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Abstract. In this paper we investigate the behaviour of the solutions of the following
close-to-cyclic system of two difference equations with maximum:

xn+1 = max

{
A,

yp
n

xq
n−1

}
,

yn+1 = max

{
B,

xp
n

yq
n−1

}

where n = 0, 1, . . . , the coefficients A, B, are positive real numbers, the exponents p, q
are positive real numbers such that p > q + 1, and the initial values x−1, x0, y−1, y0, are
positive real numbers.
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1 Introduction

Difference equations and systems of difference equations have gained much attention during
the last decades due to their wide applications. These equations can be used as mathematical
models to describe the biological, population and generally physical as well as economic phe-
nomena (several models can be found, for example, in [11] and [29]). Despite that difference
equations have, usually, simple forms, it is extremely difficult to fully describe precisely the
global behavior of their solutions (see, for instance, [1]–[15], [17]–[21], [23]–[60] and the related
references therein). For some differential equations with maximum see, for example, [16, 22].
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In addition, max operators are used in the study of problems concerning automatic control
(see [16], [22] and the references cited therein). Therefore, there exist many papers concerning
max difference equations, that is, max-type difference equations or difference equations with
maximum (see, e.g., [1, 4–7, 9, 10, 12–15, 17, 18, 21, 23–27, 35–45, 47–51, 56, 58–60] and the related
references therein).

At the beginning, difference equations with maximum containing linear terms were stud-
ied and are special cases of the difference equation

xn+1 = max

{
A(0)

n

xn
,

A(1)
n

xn−1
, . . . ,

A(k)
n

xn−k

}
, n = 0, 1, . . . ,

see for example [4, 5, 7, 10, 14, 15, 21, 23, 57–60].
In 2003 S. Stević started a systematic study of the difference equations containing powers

of the terms; see [32] where the difference equation

xn+1 = α +
xp

n−1

xp
n

, n = 0, 1, . . . ,

was studied (for some later results see [3]). The equation with p = 1 or p = −1, and related
ones had been considerably investigated before it (see, for example, [11, 28, 30, 31] and the
references therein). For some later generalizations of the equation in these cases see [2].

The investigation in [32] have been continued by him in a series of papers. In [34] beside
the equation

xn+1 = A +
xp

n

xr
n−1

, n = 0, 1, . . . ,

(for some generalizations of the equation see, for instance, [20, 33, 36]), it was also studied its
max-type counterpart

xn+1 = max
{

A,
xp

n

xr
n−1

}
, n = 0, 1, . . . ,

where the parameters A, p, q and the initial values x−1 and x0 are positive numbers. This is
one of the first papers where a difference equation with maximum containing powers of the
terms was studied. The case p = r, was also studied in [35], where, among other results, it
was proved that if A, p ∈ (0, 1) all positive solutions converge to one. This result was later
generalized in [9]. For some other results on convergence of solutions to related difference
equations with maximum see also [12, 13, 37, 38].

A complete picture regarding the boundedness character of positive solutions to the fol-
lowing difference equation

xn = max

{
A,

xp
n−1

xp
n−k

}
, n = 0, 1, . . . ,

where k ≥ 2, and the parameters A, p and the initial values are positive numbers, was given
in [36]. The results on the boundedness therein were later generalized in [41]. For a quite
general result in this direction see [49].

A study of a general difference equation with maximum, which includes above mentioned
ones, was suggested in [40] (see difference equation (1) therein). Periodicity of quite general
classes of difference equation with maximum was studied in [40, 42, 43, 48, 50]. Some results
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are devoted to solvability of max type equations such as [44] (for some recent results on the
topic see, for instance, [46, 52, 54, 55] and the references therein).

In [8], studying cyclic systems of difference equations was initiated. The study was con-
tinued, for instance, in [19, 46, 47, 49, 52, 55–57]. Paper [8] essentially suggested investigating
all cyclic systems of difference equations, so also those corresponding to above-mentioned
difference equations.

In [45] investigated the following max-type system

xn+1 = max

{
α,

yp
n

xp
n−1

}
, yn+1 = max

{
α,

xp
n

yp
n−1

}
, n = 0, 1, . . . ,

where the parameters α, p and the initial values are positive numbers, whereas its generaliza-
tion

xn+1 = max

{
α,

yp
n

xq
n−1

}
, yn+1 = max

{
α,

xp
n

yq
n−1

}
, n = 0, 1, . . . ,

was studied in [51]. The corresponding cyclic system was studied in [56].
In [6] the authors studied the periodic character of the solutions of the system of difference

equations with maximum

xn+1 = max
{

A,
yn

xn−1

}
,

yn+1 = max
{

B,
xn

yn−1

}
where A, B are positive constants and the initial values x−1, x0, y−1, y0, are positive real num-
bers.

Motivated by above mentioned studies, in this paper we continue the investigation of
close-to-cyclic systems of difference equations by studying the behaviour of the solutions of
the following close-to-cyclic system of difference equations with maximum:

xn+1 = max

{
A,

yp
n

xq
n−1

}
,

yn+1 = max

{
B,

xp
n

yq
n−1

} (1.1)

where n = 0, 1, . . . , the coefficients A, B, are positive real numbers, the exponents p, q are
positive real numbers such that p > q + 1, and the initial values x−1, x0, y−1, y0, are positive
real numbers.

2 Main results

In the first lemma we study the existence of the positive equilibriums of (1.1).

Lemma 2.1. Consider the system of difference equations (1.1), where the coefficients A, B, the expo-
nents p, q, and the initial values x−1, x0, y−1, y0, are positive real numbers. Assume that

p > 1 + q, q > 0, (2.1)

then, the following statements are true:
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(i) If

0 < A
p

q+1 < B < A
q+1

p < 1, (2.2)

then, system (1.1) has two equilibria

(x̄, ȳ) = (A, B), (x̄, ȳ) = (1, 1).

