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Abstract. In this paper, we investigate the existence and concentration of solutions for
the following Schrodinger—-Bopp-Podolsky system with sublinear nonlinearity:

—Au+AV(x)u+ G(x)pu = f(x,u) inR3,
—Ap + a*A*p = 4G (x)u? in R3,

where V € C(IR®) is a potential well, G € L?(IR®) is nonnegative and f € C(R® x R)
satisfies the sublinear conditions in R®. By imposing some suitable assumptions on
V(x), G(x) and f(x,u), we obtain the existence and multiplicity of negative energy
solutions for the above system via variational methods. Moreover, the concentration of
solutions is also explored on the set V™ (0) as A — oo.

Keywords: Schrodinger-Bopp-Podolsky system, sublinear nonlinearity, multiplicity,
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1 Introduction

In the past several decades, the following Schrodinger-Bopp—Podolsky system

— 2 — : 3
{ Au+ wu+g*¢u = f(u) inR°, (L.1)

— AP + a’ NP = drru? in R3,

has received more and more attention. Such a system appears when a Schrodinger field ¢ =
P(t,x) couples with its electromagnetic field in the Bopp-Podolsky electromagnetic theory.
The Bopp-Podolsky theory, developed by [6], and independently by Podolsky [31], is a second
order gauge theory for the electromagnetic field. According to Mie theory [30], the Bopp-
Podolsky theory was introduced to solve the so called infinity problem that appears in the
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classical Maxwell theory. Moreover, the Bopp—-Podolsky theory may be interpreted as an
effective theory for short distances (see [21]) and for large distances, which is experimentally
indistinguishable from the Maxwell one. Thus, the Bopp—Podolsky parameter a > 0, which
has the dimension of the inverse of mass, can be interpreted as a cut-off distance or can
be linked to an effective radius for the electron. In fact, by the well-known Gauss law (or
Poisson’s equation), the electrostatic potential ¢ for a given charge distribution whose density
is p satisfies equation

~Ap=p inR> (1.2)

If p = 4¢y, with xy € R3, the fundamental solution of Eq. (1.2) is ¢(x — x), where

¢(x) = m/

and the electrostatic energy is

1
enlc) = 5 [, |AcPdx = .

Thus, Eq. (1.2) is replaced by

: Ap .3
div| ——= ] =p inR
( V1= |A4>|2>
in the Bopp-Infeld theory and by
—Ap+a*A*p=p inRR®

in the Bopp-Podolsky theory. In both cases, if p = 4¢Jdy,, their solutions can be written
explicitly and the corresponding energy is finite. In this paper, we focus on the Bopp-Podolsky
theory —A + a%2A?, the fundamental solution of equation

— A+ a?N2p = 4716y,

is {(x — xo), where

which presents no singularities at xp, since

. 1
Al =g

Furthermore, its energy is

1 a2
evr(0) = 5 [ 1V2Pdx+ G [ [agfdr < oo

For more physical details, we refer the reader to [5,9,10,17] and the references therein.

In [19], d’Avenia and Siciliano firstly studied Schrodinger-Bopp-Podolsky system, and
proved that the existence of nontrivial solutions for system (1.1) with f(u) = |u|[F72u 2 < p <
6). Later, by using the fibering method, Siciliano and Silval [35] proved the multiplicity and
nonexistence of solutions for system (1.1) with f(u) = |u|P~2u and p € (2,3]. Moreover, Wang
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et al. [38] established the existence and multiplicity of sign-changing solutions for system (1.1).
In addition, the asymptotic behavior of sign-changing solutions was also established.

In [16], Chen and Tang considered the following Schrodinger-Bopp-Podolsky system with
a subcritical perturbation:

{—Au +V(x)u+ ¢u = pg(u) +u° in R, (1.3)

—AP + a?A%¢p = 4rru® in IR3.

By means of variational methods, the authors proved the existence of ground state solutions
for system (1.3). In [26], by coupling the PohoZaev—Nehari manifold with the monotonicity
trick, Li et al. obtained a ground state solution for system (1.3) with g(u) = |u[P~!u (2 <
p < 5). By virtue of the Nehari manifold technique and variational methods, Liu and Chen
[28] studied the existence, nonexistence and asymptotic behavior of ground state solutions for
system (1.3) with ug(u) + u® being replaced by AK(x)f(u) + |u|*u.

