PS)[s]-condition.

Then, for each

λ ∈ Λs =

(
Φ(z̄)
Ψ(z̄)

,
s

supΦ(z)≤s Ψ(z)

)
there exists z0,λ ∈ Φ−1(0, s) such that I ′λ(z0,λ) = 0 and Iλ(z0,λ) ≤ Iλ(z) for each z ∈ Φ−1(0, s).

Theorem 2.2. [5, Theorem 3.2] Let E be a real Banach space, Φ, Ψ : E −→ R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix
s > 0 and assume that, for each

λ ∈
(

0,
s

supz∈Φ−1(−∞,s) Ψ(z)

)
,

the functional Iλ = Φ − λΨ satisfies (PS)-condition and it is unbounded from below. Then, for each

λ ∈
(

0,
s

supz∈Φ−1(−∞,s) Ψ(z)

)
,

the functional Iλ admits two distinct critical points.

Theorem 2.3 ([2, Theorem A]). Let E be a reflexive real Banach space, Φ : E −→ R a continu-
ously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux
derivative admits a continuous inverse on E∗, and Ψ : E −→ R a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that

(b1) lim∥z∥−→∞(Φ(z) + λΨ(z)) = ∞ for each λ ∈ [0, ∞),

(b2) there is s ∈ R such that
inf

E
Φ < s

and
φ1(s) < φ2(s)

where

φ1(s) = inf
z∈Φ−1(−∞,s)

Ψ(z)− inf
Φ−1(−∞,s)

w Ψ

s − Φ(z)
,
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φ2(s) = inf
z∈Φ−1(−∞,s)

sup
v∈Φ−1[s,∞)

Ψ(z)− Ψ(v)
Φ(v)− Φ(z)

,

and Φ−1(−∞, s)
w

is the closure of Φ−1(−∞, s) in the weak topology.

Then, for each λ ∈
( 1

φ2(s)
, 1

φ1(s)

)
, the functional Φ + λΨ has at least three critical points in E.

It is important to note that φ1(s) in Theorem 2.3 may equal 0. In such cases, and in similar
situations both here and later, we will interpret 1

0 as ∞.
We will also utilize the following two theorems related to critical points.

Theorem 2.4 ([4, Theorem 1.1]). Let E be a reflexive real Banach space, and let Φ, Ψ : E −→ R be
two sequentially weakly lower semicontinuous and Gâteaux differentiable functions. Assume that Φ is
(strongly) continuous and satisfies

lim
∥z∥−→∞

Φ(z) = ∞.

Assume also that there exist two constants s1 and s2 such that

(c1) infE Φ < s1 < s2,

(c2) φ1(s1) < φ∗
2(s1, s2),

(c3) φ1(s2) < φ∗
2(s1, s2), where φ1 is defined as in Theorem 2.3 and

φ∗
2(s1, s2) = inf

z∈Φ−1(−∞,s1)

sup
v∈Φ−1[s1,s2)

Ψ(z)− Ψ(v)
Φ(v)− Φ(z)

.

Then, for each

λ ∈
(

1
φ∗

2(s1, s2)
, min

{
1

φ1(s1)
,

1
φ1(s2)

})
,

the functional Φ + λΨ admits at least two critical points which lie in Φ−1(−∞, s1] and Φ−1[s1, s2),
respectively.

It is worth noting that Theorems 2.3 and 2.4 are based on Ricceri’s variational principle
[20]. For further details, readers are encouraged to consult [6], where Theorems 2.1 and 2.2
were employed to prove the existence of at least one and two solutions for elliptic Dirichlet
problems with variable exponents. Similarly, in [10], Theorems 2.3 and 2.4 were utilized to
establish the existence of at least two and three solutions for a boundary value problem on
the half-line. Additionally, reference [12, 15, 16] demonstrates how Theorems 2.1 through 2.4
were applied to guarantee the existence of solutions for boundary value problems.

In this section, we present fundamental notations and supporting results to incorporate
equation (Ph,g) into a variational framework. Let E denote the Sobolev space W2,2([0, 1]) ∩
W1,2

0 ([0, 1]), equipped with the norm

∥z∥ =
(
∥z′′∥2

2 + ∥z′∥2
2 + ∥z∥2

2
) 1

2 (2.1)

for every z ∈ E where ∥ · ∥2 is the usual norm in L2[a, b]. It is well known that ∥ · ∥ is induced
by the inner product ∫ b

a

(
z′′(t)v′′(t) + z′(t)v′(t) + z(t)v(t)

)
dt

for every z, v ∈ E.
We highlight the following Poincaré-type inequalities, which can be found in the works of

[18].
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Proposition 2.5. For every z ∈ E, if k = 1
π2 , one has

∥z(i)∥2
2 ≤ kj−i∥z(j)∥2

2, i = 0, 1, j = 1, 2 with i < j. (2.2)

Now, defining p− as previously mentioned, and letting q− = ess inf[0,1] q and r− =

ess inf[0,1] r, we will examine the following set of conditions based on the signs of these quan-
tities:

(H1) p− > 0, q− ≥ 0, r− ≥ 0,

(H2) p− > 0, q− < 0, r− ≥ 0 and p− + q−k > 0,

(H3) p− > 0, q− ≥ 0, r− < 0 and p− + r−k > 0,

(H4) p− > 0, q− < 0, r− < 0 and p− + q−k + r−k > 0.