(ii) If
0 < B ≤ A

p
q+1 ≤ 1, (2.3)

then, system (1.1) has

(iia) two equilibria
(x̄, ȳ) = (1, 1), (x̄, ȳ) = (A, A

p
q+1 ),

if A ̸= 1, and

(iib) a unique equilibrium
(x̄, ȳ) = (1, 1),

if A = 1.

(iii) If

0 < A
q+1

p ≤ B ≤ 1, (2.4)

then, system (1.1) has

(iiia) two equilibria
(x̄, ȳ) = (1, 1), (x̄, ȳ) = (B

p
q+1 , B),

if B ̸= 1, and

(iiib) a unique equilibrium
(x̄, ȳ) = (1, 1),

if B = 1.

(iv) If
A > 1, B > 0 or B > 1, A > 0 (2.5)

then, system (1.1) has no equilibria.

Proof. We consider the system of algebraic equations

x = max
{

A,
yp

xq

}
, y = max

{
B,

xp

yq

}
. (2.6)

Then, one of the following relations is satisfied

(i) x = A, y = B, (ii) x = A, y =
xp

yq , (iii) x =
yp

xq , y = B,

(iv) x =
yp

xq , y =
xp

yq ,

and these relations are equivalent to

(i) x = A, y = B, (ii) x = A, y = A
p

q+1 , (iii) x = B
p

q+1 , y = B,
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and, since x, y, p, q > 0 and p ̸= q + 1,

(iv) x = 1, y = 1.

(i). From (2.1) and (2.2), it is obvious that, 0 < A < 1.
Let x = A, y = B. From (2.1), (2.2), and since 0 < A ≤ 1, we get

yp

xq =
Bp

Aq < A,

and
xp

yq =
Ap

Bq < B.

Hence, (x̄, ȳ) = (A, B), is an equilibrium of (1.1).

Now, suppose that x = A, y = A
p

q+1 , then from (2.6) we get

y = A
p

q+1 ≥ B,

which contradicts with (2.2). Hence, (x̄, ȳ) = (A, A
p

q+1 ), is not an equilibrium of (1.1).

To continue, we assume that, x = B
p

q+1 , y = B, then from (2.6) we have

x = B
p

q+1 ≥ A,

which contradicts with (2.2), since p, q > 0. So, (B
p

q+1 , B), is not an equilibrium of (1.1).
Finally, since 0 < A, B < 1, from (2.6), we have that, (x̄, ȳ) = (1, 1) is an equilibrium of

system (1.1).

(ii). From (2.1) and (2.3), it is obvious that, 0 < A ≤ 1.
Let x = A, y = B. Then, from (2.6), we get B ≥ Ap

Bq , and so, B ≥ A
p

q+1 , which contradicts

with (2.3), except if B = A
p

q+1 , and then, x = A, y = A
p

q+1 , case that considered below. Hence,
(A, B), B ̸= A

p
q+1 , is not an equilibrium of (1.1).

Now, suppose that x = A, y = A
p

q+1 . From (2.1), (2.3), and since 0 < A ≤ 1, we get

yp

xq =
A

p2
q+1

Aq ≤ A,

and
xp

yq =
Ap

A
qp

q+1
= A

p
q+1 ≥ B.

Hence, (x̄, ȳ) = (A, A
p

q+1 ), is an equilibrium of (1.1). Obviously, if A = 1, the equilibrium of
(1.1) is (x̄, ȳ) = (1, 1).

To continue, we assume that, x = B
p

q+1 , y = B. Then, from (2.1), (2.3) and (2.6), we have

B
p

q+1 ≥ A ≥ B
q+1

p . (2.7)

If 0 < B < 1, relation (2.7) can not be true, since p > q + 1 > 0. So, (B
p

q+1 , B), is not an
equilibrium of (1.1), if 0 < B < 1. On the other hand, relation (2.7) is true, if A = B = 1, and
then, (x̄, ȳ) = (1, 1) is an equilibrium of (1.1).
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Finally, since 0 < A, B ≤ 1, from (2.6), we have that, (x̄, ȳ) = (1, 1) is an equilibrium of
system (1.1).

From all the above, it is obvious that if A = 1 and 0 < B ≤ 1, then, (x̄, ȳ) = (1, 1) is the
unique equilibrium of (1.1). This completes the proof of (ii).

(iii). Using (2.4) and (2.6), and arguing as in (ii), we can easily prove (iii).

(iv). From (2.1) and (2.6), we get

x ≥ y
p

q+1 , y ≥ x
p

q+1 ,

and so,

x ≥ x
(

p
q+1

)2

. (2.8)

If x > 1, then, from (2.8), q + 1 ≥ p, which contradicts with (2.1). Hence, 0 < x ≤ 1, and
similarly, 0 < y ≤ 1. Therefore, in order to have solutions for (2.6), it is necessary 0 < A, B ≤ 1,
since (2.1) holds. So, system (1.1) has no equilibria, if (2.1) and (2.5) holds. This completes the
proof of the lemma.

In the following proposition we study the asymptotic behavior of the positive solutions
of (1.1). We need the following lemma on a product-type difference equation, for which
related results and methods can be found in the literature (see, for instance, [32, Remark 1],
[41, Theorem 1], [54] and [55]).