In [40], Wang et al. studied obtained the following system:

—Au+ (AV(x) + Vo)u + K(x)pu = |u|P~2u  in R3,
—AP + a’A*¢p = K(x)rru? in R®,

where 4 < p < 6 and the potential function V(x) satisfies the following conditions:
(V1) V € C(R®), V(x) > 0 on R3;

(V) there exists a constant ¢ > 0 such that the set V. = {x € R®: V(x) < ¢} is nonempty
and has finite Lebesgue measure;

(V3) Q =V~ (0) = int{x € R? V(x) = 0} is nonempty with locally Lipschitz boundary and
O={xeR%V(x) =0}

By using variational methods, the authors studied the existence of multi-bump solutions for
system (1.4).

Remark 1.1. The conditions (V;)-(V3) imply that AV represents a potential well whose depth
is controlled by A. Thus, AV is called a steep potential well if A is sufficiently large and one
expects to find solutions which localize near its bottom (). This problem has found much
interest after being first introduced by Bartsch and Wang [2] in the study of the existence of
positive solutions for nonlinear Schrodinger equations and has been attracting much attention,
see [24,25,34,41,42].

Inspired by the above works, more precisely by [40], in the present paper, we are inter-
ested in the existence and multiplicity of nontrivial solutions for system (1.1) with a steep
potential well and sublinear nonlinearity, which has never been discussed in the available lit-
erature. Moreover, the concentration of solutions is also explored. Particularly, we consider
the existence of multiple solutions for the following Schrédinger-Bopp-Podolsky system with
sublinear nonlinearity:

—Au+ AV (x)u+ G(x)pu = f(x,u) inR3, )
—AP + a?A%p = 4G (x)u? in R3,

where V(x) satisfies the conditions (V;)-(V3). In addition, we assume that G(x) and f(x, u)
satisfy the following conditions:
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(G) G € L*(R)
X

0 < G(x) < G, where G is a positive constant, G(x) # 0, and
limyy| 0 G(x) =

0;
2
(F1) f € C(R®x R) and there exist 1 < B3, B2 < 2 and positive functions ¢; € L7 71 (R3),c; €

2
L7 % (R3) such that

|fCeu)] < Brea(0)[ulP ™+ Baca(x) [ulP 71,V (x,u) € RO X R;

(F2) there exists a bounded open set A C R? and three constants ki, k, > 0 and k3 € (1,2)
such that

F(x,u) > klul®, V¥ (x,u) € A x [—ky,ki],
where F(x,u) = i f(x,s)ds;
(F) f(x,u) = —f(x,—u) forall (x,u) € R® x R.
Now, we state our main results.

Theorem 1.2. Assume that conditions (V1)—(V3), (G) and (Fy)—(F,) hold, then problem (P) possesses
at least one nontrivial solution.

Theorem 1.3. Assume that conditions (V1)—(V3), (G) and (Fy)—(F3) hold, then problem (P) possesses
infinitely many solutions {uy} such that

2/ (|Vug|? + AV (x)u?) dx+4/ (pukukzdx—/3F(x,uk)dx—>0* as k — oo.
R

Evidently, the assumption (F,) holds if the following condition holds:

(E;) there exists a bounded open set W C R® and three constants ki, k, > 0 and k3 € (1,2)
such that

Flx,u)u > koks|ul®, Y (x,u) € W x [—ky, ky].
Therefore, by Theorems 1.2 and 1.3, we have the following corollary.

Corollary 1.4. Assume that conditions (V1)—(V3), (G) and (Fy) and (F}) hold, then problem (P) pos-
sesses at least one nontrivial solution. If additionally, (F3) holds, then problem (P) possesses infinitely
many solutions {uy} such that

5 / (|Vug|* + AV (x)uz) dx + — 1 / X) Py, uzdx /3 F(x,up)dx =0~ ask — oo.
R

Before giving the concentration of solutions, we first introduce the following space D. Let
D be the completion of C*(IR?) with respect to the norm || - ||, induced by the scalar product:

(9, 9)p = /]R3 VoVipdx + a* /IR3 ApApdx.