Additionally, take into account the following condition:

(H) min{p− + q−k, p− + r−k, p− + q−k + r−k} > 0.

Put
σ = min{p−, p− + q−k, p− + r−k, p− + q−k + r−k}.

Clearly, assuming the condition (H) implies that σ > 0. Furthermore, a simple calculation
reveals the following result.

Proposition 2.6. Condition (H) is satisfied if and only if at least one of the conditions (H1) through
(H4) is met.

We will now introduce a useful norm, which is equivalent to ∥ · ∥ and still ensures that
E remains a Hilbert space. Therefore, for the fixed values of p, q and r mentioned earlier, we
define the function N : E → R as follows

N(z) =
∫ 1

0
(p(t)|z′′(t)|2 + q(t)|z′(t)|2 + r(t)|z(t)|2)dt

holds for any z ∈ E. We have the following proposition, which will be helpful in confirming
that

√
N(·) is a norm equivalent to the standard one.

Proposition 2.7 ([9, Proposition 2.3]). Assume (H) holds. Then, there exits m > 0 such that

N(z) ≥ m∥z∥2 (2.3)

for any z ∈ E, with m = σ
1+k+k2 . Moreover, one has

N(z) ≥ σ∥z′′∥2
2 (2.4)

for any z ∈ E.

Proposition 2.8 ([9, Proposition 2.4]). Assume that condition (H) is satisfied and define

∥ · ∥E =
√

N(·)

for any z ∈ E. Then, ∥ · ∥E is a norm equivalent to the usual one defined in (2.2) and (E, ∥ · ∥E) is a
Hilbert space.
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Now, assuming again (H), put

δ =
√

σ =
(
min{p−, p− + q−k, p− + r−k, p− + q−k + r−k}

) 1
2 .

The constant δ is well-defined, given that σ > 0 holds under condition (H).
The following proposition will be useful in the next section.

Proposition 2.9 ([9, Proposition 2.5]). Assume that (H) holds. One has

∥z∥∞ ≤ 1
2πδ

∥z∥E

for any z ∈ E.

Definition 2.10. A function z ∈ E is called a weak solution of problem (Ph,g), if

∫ 1

0

(
p(t)z′′(t)v′′(t) + q(t)z′(t)v′(t) + r(t)z(t)v(t)

)
dt

− λ
∫ 1

0
h(t, z(t))dt − µ

∫ 1

0
g(t, z(t))dt = 0

holds for any v ∈ E.

Put
H(t, m) =

∫ m

0
h(t, x)dx for any (t, m) ∈ [0, 1]× R

and
G(t, m) =

∫ m

0
g(t, x)dx for any (t, m) ∈ [0, 1]× R.

We define the functionals Φ and Ψ for each z ∈ E, as follows

Φ(z) =
1
2
∥z∥2

E (2.5)

and

Ψ(z) =
∫ 1

0
H(t, z(t))dt +

µ

λ

∫ 1

0
G(t, z(t))dt (2.6)

and we put
Iλ(z) = Φ(z)− λΨ(z)

for every z ∈ E.

Proposition 2.11 ([9, Proposition 2.6]). Function z ∈ E is a generalized solution of (Ph,g) if only if
z ∈ E is a critical point of Iλ.

We need the following Proposition for existence our main results.

Proposition 2.12. Let S : E −→ E∗ be the operator defined by

S(z)(v) =
∫ 1

0

(
p(t)z′′(t)v′′(t) + q(t)z′(t)v′(t) + r(t)z(t)v(t)

)
dt

for every z, v ∈ E. Then, S admits a continuous inverse on E∗.
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Proof. It is obvious that

S(z)(z) =
∫ 1

0

(
p(t)|z′′(t)|2 + q(t)|z′(t)|2 + r(t)|z(t)|2)

)
dt = ∥z∥E.

This follows that S is coercive. Owing to our assumptions on the data, one has

⟨S(z)− S(v), z − v⟩ ≥ C∥z − v∥2
E > 0

for some C > 0, for every z, v ∈ E, which means that S is strictly monotone. Moreover, since
E is reflexive, for zn −→ z strongly in E as n → +∞, one has S(zn) → S(z) weakly in E∗ as
n → ∞. Hence, S is demicontinuous, so by [23, Theorem 26.A(d)], the inverse operator S−1 of
S exists and it is continuous. Indeed, let en be a sequence of E∗ such that en → e strongly in E∗

as n → ∞. Let zn and u in E such that S−1(en) = zn and S−1(e) = z. Taking into account that
S is coercive, one has that the sequence zn is bounded in the reflexive space E. For a suitable
subsequence, we have zn → ẑ weakly in E as n → ∞, which concludes

⟨S(zn)− S(z), zn − ẑ⟩ = ⟨en − e, zn − ẑ⟩ = 0.