Lemma 2.2. Consider the difference equation of the form

zn+1 =
za

n

zb
n−1

, n ≥ 0, (2.9)

where z−1, z0 are positive real numbers, and a, b are real numbers, such that

a > 1 + b, b > 0. (2.10)

Then, the following statements are true:

(i) If
zλ1

0

zb
−1

> 1, (2.11)

where

λ1 =
a +

√
a2 − 4b
2

,

then
lim
n→∞

zn = ∞. (2.12)

(ii) If
zλ1

0

zb
−1

= 1, (2.13)

then
lim
n→∞

zn = 1. (2.14)
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(iii) If
zλ1

0

zb
−1

< 1, (2.15)

then
lim
n→∞

zn = 0. (2.16)

Proof. We prove that the solution zn of (2.9) is given by

zn =
z fn

0

zgn
−1

, n ≥ 1, (2.17)

where fn satisfies the initial value problem

fn+1 = a fn − b fn−1, n = 2, 3, . . . , f1 = a, f2 = a2 − b, (2.18)

and gn satisfies the initial value problem

gn+1 = agn − bgn−1, n = 2, 3, . . . , g1 = b, g2 = ab. (2.19)

From (2.9), (2.18) and (2.19), we have

z1 =
za

0

zb
−1

=
z f1

0

zg1
−1

, (2.20)

and

z2 =
za

1

zb
0
=

za f1−b
0

zag1
−1

=
za2−b

0

zab
−1

=
z f2

0

zg2
−1

. (2.21)

In addition, from (2.9), (2.18), (2.19), (2.20) and (2.21), we get

z3 =
za

2

zb
1
=

za f2
0

zag2
−1

z−b f1
0

z−bg1
−1

=
z f3

0

zg3
−1

. (2.22)

From (2.9), (2.18), (2.19), (2.21) and (2.22), and working inductively, we can easily prove (2.17).
From relations (2.10), (2.18) and (2.19), we get

fn = c1λn
1 + c2λn

2 , n = 1, 2, . . . , (2.23)

where

λ1 =
a +

√
a2 − 4b
2

, λ2 =
a −

√
a2 − 4b
2

,

c1 =
λ1√

a2 − 4b
, c2 =

−λ2√
a2 − 4b

,
(2.24)

and
gn = d1λn

1 + d2λn
2 , n = 1, 2, . . . , (2.25)

where

d1 =
b√

a2 − 4b
, d2 = − b√

a2 − 4b
. (2.26)
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From (2.23) and (2.24), we get

fn =
1√

a2 − 4b
λn+1

1 − 1√
a2 − 4b

λn+1
2 . (2.27)

So, from relations (2.17), (2.25), (2.26) and (2.27), we have

zn =
z fn

0

zgn
−1

=
z

1√
a2 − 4b

λn+1
1 − 1√

a2 − 4b
λn+1

2

0

z

b√
a2 − 4b

λn
1 −

b√
a2 − 4b

λn
2

−1

=

(
zλ1

0

zb
−1

) 1√
a2 − 4b

λn
1( zλ2

0

zb
−1

)−
1√

a2 − 4b
λn

2

.

(2.28)

(i). First, suppose that (2.11) is satisfied. Since, from (2.10),

λ1 > 1, 0 < λ2 < 1, (2.29)

then, from (2.28), we get (2.12).

(ii). Now, suppose that (2.13) hold. Then, from (2.28), we get

zn =

(
zλ2

0

zb
−1

)−
1√

a2 − 4b
λn

2

,

and since 0 < λ2 < 1, we get (2.14).

(iii). Finally, suppose that (2.15) is satisfied. Then, from (2.28) and (2.29), we get (2.16). This
completes the proof of the lemma.

Lemma 2.3. Consider the system of difference equations (1.1), where relations (2.1) and (2.2) hold, and
the initial values x−1, x0, y−1, y0, are positive real numbers. Then, the following statements are true:

I. If there exists a positive integer m ≥ 2, such that

xm ≤ B
q+1

p , (2.30)

then
xm+2k = A, ym+2k−1 = B, k ≥ 1. (2.31)

II. Suppose that

x2n > B
q+1

p , for any n ≥ 1. (2.32)

(a). If
xλ

2

xq2

0

> 1, λ =
p2 − 2q +

√
(p2 − 2q)2 − 4q2

2
, (2.33)

then
lim
n→∞

x2n = ∞, lim
n→∞

y2n+1 = ∞. (2.34)
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(b). If
xλ

2

xq2

0

= 1, (2.35)

then
lim
n→∞

x2n = 1, lim
n→∞

y2n+1 = 1. (2.36)

III. Suppose that

x2n+1 > B
q+1

p , for any n ≥ 1. (2.37)

(a). If
xλ

3

xq2

1

> 1, (2.38)

then
lim
n→∞

x2n+1 = ∞, lim
n→∞

y2n = ∞. (2.39)

(b). If
xλ

3

xq2

1

= 1, (2.40)

then
lim
n→∞

x2n+1 = 1, lim
n→∞

y2n = 1. (2.41)

Proof. From (2.2) we have

(i) 0 < A < 1, 0 < B < 1, (ii) A > B
p

q+1 , (iii) B > A
p

q+1 , (2.42)

I. From (1.1) and (2.30), we get
xp

m

yq
m−1

≤ Bq+1

Bq = B,

and so, from (1.1),
ym+1 = B. (2.43)

Then, from (1.1), (i) and (ii) of (2.42) and (2.43), we get

yp
m+1

xq
m

≤ Bp

Aq < A,

and so, from (1.1),
xm+2 = A. (2.44)

In addition, from (iii) of (2.42) and (2.44), it follows that

xm+2 < B
q+1

p . (2.45)

Using (2.45) and working as above we have

ym+3 = B, xm+4 = A,

and so, working inductively, we get (2.31).
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II. From (1.1), (iii) of (2.42) and (2.32), we have

x2n =
yp

2n−1

xq
2n−2

, n ≥ 1. (2.46)

