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Abstract. In this paper we obtain the interior optimal C** regularity of weak solutions
for the following quasilinear elliptic equations with Orlicz growth in divergence form

—diva(x,Du) = —divF+f inQ CR",
including the following two special models

p—2

—div ((ADu -Du) 2 ADu) = —divF+f

and
—2
—div ((ADu : Du)pT In’ (1 + (ADu - Duﬁ) ADu) = —divF+f

for > 0,n > 2, F(x) € C*(Q) for some 0y € (0,1) and f € L?OC(Q) withn < g <
0o, where the symmetric matrix A(x) of coefficients is a Holder continuous function
satisfying the uniformly elliptic condition. Moreover, we would like to remark that this
work can be viewed as a continuation and follow-up to the works [4,33,34].
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1 Introduction

In this paper we are mainly concerned with the interior optimal C'* regularity estimates for
weak solutions of the following quasilinear elliptic equations with Orlicz growth in divergence
form

—diva(x, Du) = —divF+f in Q C R", (1.1)
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where n > 2, f € L1(Q) for n < q < oo, F(x) € C%0(Q) for some 0y € (0,1) and the vector
field a(x,¢) : Q x R" — R" is Cl-regular in the variable ¢ satisfying

la(x,&)| + [Dea(x, &) 18] < Co(IE]), (1.2)
Dea(x, &)y -1 > Co' (&)1, (1.3)
|a(x1,6) —a(x2, &) < w (|x1 — x2) @(IS])- (1.4)

Here w : [0,+o) — [0, +00) belongs to C* ([0, +0)) for some ¢ € (0,1), w(0) = 0 and the
function ¢(t) : [0, +00) — [0, +00) belongs to C! ([0, +0)) satisfying

t' (1) <su tp'(t) (1.5)

O<io=tl"0m) SS9 ) — 0=

Actually, the two special models of (1.1) are the nonhomogeneous p-Laplacian equation with
varying coefficients in divergence form

-2
—div ((ADu Du)'T ADu) = —divF+f
and the nonhomogeneous p-Laplacian equation with varying coefficients and the logarithmic

growth in divergence form

p—2

—div ((ADu .Du)'7 In’ (1 + (ADu - Du)%) ADu) = —divF+f

for 8 > 0.

It is well-known that the classical elliptic p-Laplacian equation
—div <|Du\p_2 Du) =f
can be derived from the variational problem

P(u,Q)):= min P(v,Q),
v—geWy? (Q)

where

P(v,Q) := /Q <; |Vol|? —fv> dx for any v € W (Q).

Then P (v, Q)) attains its minimum at a unique function u, which implies u is the weak solution
of elliptic p-Laplacian equation with the boundary condition u = g on d(), satisfying

/Q [|Du!p_2 Du - D¢ —fcp} dx =0 forany ¢ € WS’”(Q).

In reality, the nonlinear elliptic and parabolic PDEs can be derived from many important
practical problems among the natural sciences: nonlinear elasticity mechanics and dynamic
glaciology, non-Newtonian fluid mechanics, turbulent flows of a gas in porous media, thermo-
dynamics and so on. At the same time, they can also come from some financial and economic
problems and simultaneously the solutions of the nonlinear PDEs and their properties illus-
trate the features of these problems. Since the structure models in some real financial products
and the option price can be reduced to some nonlinear PDE boundary problems, it is useful to
adopt the existing theory and methods of PDEs as a fundamental approach to the study of the
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financial and economic theory (see [22]). For these reasons it is very meaningful and useful
for us to study various kinds of regularity estimates for the nonlinear elliptic and parabolic
PDEs with different coefficients and domain conditions. There have been a wide research
activities [5,6,8-10,17,23,25] on LP-type estimates for weak solutions of elliptic quasilinear
equations of p-Laplacian type with different coefficient and domain assumptions. On the
other hand, Duzaar, Kuusi and Mingione [19,20,24] also made a deep study of sharp local a
priori estimates and regularity results for solutions to

—diva(x, Du) =y,

whose prototype is the elliptic p-Laplacian equation with coefficients and the right-hand side
measure y

—div <’y(x) |Du|P 2 Du) = 1.

Moreover, Cianchi and Maz’ya [12-14] proved global Lipschitz regularity and sharp estimates
for weak solutions of
div (¢' (|Vu|) Vi) = f inQ (1.6)

with the condition (1.5). Meanwhile, Baroni [7] proved pointwise gradient estimates via linear
Riesz potentials for solutions to the following nonlinear elliptic equations with the right-hand
side measure

div (¢’ (|Vu|) Vu) = p.