Note that if zn → ẑ weakly in E as n → +∞ and S(zn) → S(ẑ) strongly in E∗ as n → +∞, one
has zn → ẑ strongly in E as n → +∞, and since S is continuous, we have zn → ẑ weakly in E
as n → +∞ and S(zn) → S(ẑ) = S(z) strongly in E∗ as n → +∞. Hence, taking into account
that S is an injection, we have z = ẑ.

3 Existence of one solution

In this section, we address the existence of a solution for the problem (Ph,g).
First, put

B =
1
2

(
4096
27

p− +
64
9

q− +
13
20

r−
)

and

D =
1
2

(
4096
27

p+ +
64
9

q+ +
13
20

r+
)

where p+, q+ and r+ are the ess sup in [0, 1] of the functions p, q and r respectively. For ease
of reference, we define

Gθ =
∫ 1

0
max
|m|≤θ

G(t, m)dt for each θ > 0

and
Gσ = inf

t∈[0,1]
G(t, σ) for each σ > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gσ ≤ 0.
To achieve our objective, we will fix two positive constants θ and σ, and set

δλ,g = min

2δ2π2θ2 − λ
∫ 1

0 max|m|≤θ H(t, m)dt
Gθ

,
Dσ2 − λ

∫ 5
8

3
8

H(t, σ)dt

Gσ


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and

δλ,g = min

δλ,g,
1

max
{

0,
1

2δ2π2 lim sup|m|−→∞
G(t,m)
|m|2

}
 , (3.1)

where we read ϵ/0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
|m|−→∞

G(t, m)

|m|2 ≤ 0

and Gσ = Gθ = 0.

Theorem 3.1. Assume that there exist two positive constants θ and σ with the property√
D
2

σ

πδ
< θ

such that

(A1) h(t, v) ≥ 0 for each (t, v) ∈
(
[0, 3

8 ) ∪ ( 5
8 , 1]

)
× R,

(A2)
∫ 1

0 max|m|≤θ H(t,m)dt
θ2 < 2δ2π2

D

∫ 5
8

3
8

H(t,σ)dt

σ2 ,

(A3) mint∈[0,1] lim sup|m|−→∞
H(t,m)
|m|2 ∈ (−∞, 0].

Then, for each

λ ∈ Λ =

 Dσ2∫ 5
8

3
8

H(t, σ)dt
,

2δ2π2θ2∫ 1
0 max|m|≤θ H(t, m)dt


and for each function g : [0, 1]× R −→ R satisfying the condition

lim sup
|m|−→∞

G(t, m)

|m|2 ∈ (−∞, 0], (3.2)

there exists δλ,g > 0 given by (3.1) such that for each µ ∈ [0, δλ,g), the problem (Ph,g) admits at least
one solution zλ in E such that

|zλ(t)| < θ.

Proof. The objective is to apply Theorem 2.1 to address the problem (Ph,g). To do this, we
consider the functionals Φ and Ψ as given in 2.5 and 2.6, respectively. We aim to show that
these functionals satisfy the necessary conditions outlined in Theorem 2.1. It is well-known
that both functionals are well-defined Gâteaux differentiable, and one has

Ψ′(z)(v) =
∫ 1

0
h(t, z(t))v(t)dt +

µ

λ

∫ 1

0
g(t, z(t))v(t)dt

and

Φ′(z)(v) =
∫ 1

0

(
p(t)z′′(t)v′′(t) + q(t)z′(t)v′(t) + r(t)z(t)v(t)

)
dt
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for every z, v ∈ E. Furthermore, Φ and Ψ are C1-functions. By utilizing the definition of Φ, it
follows that

lim
∥z∥E→+∞

Φ(z) = +∞,

which implies that Φ is coercive. Furthermore, proposition 2.12 guarantees that Φ has a con-
tinuous inverse on E∗. Therefore, we can conclude that the regularity condition on Φ and
Ψ, required in Theorem 2.1 are satisfied. The critical points of the functional Iλ in E corre-
spond precisely to the generalized solutions of the considered problem (Ph,g). To establish
the existence of a critical point Iλ in E, we verify that the regularity conditions on Φ and Ψ,
as outlined in Theorem 2.1, are indeed fulfilled. It is crucial to note that the operator Iλ is
a C1 (E, R) functional on E, and the critical points of Iλ correspond to weak solutions of the
problem (Ph,g). Furthermore, for λ > 0, the functional Iλ is coercive. Indeed, since µ < δλ we
can fix t such that

lim sup
|m|−→∞

G(t, m)

|m|2 ∈ (−∞, 0]

and µt < 2π2δ2. Consequently, there exists a positive constant ι such that

G(t, m) ≤ tm2 + ι

for each (t, m) ∈ [0, 1]× R. Now, we fix

0 < ε <
4π2δ2

λ

(
1
2
− µt

1
4π2δ2

)
.