From (2.1), (i) of (2.42), (2.32) and (2.46), we have, for n ≥ 2,

y2n−1 = x1/p
2n xq/p

2n−2 > B
q+1

p
1
p B

q+1
p

q
p = B( q+1

p )2
> B,

and so, from (1.1),

y2n−1 =
xp

2n−2

yq
2n−3

, n ≥ 2. (2.47)

Relations (2.46) and (2.47) imply that

x2n =
xp2−q

2n−2

ypq
2n−3

, n ≥ 2,

and then, since from (2.46),

yp
2n−3 = x2n−2xq

2n−4, n ≥ 2,

we get the following product-type difference equation (see, e.g., [54, 55])

x2n =
xa

2n−2

xb
2n−4

, n ≥ 2, a = p2 − 2q, b = q2, (2.48)

with interlacing indices (see [53])
Since (2.1) holds, we can easily prove that (2.10) is true. In (2.48), we set

x2n−4 = zn−1, (2.49)

(see [53]), and we get the equation

zn+1 =
za

n

zb
n−1

, n ≥ 2. (2.50)

We consider the difference equation

wn+1 =
wa

n

wb
n−1

, n ≥ 0. (2.51)

Let wn be the solution of (2.51), such that

w−1 = z1, w0 = z2, (2.52)

II(a). Using (2.33), (2.49) and (2.52) we have

wλ
0

wq2

−1

=
zλ

2

zq2

1

=
xλ

2

xq2

0

> 1. (2.53)

Since for equation (2.51), relations (2.10) and (2.53) hold, from (i) of Lemma 2.2, we get

lim
n→∞

wn = ∞,
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and using (2.50), (2.51) and (2.52), we have

lim
n→∞

zn = ∞,

and so, from (2.49),
lim
n→∞

x2n = ∞.

Then, from (2.46), we get
lim
n→∞

y2n+1 = ∞.

Hence, (2.34) is true.

II(b). Since (2.35), (2.49) and (2.52) hold, we have

wλ
0

wq2

−1

=
zλ

2

zq2

1

=
xλ

2

xq2

0

= 1. (2.54)

Since for equation (2.51), relations (2.10) and (2.54) hold, from (ii) of Lemma 2.2, we get

lim
n→∞

wn = 1,

and using (2.50), (2.51) and (2.52), we have

lim
n→∞

zn = 1,

and so, from (2.49) ,
lim
n→∞

x2n = 1.

From (2.46), we get
lim
n→∞

y2n+1 = 1.

Hence, (2.36) is true.
We mention that, difference equation (2.48) is with interlacing indices, and it was expected

that its behavior is similar to (2.9) (for more details see, for example, [53]).
Arguing as in cases II(a) and II(b), we can easily prove III(a) and III(b).

Remark 2.4. In statement II of Lemma 2.3, it is impossible to have

xλ
2

xq2

0

< 1. (2.55)

Indeed, if, on the contrary, we assume that (2.55) holds, then, arguing as in II(a) of Lemma 2.3,
for the solution wn of (2.51) we get

wλ
0

wq2

−1

< 1,

and so, from statement (iii) of Lemma 2.2,

lim
n→∞

wn = 0,

which means that
lim
n→∞

x2n = 0,
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which contradicts with the fact that xn ≥ A, for any n ≥ 1. So, (2.55) cannot be satisfied.
Similarly, it is impossible to have

xλ
3

xq2

1

< 1,

in statement III of Lemma 2.3.

Proposition 2.5. Consider the system of difference equations (1.1), where relations (2.1) and (2.2) hold,
and the initial values x−1, x0, y−1, y0, are positive real numbers. Let (xn, yn) be a solution of (1.1).
Then, the following statements are true:

I. Suppose that there exist integers l, r ≥ 1, such that

x2l+1 ≤ B
q+1

p , x2r ≤ B
q+1

p . (2.56)

Then, (xn, yn) is eventually equal to the positive equilibrium (A, B) of (1.1).

II. Suppose that there exists an integer l ≥ 1, such that the first inequality of (2.56) and relations
(2.32), (2.33) hold. Then, relation (2.34) and

x2n+1 = A, y2n = B, n ≥ l + 1, (2.57)

are satisfied.

III. Suppose that there exists an integer l ≥ 1, such that the first inequality of (2.56) and relations
(2.32), (2.35) hold. Then, relations (2.36) and (2.57) are satisfied.

IV. Suppose that there exists an integer r ≥ 1, such that the second inequality of (2.56) and relations
(2.37), (2.38) hold. Then, relation (2.39) and

x2n = A, y2n+1 = B, n ≥ r + 1, (2.58)

are satisfied.

V. Suppose that there exists an integer r ≥ 1, such that the second inequality of (2.56) and relations
(2.37), (2.40) hold. Then, relations (2.41) and (2.58) are satisfied.

VI. If relations (2.32), (2.33), (2.37) and (2.38) hold, then,

lim
n→∞

xn = ∞, lim
n→∞

yn = ∞. (2.59)

VII. If relations (2.32), (2.33), (2.37) and (2.40) hold, then, relations (2.34) and (2.41) are satisfied.

VIII. If relations (2.32), (2.35), (2.37) and (2.38) hold, then, relations (2.36) and (2.39) are satisfied.

IX. If relations (2.32), (2.35), (2.37) and (2.40) hold, then,

lim
n→∞

xn = 1, lim
n→∞

yn = 1. (2.60)

Proof. I. From (2.56) and statement I of Lemma 2.3, we have

x2l+1+2k = A, y2l+2k = B, x2r+2k = A, y2r+2k−1 = B, k = 1, 2, . . . .
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So, for n ≥ max{2l + 3, 2r+ 2}, we get xn = A, yn = B. This implies that, (xn, yn) is eventually
equal to (A, B).