Then D is a Hilbert space which is continuously embedded into D'?(IR) and consequently
into L°(IR3).
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Theorem 1.5. Let (1), ¢a,) be a solution of problem (P) obtained in Theorem 1.2, then u,, — i in
HY(R3), ¢p, — ¢ in D as A, — oo, where il € H}(R3) is a nontrivial solution of equation

—Au+ G(x)pu = f(x,u) inQ,
—AP + a?N¢p = 4nG(x)u? inQ, (1.5)
u=~0 on 0Q),

where () is given by the condition (V3).

Remark 1.6. If 2 = 0, then system (1.1) becomes the well-known Schrédinger—Poisson system
as follows:

—Au+V(x)u+Apu = f(u) inR3, (1.6)

—Ap = u? in IR3, '
which is also known as the nonlinear Schrodinger-Maxwell equations and have a strong phys-
ical meaning. Recently, with the development of critical point theory and variational methods,
many researchers have studied the existence and multiplicity of solutions for the Schrodinger—
Maxwell equations. Such as, by using the Mountain Pass theorem, D’Aprile and Mugnai [18]
obtained the existence of radially symmetric solitary waves for system (1.6). In [33], when
V(x) =1and f(u) = u?, 1 < p < 5, Ruiz studied the existence and nonexistence of nontrivial
solutions for the system (1.6). For more details about the Schrodinger-Poisson system, one
can refer to [1,11-15,18,22,23,29,33,39] and the references therein.

Remark 1.7. There are many functions f(x, u) satisfying the conditions (F;) — (F3). For exam-
ple, let

Flx,u) = 5 sin? X1 lu ‘/ 4 cos? xq u ‘,,
' 4(1 +eRl) 3(1+ekl)
where x = {x1,x2, x3}. Then
5 sin? X1 3 4 cos? xq 2
x,u)| < ————|u|"tu + ————|u| " 3u, V (x,u) € (R?,R),
and
sin® x; cos? x1
F(x,u) = Luli+ s
1+ ] 1+ el
cos?1l, 4
> §, V 7 A _1/1 7
>l (x,u) € Ax [-1,1]
where ) )
5 4 _sin“xq _Cos”xq
p-ase=g al)=mnn el = eny
and )
cos- 1 4
:1, — , = = A:B ,1 .
1 ©@=T a3 = 7 (0,1)

Notation: Throughout this paper, we shall denote by C various positive generic constants,
which may vary from line to line. For 1 < r < co, we shall also denote by | - |, the L"-norm.
B/(y) := {x € R3: |x —y| < r}. If we take a subsequence of a sequence {1y}, we shall denote
it again by {ux}. D?(R%) is the usual Sobolev space defined as the completion of C(IR%)
with respect to the norm ||u|[p12 = ([is \Vu]zdx)l/z.

The paper is organized as follows. In Section 2, some preliminary results are presented.
In Section 3, we give the proofs of Theorems 1.2 and 1.3, respectively. In Section 4, we study
the concentration of solutions and prove Theorem 1.5.
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2 Preliminaries

Let
H'(R?) := {u € L*(R?) : Vu € L*(R%)}

with the inner product
(U, v)pn = /3 (VuVov +uv)dx
R

1
_ 2, 2 ’
]| = </Ra(|w tu )dx> .

E= {u € H'(R®) : /11.23 V(x)u*dx < oo}.

In view of the potential V(x), E is a Hilbert space with the following inner product

and the norm

Let

(u,v) = /1[{3 (VuVo + V(x)uv) dx

and the norm

Jull = ( [, (94 V(?) )

Throughout the paper, we will use the norm || - || in E. For A > 0, we also need the following
inner product

(u,0)) = /3 (VuVo+ AV (x)uv) dx, VuvekE,
R
and the corresponding norm
%
|ullx = (/ (|Vul® + AV (x)u?) dx) .
R3

Obviously, for A > 1, we have ||u|| < ||u|[,. Set Ex = (E, ||u]|»), it follows from the conditions
(V1) and (V) that

