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Abstract. In our work, we prove the existence and uniqueness of positive 1-periodic
solutions of a first order differential equation that contains a piecewise constant term.
Such equations admit periodic solutions and hence they can be used for numerical
modelling of temperature changes in a space surrounded by environment with dif-
ferent temperature. For some types of functional equations, it is possible to use the
comparison principle method of differential equations to obtain existence, uniqueness,
and asymptotic stability results.
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1 Introduction

In our paper, we analyze positive 1-periodic solutions of functional differential equation

X(t) = f(x(t) +x([t))g(t = [t])),  t=0 (11)

where |.| : [0,00) — INU {0} is the standard floor function, i.e. |t| =nift € [n,n+1) for
some n € IN U {0}. We will assume that the function f is negative for positive x, and equals
zero at zero, and g is positive over the interval [0, 1] (see conditions 1) and 2) below for more
precise assumptions).

The problem (1.1) represents a numeric model that describes temperature changes in a
space bounded by outside environment. A solution of problem represents temperature of
the space cooled by colder environment; the negative function f represents cooling up to
zero. The space is simultaneously warmed by a heating agent inside; the positive function
g represents heating. Moreover, the function g is multiplied by the temperature values at
discrete points so that the actual temperature is affected by previous temperature.

In this work, we use the comparison principle for differential equations to prove the exis-
tence, uniqueness and asymptotic stability (see Theorem 3.6) of positive 1-periodic solution of
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the equation (1.1) under certain assumptions on the functions f and g. In some other works
(e.g. [6]), authors analyzed an explicit form of solutions of a similar problem. In [5], a special
type of Gronwall lemma was used. For more results and methods used regarding analyzing
functional equations of this type, we refer to [4] and references therein. Next, linear functional
equations similar to (1.1) have been studied by many authors. The floor function |.| that ap-
pears in (1.1) was used in the automatic control theory in the frame of so-called sampled-data
approach; see e.g. [10], [11]. In [3], [8], and [9], formulas of representation of solutions were
found using the idea to the direction of the Floquet theory; the idea of such approach is to
reduce equations in linear case to equations with finite-dimensional fundamental systems. In
some other works (e.g. [6]), authors analyzed an explicit form of solutions. General theory
of functional differential equations proposed in the books [1] and [2] was built namely on the
idea of finite-dimensional fundamental systems. We also note that in [13], such delays are
used in semi-discretization methods for the study of stability analysis of linear time-periodic
and time-delay systems.

2 Preliminaries

Throughout the whole paper, for the functions f, g in the equation (1.1), we will assume the
following conditions:

1) f:[0,00) — (—o0,0] is continuously differentiable, f(0) = 0 and f(x) < 0 for x > 0,
2) g:[0,1] — (0, 00) is continuous.

It is important to note that the derivative of solution x of the equation (1.1) need not exist
att = n for n € IN. In such case, x is not continuously differentiable at these points. However,
one-sided derivatives of x at t = n do exist, since in (1.1), one can pass to the limit for t — n*
or t — n~. Due to these facts, we state the following definition of solutions of (1.1).

We say that a continuous function x : [0,c0) — R is a solution of the equation (1.1) if
for every n € IN U {0}, the function x is continuously differentiable over (1,1 + 1), and the
equation (1.1) is satisfied for t € (n,n + 1). Necessarily, there exist finite one-sided derivatives
of x at points n and n + 1.

In order to study 1—periodic solutions of (1.1), we will consider the problem

x(t) = f(x(t)) +x(0)g(t),  te[01], 2.1)
x(0) = x(1), (2.2)

where x/(0) and x’(1) are the corresponding one-sided derivatives. Obviously, for every initial
condition x(0) > 0, there exists a unique positive solution x of the equation (2.1) defined over
the whole interval [0, 1]. The equation (1.1) has a 1-periodic solution if and only if there exists
a solution of problem (2.1)—(2.2).

Let g satisfy the condition 2). We introduce some notation we will use throughout the
whole paper. Denote g1 = minco1) g(t), g2 = max;c(gq)&(t), and g3 = fol g(t)dt. Thus, it
holds g» > g3 > g1 > 0 and if g is nonconstant over [0, 1], then strict inequalities are valid.

3 Results

In this section, we present our results. In the proofs, we use standard methods of analysis of
solutions of ODE such as the comparison method.
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Lemma 3.1. Let x be a solution of the equation (2.1), x(0) > 0, and g is differentiable and nonincreas-
ing over the interval [0, 1]. Then the function x attains its minimum either at t = 0 or t = 1.

