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Abstract. In this paper, we investigate the existence and concentration of solutions for
the following Schrödinger–Bopp–Podolsky system with sublinear nonlinearity:{

−∆u + λV(x)u + G(x)ϕu = f (x, u) in R3,
−∆ϕ + a2∆2ϕ = 4πG(x)u2 in R3,

where V ∈ C(R3) is a potential well, G ∈ L2(R3) is nonnegative and f ∈ C(R3 × R)
satisfies the sublinear conditions in R3. By imposing some suitable assumptions on
V(x), G(x) and f (x, u), we obtain the existence and multiplicity of negative energy
solutions for the above system via variational methods. Moreover, the concentration of
solutions is also explored on the set V−(0) as λ → ∞.

Keywords: Schrödinger–Bopp–Podolsky system, sublinear nonlinearity, multiplicity,
variational methods.
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1 Introduction

In the past several decades, the following Schrödinger–Bopp–Podolsky system{
−∆u + ωu + q2ϕu = f (u) in R3,

−∆ϕ + a2∆2ϕ = 4πu2 in R3,
(1.1)

has received more and more attention. Such a system appears when a Schrödinger field ψ =

ψ(t, x) couples with its electromagnetic field in the Bopp–Podolsky electromagnetic theory.
The Bopp–Podolsky theory, developed by [6], and independently by Podolsky [31], is a second
order gauge theory for the electromagnetic field. According to Mie theory [30], the Bopp–
Podolsky theory was introduced to solve the so called infinity problem that appears in the
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classical Maxwell theory. Moreover, the Bopp–Podolsky theory may be interpreted as an
effective theory for short distances (see [21]) and for large distances, which is experimentally
indistinguishable from the Maxwell one. Thus, the Bopp–Podolsky parameter a > 0, which
has the dimension of the inverse of mass, can be interpreted as a cut-off distance or can
be linked to an effective radius for the electron. In fact, by the well-known Gauss law (or
Poisson’s equation), the electrostatic potential ϕ for a given charge distribution whose density
is ρ satisfies equation

−∆ϕ = ρ in R3. (1.2)

If ρ = 4ϕδx0 with x0 ∈ R3, the fundamental solution of Eq. (1.2) is ς(x − x0), where

ς(x) =
1
|x| ,

and the electrostatic energy is

εM(ς) =
1
2

∫
R3

|∆ς|2dx = ∞.

Thus, Eq. (1.2) is replaced by

div

(
∆ϕ√

1 − |∆ϕ|2

)
= ρ in R3

in the Bopp–Infeld theory and by

−∆ϕ + a2∆2ϕ = ρ in R3

in the Bopp–Podolsky theory. In both cases, if ρ = 4ϕδx0 , their solutions can be written
explicitly and the corresponding energy is finite. In this paper, we focus on the Bopp–Podolsky
theory −∆ + a2∆2, the fundamental solution of equation

−∆ϕ + a2∆2ϕ = 4πδx0

is ζ(x − x0), where

ζ(x) :=
1 − e−

|x|
a

|x| ,

which presents no singularities at x0, since

lim
x→x0

ζ(x − x0) =
1
a

.

Furthermore, its energy is

εBP(ζ) =
1
2

∫
R3

|∇ζ|2dx +
a2

2

∫
R3

|∆ζ|2dx < ∞.

For more physical details, we refer the reader to [5, 9, 10, 17] and the references therein.
In [19], d’Avenia and Siciliano firstly studied Schrödinger–Bopp–Podolsky system, and

proved that the existence of nontrivial solutions for system (1.1) with f (u) = |u|p−2u (2 < p <

6). Later, by using the fibering method, Siciliano and Silval [35] proved the multiplicity and
nonexistence of solutions for system (1.1) with f (u) = |u|p−2u and p ∈ (2, 3]. Moreover, Wang
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et al. [38] established the existence and multiplicity of sign-changing solutions for system (1.1).
In addition, the asymptotic behavior of sign-changing solutions was also established.

In [16], Chen and Tang considered the following Schrödinger–Bopp–Podolsky system with
a subcritical perturbation:{

−∆u + V(x)u + ϕu = µg(u) + u5 in R3,

−∆ϕ + a2∆2ϕ = 4πu2 in R3.
(1.3)

By means of variational methods, the authors proved the existence of ground state solutions
for system (1.3). In [26], by coupling the Pohožaev–Nehari manifold with the monotonicity
trick, Li et al. obtained a ground state solution for system (1.3) with g(u) = |u|p−1u (2 <

p < 5). By virtue of the Nehari manifold technique and variational methods, Liu and Chen
[28] studied the existence, nonexistence and asymptotic behavior of ground state solutions for
system (1.3) with µg(u) + u5 being replaced by λK(x) f (u) + |u|4u.

In [40], Wang et al. studied obtained the following system:{
−∆u + (λV(x) + V0)u + K(x)ϕu = |u|p−2u in R3,

−∆ϕ + a2∆2ϕ = K(x)πu2 in R3,
(1.4)

where 4 < p < 6 and the potential function V(x) satisfies the following conditions:

(V1) V ∈ C(R3), V(x) > 0 on R3;

(V2) there exists a constant c > 0 such that the set Vc = {x ∈ R3 : V(x) < c} is nonempty
and has finite Lebesgue measure;

(V3) Ω = V−(0) = int{x ∈ R3, V(x) = 0} is nonempty with locally Lipschitz boundary and
Ω̄ = {x ∈ R3, V(x) = 0}.

