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Abstract. In this paper, we characterize a family of planar polynomial differential sys-
tems of degree greater or equal than n 4 1, by presenting polynomial curves of de-
gree n, which generally contain closed components. These systems admit precisely the
bounded components of the curve as hyperbolic limit cycles.
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1 Introduction and the main result

The study of limit cycles in planar polynomial differential systems has been a central topic
in the qualitative theory of ordinary differential equations for decades. Algebraic limit cy-
cles have also received notable attention owing to their clear algebraic structure and geomet-
ric significance. The existence, classification, and stability of such cycles remain one of the
most challenging problems, which is related to Hilbert’s 16th problem and its generalizations.
In this context, hyperbolic algebraic limit cycles are of particular interest, as their stability
properties persist under small perturbations, making them a critical object of study in both
theoretical and applied dynamical systems.

In this article, we consider the autonomous planar polynomial system of ordinary differ-

ential equations
. dx
X = o fxy),

. dy
y=2=8y),

(1.1)

where f and g are two polynomials of R[x,y] with no common factor, the derivatives are
performed with respect to the time variable ¢. By definition, the degree of the system (1.1) is
n = max(deg(f),deg(g)). There is a huge literature about the analysis of the non-existence,
existence, number, and stability of limit cycles of the system (1.1), see for instance [2, 7, 10, 6, 8]
and the references therein.
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Starting with Colin Christopher [4] proved that if the line D(x,y) = ux + vy +w = 0 lies
outside all non-singular compact components (ovals) of the algebraic curve U = 0 and the
constants « and p are chosen such that au + fv # 0, then the system

X =al(x,y) + D(x,y)Uy(x,y),
y = pU(x,y) = D(x,y)Ux(x, y)
admits all the bounded components of the curve U = 0 as hyperbolic limit cycles. Further-
more, the vector field (1.1) has no other limit cycles.
S. Benyoucef in his paper [3] analyses the existence of hyperbolic limit cycles of the differ-
ential system
¥ =al (x,y) + (ax + by + @ (Bx —ay)) Uy (x,y),
y=pU(x,y) — (ax +by + @ (px —ay)) Ux (x,y),

where « and f are real numbers, @ is a polynomial function of degree n and U(x;y) is a
polynomial of degree m.

As a continuation of [3], J. Llibre and C. Valls in [9] described a new class of polynomial
differential systems that has the ovals of the algebraic curve as hyperbolic limit cycles

x=Py)U (x,y) + (R(x,y) + @(w(x,y))) Uy (x,y),
¥ = QU (x,y) — (R(x,y) + @(w(x,y))) Ux (x,y),

where R(x,y) = ax+ By + [ Q(x)dx — [ P(y)dy, witha, B € R and the function w = w(x,y) =
J Q(x)dx — [ P(y)dy.

Our work builds on and extends earlier results by [3, 4, 9]. Specifically, we provide a new
way to construct a new family of systems by presenting polynomial curves which generally
contain closed components, and we investigate the conditions under which such systems
admit bounded components of these algebraic curves as hyperbolic limit cycles.

Consider U(x,y) = 0 be a curve of degree n with n > 2. We consider a polynomial
differential system of degree m with m > 3:

e au
X = @(x,y)u(x,y) + v@(x,y),

0 u
5= 22 (0 y)Ulxy) — 15 (1),

(12)
with Q € Rlx,y], v € R— {0} and (-),, (-), denoting the partial derivatives with respect to
the x and y, respectively.

Our main result is the following.

Theorem 1.1. Let U = 0 be a non-singular algebraic curve of degree n and Q a polynomial of
degree m > 2, chosen so that the curve Qx,(x,y) = 0 lies outside all oval components of U = 0 or
Quy(x,y) # 0, then the polynomial differential equation (1.2) has all the oval components of U = 0
as hyperbolic limit cycles. Furthermore, the vector field has no other limit cycles.