Proof. Observe that since x(0) > 0 and g > 0 over [0, 1], the corresponding solution x of (2.1)
remains positive over [0,1] (this is not obviously true for every continuous function g; see
Remark 3.3). Also, if there is a continuously differentiable function y such that

y'(t) > fly(1) +y(0)g(t),  te (0]

with y(0) = x(0), then necessarily y(t) > x(t) for t € (0,1]. These assertions can be proven by
using standard methods; see e.g. [12].

First, we assume that g’ < 0 over [0,1] and proceed by a contradiction. Let ty € (0,1) be
the point of minimum of x. Hence x'(ty) = 0 and differentiating (2.1) with respect to ¢, we
obtain

X"(t) = f'(x(1)x' () + x(0)8'(£). 3.1)
This means that x”(#p) < 0 and so ¢y cannot be a point of minimum.
Now, we assume that g is differentiable and nonincreasing over [0,1]. Denote g,(t) =

g(t) — L for n € N large enough so that g, > 0 over [0,1] (say n > ng). Let x, be the
corresponding solution of

x2,(t) = f(xu(t)) + x(0)gn(t)
that satisfies x,,(0) = x(0). Then x,, is bounded by zero from below and by x from above, and

the sequence {xy }n>n,, Xn converges uniformly to x over [0, 1]. Since g, < 0, we have x,(t) >
min{x,(0),x,(1)} by the previous part of the proof. Hence x(t) > min{x(0), x(1)}. O

Remark 3.2. Using arguments from the proof of Lemma 3.1, one can prove that if there holds
(2.2) and g’ < 0 over [0, 1], then x attains its maximum at a unique point ¢y € (0,1).

Remark 3.3. It is well known that if ¢ is not positive, then a solution x that starts at some
x(0) > 0 may cross the zero solution. Necessary and sufficient conditions of this phenomenon
for linear delay differential equations were obtained in [7]. For convenience of readers, we can
consider the equation

x'(t) = —x(t) + x(0) (=2t = 1).
Observe that the function x(f) = % — t is a solution that crosses zero.

Lemma 3.4. Let f(x) = —nx where 1 > 0. Then there exists a unique 1* = 1*(g) > 0 such that for
every positive solution x of (2.1), the following assertions are true:

i) If y > n*, then x(1) < x(0).
ii) If n < n*, then x(1) > x(0).
iii) If n = n*, then x(1) = x(0).
Proof. Let x be a positive solution of the equation
x'(t) = —nx(t) + x(0)g(t), t € [0,1] (3.2)

that starts at some x(0) > 0. Multiplying the equation with e’' and integrating over [0, 1], we
obtain

(1) = x(0)e (1 n /01 eMtg(t) dt> .
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Now, we discuss when there holds

1
-1 (1+/0 elg(t) dt) =1 (3.3)

or equivalently, F fo e (g(t) —n)dt =0.

Let us prove that there is a umque solution of the equation F(7) = 0. Note that F is a con-
tinuous function and F(g;) > 0 > F(g2). Hence there exists at least one solution #* € (g1, $2)
of (3.3) and obviously, there is no solution beyond (g1, £2). Thus, every positive solution x of
(3.2) for n = n* satisfies x(0) = x(1). If there exists a root 71 > 1* of (3.3) and y is a positive
solution of problem

y'(t) = —my(t) +y(0)g(t),

then y'(t) < —n*y(t) +y(0)g(t). We can choose x, a solution of (3.2) with 7 = 1* such that
x(0) = y(0) , then y(1) < x(1) = x(0) = y(0) what is a contradiction. If 71 < 5*, then a
similar argument can be used. We conclude that 77; # #* cannot be a root of (3 3).

We turn to prove i). If 5 > 5*, then F(n) < 0, hence e "(1+ f el'g(t)dt) < 1 and
x(1) < x(0). The assertions ii) and iii) can be proven similarly. O

Remark 3.5. From the proof of Lemma 3.4, it is clear that #* € (g1, g2). If moreover, g is non-
constant, nonincreasing and differentiable over [0,1], then #* € (g1,43). Indeed, integrating
by parts, we get

1

Flgs) = [ e9(5(0) — g)dt = [ (G() ~ gsh)h — g5 [ (G — gah)

where G(t fo s)ds. Note that G(0) = 0 and G(1) = gs3. Since G is a function concave
over [0, 1] and not equal to the line that connects the points [0,0] and [1, g3, it holds G(t) > g3t
for t € (0,1). We conclude that F(g3) < 0 and since F(g2) < 0, then necessarily, * € (g1,£3)-

Theorem 3.6. Let f, g satisfy the conditions 1), 2), and let 5* be as in Lemma 3.4. Assume that

tim £ —y* > lim fx), (3.4)
x—0t X x—oo X
Then there exists a positive solution x of problem (2.1)—~(2.2), hence a 1-periodic solution of (1.1).