By using variational methods, the authors studied the existence of multi–bump solutions for
system (1.4).

Remark 1.1. The conditions (V1)–(V3) imply that λV represents a potential well whose depth
is controlled by λ. Thus, λV is called a steep potential well if λ is sufficiently large and one
expects to find solutions which localize near its bottom Ω. This problem has found much
interest after being first introduced by Bartsch and Wang [2] in the study of the existence of
positive solutions for nonlinear Schrödinger equations and has been attracting much attention,
see [24, 25, 34, 41, 42].

Inspired by the above works, more precisely by [40], in the present paper, we are inter-
ested in the existence and multiplicity of nontrivial solutions for system (1.1) with a steep
potential well and sublinear nonlinearity, which has never been discussed in the available lit-
erature. Moreover, the concentration of solutions is also explored. Particularly, we consider
the existence of multiple solutions for the following Schrödinger–Bopp–Podolsky system with
sublinear nonlinearity: {

−∆u + λV(x)u + G(x)ϕu = f (x, u) in R3,

−∆ϕ + a2∆2ϕ = 4πG(x)u2 in R3,
(P)

where V(x) satisfies the conditions (V1)–(V3). In addition, we assume that G(x) and f (x, u)
satisfy the following conditions:
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(G) G ∈ L2(R3), 0 ≤ G(x) ≤ G∞, where G∞ is a positive constant, G(x) ̸≡ 0, and
lim|x|→∞ G(x) = 0;

(F1) f ∈ C(R3 × R) and there exist 1 < β1, β2 < 2 and positive functions c1 ∈ L
2

2−β1 (R3), c2 ∈
L

2
2−β2 (R3) such that

| f (x, u)| ≤ β1c1(x)|u|β1−1 + β2c2(x)|u|β2−1, ∀ (x, u) ∈ R3 × R;

(F2) there exists a bounded open set Λ ⊂ R3 and three constants k1, k2 > 0 and k3 ∈ (1, 2)
such that

F(x, u) ≥ k2|u|k3 , ∀ (x, u) ∈ Λ × [−k1, k1],

where F(x, u) =
∫ u

0 f (x, s)ds;

(F3) f (x, u) = − f (x,−u) for all (x, u) ∈ R3 × R.

Now, we state our main results.

Theorem 1.2. Assume that conditions (V1)–(V3), (G) and (F1)–(F2) hold, then problem (P) possesses
at least one nontrivial solution.

Theorem 1.3. Assume that conditions (V1)–(V3), (G) and (F1)–(F3) hold, then problem (P) possesses
infinitely many solutions {uk} such that

1
2

∫
R3
(|∇uk|2 + λV(x)u2

k)dx +
1
4

∫
R3

G(x)ϕuk uk
2dx −

∫
R3

F(x, uk)dx → 0− as k → ∞.

Evidently, the assumption (F2) holds if the following condition holds:

(F′
2) there exists a bounded open set W ⊂ R3 and three constants k1, k2 > 0 and k3 ∈ (1, 2)

such that
f (x, u)u ≥ k2k3|u|k3 , ∀ (x, u) ∈ W × [−k1, k1].

Therefore, by Theorems 1.2 and 1.3, we have the following corollary.

Corollary 1.4. Assume that conditions (V1)–(V3), (G) and (F1) and (F′
2) hold, then problem (P) pos-

sesses at least one nontrivial solution. If additionally, (F3) holds, then problem (P) possesses infinitely
many solutions {uk} such that

1
2

∫
R3

(
|∇uk|2 + λV(x)u2

k
)

dx +
1
4

∫
R3

G(x)ϕuk u2
kdx −

∫
R3

F(x, uk)dx → 0− as k → ∞.

Before giving the concentration of solutions, we first introduce the following space D. Let
D be the completion of C∞

c (R3) with respect to the norm ∥ · ∥D induced by the scalar product:

⟨φ, ψ⟩D :=
∫

R3
∇φ∇ψdx + a2

∫
R3

∆φ∆ψdx.

Then D is a Hilbert space which is continuously embedded into D1,2(R3) and consequently
into L6(R3).
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Theorem 1.5. Let (uλn , ϕλn) be a solution of problem (P) obtained in Theorem 1.2, then uλn → ũ in
H1(R3), ϕλn → ϕ̃ in D as λn → ∞, where ũ ∈ H1

0(R
3) is a nontrivial solution of equation

−∆u + G(x)ϕu = f (x, u) in Ω,

−∆ϕ + a2∆2ϕ = 4πG(x)u2 in Ω,

u = 0 on ∂Ω,

(1.5)

where Ω is given by the condition (V3).

Remark 1.6. If a = 0, then system (1.1) becomes the well–known Schrödinger–Poisson system
as follows: {

−∆u + V(x)u + λϕu = f (u) in R3,

−∆ϕ = u2 in R3,
(1.6)

which is also known as the nonlinear Schrödinger–Maxwell equations and have a strong phys-
ical meaning. Recently, with the development of critical point theory and variational methods,
many researchers have studied the existence and multiplicity of solutions for the Schrödinger–
Maxwell equations. Such as, by using the Mountain Pass theorem, D’Aprile and Mugnai [18]
obtained the existence of radially symmetric solitary waves for system (1.6). In [33], when
V(x) ≡ 1 and f (u) = up, 1 < p < 5, Ruiz studied the existence and nonexistence of nontrivial
solutions for the system (1.6). For more details about the Schrödinger–Poisson system, one
can refer to [1, 11–15, 18, 22, 23, 29, 33, 39] and the references therein.