The theory of C!* regularity estimates for weak solutions of the elliptic p-Laplacian equa-
tion
—div (|Du|p_2 Du) =0 (1.7)

is well-known. Evans, Lewis, Tolksdorf, Uhlenbeck and Ural’ceva (see [21,26,29-31] and
references therein) have studied the theory of C'* regularity estimates for weak solutions
of the elliptic p-Laplace equation (1.7) and the more general cases with variable coefficients.
Moreover, Wang [32] used compactness methods to give a different proof of the interior C'*
regularity for weak solutions of (1.7). In addition, Colombo and Mingione [15,16] obtained
the interior C'* regularity of weak solutions for a class of variational problems whose model
is given by the functional

w»—>/(|Dw|p+u(x) |Dw|") dx.

A longstanding conjecture in elliptic regularity theory inquires whether a WP function whose

p-Laplacian is bounded is locally of class C?" = clr, Recently, Aratjo, Teixeira and Urbano
[2] proved the planar counterpart of C”,—regularity in the plane that weak solutions of the
elliptic degenerate p-Laplacian equation

—div (]Du|p*2 Du) = f(x) inQC R?

with a bounded source f € L® are locally of class C?' = Cl’P%l, in which they gave the precise
control on a new oscillation of weak solutions in terms of the magnitude of its gradient and
then improved C'* regularity estimates by geometric iteration. Moreover, we would like to
remark that this regularity in [2] is optimal. Subsequently, Aradjo, Teixeira and Urbano [3]
solved the CP'-regularity conjecture for weak solutions of the degenerate elliptic p-Laplacian
equation in higher dimensions n > 2. Very recently, Aratjo and Zhang [4] established the



4 X. Wang and F. Yao

interior optimal sharp C* estimates for weak solutions of quasilinear elliptic equations of
p-Laplacian type with varying coefficients

—diva(x,Du) = f inQ CR",

where n > 2, f € L1(Q) for n < g < oo and the vector field a(x,¢) : QO x R" — R” is
Cl-regular in the variable ¢ satisfying the following structural assumptions

la(x,&)| + |Dea(x, €)[ 1] < ClgIP—,
Dea(x, &)y -1 = CIg|"=2[y[?,
la(x1,8) —a(x2, &) < w (|x1 — x2]) [6]77
with w € C%(Q) for some ¢ € (0,1), w(0) = 0 and f € L9(Q). Additionally, Ding, Zhang
and Zhou [18] then studied the optimal C!** estimates for the elliptic p(x)-Laplacian equation
div (a(x) | Du| P2 Du) = divh(x) + f(x) in Q.

Just recently Teixeira [28] undertook further research of the p-degenerate elliptic equations in
a heterogeneous medium

—diva(x,Du) = f(x,u,Du) in (),
which cover the following degenerate-elliptic nonhomogeneous PDE of the general form

—div (|Du|”’_2 Du) = f(x,u,Du) in Q.

For the sake of convenience, we first elaborate on some definitions and fundamental results
about the general Orlicz spaces, which have been widely used in the area of analysis as one
of the most natural generalizations of Sobolev spaces (see [1,27]). A function @ : [0, +00) —
[0, +00) is said to be a Young function if it is convex and ®(0) = 0. Moreover, a Young function
® is called an N-function if 0 < ®(f) < oo for t > 0 and

Additionally, we call that a Young function @ belongs to A; if there exists a positive constant
K such that
®(2t) < KP(t) foranyt > 0.

Furthermore, we say that a Young function ® belongs to V; if there exists a number 6 > 1

such that ®(0
D(t) < éet) for any t > 0.

Definition 1.1 (see [1]). The Orlicz class K®(Q) is the set of all measurable functions ¢ : Q) — R
satisfying
P dx < oo.
[ (gl < oo

The Orlicz space L®(Q) is the linear hull of K®(Q)). Furthermore, we define W% (Q) as
WL2(Q) = {u e L) | Du € Lq’(Q)}.

The space W&’q)(ﬂ) is the closure of C¥(Q) in WY®(Q)).
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In this paper we define

t
D(t) == / o(t)dt for t > 0. (1.8)
0
Then from (1.5) it is easy to check that
¢(t) is strictly increasing and continuous over [0, +-o0], (1.9)

and
d(t) is increasing over [0, +oo]. (1.10)

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of
weak solutions.

Definition 1.2. A function u € W-®(Q) is a local weak solution of of (1.1) in () if

loc

/Q [a(x,Du) - D¢ —F - D¢ — f¢p]dx =0
holds for any ¢ € C°(Q)).