II. From the first inequality of (2.56) and statement I of Lemma 2.3, we have

x2l+1+2k = A, y2l+2k = B, k = 1, 2, . . . ,

and so, (2.57) is true. Moreover, from (2.32), (2.33) and statement II(a) of Lemma 2.3, we have
(2.34).

Arguing as above, using the corresponding relations and the appropriate statements of
Lemma 2.3, we can easily prove statements III–IX of the proposition. This completes the
proof of the proposition.

Lemma 2.6. Consider the system of difference equations (1.1), where (2.1) and (2.3) hold, and the
initial values x−1, x0, y−1, y0, are positive real numbers. Then, the following statements are true:

I. Suppose that there exists an integer m ≥ 2, such that

ym = A
p

q+1 , (2.61)

then
xm+2k+1 = A, ym+2k = A

p
q+1 , k ≥ 0. (2.62)

II. Suppose that

y2n > A
p

q+1 , for any n ≥ 1. (2.63)

(a). If
yλ

2

yq2

0

> 1, (2.64)

where λ was defined in (2.33), then (2.39) holds.

(b). If
yλ

2

yq2

0

= 1, (2.65)

then (2.41) holds.

III. Suppose that

y2n+1 > A
p

q+1 , for any n ≥ 1. (2.66)

(a). If
yλ

3

yq2

1

> 1, (2.67)

then (2.34) holds.

(b). If
yλ

3

yq2

1

= 1, (2.68)

then (2.36) holds.
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IV. Suppose that there exists an integer s ≥ 2, such that

ys < A
p

q+1 . (2.69)

Assume that

A
p2−q−1

pq ≤ B, (2.70)

then
xs+2k−1 = A, k ≥ 1, (2.71)

and, in addition,

(a). If
q < 1, (2.72)

then

lim
k→∞

ys+2k = A
p

q+1 . (2.73)

(b). If
q = 1, (2.74)

then
ys+4k−2 =

Ap

ys
, ys+4k = ys, k ≥ 1. (2.75)

(c). If
q > 1, (2.76)

then there exists a positive integer k0, such that

ys+4k−2 =
Ap

Bq , ys+4k−4 = B, k ≥ k0 + 1. (2.77)

Proof. From relations (2.1) and (2.3) we have 0 < A ≤ 1.

I. Since, from (2.1) and (2.3),

A
p

q+1 ≤ A
q+1

p , (2.78)

from (1.1) and (2.61), we get
yp

m

xq
m−1

≤ Aq+1

Aq = A,

and so, from (1.1),
xm+1 = A. (2.79)

Then, from (2.3), (2.61) and (2.79), we get

xp
m+1

yq
m

=
Ap(

A
p

q+1
)q = A

p
q+1 ≥ B,

and so, from (1.1),
ym+2 = A

p
q+1 ,

and working inductively, we get (2.62).
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Arguing as in statements II and III of Lemma 2.3, we can easily prove II and III of this
Lemma.

IV. From (1.1), (2.69) and (2.78), we get

yp
s

xq
s−1

≤ Aq+1

Aq = A,

and so, from (1.1),
xs+1 = A. (2.80)

Then, from (2.3), (2.69) and (2.80), we get

xp
s+1

yq
s

>
Ap(

A
p

q+1
)q = A

p
q+1 ≥ B,

and so, from (1.1),

ys+2 =
Ap

yq
s
> A

p
q+1 . (2.81)

From (1.1), (2.70), (2.80) and (2.81), we get

yp
s+2

xq
s+1

=
Ap2−q

ypq
s

≤ Ap2−q

Bpq ≤ Ap2−q

Ap2−q−1
= A,

and so, from (1.1),
xs+3 = A. (2.82)

From (2.81) and (2.82), we have
xp

s+3

yq
s+2

= Ap−pqyq2

s ,

and so, from (1.1),
ys+4 = max

{
B, Ap−pqyq2

s

}
. (2.83)

In addition, from (2.81) and (2.82), we have

xp
s+3

yq
s+2

<
Ap(

A
p

q+1
)q = A

p
q+1 ,

and so, from (1.1) and (2.3), we get
ys+4 < A

p
q+1 . (2.84)

From (2.69), (2.80), (2.81), (2.82), (2.83), (2.84), and working inductively, we get (2.71), and

ys+4k−2 =
Ap

yq
s+4k−4

> A
p

q+1 , k ≥ 1, (2.85)

and
ys+4k = max{B, Ap−pqyq2

s+4k−4} < A
p

q+1 , k ≥ 1. (2.86)

IV(a). First, suppose that (2.72) holds, then, from (1.1) and (2.3), we get

Ap−pqyq2

s+4k−4 ≥ Ap−pqBq2 ≥ B,
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and so, from (2.86), we have

ys+4k = Ap−pqyq2

s+4k−4, k ≥ 1. (2.87)

From (2.87), and by induction, (see also [55] and note that the equation is with interlacing
indices [53]), it is easy to prove that

ys+4k = Ap 1−(q2)
k

q+1 y(q
2)

k

s , k ≥ 1. (2.88)

From (2.88) and (2.72), we have
lim
k→∞

ys+4k = A
p

q+1 . (2.89)

Using (2.85) and (2.89), we have
lim
k→∞

ys+4k−2 = A
p

q+1 . (2.90)

From (2.89) and (2.90), it is obvious that (2.73) is true.

IV(b). Now, suppose that (2.74) holds, then from (1.1) and (2.86), we have

ys+4k = max{B, ys+4k−4} = ys+4k−4, k ≥ 1,

and so, the second relation of (2.75) is true. From the second relation of (2.75) and (2.85), we
have that the first relation of (2.75) is also true.