Remark 1.7. There are many functions f (x, u) satisfying the conditions (F1)− (F3). For exam-
ple, let

f (x, u) =
5 sin2 x1

4(1 + e|x|)
|u|− 3

4 u +
4 cos2 x1

3(1 + e|x|)
|u|− 2

3 u,

where x = {x1, x2, x3}. Then

| f (x, u)| ≤ 5 sin2 x1

4(1 + e|x|)
|u|− 3

4 u +
4 cos2 x1

3(1 + e|x|)
|u|− 2

3 u, ∀ (x, u) ∈ (R3, R),

and

F(x, u) =
sin2 x1

1 + e|x|
|u| 5

4 +
cos2 x1

1 + e|x|
|u| 4

3

≥ cos2 1
1 + e

|u| 4
3 , ∀ (x, u) ∈ Λ × [−1, 1] ,

where
5
4
= α1 < α2 =

4
3

, c1(x) =
sin2 x1

1 + e|x|
, c2(x) =

cos2 x1

1 + e|x|
,

and

a1 = 1, a2 =
cos2 1
1 + e

, a3 =
4
3

, Λ = B(0, 1).

Notation: Throughout this paper, we shall denote by C various positive generic constants,
which may vary from line to line. For 1 ≤ r ≤ ∞, we shall also denote by | · |r the Lr–norm.
Br(y) :=

{
x ∈ R3 : |x − y| ≤ r

}
. If we take a subsequence of a sequence {uk}, we shall denote

it again by {uk}. D1,2(R3) is the usual Sobolev space defined as the completion of C∞
c (R3)

with respect to the norm ∥u∥D1,2 =
(∫

R3 |∇u|2dx
)1/2.

The paper is organized as follows. In Section 2, some preliminary results are presented.
In Section 3, we give the proofs of Theorems 1.2 and 1.3, respectively. In Section 4, we study
the concentration of solutions and prove Theorem 1.5.
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2 Preliminaries

Let
H1(R3) :=

{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
with the inner product

⟨u, v⟩H1 =
∫

R3
(∇u∇v + uv)dx

and the norm

∥u∥H1 =

(∫
R3

(
|∇u|2 + u2

)
dx
) 1

2

.

Let

E =

{
u ∈ H1(R3) :

∫
R3

V(x)u2dx < ∞
}

.

In view of the potential V(x), E is a Hilbert space with the following inner product

⟨u, v⟩ =
∫

R3
(∇u∇v + V(x)uv)dx

and the norm

∥u∥ =

(∫
R3

(
|∇u|2 + V(x)u2)dx

) 1
2

.

Throughout the paper, we will use the norm ∥ · ∥ in E. For λ > 0, we also need the following
inner product

(u, v)λ =
∫

R3
(∇u∇v + λV(x)uv)dx, ∀ u, v ∈ E,

and the corresponding norm

∥u∥λ =

(∫
R3

(
|∇u|2 + λV(x)u2)dx

) 1
2

.

Obviously, for λ ≥ 1, we have ∥u∥ ≤ ∥u∥λ. Set Eλ = (E, ∥u∥λ), it follows from the conditions
(V1) and (V2) that∫

R3

(
|∇u|2 + u2

)
dx =

∫
R3

|∇u|2dx +
∫

V(x)≤b
u2dx +

∫
V(x)>b

u2dx

≤
∫

R3
|∇u|2dx +

(∫
V(x)≤b

1dx
) 2

3
(∫

V(x)≤b
|u|6dx

) 1
3

+
1
b

∫
V(x)>b

V(x)u2dx

≤ (1 + {V(x) ≤ b}S−2)
∫

R3
|∇u|2dx +

1
b

∫
V(x)>b

V(x)u2dx

≤ max
{

1 + {V(x) ≤ b}S−2,
1
b

} ∫
R3

(
|∇u|2 + V(x)u2

)
dx,

where S is the best Sobolev constant of the embedding from D1,2(R3) into L6(R3). Then the
embedding E ↪→ H1(R3) is continuous, that is, there exists a constant η > 0 such that

∥u∥H1 ≤ η∥u∥ for every u ∈ E. (2.1)
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Furthermore, for every r ∈ [2, 6], there exist τr, λ0 > 0 (independent of λ ≥ 1) such that

|u|r ≤ τr∥u∥ ≤ τr∥u∥λ for every u ∈ E, λ ≥ λ0. (2.2)

Note that problem (P) has a variational structure and its solutions can be regarded as
critical points of the energy functional defined on the space E by

Jλ(u, ϕ) =
1
2

∫
R3

(
|∇u|2 + λV(x)u2)dx +

1
2

∫
R3

G(x)ϕu2dx

− 1
16π

|∇ϕ|22 −
a2

16π
|∆ϕ|22 −

∫
R3

F(x, u)dx.