The paper is organized as follows. In Section 2, we introduce some preliminary results.
Theorem 1.1 is proved in Section 3. The last part of Section 3 is devoted to providing some
examples satisfying all the conditions of Theorem 1.1.
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2 Preliminary results

In this section, we will present the basic concepts that we need to prove the main results of
this paper.
As usual, the vector field

0 0
X =f(xy) 5 +8xy) 3
is associated to the differential system (1.1).

Invariant algebraic curves

Let U : R? — R be a real polynomial. We say that U is an invariant for X if it satisfies

£ D gy D) gy (), e
Yy

for all (x,y) € R%. Here, K : R? — R, which is the cofactor of U. Simple analysis of equation
(2.1) shows that the degree of the cofactor is at most n — 1 where 1 represents the maximum of
the degrees of f and g, and that the curve U = 0 is formed by trajectories of the system (1.1).
Also, if the curve U = 0 is non-singular, the equilibrium points of the system are contained
either in its non-bounded components or are located on the curve K = 0.

Note that if K = 0, then if XU = 0, that is, U(x,y) = 0 is an invariant curve of (1.1) with
zero cofactor. Equivalently, U(x,y) = 0 is constant if (x(t),y(t)) is a solution of (1.1).

Hyperbolic Limit Cycle

In the phase plane, a limit cycle I' = {(x(¢),y(t)),t € [0, T]} is a T-periodic solution iso-
lated in the set of all periodic solutions of the system. If the limit cycle is contained in the zero
of an invariant algebraic curve of the plane, then it is said to be algebraic; otherwise, it is said
to be non-algebraic.

To see that all the oval components of I' are hyperbolic limit cycles of system (1.1), we will
use a classic result characterizing limit cycles among other periodic orbits, which states that:
a T-periodic solution I' is a hyperbolic limit cycle of system (1.1) if

./OTDiv(X) (T (1)) dt #0,

where Div (X') = W + %;’y), (see for instance [11] for more details).

The curve U = 0 is non-singular of system (1.1), i.e., it must not contain any singular point
that satisfies

f(xy)=0, g(xy)=0.

Green’s formula

In order to confirm the hyperbolicity of the limit cycles, we will make use of the following
Green’s theorem; see for instance [1].

Suppose Q) is a domain in IR?> whose positively oriented boundary T is a finite collection of
pairwise disjoint piecewise continuous simple closed curves. Suppose f and g are continuous
functions defined on a larger open set, which contains both () and I', and suppose f and g
have continuous first partial derivatives on this larger open set. Then

ﬁf(x,y)dx%—g(x,y)dy://a (aggc,y) —afg;'y)>dxdy.
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3 Proof of Theorem 1.1

We assume that all bounded components of U = 0 are non-singular of system (1.2). Let
I' = {(x(¢),y(t)),t € [0,T]} is an oval of the curve U = 0, corresponding to the periodic
solution (x(t),y(t)) with period T. To see that all the oval components of U = 0 are hyper-
bolic limit cycles, we will prove that U = 0 is an invariant curve of the system (1.2), and

) Div () (T (£)) dt # 0.
(i) Itis easy to see that U = 0 is an invariant algebraic curve with cofactor

K(x,y) = Qx(x,y) Uy (x,y) + Qy (x,y) Ux (x, ),

because

au (x,y)  oU(x,y) = .oU(x,y)
i T Ty

= (Qu (0, y) Uy (x,y) + Qy (x,y) Ux (x,y)) U (x,y).

(ii) The divergence of system (1.2) is

Div(x,y) = Qx (x,y) Uy (x,y) + Qy (x, ) Ux (x,¥) +2Quy (x,y) U (x,y)

Therefore, on the curve U = 0, we have

/Dwxy )dt = /Qxxy V(1) + Qy(x, y)Us(x,y) dt

]{Qx x,y)Uy(x,y) dx + Qy(x, y)Ux(x,y) J
'Yuy X, Y) r —yUc(x,y)

=5 (?g Qx(x,y) dx—]ng(x,y) dy) :

Now, we apply the Green formula to get

fo oy dx—ijy X y)dy //mt ( Qy xy) an;;,y)>dxdy
= —2//mt(r) Quy(x,y) dx dy.

where int(I') denotes the interior of the bounded region limited by I, thus

/Dwxy :——// Quy (x,y) dxdy.