/ (]Vu]z—i—uz) dx = / ]Vu\zdx—i—/ uzdx—i—/ u*dx
R3 R3 V(x)<b V(x)>b
) 5 e\
< / Vul2dx + / 1dx / lu|dx
R V(x)<b V(x)<b
1
= V(x)u*d
+b/V(x)>b () dx
<(A+{V(x) < b}S‘z)/ yw|2dx+1/ V(x)u?dx
IR3 b Jv(x)>b
< max {1 +{V(x) < b}S72, 1} / (\Vu|2 + V(x)uz) dx,
b) Jrs

where S is the best Sobolev constant of the embedding from D'2(IR%) into L®(RR3). Then the
embedding E — H!(IR?) is continuous, that is, there exists a constant 7 > 0 such that

llu|lgn < 7l|lu|| for every u € E. (2.1)
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Furthermore, for every r € [2,6], there exist 7,, Ay > 0 (independent of A > 1) such that

lul, < w||ul| < %llul|y for every u € E, A > Ay. (2.2)

Note that problem (P) has a variational structure and its solutions can be regarded as
critical points of the energy functional defined on the space E by

Ja(u, ) = ;/]113 (|Vul> + AV(x)u?) dx + % /]R3 G(x)pudx

1 2 a? 2
S ———|Ap)— | F .
Vg — e A9B — [ Fxu)dx

The functional ], exhibits strong indefiniteness, that is, it is unbounded both from below and
from above on infinite-dimensional spaces. To avoid the indefiniteness, we can apply the
reduction method described in [3,4], which leads us to study a one-variable functional that
does not present such a strong indefinite nature.

It is easy to see that the critical points of the C! functional ], (u,¢) on H!(R3) x D are
weak solutions of problem (P). Thus, if (u,¢) € H'(IR®) x D is a critical point of J, (u,¢), then

0=0uJx(1u,¢)[v] = /}RS (VuVo+ AV (x)uv) dx + /]R3 G(x)puvdx

—/3f(x,u)vdx for all v € H'(R?)
R

and

. 2
0 = dyJ (11, §)[¢] = % /m 2Gdx — % /W VovEds - o /m ApAGdx forall § € D.

Define i/
1—e I¥/4
K(x):= —F—+——

| x|

As stated in [19], for every fixed u € H!(R?), the Riesz Theorem implies that equation
—Ap + a?N*p = 4nG(x)u?
admits a unique solution ¢, € D, which can be presented as

1 —e lx—yl/a

pulx) = K (G) = [ G(y)i(y)dy. 23)

R [x—yl
Then the following useful properties hold.
Lemma 2.1. For every u € H'(IR3), we have:
(i) ¢u € D — L®(R3);
(i1) u > 0;
(iii) for every s € (3,400, ¢, € L5(R?) N Co(R3);
(iv) for every s € (3,400, Vo, = VK* G(x)u? € L*(R3) N Co(R3);
)

(0) I¢uls < CllullFy;
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(01) for every y € B, ) = ul + )
(vii) if uy — u € H(IR®), then
$u, = pu inD, / X))y, U uzdx — / Luldx,

and

/]R3 (X)pu, Un@dx — / X)pyuupdx, Ve Hl(]R3).

Proof. The proofs of (i)—-(vi) can be found in [19, Lemma 3.4] and the proof of (vii) can be
found in [37, Proposition 2.1]. We omit them here. O

If Go is the graph of the map ®: u € H(R3) +— ¢, € D, an application of the Implicit
Function Theorem gives that

Go = {(1,¢) € H(R) x D:9yJ1(w,¢) =0} and @€ C'(H'(R?), D).
Then we define the reduced functional
(]Vu]z + AV(x)u?) dx

/ x) ¢ urdx — /]RSF(x,u)dx. (24)

=

—

=

N—

\.

?

'9*
N\H
Hﬁ\

+

o |

Lemma 2.2. Suppose that conditions (V1)—(V3), (G) and (F;) — (F,) hold, then the functional I,
defined by (2.4) is well defined and of class C*(E, R).

Proof. Set
1 2 2 1 2
T(u) = 2/]R3 (|Vu|*> + AV (x)u?) dx + 4/]R3G(x)cpuu dx.