The functional Jλ exhibits strong indefiniteness, that is, it is unbounded both from below and
from above on infinite–dimensional spaces. To avoid the indefiniteness, we can apply the
reduction method described in [3, 4], which leads us to study a one–variable functional that
does not present such a strong indefinite nature.

It is easy to see that the critical points of the C1 functional Jλ(u, ϕ) on H1(R3) × D are
weak solutions of problem (P). Thus, if (u, ϕ) ∈ H1(R3)×D is a critical point of Jλ(u, ϕ), then

0 = ∂u Jλ(u, ϕ)[v] =
∫

R3
(∇u∇v + λV(x)uv)dx +

∫
R3

G(x)ϕuvdx

−
∫

R3
f (x, u)vdx for all v ∈ H1(R3)

and

0 = ∂ϕ Jλ(u, ϕ)[ξ] =
1
2

∫
R3

u2ξdx − 1
8π

∫
R3

∇ϕ∇ξdx − a2

8π

∫
R3

∆ϕ∆ξdx for all ξ ∈ D.

Define

K(x) :=
1 − e−|x|/a

|x| .

As stated in [19], for every fixed u ∈ H1(R3), the Riesz Theorem implies that equation

−∆ϕ + a2∆2ϕ = 4πG(x)u2

admits a unique solution ϕu ∈ D, which can be presented as

ϕu(x) := K ∗
(
Gu2) = ∫

R3

1 − e−|x−y|/a

|x − y| G(y)u2(y)dy. (2.3)

Then the following useful properties hold.

Lemma 2.1. For every u ∈ H1(R3), we have:

(i) ϕu ∈ D ↪→ L∞(R3);

(ii) ϕu ≥ 0;

(iii) for every s ∈ (3,+∞], ϕu ∈ Ls(R3) ∩ C0(R3);

(iv) for every s ∈ (3,+∞],∇ϕu = ∇K ∗ G(x)u2 ∈ Ls(R3) ∩ C0(R3);

(v) |ϕu|6 ≤ C∥u∥2
H1 ;
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(vi) for every y ∈ R3, ϕu(x+y) = ϕu(x + y);

(vii) if un ⇀ u ∈ H1(R3), then

ϕun → ϕu in D,
∫

R3
G(x)ϕun u2

ndx →
∫

R3
G(x)ϕuu2dx,

and ∫
R3

G(x)ϕun un φdx →
∫

R3
G(x)ϕuuφdx, ∀ φ ∈ H1(R3).

Proof. The proofs of (i)–(vi) can be found in [19, Lemma 3.4] and the proof of (vii) can be
found in [37, Proposition 2.1]. We omit them here.

If GΦ is the graph of the map Φ : u ∈ H1(R3) 7→ ϕu ∈ D, an application of the Implicit
Function Theorem gives that

GΦ =
{
(u, ϕ) ∈ H1(R3)×D : ∂ϕ Jλ(u, ϕ) = 0

}
and Φ ∈ C1(H1(R3),D).

Then we define the reduced functional

Iλ(u) = Jλ(u, Φ(u)) =
1
2

∫
R3

(
|∇u|2 + λV(x)u2)dx

+
1
4

∫
R3

G(x)ϕuu2dx −
∫

R3
F(x, u)dx. (2.4)

Lemma 2.2. Suppose that conditions (V1)–(V3), (G) and (F1) − (F2) hold, then the functional Iλ

defined by (2.4) is well defined and of class C1(E, R).

Proof. Set

T(u) =
1
2

∫
R3

(
|∇u|2 + λV(x)u2)dx +

1
4

∫
R3

G(x)ϕuu2dx.

Following [19], T(u) is well defined and of class C1 functional. Thus, to prove Iλ(u) is well
defined and of class C1(E, R), we only need to prove that Q(u) :=

∫
R3 F(x, u)dx is well defined

and of class C1(E, R). It follows from the condition (F1) that

|F(x, u)| ≤
2

∑
i=1

ci(x)|u|βi , ∀ (x, u) ∈ R3 × R. (2.5)

Then for any u ∈ E, by (2.1), (2.2), (2.5) and the Hölder inequality, we derive

∫
R3

|F(x, u)|dx ≤
∫

R3

2

∑
i=1

ci(x)|u|βi dx

≤
2

∑
i=1

(∫
R3

|ci(x)|
2

2−βi dx
) 2−βi

2
(∫

R3
|u|2dx

) βi
2

(2.6)

≤
2

∑
i=1

|ci| 2
2−βi

∥u∥βi
H1 ,

which implies that Q(u) is well defined.
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Next, we show that Q(u) ∈ C1(E, R). For any function θ : R3 → (0, 1), by (F1), (2.2) and
the Hölder inequality, we have∫

R3
max
t∈[0,1]

| f (x, u(x) + tθ(x)φ(x))φ(x)|dx

=
∫

R3
max
t∈[0,1]

| f (x, u(x) + tθ(x)φ(x))||φ(x)|dx

≤
2

∑
i=1

βi

∫
R3

ci(x)|u(x) + tθ(x)φ(x)|βi−1|φ(x)|dx

≤ C
2

∑
i=1

∫
R3

ci(x)
(
|u(x)|βi−1 + |φ(x)|βi−1

)
|φ(x)|dx

≤ C
2

∑
i=1

(∫
R3

|ci(x)|
2

2−βi dx
) 2−βi

2
(∫

R3
|u(x)|2dx

) βi−1
2

×
(∫

R3
|φ(x)|2dx

) 1
2

(2.7)

+ C
2

∑
i=1

(∫
R3

|ci(x)|
2

2−βi dx
) 2−βi

2
(∫

R3
|φ(x)|2dx

) βi
2

≤ C
2

∑
i=1

|ci| 2
2−βi

(
∥u∥βi−1 + ∥φ∥βi−1

)
∥φ∥

< + ∞, ∀ u, φ ∈ E.