Based on the assumption (A3) there is a bounded function ϕε such that

H(t, m) ≤ εm2 + ϕ

for each (t, m) ∈ [0, 1]× R. It follows that, for each z ∈ E, we have

Φ(z)− λΨ(z) =
1
2
∥z∥2

E − λ

(∫ 1

0
H(t, z(t))dt +

µ

λ

∫ 1

0
G(t, z(t))dt

)
≥ 1

2
∥z∥2

0 − λ

(
ε

1
4π2δ2 ∥z∥2

E + ϕ

)
− µ

(
t

1
4π2δ2 ∥z∥2

E + ι

)
≥
(

1
2
− λε

1
4π2δ2 − µt

1
4π2δ2

)
∥z∥2

E − λϕ − µι

and thus
lim

∥z∥E−→∞
Φ(z)− λΨ(z) = ∞,

which means the functional Iλ = Φ − λΨ is coercive. Thus, by [3, Proposition 2.1] the func-
tional Iλ = Φ − λΨ verifies (PS)[s]-condition for each s > 0 and so the condition (a2) of
Theorem 2.1 is verified. Fix λ ∈ (0, λ∗), thus∫ 5

8
3
8

H(t, σ)dt + µ
λ Gσ

Dσ2 >
1
λ

.

Put s = 2δ2π2θ2 and

wσ(t) =


−64σ

9

(
t2 − 3

4
t
)

, if t ∈ [0, 3
8 ),

σ, if t ∈ [ 3
8 , 5

8 ]

−64σ

9

(
t2 − 5

4
t +

1
4

)
, if t ∈ ( 5

8 , 1].
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Clearly, wσ ∈ E. Obviously, one has(
4096

27
p− +

64
9

q− +
13
20

r−
)

σ2

≤
∫ 3

8

0
p(t)

16384
81

σ2dt +
∫ 1

5
8

p(t)
16384

81
σ2dt +

∫ 3
8

0
q(t)

(
−64σ

9

(
2t − 3

4

))2

dt

+
∫ 1

5
8

q(t)
(
−64σ

9

(
2t − 5

4

))2

dt +
∫ 3

8

0
r(t)

(
−64σ

9

(
t2 − 3

4
t
))2

dt

+
∫ 1

5
8

r(t)
(
−64σ

9

(
t2 − 5

4
t +

1
4

))2

dt +
∫ 5

8

3
8

r(t)σ2dt

=
∫ 1

0
(p(t)|z′′(t)|2 + q(t)|z′(t)|2 + r(t)|z(t)|2)dt

= ∥wσ∥2
E ≤

(
4096

27
p+ +

64
9

q+ +
13
20

r+
)

σ2.

Then, we have Φ(0) = Ψ(0) = 0 and

1
2

(
4096
27

p− +
64
9

q− +
13
20

r−
)

σ2 ≤ Φ(wσ) =
1
2
∥wσ∥2

E ≤ 1
2

(
4096
27

p+ +
64
9

q+ +
13
20

r+
)

σ2.

By using condition (A1), we have

Ψ(wσ) =
∫ 1

0
H(t, wσ(t))dt +

µ

λ

∫ 1

0
G(t, wσ(t))dt

≥
∫ 5

8

3
8

H(t, σ)dt +
µ

λ
Gσ.

Thus, by the assumption √
D
2

σ

πδ
< θ,

we have 0 < Φ(wσ) < s. Owing to Proposition 2.9, one has

∥z∥∞ ≤ 1
2πδ

∥z∥E ≤ 1
2πδ

√
2s = θ,

hence, we have

sup
Φ(z)<s

Ψ(z) ≤
∫ 1

0
max
|m|≤θ

H(t, m)dt +
µ

λ
Gθ .

Therefore, we have

supz∈Φ−1(−∞,s] Ψ(z)

s
(3.3)

=
supz∈Φ−1(−∞,s]

(∫ 1
0 H(t, z(t))dt + µ

λ

∫ 1
0 G(t, z(t))dt

)
s

≤
∫ 1

0 max|m|≤θ H(t, m)dt + µ
λ Gθ

2δ2π2θ2
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and

Ψ(wσ)

Φ(wσ)
≥
∫ 1

0 H(t, w(t))dt + µ
λ

∫ 1
0 G(t, w(t))dt

Dσ2 (3.4)

≥

∫ 5
8

3
8

H(t, σ)dt + µ
λ Gσ

Dσ2 .

Since

µ <
2δ2π2θ2 − λ

∫ 1
0 max|m|≤θ H(t, m)dt

Gθ
,

we have ∫ 1
0 max|m|≤θ H(t, m)dt + µ

λ Gθ

2δ2π2θ2 <
1
λ

.

Furthermore,

µ <
Dσ2 − λ

∫ 5
8

3
8

H(t, σ)dt

Gσ
,

this means ∫ 5
8

3
8

H(t, σ)dt + µ
λ Gσ

Dσ2 >
1
λ

.

Then,

1
2δ2π2

∫ 1
0 max|m|≤θ H(t, m)dt + µ

λ Gθ

θ2 <
1
λ
<

∫ 5
8

3
8

H(t, σ)dt + µ
λ Gσ

Dσ2 . (3.5)

Hence, from (3.3)–(3.5), the condition (a1) of Theorem 2.1 is fulfilled. Since

λ ∈
(

Φ(wσ)

Ψ(wσ)
,

s
supΦ(z)≤s Ψ(z)

)
,

Theorem 2.1 with z̄ = w guarantees the existence of a local minimum point zλ for the func-
tional Iλ such that 0 < Φ(zλ) < s and so zλ is a nontrivial solution of the problem (Ph,g) such
that

|zλ(t)| < θ.