Since by assumption Q,, (x,y) = 0 lies outside all oval components of U =

Qxy (xv,y) #0,then [ [~ (T Qxy x,y) dxdy is non-zero, and the system (1.2) has all closed

components of U = 0 as hyperbohc limit cycles.

Remark 3.1.

1. According to the hypotheses Q. (x,y) # 0, the polynomial Q (x,y) must satisfy deg Q >

2and Q (x,y) # h(x) +1(y), with h € R[x] and I € Ry].
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2. In the case when Q (x,y) = h(x) + I(y) + axy, with a # 0, the integral

/ Div(x,y)d // dx dy.
int(T

So, we have the particular case; if & # 0, the system (1.2) admits all bounded components
of I as hyperbolic algebraic limit cycles.

Remark 3.2. If we take Q(x,y) = yP(x), with P € R]x]|, system (1.2) becomes
. ou
x=P()U(x,y) + vg(x,y)/

. ou
y=yP' (x)U(x,y) — T, WY

/ Div (x,y)dt = —— / x) dxdy.
int(T

So, if we choose that the curve P’/ (x) = 0 lies outside all oval components of U = 0, then the
polynomial differential system (3.1) has all the oval components of U = 0 as hyperbolic limit
cycles. Furthermore, the vector field has no other limit cycle.

By the change of variables (x,y) — (u,v) with x = u, y = v+ h(u), the system (3.1) is
transformed into

then, the integral

0
" (3.2)

where I, P € R[x], with R(0) = 0,U (u,v) = U (u,v+ h(u)) and v € R — {0} . For this last
system we can choose P’(u) = 0 lies outside all oval components of I = 0, then in this case
all the oval components of U = 0 are hyperbolic limit cycles.

Now we provide some examples of polynomial differential systems of the form (1.2) sat-
isfying all the assumptions of Theorem 1.1 and admitting all oval components of U = 0 as
hyperbolic limit cycles.

Example 3.3. Let y = 1 and Q (x,y) = y (x> — 4x) . The system

¥ = x(x —4)(3x* + 54* — 7) + 10y,

3.3
v =2y(x —2)(3x> + 54> — 7) — 6x, 3.3)

has an invariant algebraic curve given by 3x? 4+ 5y> — 7 = 0. Since 2 (x —2) = 0 does not
intersect the curve 3x% 4 5y> — 7 = 0, this oval is an algebraic limit cycle hyperbolic of system
(3.3) (see Figure 3.1).

Example 3.4. Let v = 1 and Q (x,y) = yx® + y*x. The system
X = x (x* + 3y?) (x4 —2x% +y* + i) + 217,
1 (3.4)
v =y (3x* +y%) <x4 -2 +y* + 4> —4x (x* — 1)
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Figure 3.1: The limit cycle of (3.3).

Figure 3.2: The two limit cycles of (3.4).

has an invariant algebraic curve given by x*—2x2 +y? + I = 0. Since Qxy (x,y) =3 (2 +y?) #
0. So the two ovals of x* —2x2 + 1> 4+ } = 0 are hyperbolic algebraic limit cycles of system
(3.4) (see Figure 3.2).

Example 3.5. Let v = —2 and Q (x) = axy — By + v, # 0. The family

% = (ax — B) <y4+x4—3yz—2x2+g> — 4y (2y* - 3),
, (3.5)
v =ay <y4+x4—3y2—2x2+3> +8x (x> — 1)

has an invariant algebraic curve given by y* + x* — 3y? —2x2 + % = 0. Since Qx (x,y) = a # 0,
the four ovals of y* + x* — 3y> — 2x? + Z = 0 are hyperbolic algebraic limit cycles of system
(3.5) (see Figure 3.3).

Note: All figures are plotted on the Poincaré disk by using a program for polynomial planar
phase portraits, such as the one described in [5, pp. 233-257].
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@a=3and =2 (b)a = —-2and g = —1

(Qa=3and p= -2 (d)a=-3and =2

Figure 3.3: The four limit cycles of (3.5) with different values of « and B.
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