It follows from (2.7) and Lebesgue’s Dominated Convergence Theorem that

lim
t→0

Q(u + tv)− Q(u)
t

= lim
t→0

∫
R3

F(u + tv)− F(u)
t

dx =
∫

R3
f (x, u)vdx < +∞, (2.8)

which implies that Q(u) is Gâteaux differentiable in E. Let un → u in E, then un → u in
L2(R3) and

lim
n→∞

un = u a.e. on R3. (2.9)

Now, we claim that
lim
n→∞

∫
R3

| f (x, un)− f (x, u)|2dx = 0. (2.10)

In fact, since un → u in L2(R3), passing to a subsequence if necessary, it can be assumed that

∑∞
i=1 |uni − u|22 < +∞. Set ω(x) =

(
∑∞

i=1 |uni − u|2
) 1

2 , then ω ∈ L2(R3). Evidently,

| f (x, uni)− f (x, u)|2 ≤ 2| f (x, uni)|2 + 2| f (x, u)|2

≤ 4
2

∑
j=1

α2
j |cj(x)|2

(
|uni |2(β j−1) + |u|2(β j−1)

)
≤ 4

2

∑
j=1

(2β j−1 + 1)β2
j |cj(x)|2

(
|uni − u|2(β j−1) + |u|2(β j−1)

)
(2.11)

≤ 4
2

∑
j=1

(2β j−1 + 1)β2
j |cj(x)|2

(
|ω(x)|2(β j−1) + |u|2(β j−1)

)
=: h(x), ∀ i ∈ N, x ∈ R3,
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and ∫
R3

h(x)dx = 4
2

∑
j=1

(
2β j−1 + 1

)
β2

j

∫
R3

|cj(x)|2
(
|ω(x)|2(β j−1) + |u|2(β j−1)

)
dx

≤ 4
2

∑
j=1

(
2β j−1 + 1

)
β2

j |cj|2 2
2−βj

(
|ω|2(β j−1)

2 + |u|2(β j−1)
2

)
(2.12)

< +∞.

It follows from (2.11), (2.12) and Lebesgue’s Dominated Convergence Theorem that (2.10)
holds, then together with (2.8), we know that Q(u) ∈ C1(E, R). The proof is complete.

Thus, for all u, v ∈ H1(R3),

I′λ(u)[v] =
∫

R3
(∇u∇v + λV(x)uv)dx +

∫
R3

G(x)ϕuuvdx −
∫

R3
f (x, u)vdx.

It can be proved that (u, ϕ) ∈ H1(R3)×D is a solution of problem (P) if and only if u ∈ E is
a critical point of the functional Iλ.

Lemma 2.3. Assume that there exists a sequence {un} ⊂ E such that un ⇀ u in E as n → ∞, then∣∣∣∣∫
R3

G(x)(ϕun un − ϕuu)(un − u)dx
∣∣∣∣→ 0 as n → ∞. (2.13)

Proof. By (2.1), we have un ⇀ u in H1(R3), then by (vii) of Lemma 2.1, as n → ∞, there hold∫
R3

G(x)ϕun u2
ndx →

∫
R3

G(x)ϕuuundx (2.14)

and ∫
R3

G(x)ϕun unudx →
∫

R3
G(x)ϕuu2dx. (2.15)

It follows from (2.14) and (2.15) that∣∣∣∣∫
R3

G(x)(ϕun un − ϕuu)(un − u)dx
∣∣∣∣

=

∣∣∣∣∫
R3

(
G(x)ϕun u2

n − G(x)ϕuuun − G(x)ϕun unu + G(x)ϕuu2)dx
∣∣∣∣

≤
∣∣∣∣∫

R3

(
G(x)ϕun u2

n − G(x)ϕuuun
)

dx
∣∣∣∣+ ∣∣∣∣∫

R3

(
G(x)ϕun unu − G(x)ϕuu2)dx

∣∣∣∣
→ 0 as n → ∞.

The proof is complete.

Lemma 2.4 ([20]). Let E be a real Banach space and I ∈ C1(E, R) satisfies the (PS) condition. If I is
bounded from below, then c = infE I is a critical value of I.

Lemma 2.5. Assume that conditions (V1)–(V3), (G) and (F1)–(F2) hold, then there exists Λ0 > 0
such that Iλ is bounded from below whenever λ > Λ0.
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Proof. It follows from (2.2), (2.4), (F1) and the Hölder inequality that

Iλ(u) =
1
2

∫
R3

(
|∇u|2 + λV(x)u2)dx +

1
4

∫
R3

G(x)ϕuu2dx −
∫

R3
F(x, u)dx

≥ 1
2
∥u∥2

λ −
∫

R3
F(x, u)dx

≥ 1
2
∥u∥2 −

∫
R3

c1(x)|u|β1dx −
∫

R3
c2(x)|u|β2dx

≥ 1
2
∥u∥2 −

2

∑
i=1

τ
βi
2 |ci| 2

2−βi
∥u∥βi ,

which implies that Iλ(u) → ∞ as ∥u∥ → ∞, since β1, β2 ∈ (1, 2). Consequently, there is Λ0 =

max{1, λ0} such that for every λ ≥ Λ0, Iλ is bounded from below. The proof is complete.