Remark 3.2. We note that the preceding theorem also holds for a Carathéodory function h
alongside p ∈ W2,1([0, 1]), q ∈ W1,1([0, 1]) and r ∈ L∞([0, 1]). It is evident that, in this context,
the solutions are generalized (see [8]).

We will now illustrate Theorem 3.1 by providing the following example.

Example 3.3. We consider the following problem
z(4) − z′′ + z = λh(z(t)) + µg(z(t)), t ∈ [0, 1],

z(0) = z(1) = 0,

z′′(0) = z′′(1) = 0

(3.6)

where

h(m) =

5m4, for any m ∈ (−∞, 1),
5
m

, for any m ∈ [1,+∞)
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and

g(m) =

2m, for any m ∈ (−∞, 1),
2
m

, for any m ∈ [1,+∞).

Based on the expressions for h and g, we can conclude that

H(m) =

{
m5, for each m ∈ (−∞, 1),

5 ln(m) + 1, for each m ∈ [1,+∞)

and

G(m) =

{
m2, for each m ∈ (−∞, 1),

2 ln(m) + 1, for each m ∈ [1,+∞).

Through straightforward calculations, we derive δ = 1 and D = 86111
1080 . Hence, lim|m|−→∞

H(m)
|m|2 =

0, thus (A3) is holds. Choose θ = 10−2, and σ = 1. Since∫ 1
0 max|m|≤θ H(m)dt

θ2 =
1

106 <
540π2

86111
=

2δ2π2

D

∫ 5
8

3
8

H(σ)dt

σ2 ,

therefore, if condition (A2) is satisfied, all the requirements of Theorem 3.1 are met. Conse-
quently, it follows that for each

λ ∈
(

86111
270

, 2π2 × 106
)

and since

lim sup
|m|−→∞

G(, m)

|m|2 ∈ (−∞, 0]

it follows that for each

µ ∈
[

0, min

{
2π2 × 10−4 − λ10−10

10−4 ,
86111
1080

− λ

4

})
the problem (3.6) admits at least one solution zλ in E such that

|zλ(t)| < 10−2.

4 Existence of two solutions

Applying Theorem 2.2, we obtain the following results:

Theorem 4.1. Assume that there exist two positive constants θ and σ with the property√
D
2

σ

πδ
< θ

and

(A4) there exist ν > 2 and R > 0 such that

0 < νH(t, m) ≤ mh(t, m) (4.1)

for each |m| ≥ R and for each t ∈ [0, 1].
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Then, for each

λ ∈
(

0,
2δ2π2θ2∫ 1

0 max|m|≤θ H(t, m)dt

)
,

and for each function g : [0, 1]× R −→ R satisfying the condition (A4), there exists δλ > 0 for each
µ ∈ [0, δλ[, the problem (Ph,g) admits at least two solutions z1 and z2 in E such that

|z1(t)| < θ.

Proof. Our objective is to utilize Theorem 2.2 in the context of the space E, and the functionals
Φ and Ψ as outlined in the proof of Theorem 3.1. Additionally, the functional Iλ adheres to
the (PS)-condition. Indeed, assume that {zk}k∈N ⊂ E such that {Iλ(zk)}k∈N is bounded and
I′α(zk) −→ 0 as k −→ +∞. Then, there exists a positive constant C0 such that |Iλ(zk)| ≤ C0 for
each k ∈ N. Therefore, we infer to deduce from the definition of I′λ and the assumption (A4),
for k large enough, we get

C0 + C1∥zn∥E ≥ νIλ(zn)− I′λ(zn)(zn) =
(ν

2
− 1
)
∥zn∥2

E

− λ
∫ 1

0
(νH(t, zn(t))− h(t, zn(t)) zn(t)dt

− µ
∫ 1

0
(νG(t, zn(t))− g(t, zn(t)) zn(t)dt

≥
(ν

2
− 1
)
∥zn∥2

E

for some C1 > 0. Since ν > 2, this implies that {zk}k∈N is bounded. Consequently, since E is
a reflexive Banach space, we have, up to a subsequence, zk ⇀ z in E, zk → z in L2([0, 1]) and
zk → z a.e. on [0, 1]. By I′λ(zk) → 0 and zk ⇀ z in E, we obtain(

I′λ(zk)− I′λ(z)
)
(zk − z) → 0.

From the continuity of h and g, we have∫ 1

0
(h(t, zk(t))− h(t, z(t))) (zk(t)− z(t))dt → 0

and ∫ 1

0
(g(t, zk(t))− g(t, z(t))) (zk(t)− z(t))dt → 0.

Thus
0 = lim

k→+∞

(
I′λ(zk)− I′λ(z)

)
(zk − z) ≥ lim

k→+∞
∥zk − z∥2

E.