IV(c). Finally, suppose that (2.76) holds. We prove that, there exists a positive integer k0, such
that,

ys+4k0 = B. (2.91)

On the contrary, we assume that

ys+4k > B, k ≥ 0,

then, from (2.86), we get (2.87), and so, (2.88) is true. Then, from (2.88), we get

ys+4k = A
p

q+1

(
ys

A
p

q+1

)(q2)
k

,

and so, from (2.69) and (2.76),
lim
k→∞

ys+4k = 0,

which is a contradiction, since from (1.1),

ys+4k ≥ B > 0, k ≥ 0.

So, there exists a positive integer k0, such that (2.91) holds.
From (2.1), (2.3), (2.76), (2.85), (2.86) and (2.91), we have

ys+4k0+2 =
Ap

Bq , ys+4k0+4 = max{B, Ap−pqBq2} = B,

and working inductively, we get (2.77). This completes the proof of the lemma.

Using Lemma 2.6 and arguing as in Proposition 2.5, we can easily prove the following
proposition.
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Proposition 2.7. Consider the system of difference equations (1.1), where relations (2.1) and (2.3) hold,
and the initial values x−1, x0, y−1, y0, are positive real numbers. Let (xn, yn) be a solution of (1.1).
Then, the following statements are true:

I. Suppose that there exist integers l, r ≥ 1, such that

y2l+1 = A
p

q+1 , y2r = A
p

q+1 . (2.92)

Then, (xn, yn) is eventually equal to the positive equilibrium (A, A
p

q+1 ) of (1.1).

II. Suppose that there exists an integer l ≥ 1, such that the first equality of (2.92) and relations
(2.63), (2.64) hold. Then, relation (2.39) and

x2n = A, y2n−1 = A
p

q+1 , n ≥ l + 1, (2.93)

are satisfied.

III. Suppose that there exists an integer l ≥ 1, such that the first equality of (2.92) and relations
(2.63), (2.65) hold. Then, relations (2.41) and (2.93) are satisfied.

IV. Suppose that there exists an integer r ≥ 1, such that the second equality of (2.92) and relations
(2.66), (2.67) hold. Then, relation (2.34) and

x2n+1 = A, y2n = A
p

q+1 , n ≥ r, (2.94)

are satisfied.

V. Suppose that there exists an integer r ≥ 1, such that the second equality of (2.92) and relations
(2.66), (2.68) hold. Then, relations (2.36) and (2.94) are satisfied.

VI. If relations (2.63), (2.64), (2.66) and (2.67) hold, then (2.59) is satisfied.

VII. If relations (2.63), (2.64), (2.66) and (2.68) hold, then, relations (2.36) and (2.39) are satisfied.

VIII. If relations (2.63), (2.65), (2.66) and (2.67) hold, then, relations (2.34) and (2.41) are satisfied.

IX. If relations (2.63), (2.65), (2.66) and (2.68) hold, then (2.60) is satisfied.

If, in addition, relation (2.70) holds, then the following statements are true:

X. Suppose that there exists an integer l ≥ 1, such that the first equality of (2.92) holds and an
integer t ≥ 1, such that

y2t < A
p

q+1 . (2.95)

Then

(a). if q < 1, then,
xn = A, n ≥ max{2l + 2, 2t + 1},

y2n+1 = A
p

q+1 , n ≥ l, lim
n→∞

y2n = A
p

q+1 ,

(b). if q = 1, then,

xn = A, n ≥ max{2l + 2, 2t + 1}, y2n+1 = A
p

q+1 , n ≥ l,

y2t+4n−2 =
Ap

y2t
, y2t+4n = y2t, n ≥ 1,
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(c). if q > 1, then, there exists a positive integer n0, such that

xn = A, n ≥ max{2l + 2, 2t + 1}, y2n+1 = A
p

q+1 , n ≥ l,

y2t+4n−2 =
Ap

Bq , y2t+4n−4 = B, n ≥ n0 + 1,

XI. Suppose that there exists an integer r ≥ 1, such that the second equality of (2.92) holds and an
integer v ≥ 1, such that

y2v+1 < A
p

q+1 . (2.96)

Then

(a). if q < 1, then,
xn = A, n ≥ max{2r + 1, 2v + 2},

y2n = A
p

q+1 , n ≥ r, lim
n→∞

y2n+1 = A
p

q+1 ,

(b). if q = 1, then,

xn = A, n ≥ max{2r + 1, 2v + 2}, y2n = A
p

q+1 , n ≥ r,

y2v+4n−1 =
Ap

y2v+1
, y2v+4n+1 = y2v+1, n ≥ 1,

(c). if q > 1, then, there exists a positive integer n1, such that

xn = A, n ≥ max{2r + 1, 2v + 2}, y2n = A
p

q+1 , n ≥ r,

y2v+4n−1 =
Ap

Bq , y2v+4n−3 = B, n ≥ n1 + 1.

XII. If relations (2.63), (2.64) and (2.96) hold, then

(a). if q < 1, then,
x2n = A, n ≥ v + 1, lim

n→∞
x2n+1 = ∞,

lim
n→∞

y2n = ∞, lim
n→∞

y2n+1 = A
p

q+1 ,

(b). if q = 1, then,

x2n = A, n ≥ v + 1, lim
n→∞

x2n+1 = ∞,

lim
n→∞

y2n = ∞, y2v+4n−1 =
Ap

y2v+1
, y2v+4n+1 = y2v+1, n ≥ 1,

(c). if q > 1, then, there exists a positive integer n1, such that

x2n = A, n ≥ v + 1, lim
n→∞

x2n+1 = ∞,

lim
n→∞

y2n = ∞, y2v+4n−1 =
Ap

Bq , y2v+4n−3 = B, n ≥ n1 + 1.