Following [19], T(u) is well defined and of class C! functional Thus, to prove I)(u) is well
defined and of class C'(E, R), we only need to prove that Q(u) := [s F(x, u)dx is well defined
and of class C'(E,R). It follows from the condition (F;) that

2
<Y ci(®)ulf, V(xu) eRxR (2.5)
i=1

Then for any u € E, by (2.1), (2.2), (2.5) and the Holder inequality, we derive
/ |F(x,u)|dx < / ch x) |u|Pidx
z y
% 2
<3 (flemar) © ([ nax) 26

2
< Yo leil 2 llull

which implies that Q(u) is well defined.
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Next, we show that Q(u) € C!(E,R). For any function 6 : R®> — (0,1), by (F;), (2.2) and
the Holder inequality, we have

max | f(x, u(x) + t0(x) p(x)) p(x)|dx

R3 te[0,1]

= | max|f(x,u(x) + t0(x)p(x))[|p(x)|dx

R3 t€[0,1]

< VB [ @) + )9 p(x)|dx

<) [ el (M0l +lo@)P ) lp()ldx

SC;(/}RSIQ(X |2ﬁ;dx> (/ e yzdx) :

1

< ([ lowPar) )

2-p; Bi
2

ey (flatiras) ([ o)

2
<CYlalz (Il +lolP ) ol

i=1
< + o0, Vu,¢cE.

It follows from (2.7) and Lebesgue’s Dominated Convergence Theorem that

lim Qu+to) — Qn) = lim/ Flu+to) - F<u)dx = /]R?,f(x,u)vdx < —+o00, (2.8)

t—0 t t—0 JR3 t

which implies that Q(u) is Gateaux differentiable in E. Let u, — u in E, then u, — u in
L%(R%) and

lim u, =u a.e. on R3. (2.9)
n—oo
Now, we claim that
. . 2 .
&grolo - |f(x,un) — f(x,u)|"dx = 0. (2.10)

In fact, since u,, — u in L2 (]R3 ), passing to a subsequence if necessary, it can be assumed that
1
Y20 Jun, — ul3 < 4o0. Set w(x) = (L2 |un, — u[?)?, then w € L*(R®). Evidently,

£ () = fx,u)]? < 2|f(x ) * + 2| f (x, )P

g42a2|c] )2 (26 + 2P0
=

2
<4 ) (257 + 1B (P (lun, —uB0 4 [uPED)  @11)

j=1

/\

MI\J

<4 2P+ D)) 2 (Jo () PO 4 uf2B0)

—_

]:
s h(x), VieN, x € R?,
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and

MN

[ oreax =43 (2271 41) 82 [l (oGP0 4 [uBo0) ax

<4

Il
_

j

MI\)

- 28-1) | 2(6-1)
(2P0 41) Bleila (ol 7™ + ™) (2.12)
)

Il
A

j
< H-c0.

It follows from (2.11), (2.12) and Lebesgue’s Dominated Convergence Theorem that (2.10)
holds, then together with (2.8), we know that Q(u) € C!(E,R). The proof is complete. O

Thus, for all u,v € H'(R3),

I3 (u)[v] :/ (VuVov + AV (x)uv) dx+/ qbuuvdx—/ f(x,u)vdx.

It can be proved that (u,¢) € H'(IR®) x D is a solution of problem (P) if and only if u € E is
a critical point of the functional I,.

Lemma 2.3. Assume that there exists a sequence {u,} C E such that u, — u in E as n — oo, then

[, GO Pt = ) 1 — )

—0 asn — oo, (2.13)

Proof. By (2.1), we have u, — u in H!(R3), then by (vii) of Lemma 2.1, as n — oo, there hold

/ G (x)pu, pdx — / X) ity dx (2.14)
R3

and

/]R3 G(x)pu, upudx — /]1{3 G(x)¢pyu*dx. (2.15)

It follows from (2.14) and (2.15) that

/]123 G(x)(¢pu, Un — punt) (uy — u)dx

/11{3 (G(x)pu, % — G(x)Puritty — G(x)u, tntt + G(x)pyu?) dx
+ ‘/11{3 (G(x)pu, tntt — G(x)Ppyu?) dx

<

< /IR3 (G(x)pu, 15 — G(x)Puuity) dx

—0 asn— oo.

The proof is complete. O

Lemma 2.4 ([20]). Let E be a real Banach space and I € C'(E,R) satisfies the (PS) condition. If I is
bounded from below, then ¢ = infg I is a critical value of 1.