So ∥zk − z∥E → 0 as k → +∞, which implies that {zk} converges strongly to u in E. Therefore,
Iλ satisfies the Palais–Smale condition. Additionally, by incorporating the condition (4.1),
there are constants a1, a2, a3, a4 > 0 such that

H(t, z) ≥ a1|z|ν − a2 and G(t, z) ≥ a3|z|ν − a4

for each (t, z) ∈ [0, 1]× R. Now, by selecting any z ∈ E \ {0}, we have

Iλ(z) = (Φ + λΨ)(z)

=
1
2
∥z∥2

E − λ
∫ 1

0
H(t, z(t))dt − µ

∫ 1

0
G(t, z(t))dt

≤ 1
2
∥z∥2

E − λa1
1

2νπνδν
∥z∥ν

E − µa3
1

2νπνδν
∥z∥ν

E + λa2 + µa4.
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Given that ν > 2, this condition ensures that Iλ is unbounded from below. Consequently, all
the requirements of Theorem 2.2 are satisfied. Thus, for each

λ ∈
(

0,
2δ2π2θ2∫ 1

0 max|m|≤θ H(t, m)dt

)
,

the functional Iλ admits two distinct critical points that are solutions of the problem (Ph,g).

Remark 4.2. In Theorem 2.1, if either h(t, 0) ̸= 0 for some t ∈ [0, 1] or g(t, 0) ̸= 0 for some
t ∈ [0, 1] or if both conditions are satisfied, then Theorem 4.1 guarantees the existence of two
nontrivial solutions for the problem (Ph,g). if neither h(t, 0) ̸= 0 and g(t, 0) ̸= 0 is satisfied for
any t ∈ [0, 1], the second solution z2 to the problem (Ph,g) may be trivial. However, there is
still at least one nontrivial solution.

Remark 4.3. Using similar arguments as presented in the proof of [5, Theorem 3.5], the non-
trivial nature of the second solution guaranteed by Theorem 4.1 can also be established in
the scenario where h(t, 0) = 0 for each t ∈ [0, 1]. This requires an additional condition at
zero: namely, there exists a non-empty open set D ⊆ [0, 1] and a subset B ⊂ D with positive
Lebesgue measure such that

lim sup
m−→0+

ess inft∈B H(t, m)

|m|2 = ∞ and lim inf
m−→0+

ess inft∈D H(t, m)

|m|2 > −∞.

5 Another multiplicity result for the case µ = 0

In this section, we discuss the existence of at least two and three solutions for the problem
(Ph,g) when µ = 0. To do this, we define

Fc =
∫ 1

0
max
|m|≤c

H(t, m)dt

and

Fc =

(
1
4

)
inf

t∈[0,1]
H(t, c)

for each c > 0.

Theorem 5.1. Assume that there exist two positive constants θ̄ and σ̄ such that√
D
2

σ̄

πδ
< θ̄ (5.1)

and suppose that the assumptions (A1) and (A3) in Theorem 3.1 hold. Moreover, assume that

(A5)
Fθ̄

θ̄2 < 2δ2π2

D
Fσ̄−Fθ̄

σ̄2 .

Then, for each

λ ∈
(

Dσ̄2

Fσ̄ − Fθ̄
,

2δ2π2θ̄2

Fθ̄

)
,

the problem (Ph,g) in the case µ = 0 admits at least three solutions in E.
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Proof. Put Iλ = Φ + λΨ, where

Φ(z) =
1
2
∥z∥2

E (5.2)

and

Ψ(z) = −
∫ 1

0
H(t, z(t))dt

for each z ∈ E. Standard arguments demonstrate that the functionals Φ and Ψ are Gâteaux
differentiable. The Gâteaux derivatives at a point z ∈ E are expressed as follows

Φ′(z)(v) =
∫ 1

0
z′(t)v′(t)dt +

∫ 1

0
δ(t)(z(t))v(t)dt

and

Ψ′(z)(v) = −
∫ 1

0
h(t, z(t))v(t)dt

for each z, v ∈ E, respectively. Therefore, a critical point of the functional Φ + λΨ corresponds
to a solution of equation (Ph,g) when µ = 0. Our goal is to apply Theorem 2.3 to the functionals
Φ and Ψ. The Functional Φ is sequentially weakly lower semicontinuous, and, as discussed in
Section 2, Φ is continuously Gâteaux differentiable Moreover, Proposition 2.12 indicates that
its Gâteaux derivative has a continuous inverse on E∗. The functional Ψ : E −→ R is well
defined, continuously Gâteaux differentiable, and its Gâteaux derivative is compact. Thus, we
need to verify that Φ and Ψ satisfy conditions (c1) and (c2) as stated in Theorem 2.3. We will
now fix 0 < ε < 2π2δ2

λ . From the assumption (A3) there is a function ϕε : [0, 1] −→ R with
ϕϵ(t) < ∞ for each t ∈ [0, 1] such that