3 Proofs of main results

Lemma 3.1. Assume that conditions (V1)–(V3), (G) and (F1)–(F2) hold, then Iλ satisfies the (PS)
condition.

Proof. Assume that {un} is a (PS) sequence of Iλ such that Iλ(un) is bounded and I′λ(un) → 0
as n → ∞. It follows from Lemma 2.5 that {un} is bounded in Eλ. Then there exists a constant
C > 0 such that

|un|l ≤ τl∥un∥λ ≤ C, n ∈ N, λ ≥ Λ0, 2 ≤ l ≤ 6. (3.1)

Moreover, there exists u ∈ E such that

un ⇀ u in E, (3.2)

un → u in Lr
loc(R

3), r ∈ [2, 6), (3.3)

un → u a.e on R3. (3.4)

By the condition (F1), for any given ϵ > 0, there exists Rϵ > 0 such that

(∫
|x|>Rϵ

|ci(x)|
2

2−βi dx
) 2−βi

2

≤ ϵ, i = 1, 2. (3.5)

It follows from (3.3) that there exists n0 > 0 such that∫
|x|≤Rϵ

|un − u|2dx < ϵ2 for n ≥ n0. (3.6)

Then by (3.1), (3.6), (F1) and the Hölder inequality, for any n ≥ n0, one has∫
|x|≤Rϵ

| f (x, un)− f (x, u)||un − u|dx

≤
(∫

|x|≤Rϵ

| f (x, un)− f (x, u)|2dx
) 1

2
(∫

|x|≤Rϵ

|un − u|2dx
) 1

2

≤ ϵ

[∫
|x|≤Rϵ

2
(
| f (x, un)|2 + | f (x, u)|2

)
dx
] 1

2

≤ ϵ

[
4

2

∑
i=1

β2
i

∫
|x|≤Rϵ

|ci(x)|2
(
|un|2(βi−1) + |u|2(βi−1)

)
dx

] 1
2

(3.7)
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≤ Cϵ

[
2

∑
i=1

β2
i |ci|2 2

2−βi

(
|un|2(βi−1)

2 + |u|2(βi−1)
2

)] 1
2

≤ Cϵ

[
2

∑
i=1

β2
i |ci|2 2

2−βi

(
C2(βi−1) + |u|2(βi−1)

2

)] 1
2

.

On the other hand, for n ∈ N, it follows from (F1), (3.1), (3.5) and the Hölder inequality that∫
|x|>Rϵ

| f (x, un)− f (x, u)||un − u|dx

≤
2

∑
i=1

β2
i

∫
|x|>Rϵ

|ci(x)|
(
|un|βi−1 + |u|βi−1

)
(|un|+ |u|)dx

≤ 2
2

∑
i=1

β2
i

∫
|x|>Rϵ

|ci(x)|
(
|un|βi + |u|βi

)
dx

≤ 2
2

∑
i=1

β2
i

(∫
|x|>Rϵ

|ci(x)|
2

2−βi dx
) 2−βi

2 (
|un|βi

2 + |u|βi
2

)
(3.8)

≤ 2
2

∑
i=1

β2
i

(∫
|x|>Rϵ

|ci(x)|
2

2−βi dx
) 2−βi

2 (
Cβi + |u|βi

2

)
≤ 2ϵ

2

∑
i=1

β2
i

(
Cβi + |u|βi

2

)
.

Since ϵ is arbitrary, combining (3.7) and (3.8), we have

lim
n→∞

∫
R3

( f (x, un)− f (x, u)) (un − u)dx = 0. (3.9)

Thus, by (3.9), Lemma 2.3 and the weak convergence of {un}, one has

on(1) = ⟨I′λ(un)− I′λ(u), un − u⟩

=
∫

R3
|∇(un − u)|2dx + λ

∫
R3

V(x)(un − u)2dx

+
∫

R3
G(x)(ϕun un − ϕuu)(un − u)dx

−
∫

R3
( f (x, un)− f (x, u)) (un − u)dx

= ∥un − u∥2
λ + on(1),

which implies that un → u in Eλ. The proof is complete.

In order to find the multiplicity of nontrivial critical points of Iλ, we will use the genus
properties, so we recall the following definitions and results (see[32]).

Let E be a Banach space, c ∈ R and I ∈ C1(E, R), set
Σ = {A ⊂ E\{0} : A is closed in E and symmetric with respect to 0},
Kc = {u ∈ E : Iλ(u) = c, I′λ(u) = 0}, Ic

λ = {u ∈ E : Iλ(u) ≤ c}.

Definition 3.2. For A ∈ Σ, we say genus on A is n (denoted by γ(A) = n) if there is an odd
map φ ∈ C(A, R3 \ {0}) and n is the smallest integer with this property.
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Lemma 3.3. Let I be an even C1 functional on E and satisfies the (PS) condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈∑n

sup
u∈A

I(u),

(i) if Σn ̸= ∅, and cn ∈ R, then cn is a critical value of I;

(ii) if there exists r ∈ N such that cn = cn+1 = · · · = cn+r = c ∈ R, and c ̸= I(0) then
γ(Kc) ≥ r + 1.