Lemma 2.5. Assume that conditions (V1)—(V3), (G) and (Fy)—(F,) hold, then there exists Ag > 0
such that Iy is bounded from below whenever A > Ay.
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Proof. 1t follows from (2.2), (2.4), (F1) and the Holder inequality that

I (u 2/ |Vu!2+AV dx+4/ X)pu 2dx—/wl-"(x,u)dx
1,2
> EHuHA—/]RsF(x,u)dx
1
EH ul - / cr () ulfrx = [ ca(i)ulPedlx
R3
1
> 5l chz\ 2l

which implies that I, (1) — oo as ||u|| — oo, since B1, B2 € (1,2). Consequently, there is Ag =
max{1, Ao} such that for every A > A, I, is bounded from below. The proof is complete. []

3 Proofs of main results

Lemma 3.1. Assume that conditions (V1)—(V3), (G) and (F)—(F,) hold, then I, satisfies the (PS)
condition.

Proof. Assume that {u,} is a (PS) sequence of I, such that I, (u,) is bounded and I} (u,) — 0
as n — oo. It follows from Lemma 2.5 that {u, } is bounded in E,. Then there exists a constant
C > 0 such that

unl < Tllunlla <C, meN, A=Ay, 2<1<6. (3.1)

Moreover, there exists u € E such that

U, —u inkE, (3.2)
u, —u in L (R®), r €[2,6), (3.3)
u, - u aeonRR3 (3.4)

By the condition (F;), for any given € > 0, there exists Re > 0 such that

2-B;

g 2
</ ]ci(x)|22f‘idx> <€, i=1,2. (3.5)
[x|>Re¢

It follows from (3.3) that there exists ny > 0 such that

/ lup —ul?dx < €* for n > ny. (3.6)
|x|<Re
Then by (3.1), (3.6), (F1) and the Holder inequality, for any n > 1, one has

/|x|<R () = f (e, u) [ Jun — uldx

</x|§Re G ten) = S ) ’2dx>§ </x§Re ten = u|2dx> i

1

<e [ [ 205+ ) P) dx] 2

(VAN

1
2

<e Ii(x) 2 (|un|2(ﬁ"_1) + \u|2(ﬁf—1>) dx] (3.7)

4251/

[x|<R
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1

- 2 2
2(Bi—1 2(pi—1
S CG Zﬁ%|cl|iz (|u1’l|2(ﬁ ) + |u|2(IB ))]
Li=1 hi

1
2

21,12 2(Bi—1) 2(Bi—1)
_i1ﬁ1|cz|22&_(c + lul3 )]

On the other hand, for n € IN, it follows from (F;), (3.1), (3.5) and the Holder inequality that
[ £ ) = )] — uldx
|x|>Re¢
2
<Y B[ 1aCol (lmalF T fulP ) (] + ul) dx

<238 [ e (el )

i=1 | Re
2 2k
2 2
<2y g2 / ; 2ﬁ:~d> B B 3.8
<2 B ([, @) T (il o+ ) 33
2-B;
<ZZ2:,BZ </ |c-(x)|225idx> i (Cﬁ"—|—|u|ﬁ”>
- i=1 : |X‘>Rg ' 2
2
<2ey p7(CP+ fulf)
i=1
Since € is arbitrary, combining (3.7) and (3.8), we have
lim (f (%, un) — f(x,u)) (uy — u)dx = 0. (3.9)

n—oo JR3
Thus, by (3.9), Lemma 2.3 and the weak convergence of {u,}, one has
0n(1) = (Iy(tn) = Iy (), 1n — 1)
= Jeo IV (1t — u)[2dx + /\/]R3 V(x)(uy — u)dx
+ [ Gyt = pure) (1 — )
= [, FGem) = ) (s — )
= [Jun — ull3 + 0n(1),
which implies that u, — u in E,. The proof is complete. O

In order to find the multiplicity of nontrivial critical points of I,, we will use the genus
properties, so we recall the following definitions and results (see[32]).

Let E be a Banach space, c € R and I € C!(E,R), set

Y. ={A C E\{0}: Ais closed in E and symmetric with respect to 0},

Ke={uecE: I)(u)=cIj(u) =0}, I{ ={u e E: ,(u) <c}.