H(t, ξ) ≤ εξ2 + ϕε(t)

for each (t, ξ) ∈ [0, 1]. It can be concluded that for each z ∈ E

Φ(z) + λΨ(z) =
1
2
∥z∥2

E − λ
∫ 1

0
H(t, z(t))dt

≤ 1
2
∥z∥2

E − λε
1

4π2δ2 ∥z∥2
E − λ

∫ 1

0
ϕε(t)dt

=

(
1
2
− λε

1
4π2δ2

)
∥z∥2

E − λ
∫ 1

0
ϕε(t)dt

and thus
lim

∥z∥E−→∞
(Φ(z) + λΨ(z)) = ∞,

which means the functional Iλ = Φ + λΨ is coercive. Now, it remains to show that (c2) of
Theorem 2.3 is fulfilled. Let s̄ = 2δ2π2θ̄2 and

w̄σ̄(t) =



−64σ̄

9

(
t2 − 3

4
t
)

, if t ∈
[

0,
3
8

)
,

σ̄, if t ∈
[

3
8

,
5
8

]
−64σ̄

9

(
t2 − 5

4
t +

1
4

)
, if t ∈

(
5
8

, 1
]

.
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Clearly w ∈ E. Therefore, we can conclude that

Bσ̄2 ≤ Φ(w̄σ̄) ≤ Dσ̄2.

Thus by (5.1), Φ(wσ) > s̄. Moreover

Ψ(w̄σ̄) = −
∫ 1

0
H(t, w̄σ̄)dt ≤ −

∫ 5
8

3
8

H(t, σ̄)dt = −Fσ̄.

For each z ∈ E such that Φ(z) < s̄, we obtain

sup
t∈[0,1]

|z(t)| ≤ θ̄.

Thus,

sup
z∈Φ−1(−∞,s̄)

Ψ(x) ≤
∫ 1

0
max
|m|≤θ̄

H(t, m)dt = Fθ̄ . (5.3)

Through straightforward calculations and based on the definition of φ(s̄), we find that since
Φ(0) = Ψ(0) = 0 and Φ−1(−∞, s̄)

w
= Φ−1(−∞, s̄), it follows that By simple calculations and

from the definition of φ(s̄), since Φ(0) = Ψ(0) = 0 and Φ−1(−∞, s̄)
w
= Φ−1(−∞, s̄), one has

φ1(s̄) = inf
z∈Φ−1(]−∞,s̄[)

Ψ(z)− inf
Φ−1(−∞,s̄)

w Ψ

s̄ − Φ(z)
≤

− inf
Φ−1(−∞,s̄)

w Ψ

s̄

≤
∫ 1

0 max|m|≤θ̄ H(t, m)dt

2δ2π2θ̄2 =
Fθ̄

2δ2π2θ̄2 .

Alternatively, according to (5.3), one can conclude that

φ2(s̄) = inf
z∈Φ−1(−∞,s̄)

sup
v∈Φ−1[s̄,∞)

Ψ(z)− Ψ(v)
Φ(z)− Φ(v)

≥ inf
z∈Φ−1(−∞,s̄)

Ψ(z)− Ψ(w̄σ̄)

Φ(w̄σ̄)− Φ(z)

≥
infz∈Φ−1(−∞,s̄) Ψ(z)− Ψ(w̄σ̄)

Φ(w̄σ̄)− Φ(z)

≥
−
∫ 1

0 max|m|≤θ̄ H(t, m)dt +
∫ 5

8
3
8

H(t, σ̄)dt

Φ(wσ)− Φ(z)

≥ Fσ̄ − Fθ̄

Dσ2 .

Consequently, from (A5), we derive

φ1(s̄) < φ2(s̄).

Thus, based on Theorem 2.3, while also considering that

1
φ2(s̄)

≤ Dσ2

Fσ̄ − Fθ̄

and
1

φ1(s̄)
≥ 2δ2π2θ̄2

Fθ̄
,

we arrive at the intended conclusion.



18 S. Heidarkhani, S. Moradi, G. Caristi and M. Ferrara

Remark 5.2. When the assumption (A5) of Theorem 5.1 is satisfied, straightforward calcula-
tions demonstrate that the condition

(A6)
Fθ̄

2δ2π2 θ̄2 < Fσ̄

Dσ̄2

implies (A5) of Theorem 5.1. Therefore, if the conditions (5.1) and (A5) are satisfied, then for
each

λ ∈
(

Dσ̄2

Fσ̄
,

2δ2π2θ̄2

Fθ̄

)
,

the problem (Ph,g) in the case µ = 0 admits at least three solutions.

We now apply Theorem 2.4, which will later be used to establish the existence of multiple
solutions for the problem (Ph,g) when µ = 0, without relying on assumption (A3).

Theorem 5.3. Assume that there exist three positive constants θ̄1, σ̄ and θ̄2 with

θ̄1 <

√
B
2

σ̄

πδ
(5.4)

and √
D
2

σ̄

πδ
< θ̄2 (5.5)

in a manner that satisfies the assumption (A4) in Theorem 2.3 and

(A7)
1

2δ2π2 max
{ Fθ̄1

θ̄2
1

, Fθ̄2

θ̄2
2

}
< Fσ̄

Dσ̄2 .