Proof of Theorem 1.2. By Lemmas 2.5 and 3.1, the conditions of Lemma 2.4 are satisfied. Thus,
c = infEλ

Iλ(u) is a critical value of Iλ, that is, there exists a critical point u∗ such that Iλ(u∗) =

c. Now, we show that u∗ ̸= 0. Let u ∈ (H1
0(Λ) ∩ Eλ)\{0} and |u|∞ ≤ 1, it follows from (F2)

that

Iλ(tu) =
t2

2

∫
R3
(|∇u|2 + λV(x)u2)dx +

t4

4

∫
R3

G(x)ϕuu2dx −
∫

R3
F(x, tu)dx

=
t2

2
∥u∥2

λ +
t4

4

∫
R3

G(x)ϕuu2dx −
∫

Λ
F(x, tu)dx (3.10)

≤ t2

2
∥u∥2

λ +
t4G∞

4

∫
R3

ϕuu2dx − k2tk3

∫
Λ
|u|k3dx,

where 0 < t < k1 and k1 is given in (F2). Since 1 < k3 < 2, it follows from (3.10) that I(tu) < 0
for t > 0 small enough. Therefore, Iλ(u∗) = c < 0, that is, u∗ is a nontrivial critical point of
Iλ, and so u∗ is a nontrivial solution of problem (P). The proof is complete.

Proof of Theorem 1.3. By Lemmas 2.5 and 3.1, Iλ ∈ C1(E, R) is bounded from below and satis-
fies the (PS) condition. It follows from (2.4) and (F3) that Iλ is even and Iλ(0) = 0. In order to
apply Lemma 3.3, we now show that for any n ∈ N, there exists ϵ > 0 such that

γ(I−ϵ
λ ) ≥ n. (3.11)

For any n ∈ N, we take n disjoint open sets Λi such that

n⋃
i=1

Λi ⊂ Λ.

For i = 1, 2, . . . , n, let ui ∈ (H1
0(Λi) ∩ Eλ)\{0}, |ui|∞ ≤ +∞, ∥ui∥λ = 1, and

En = span{u1, u2, . . . , un}, Sn = {u ∈ En : ∥u∥λ = 1}.

Then for any u ∈ En, there exist µi ∈ R, i = 1, 2, . . . , n such that

u(x) =
n

∑
i=1

µiui(x), x ∈ R3. (3.12)

Thus, we get

|u|k3 =

(∫
R3

|u|k3dx
) 1

k3
=

(
n

∑
i=1

|µ|k3

∫
Λi

|u|k3dx

) 1
k3

, (3.13)
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and

∥u∥2
λ =

∫
R3
(|∇u|2 + λV(x)|u|2)dx

=
n

∑
i=1

µ2
i

∫
Λi

(
|∇ui|2 + λV(x)|ui|2

)
dx

≤
n

∑
i=1

µ2
i

∫
R3

(
|∇ui|2 + λV(x)|ui|2

)
dx (3.14)

=
n

∑
i=1

µ2
i ∥ui∥2

λ =
n

∑
i=1

µ2
i .

Since all norms are equivalent in a finite dimensional normed space, there exists d1 > 0 such
that

d1∥u∥λ ≤ |u|k3 for all u ∈ En. (3.15)

Then, by (2.4), (F2), (3.12)–(3.15), the Sobolev and Hölder inequalities, for u ∈ Sn, we have

Iλ(tu) =
t2

2

∫
R3
(|∇u|2 + λ

∫
R3

V(x)u2)dx +
t4

4

∫
R3

G(x)ϕuu2dx −
∫

R3
F(x, tu)dx

=
t2

2
∥u∥2

λ +
t4

4

∫
R3

G(x)ϕuu2dx −
n

∑
i=1

∫
Λi

F(x, tµiui)dx

≤ t2

2
∥u∥2

λ +
t4G∞

4
|ϕu|6|u|3|u|2 − k2tk3

n

∑
i=1

|µi|k3

∫
Λi

|ui|k3dx

=
t2

2
∥u∥2

λ +
Ct4

4
∥u∥4

λ − k2tk3 |u|k3
k3

(3.16)

≤ t2

2
∥u∥2

λ +
Ct4

4
∥u∥4

λ − k2(d1t)k3∥u∥k3
λ

=
t2

2
+

Ct4

4
− k2(d1t)k3 .

Since 0 < t < k1 and 1 < k3 < 2, it follows from (3.16) that there exist ϵ > 0 and δ > 0 such
that

Iλ(δu) < −ϵ for all u ∈ Sn. (3.17)

Let

Sδ
n = {δu : u ∈ Sn}, Ω =

{
(µ1, µ2, . . . , µn) ∈ Rn :

n

∑
i=1

µ2
i < δ2

}
.

It follows from (3.17) that
Iλ(u) < −ϵ for all u ∈ Sδ

n,

which, together with the fact that Iλ ∈ C1(E, R) and is even, implies that

Sδ
n ⊂ I−ϵ

λ ∈ Σ.