Moreover, if the function = 1) g decreasing on interval (0, c0), then the positive 1-periodic solution
x is unique and for every solution y of (1.1) such that y(0) > 0, it holds

lim (x(t) — y(t)) = 0. (3.5)

t—o0

Proof. Note that if x,y are two solutions of (2.1) and x(0) > y(0) > 0, then x(t) > y(t)
for t € [0,1]. Indeed it holds x'(t) — y'(t) = a(t,x,y)(x(t) —y(t)) + (x(0) — y(0))g(t) fo
a(t,x,y) fo f'(sx(t) + (1 —s)y(t)) ds. Thus,

(1) = y(1) = (x(0) — y(0) (eHo08 1 [FefaCIog(s) s )
and hence, x > y over [0, 1] due to the condition 2).

Observe that if there exist two positive solutions x_  of (2.1) such that x_ < x; over [0,1],
x-(0) < x_(1), and x4 (0) > x4 (1), then there is a solution of (2.1)—(2.2) that lies between x_
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and x. In fact, if we define a sequence {x, },en such that x;1(0) = x_(1) and x,,41(0) = x,(1)
for n € N, then x_(t) < x1(t) < x2(t) < ... < x4(t) for t € [0,1], since two distinct positive
solutions of (2.1) do not intersect each other. The sequence of functions {x;, },eN is increasing
with respect to n and bounded by x; from above hence convergent to some solution of (2.1)-
(2.2). In the following, our goal will be to find such functions x_ and x.

Due to the assumption lim,_,(+ @ > —n*, there holds f(x) > —nx for some 17 < * close
to n* and for all x € (0,¢) where ¢ = ¢(17) > 0 is sufficiently small. If x(0) € (0, 5 min{1, %})
and x is the corresponding solution of (2.1), then x’ < x(0)g> < 5. Thus, the function x is
bounded by e. If y is the solution of (2.1) with f(x) = —yx and y(0) = x(0), then we can
similarly prove that y(t) € (0,¢) for t € [0,1] and so y < x over (0,1]. Due to Lemma 3.4, it
holds y(1) > y(0) therefore x(1) > x(0) and we can denote x_ := x.

Now, we turn to find a solution x;. Observe that if the initial condition x(0) > 0 is arbi-
trarily large the the value min,c[o ;) x(t) is also arbitrarily large where x is the corresponding
solution of (2.1). Assume by contradiction that there is a sequence {x,(0) },cn of initial values
such that x,,(0) — o0 as n — o0 and min[y ] X (t) is bounded with respect to n. Let t, € [0,1]
be such that x,(t,) = minc[o 1) x(t). Clearly, t, > 0 for all n sufficiently large, since x,(0) is
unbounded, and so x/,(t,) < 0. On the other hand, the sequence { f(x,(t,)) }nen is bounded
from below by some negative constant K and we conclude that

0> x;(tn) = f(xa(tn)) +2u(0)g(tn) = K+ x,(0)g1.

This is not true if n is large enough.

The assumption (3.4) implies that f(x) < —n*x for all x € (x,00) for some x( large
enough. We choose x(0) > xj large enough so that x(t) > x¢ for t € [0,1] where x is the
corresponding solution of (2.1). Let y be the solution of equation

y'(t) = ="y (t) +y(0)g(t)

with y(0) = x(0). Lemma 3.4 implies that y(1) = y(0) and y lies entirely in (x(, c0) (increasing
x(0) if necessary). Consequently, y > x over (0,1], x(1) < y(1) = x(0), and we can choose
Xy = X.
Let x be a fixed positive solution of problem (2.1)—(2.2). We prove that x is unique. Let

a € (0,1) and denote z(t) = ax(t) for t € [0,1]. Since the function @ is decreasing on (0, ),
hols Fla) _ 5@

«

>—2~ for¢ >0

& g

and so af(x(t)) < f(ax(t)). Thus, we obtain

Z'(t) = a(f(x(t) + x(0)g(t)) < f(z(t)) +2(0)8(t).