Definition 3.2. For A € ¥, we say genus on A is n (denoted by y(A) = n) if there is an odd
map ¢ € C(A,R?\ {0}) and 7 is the smallest integer with this property.
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Lemma 3.3. Let I be an even C! functional on E and satisfies the (PS) condition. For any n € IN, set

Y, ={A€X: y(A) > n}, ¢y = inf supI(u),
A€y, ucA

(i) if, # @, and ¢, € R, then cy, is a critical value of I;

(ii) if there exists r € IN such that ¢, = ¢cypp1 = -+ = Cpyr = ¢ € R, and ¢ # 1(0) then
Y(Ke) >r+1.

Proof of Theorem 1.2. By Lemmas 2.5 and 3.1, the conditions of Lemma 2.4 are satisfied. Thus,
¢ = infg, I)(u) is a critical value of I, that is, there exists a critical point u* such that I, (u*) =
c. Now, we show that u* # 0. Let u € (H}(A) N Ex)\{0} and |u|e < 1, it follows from (F)
that

_ £ 2 2 t 2
L) =5 [ (VuP +AV()ut)dr + Z/]RsG(x)(puu dx—/R3P(x,tu)dx
= t2\|u||2 + ¢ G(x)¢p,u*dx —/ F(x, tu)dx (3.10)
2 A4 g Pu A ’ '
t2 tG :
< 2 o / 3 2 o k3/ k3
< 2Hu||A+ 1 ]R3q> u“dx — kot A]u| dx,

where 0 < t < k; and kj is given in (F,). Since 1 < k3 < 2, it follows from (3.10) that I(tu) < 0
for t > 0 small enough. Therefore, I, (u*) = ¢ < 0, that is, u* is a nontrivial critical point of
Iy, and so u* is a nontrivial solution of problem (P). The proof is complete. O

Proof of Theorem 1.3. By Lemmas 2.5 and 3.1, I, € C!(E,R) is bounded from below and satis-
fies the (PS) condition. It follows from (2.4) and (F3;) that I, is even and I,(0) = 0. In order to
apply Lemma 3.3, we now show that for any n € N, there exists € > 0 such that

(I, ¢) > n. (3.11)

For any n € IN, we take n disjoint open sets A; such that

n
U A; C A
i=1

Fori=1,2,...,n, letu; € (H{(A;) NEA)\{0}, |tiloo < 400, |lu;]|» =1, and
E, = span{uy, uy,..., Uy}, Sp={u€E,:|uly =1}

Then for any u € E,, there exist y; € R,i =1,2,...,n such that

u(x) = Zn:yiui(x), x € R3, (3.12)
i=1

Thus, we get

1 1
k3 n k3
iy = ([ lax) " = <E|V|"3 A |u|"3dx> : 613)
i=1 i
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and
Jult = [ (I + AV () uP)dx

=S4 [ (9l AV ) d

A

< Z‘ul/ (1Y 2 + AV () us]?) dx (3.14)

I
M:

“l/l ‘quA - Zyz

Il
A

Since all norms are equivalent in a finite dimensional normed space, there exists d; > 0 such
that

di|lullx < |ulx, forallu € E,. (3.15)
Then, by (2.4), (F>), (3.12)—(3.15), the Sobolev and Holder inequalities, for u € S;;, we have

I (tu) = 2/ |w|2+A/ 2)dx + 4/ X)Puit zdx—/R3F(x,tu)dx
= D+ [ o %2M—2/ (x, i

2 *Geo
g4Wﬁ+——wmwwm—b%z]wéAWMﬂx
i=1 i
Ct* r
= D + Sl — ot (316)
Ct4 P
< Sl + Sl ket
t2 Ct!
- E + T - kz(dlt)

Since 0 < t < k1 and 1 < k3 < 2, it follows from (3.16) that there exist € > 0 and J > 0 such
that

I)(6u) < —e forallu € S,. (3.17)

Let
n
Sy = {ou:u €Sy}, QZ{(m,}lz,---,yn)EIR”:E;{ZZ<52}.

i=1
It follows from (3.17) that
I\(u) < —e forallucS?,

which, together with the fact that I, € C!(E,R) and is even, implies that
S CLfex.