XIII. If relations (2.63), (2.65) and (2.96) hold, then
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(a). if q < 1, then,
x2n = A, n ≥ v + 1, lim

n→∞
x2n+1 = 1,

lim
n→∞

y2n = 1, lim
n→∞

y2n+1 = A
p

q+1 ,

(b). if q = 1, then,

x2n = A, n ≥ v + 1, lim
n→∞

x2n+1 = 1,

lim
n→∞

y2n = 1, y2v+4n−1 =
Ap

y2v+1
, y2v+4n+1 = y2v+1, n ≥ 1,

(c). if q > 1, then, there exists a positive integer n1, such that

x2n = A, n ≥ v + 1, lim
n→∞

x2n+1 = 1,

lim
n→∞

y2n = 1, y2v+4n−1 =
Ap

Bq , y2v+4n−3 = B, n ≥ n1 + 1.

XIV. If relations (2.66), (2.67) and (2.95) hold, then

(a). if q < 1, then,
x2n+1 = A, n ≥ t, lim

n→∞
x2n = ∞,

lim
n→∞

y2n+1 = ∞, lim
n→∞

y2n = A
p

q+1 ,

(b). if q = 1, then,

x2n+1 = A, n ≥ t, lim
n→∞

x2n = ∞,

lim
n→∞

y2n+1 = ∞, y2t+4n−2 =
Ap

y2t
, y2t+4n = y2t, n ≥ 1,

(c). if q > 1, then, there exists a positive integer n0, such that

x2n+1 = A, n ≥ t, lim
n→∞

x2n = ∞,

lim
n→∞

y2n+1 = ∞, y2t+4n−2 =
Ap

Bq , y2t+4n−4 = B, n ≥ n0 + 1.

XV. If relations (2.66), (2.68) and (2.95) hold, then

(a). if q < 1, then,
x2n+1 = A, n ≥ t, lim

n→∞
x2n = 1,

lim
n→∞

y2n+1 = 1, lim
n→∞

y2n = A
p

q+1 ,

(b). if q = 1, then,

x2n+1 = A, n ≥ t, lim
n→∞

x2n = 1,

lim
n→∞

y2n+1 = 1, y2t+4n−2 =
Ap

y2t
, y2t+4n = y2t, n ≥ 1,
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(c). if q > 1, then, there exists a positive integer n0, such that

x2n+1 = A, n ≥ t, lim
n→∞

x2n = 1,

lim
n→∞

y2n+1 = 1, y2t+4n−2 =
Ap

Bq , y2t+4n−4 = B, n ≥ n0 + 1.

XVI. Suppose that there exist integers t, v ≥ 1, such that (2.95) and (2.96) hold, then

(a). if q < 1, then,

xn = A, n ≥ max{2t + 1, 2v + 2}, lim
n→∞

yn = A
p

q+1 ,

(b). if q = 1, then,
xn = A, n ≥ max{2t + 1, 2v + 2},

y2t+4n−2 =
Ap

y2t
, y2t+4n = y2t, n ≥ 1,

y2v+4n−1 =
Ap

y2v+1
, y2v+4n+1 = y2v+1, n ≥ 1,

(c). if q > 1, then, there exist positive integers n0, n1, such that

xn = A, n ≥ max{2t + 1, 2v + 2},

y2t+4n−2 =
Ap

Bq , y2t+4n−4 = B, n ≥ n0 + 1,

y2v+4n−1 =
Ap

Bq , y2v+4n−3 = B, n ≥ n1 + 1.

Remark 2.8. If for the system of difference equations (1.1) relations (2.1), (2.3) and (2.70) hold
and the initial values x−1, x0, y−1, y0, are positive real numbers, then it is impossible to exist
integers l, v ≥ 1, such that the first equality of (2.92) and (2.96) to be valid simultaneously.

Indeed, if the first equality of (2.92) holds then, from statement I of Lemma 2.6, we have

y2n+1 = A
p

q+1 , n ≥ l,

and so, (2.96) can not be true for v ≥ l.
Now, suppose that v < l. From statement IV of Lemma 2.6 and relations (2.69), (2.85),

(2.86) and (2.96), we get

y2v+4k−1 > A
p

q+1 , k ≥ 1,

and
y2v+4k+1 < A

p
q+1 , k ≥ 1,

which contradicts with the first equality of (2.92), since we assume that v < l.
Similarly, it is impossible to exist integers r, t ≥ 1, such that the second equality of (2.92)

and (2.95) to be valid simultaneously.

Remark 2.9. If for the system of difference equations (1.1) relations (2.1) and (2.4) hold and
the initial values x−1, x0, y−1, y0, are positive real numbers, then the behavior of its solutions
is similar to the behavior we have in Proposition 2.7. For this reason, we omit the reference.
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Proposition 2.10. Consider the system of difference equations (1.1), where relations (2.1) and (2.5)
hold, and the initial values x−1, x0, y−1, y0, are positive real numbers. Then, all the solutions of (1.1)
are unbounded from above.

Proof. Suppose that A > 1 and (xn, yn) is a solution of (1.1). We prove that xn is unbounded
from above. On the contrary, we assume that there exists a positive real number M, such that

xn ≤ M, for any n ≥ 1. (2.97)

From (1.1) and (2.97), we get

yp
n

xq
n−1

≤ M, for any n ≥ 0,

and so, from (2.97), and since q > 0, we have

yp
n ≤ Mxq

n−1 ≤ MMq = Mq+1, for any n ≥ 2,

which means that
yn ≤ M

q+1
p , for any n ≥ 2. (2.98)

From (1.1) and (2.98), we get

xp
n

yq
n−1

≤ M
q+1

p , for any n ≥ 2,

and so, from (2.1) and (2.98),

xp
n ≤ M

q+1
p yq

n−1 ≤ M
q+1

p Mq q+1
p = M

(q+1)2
p , for any n ≥ 3,

which means that
xn ≤ M( q+1

p )2
, for any n ≥ 3.