If y is the solution of (2.1) equipped with y(0) = z(0) = ax(0), then y(¢t) > z(t) over (0,1].
Hence y(1) > ax(1) = ax(0) = y(0). Thus, any solution of (2.1) that lies between x and the
zero solution cannot be extended to a 1-periodic solution of (1.1).

If « > 1, then similar arguments imply that y(1) < y(0) where y is the solution of (2.1)
satisfying y(0) = ax(0). Hence the solution x is the unique positive 1-periodic solution.

The assertion (3.5) is a consequence of above arguments. Let y be as in the previous
part of the proof. If y(0) < x(0), then the sequence {y(n)},en is increasing and necessarily
converges to x(0) so there holds (3.5). Otherwise y would converge to a 1-periodic solution
different from x which is not possible. The case y(0) > x(0) is similar. O
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Remark 3.7. If f(x) > —y*x or f(x) < —x*x for all x > 0, then one can use arguments as in
the proof of Theorem 3.6 and Lemma 3.4 to prove that there is no positive solution of problem
(2.1)-(2.2).

Theorem 3.8. Let xg > 0 and assume that one of the cases is true:
i) It holds either f(xo) > —g1x0 or f(x0) < —g2Xo.
ii) It holds f(x¢) < —g3xo, f, g are decreasing.

Then there is no solution of the problem (2.1)—(2.2) with x(0) = xo.

Proof. Let i) be valid. Assume first that f(xp) > —g1x0 and there is a solution x of (2.1)-(2.2)
satisfying x(0) = xp. Let y be the solution of equation

v =fy)+xg,  y0)=x.
Since the equation is autonomous, y is either strict monotone or constant. From ¢ > g1, we
have x > y over [0,1]. On the other hand, f(y(0)) = f(xo) > —x0g1 and so y is increasing
on some neighbourhood of 0, hence increasing on [0,1]. Hence x(1) > xop = x(0). The case
f(x0) < —g2x¢ is analogous.

Assume that ii) is valid. Lemma 3.1 implies that if x is a solution of (2.1)—(2.2), then
x(t) > xo for t € (0,1), hence f(x(t)) < f(xo). Integrating the equation (2.1) over [0,1], it
holds

0= /01 F(x(t))dt + xo /01 g(f)dt < f(x0) + x0g3,

a contradiction. O
4 Example
Consider the equation

X (t) = —x(;) — () +x([t])e LD, >0 (4.1)

Note that the functions f(x) = —3 —x?, x > 0,and g(t) = ¢, t € [0,1] satisfy the conditions
1), 2). One can easily check that all of the assumptions of Theorems 3.6 and 3.8 are true so
that there is a unique positive 1-periodic solution x. Due to Remark 3.5, #* lies in the interval
(e71,1 —e™!). Theorem 3.8 provides us a bound for the starting value x(0) := xo. From
the part i), we come to inequality —% — x3 > —e~lxo, or equivalently, xo > ¢! — % We
can use the part ii) and we obtain —3 — x% < —(1—eYxg, or, xg > % — ¢~ 1. Hence for
x(0) & [e7! — 1,2 — 1], then there is no positive 1-periodic solution of (4.1).

The equation (3.3) can be solved numerically and we find that #* ~ 0.601. In the Figure
4.1, we see two solutions x_ ; of (4.1) over the interval [0,100]. For x_, we choose x_(0) =
003 < ¢! —1 and for x4, x_(0) = 0.3 > % —e¢~!. From the proof of Theorem 3.6, we
know that the values x_(n) and x.(n) for integer n converge to a value that is the initial
condition for the periodic solution. Numerical computations show that x_(100) ~ 0.256 and
x4+(100) — x_(100) =~ 1.64 x 10~°. This means that x_(100) approximates the initial value
of the 1-periodic solution with error 1.64 x 107°. As observed in Remark 3.2, the graphs

of both solutions consist of smooth parts of solutions of (1.1) defined on intervals [n — 1, ]
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Figure 4.1: Comparison of solutions x_ (black line) and x (red line).

for n = 1,...,100 that attain local maximum at exactly one interior point on each interval
[n — 1,n] and attain local minima at points n — 1 and n.

The problem (4.1) describes temperature changes in a space bounded by outside cold
environment for particular functions f and g. We see that for such f, g, the optimal initial
temperature is approximately equal to 0.256 and repeats regularly at every positive integer
point. If the initial temperature is higher or lower, then, after some time, it becomes close to
optimal due to the asymptotic stability of the periodic solution in sense of (3.5).
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