On the other hand, by (3.12) and (3.14), there exists an odd homeomorphism mapping ¢ €
C(S%,00). By some properties of the genus, we have

Y1) = 7(S) =
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Thus, the proof of (3.11) holds. Set

cp = inf sup I, (u). (3.18)
A€z, ueA

It follows from (3.18) and the fact that I is bounded from below on E) that —oco < ¢, < —€ <
0, that is to say, for any n € IN, ¢, is a real negative number. By Lemma 3.3, I, has infinitely
many nontrivial critical points. Therefore, problem (P) possesses infinitely many nontrivial
solutions. The proof is complete. ]

4 Concentration of solutions

In the following, we study the concentration of solutions for problem (P) as A — co. Define

= inf IL\(u ,
. A1) 0

where IA(u)\Hé(Q) is a restricted of I) (1) on H}(Q)), that is,

IA(u)\Hé( 2/ (IVul> + AV(x)u?) dx + - / X)puu de—/Q (x, u)dx.

Similar to the proof of Theorem 1.2, it is easy to prove that ¢ < 0 can be achieved. Since
H}(Q) C E, for all A > 0, we derive

c<é<0 forall A > Ay.

Proof of Theorem 1.5. Inspired by the ideas of Sun and Wu [36], we give the proof as follows.
For any A, — oo, let u,, := u,, be the critical point of I, obtained in Theorem 1.2, then

I, (u,) <E<0, (4.1)

and

1 2 2 Ly 2
Do) = 5 [ (VP +av(oud) dx+ g [ GE)puuddy— [ Flxu)dx
1 Z g 8;
> Slual3, - _Z;,Tz’lcilﬁ\\un!h;/
=
showing that

[tnl[a, < C, (42)

where C is independent of A,. Thus, we may assume that u, — @ in E, and u, — @ in
L' (R®) for r € [2,6). It follows from Fatou’s Lemma that

loc

2
/]R V(x)|i|*dx < hmmf/ x) |1, ?dx < liminf I ;HA” =0,

n—00 n

which implies that 7 = 0 a.e. in R*\V~(0) and @ € H}(Q) by (V3). Then for any ¢ € CF(Q),
since (I} (un), @) =0, it is easy to verify that

/ Vqu)dx+/ 4>uuq)dx—/ f(x,d)pdx =0,
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which implies that i is a weak solution of Eq.(1.5) by the density of C3°(Q)) in Hj(Q2).
Next, we show that u, — i in L' (IR?) for r € [2,6). Otherwise, by Lions’ vanishing lemma
[27], there exist 6 > 0,0 > 0 and x,, € R3 such that

/ i1, — 1[2dx > 6.
Bo(xn)

Since u, — i in L} _(R®) as |x,| — oo and n — oco. Therefore, meas{B,(x,) N V,} — 0 as
n — oo. It follows from the Holder inequality that

2
%

252 . 2
/ luy — 1dx < (meas{B,(x,) N V3}) T </ Iy — a2 dx> S0 asn— o
By (x4)NV, R3
Then for n sufficiently large,

[uall3, > Aub |, |2 dx
By (xy)N{x€R3:V (x)>b}

By (xy)N{x€R3:V (x)>b}

= Ab (/ \un—ﬁlzdx— / \un—ﬁlzdx)
Bp(x,,) . Bp(xn)ﬁVb

— 00 asn — oo,
which is a contradiction with (4.2). Next, we prove that u, —  in H! (]R3). By virtue of

(I} (un),un) = (I} (un),7) =0 and the fact that u, — @ in L' (IR%) for r € [2,6), we derive

. 2 9 _ R T I~ N2
Jim {fun[fy, = lim (un, @)p, = lim (u, @) = ]|

Observe that |[u,|| < |lun]|s,, therefore,

lim sup [|uy||* < [1a]|*.
n— 00

On the other hand, from the weak semi—continuity of norm, we have

||2 < limsup HunHZ

n— 00

[

Therefore,
uy — i in H(R®).

*/ |Cu‘ dx+*/ G(X)(P”M dx—/ F(x M)dx<C<0
2 3 1 3 u 3 ’ — 7

which implies that i # 0. The proof is complete. O
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