On the other hand, by (3.12) and (3.14), there exists an odd homeomorphism mapping ϕ ∈
C(Sδ

n, ∂Ω). By some properties of the genus, we have

γ(I−ϵ
λ ) ≥ γ(Sδ

n) = n.
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Thus, the proof of (3.11) holds. Set

cn = inf
A∈Σn

sup
u∈A

Iλ(u). (3.18)

It follows from (3.18) and the fact that Iλ is bounded from below on Eλ that −∞ < cn ≤ −ϵ <

0, that is to say, for any n ∈ N, cn is a real negative number. By Lemma 3.3, Iλ has infinitely
many nontrivial critical points. Therefore, problem (P) possesses infinitely many nontrivial
solutions. The proof is complete.

4 Concentration of solutions

In the following, we study the concentration of solutions for problem (P) as λ → ∞. Define

c̃ = inf
u∈H1

0 (Ω)
Iλ(u)|H1

0 (Ω),

where Iλ(u)|H1
0 (Ω) is a restricted of Iλ(u) on H1

0(Ω), that is,

Iλ(u)|H1
0 (Ω) =

1
2

∫
Ω

(
|∇u|2 + λV(x)u2)dx +

1
4

∫
Ω

G(x)ϕuu2dx −
∫

Ω
F(x, u)dx.

Similar to the proof of Theorem 1.2, it is easy to prove that c̃ < 0 can be achieved. Since
H1

0(Ω) ⊂ Eλ for all λ > 0, we derive

c ≤ c̃ < 0 for all λ > Λ0.

Proof of Theorem 1.5. Inspired by the ideas of Sun and Wu [36], we give the proof as follows.
For any λn → ∞, let un := uλn be the critical point of Iλn obtained in Theorem 1.2, then

Iλn(un) ≤ c̃ < 0, (4.1)

and

Iλn(un) =
1
2

∫
R3

(
|∇un|2 + λV(x)u2

n
)

dx +
1
4

∫
R3

G(x)ϕun u2
ndx −

∫
R3

F(x, un)dx

≥ 1
2
∥un∥2

λn
−

2

∑
i=1

τ
βi
2 |ci| 2

2−βi
∥un∥βi

λn
,

showing that
∥un∥λn ≤ C, (4.2)

where C is independent of λn. Thus, we may assume that un ⇀ ũ in Eλ and un → ũ in
Lr

loc(R
3) for r ∈ [2, 6). It follows from Fatou’s Lemma that

∫
R3

V(x)|ũ|2dx ≤ lim inf
n→∞

∫
R3

V(x)|un|2dx ≤ lim inf
n→∞

∥un∥2
λn

λn
= 0,

which implies that ũ = 0 a.e. in R3\V−(0) and ũ ∈ H1
0(Ω) by (V3). Then for any φ ∈ C∞

0 (Ω),
since ⟨I′λn

(un), φ⟩ = 0, it is easy to verify that∫
Ω
∇ũ∇φdx +

∫
Ω

G(x)ϕũũφdx −
∫

Ω
f (x, ũ)φdx = 0,
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which implies that ũ is a weak solution of Eq.(1.5) by the density of C∞
0 (Ω) in H1

0(Ω).
Next, we show that un → ũ in Lr(R3) for r ∈ [2, 6). Otherwise, by Lions’ vanishing lemma

[27], there exist δ > 0, ρ > 0 and xn ∈ R3 such that∫
Bρ(xn)

|un − ũ|2dx ≥ δ.

Since un → ũ in L2
loc(R

3) as |xn| → ∞ and n → ∞. Therefore, meas
{

Bρ(xn) ∩ Vb
}
→ 0 as

n → ∞. It follows from the Hölder inequality that

∫
Bρ(xn)∩Vb

|un − ũ|2dx ≤
(
meas{Bρ(xn) ∩ Vb}

) 2∗−2
2∗
(∫

R3
|un − ũ|2∗dx

) 2
2∗

→ 0 as n → ∞.

Then for n sufficiently large,

∥un∥2
λn

≥ λnb
∫

Bρ(xn)∩{x∈R3 :V(x)≥b}
|un|2dx

= λnb
∫

Bρ(xn)∩{x∈R3 :V(x)≥b}
|un − ũ|2dx

= λnb
(∫

Bρ(xn)
|un − ũ|2dx −

∫
Bρ(xn)∩Vb

|un − ũ|2dx
)

→ ∞ as n → ∞,

which is a contradiction with (4.2). Next, we prove that un → ũ in H1(R3). By virtue of
⟨I′λn

(un), un⟩ = ⟨I′λn
(un), ũ⟩ = 0 and the fact that un → ũ in Lr(R3) for r ∈ [2, 6), we derive

lim
n→∞

∥un∥2
λn

= lim
n→∞

(un, ũ)λn = lim
n→∞

⟨un, ũ⟩ = ∥ũ∥2.

Observe that ∥un∥ ≤ ∥un∥λn , therefore,

lim sup
n→∞

∥un∥2 ≤ ∥ũ∥2.

On the other hand, from the weak semi–continuity of norm, we have

∥ũ∥2 ≤ lim sup
n→∞

∥un∥2.

Therefore,
un → ũ in H1(R3).

It follows from (4.1) that

1
2

∫
R3

|∇ũ|2dx +
1
4

∫
R3

G(x)ϕũũ2dx −
∫

R3
F(x, ũ)dx ≤ c̃ < 0,

which implies that ũ ̸= 0. The proof is complete.
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