Working inductively, we get

xn ≤ M( q+1
p )2k

, for any n ≥ 2k + 1, k = 1, 2, . . . ,

yn ≤ M( q+1
p )2k−1

, for any n ≥ 2k, k = 1, 2, . . .

(2.99)

From (2.1), it is obvious that

lim
k→∞

M( q+1
p )2k

= 1, lim
k→∞

M( q+1
p )2k−1

= 1. (2.100)

Since A > 1, from (1.1) we have

xn ≥ A > 1, for any n ≥ 1,

and so, there exists a positive real number ϵ, such that

xn ≥ A > 1 + ϵ, for any n ≥ 1. (2.101)
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From the first inequality of (2.99) and the first limit of (2.100), we get that there exists a positive
integer n0 such that

xn < 1 + ϵ, for any n ≥ n0,

which contradicts with (2.101). So, xn is unbounded from above, if A > 1.
Similarly, we can prove that yn is unbounded from above, if B > 1.
We mention that, under some initial values, we can find solutions such that

lim
n→∞

xn = ∞ or lim
n→∞

yn = ∞.

Indeed, we consider the difference equation (2.9) of Lemma 2.2, where a = p and b = q. Since,
from statement (i) of Lemma 2.2, if

zλ1
0

zq
−1

> 1, λ1 =
p +

√
p2 − 4q
2

,

then
lim
n→∞

zn = ∞, (2.102)

there exists a positive integer n1, such that

zn+1 > max{A, B}, for any n ≥ n1. (2.103)

If we set
x−1 = zn1+j−1, y0 = zn1+j, (2.104)

y−1 = zn1+w−1, x0 = zn1+w, (2.105)

where j, w are arbitrary integers in {0, 1, 2, . . . }, then, from (1.1), (2.103) and (2.104),

x1 = max

{
A,

zp
n1+j

zq
n1+j−1

}
= max{A, zn1+j+1} = zn1+j+1,

y2 = max

{
B,

zp
n1+j+1

zq
n1+j

}
= max{B, zn1+j+2} = zn1+j+2,

and from (1.1), (2.103) and (2.105),

y1 = max

{
B,

zp
n1+w

zq
n1+w−1

}
= max{B, zn1+w+1} = zn1+w+1,

x2 = max

{
A,

zp
n1+w+1

zq
n1+w

}
= max{A, zn1+w+2} = zn1+w+2,

and working inductively,

x2n+1 = zn1+j+2n+1, y2n+2 = zn1+j+2n+2, for any n ≥ 0, (2.106)

and
y2n+1 = zn1+w+2n+1, x2n+2 = zn1+w+2n+2, for any n ≥ 0. (2.107)
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So, if (2.104) holds, from (2.102) and (2.106) we get

lim
n→∞

x2n+1 = ∞, lim
n→∞

y2n = ∞,

and if (2.105) holds, from (2.102) and (2.107) we get

lim
n→∞

x2n = ∞, lim
n→∞

y2n+1 = ∞.

This completes the proof of the proposition.

Open Problem 2.1. Consider the system of difference equations (1.1), where (2.1) and (2.3) hold, and
the initial values x−1, x0, y−1, y0, are positive real numbers. Suppose that there exists an integer l ≥ 2,
such that

yl < A
p

q+1 .

Assume that

A
p2−q−1

pq > B.

Study the behavior of the solution (xn, yn) of this system.
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[3] K. Berenhaut, S. Stević, The behaviour of the positive solutions of the difference
equation xn = A + (xn−2/xn−1)

p, J. Difference Equ. Appl. 12(2006), No. 9, 909–918.
https://doi.org/10.1080/10236190600836377

[4] W. J. Briden, E. A. Grove, C. M. Kent, G. Ladas, Eventually periodic solutions of
xn+1 = max

{ 1
xn

, An
xn−1

}
, Commun. Appl. Nonlinear Anal. 6(1999), 31–43. MR1719535

[5] J. Feuer, On the eventual periodicity of xn+1 = max
{ 1

xn
, An

xn−1

}
with a period-four pa-

rameter, J. Difference Equ. Appl. 12(2006), No. 5, 467–486. https://doi.org/10.1080/
10236190600574002

[6] N. Fotiades, G. Papaschinopoulos, On a system of difference equations with maximum,
Appl. Math. Comput. 221(2013), 684–690. https://doi.org/10.1016/j.amc.2013.07.014

[7] E. A. Grove, C. Kent, G. Ladas, M. A. Radin, On xn+1 = max
{ 1

xn
, An

xn−1

}
with a period 3

parameter, Fields Inst. Commun. 29(2001), 161–180. MR1821780

https://doi.org/10.1080/10236190600949766
https://doi.org/10.1080/10236190600949766
https://doi.org/10.1090/S0002-9939-06-08580-7
https://doi.org/10.1080/10236190600836377
https://www.ams.org/mathscinet-getitem?mr=1719535
https://doi.org/10.1080/10236190600574002
https://doi.org/10.1080/10236190600574002
https://doi.org/10.1016/j.amc.2013.07.014
https://www.ams.org/mathscinet-getitem?mr=1821780


24 D. Avramidou, G. Stefanidou, G. Papaschinopoulos and C. J. Schinas
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