Then, for each

λ ∈ Λ =

(
Dσ̄2

Fσ̄
, min

{
2δ2π2θ̄2

1

Fθ̄1
,

2δ2π2θ̄2
2

Fθ̄2

})
,

the problem (Ph,g) in the case µ = 0 admits at least two solutions z1,λ and z2,λ such that |z1,λ(t)| < θ̄1

and |z2,λ(t)| < θ̄2.

Proof. Put

h(t, ϵ) =


h(t,−θ̄2) if [0, 1]× (−∞, θ̄2),

h(t, ϵ) if [0, 1]× [−θ̄2, θ̄2],

h(t, θ̄2) if [0, 1]× (θ̄2, ∞).

Clearly, h : [0, 1]×R −→ R is a continuous function. Now put H(t, m) =
∫ m

0 h(t, ϵ)dϵ for each
(t, m) ∈ [0, 1]× R and take E and Φ as given in (5.2), and

Ψ(z) = −
∫ 1

0
H(t, z(t))dt

for each z ∈ E. Our goal is to apply Theorem 2.4 to Φ and Ψ. It is well known that
lim∥z∥E−→∞ Φ(z) = ∞ and Ψ is a differentiable functional whose differential at the point
z ∈ E is

Ψ′(z)(v) = −
∫ 1

0
h(t, z(t))v(t)dt
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for any v ∈ E as well as it is sequentially weakly lower semicontinuous. Furthermore Ψ′ :
E −→ E∗ is a compact operator. Therefore, it suffices to demonstrate that Φ and Ψ meet the
criteria (c1), (c2) and (c3) outlined in Theorem 2.4. Let

s̄1 = 2δ2π2θ̄2
1 , s̄2 = 2δ2π2θ̄2

2

and w ∈ E in a manner similar to the proof of Theorem 2.4, we note that under the assump-
tions (5.4) and (5.5), it follows that s̄1 < Φ(wσ) < s̄2 and infE Φ < s̄1 < s̄2. Furthermore,
by applying the reasoning used in the proof of Theorem 5.1 and considering Remark 5.2, we
arrive at

φ1(s̄1) ≤
∫ 1

0 max|m|≤θ̄1
H(t, m)dt

2δ2π2θ̄2
1

=
Fθ̄1

2δ2π2θ̄2
1

,

φ1(s̄2) ≤
∫ 1

0 max|m|≤θ̄2
H(t, m)dt

2δ2π2θ̄2
2

=
Fθ̄2

2δ2π2θ̄2
2

and

φ∗
2(s̄1, s̄2) ≥

Fσ̄

Dσ̄2 .

Therefore, based on (A7), the conditions (c2) and (c3) of Theorem 2.4 are satisfied. As a result,
we can conclude from Theorem 2.4 that for each λ ∈ Λ, the problem{

−z′′ + α(t)z′ + δ(t)z = λh(t, z(t)) + µg(t, z(t)), t ∈ [0, 1],

z(a) = z(b) = 0

admits at least two solutions z1,λ and z2,λ such that |z1,λ(t)| < θ̄1 and |z2,λ(t)| < θ̄2. Noting that
these solutions also satisfy the problem (Ph,g) when µ = 0, we can draw the conclusion.

In this section, we will provide some observations regarding our results.

Remark 5.4. In Theorems 5.1 and 5.3, we examined the critical points of the functional Iλ,
which is naturally linked to the problem (Ph,g) when µ = 0. It is important to note that, in
general, Iλ can be unbounded from below in the space E. For instance, consider the scenario
where h(t) = 1 + |t|v−2t for each t ∈ R with v > 2. In this case, for any fixed z ∈ E\{0} and
ι ∈ R, we can derive

Iλ(ιz) =
1
2
∥ιz∥2

E − λ
∫ 1

0
H(ιz(t))dt

≤ ι2

2
∥z∥2

E − λ
1

2πδ
∥z∥E − λ

1
2vπvδv ∥z∥v

E −→ −∞

as ι −→ ∞. Thus, direct minimization cannot be used to locate the critical points of Iλ.

Remark 5.5. If h is non-negative, Theorem 5.3 provides a bifurcation result where the pair
(0, 0) is included in the closure of the set:{

(zλ, λ) ∈ E × (0, ∞) : zλ is a non-trivial solution of (Ph,g) , µ = 0
}
⊂ E × R.
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Indeed, if λ goes to zero, by Theorem 5.3 we have that θ̄i −→ 0, i = 1, 2 and since |zi,λ(t)| < θ̄i,
i = 1, 2, there exist two sequences {tj} in E and {λj} in R+ (here tj = zλj) such that

λj −→ 0+ and ∥tj∥E −→ 0,

as j −→ ∞. Moreover, since f is nonnegative, Ψ(z) < 0 for each z ∈ R and thus

(0, λ∗) ∋ λ 7→ Iλ(zλ)

is strictly decreasing. Hence, for each λ1, λ2 ∈ (0, λ∗), with λ1 ̸= λ2, solutions zλ1 and zλ2

ensured by Theorem 2.4 are different.

Remark 5.6. As noted in [18, Remark 3.10], if h is non-negative, the solutions guaranteed by
Theorems 5.1 and 5.3 are also non-negative.
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