A direct example
forp >1,

which satisfies the elliptic p-Laplacian equation
div (|Dv|"’_2 Dv) =n,

shows that if the optimal regularity for the elliptic p-Laplacian equations is C*, then we can
get to know that « is surely smaller than ﬁ. In particular, in [34] the authors proved that
weak solutions for a class of the homogeneous quasilinear elliptic equations

div (¢' (|Vu|[) Vu) =0 in Q (1.11)

with f,w = 0 are locally C* for some a € (0,1) depending on n,i,4,s,. Following the same
approach as Definition 3 of the article [28], we define the maximal C*» regularity for weak
solutions of (1.11) as corresponding to the maximal a,, € (0,1], where a,, is given by

a € (0,1) | h belongs to Cllof(Q) for every local weak solution
Ky 1= SU .
" P h e Wr®(Q) of (1.11) with the condition (1.5)

loc

Furthermore, in [33] authors have also extended the corresponding results in [34] to the non-
uniformly nonlinear elliptic equations.

Now let us state the main result of this work.

Theorem 1.3. Assume that the conditions (1.2)—(1.5) hold and let u € Wllo’cq) (Q)) be a local weak
solution of (1.1). Then we have u € C1* (Q)) for some & € (0,1), where

loc

o = min {ay — € &g, 5.0} (1.12)
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for any positive number € less than «,,, and

min{a,ao,l - Z} -min{l,sl} ifn<g<oo,

a

“U,iu,smq = 1 (1.13)
min{a,ao}-min{l,s} if g = oo.
a

Moreover, for every Q) CC Q) the following estimates
sup 1) 4Bl ¢ (1.14)

xyeQ ‘x - y|

x#y

and b b
qup 1240 = DUl _ w15

xyeQ ‘x - y|

X7y
hold, where C is a positive constant depending on n,i,, s,,a, 0, 0p, Hunl,¢(Q), () [F]CO,UO(Q),
loc loc loc

£l 11 (o) and dist (QY,00Q0).

2 Auxiliary lemmas

In the following, we will introduce several auxiliary lemmas, which will be employed in the
proof of the conclusions stated in Theorem 1.3. Moreover, we stress the point that the proof
is much influenced by the papers [2-4,11]. Let us first state a crucial lemma under present
assumptions on the function ¢(t).

Lemma 2.1. If ¢(t) satisfies (1.5), then we find that
0g(t) < @(0t) <O g(t) foro>1 (2.1)

and
CO="1g/(t) < ¢'(6t) < CO Lo/ (t) forf > 1. (2.2)

Proof. Firstly, (1.5) implies that

; /
la < 7' (6t) gs—” for any t > 0,

>
-
3o
—
>
-
SN—
D>
-

which implies that

[imsiuls]- %

So, we can get the desired estimate (2.1)

/ Sa 4.

0 p(t) < @(6t) < 0% ¢(t) ford > 1.
On the other hand, by using (1.5) again we deduce that

. (01) ¢(61)
“ oot ot

< ¢'(0t) < s, for any t > 0
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and
iaqogt) <¢'(t) < saq[)fft) for any t > 0,
which imply, thanks to (2.1), that

P ia Sa
Loilg(t) < i? g’t(t) < g(01) < 5,2 < Sugugpy.

Thus, we finish the proof of this lemma. O

In the subsequent analysis, we proceed to verify that the weak solution u of equation (1.1)
can be approximated by that of a reference equation with constant coefficients, which exhibits
favorable analytical properties. Before proceeding, we first define the ball B,(x¢) as the open
ball with center xo and radius r, and specify B, as B, := B,(0).

Lemma 2.2. Assume that the conditions (1.2)—(1.5) hold and let u € W1’¢(Q) be a local weak solution

loc

of (1.1) in Q D By with ||u| ) < 1and u(0) = 0. For any € > 0, there exists a positive constant
0, depending on n,q,1i,,54,0, 09 and €, such that if

1 f1La(py) <6, [Flcomn ) <0

and
sup la(x,§) —a(0,8)| < o(IE])s,

then there exists a function h weak solution of
—diva(Dh) =0 in B4 with h(0) =0 (2.3)
for a constant coefficient field a satisfying (1.2)—(1.5) and w = 0, such that

sup i — | + |Du(0) — Dh(0)| < e.
B2

Proof. We prove this by contradiction. Suppose, for the sake of contradiction, that the result is

false. Then there exist €y > 0, {f; hiy {F; 1 {aj(x, C)};‘;l and {u]-}]f"’zl satisfying

/Q [a;(x, Duj) - D¢ —F;- D¢ — fip]dx =0 for any ¢ € C5°(Q)), (2.4)

[l (By) <1,

|a;(x,&) — a;(0,)| < =o(|E]),

so that for any weak solution & of the homogeneous constant-coefficient equation (2.3) in Bs /4
satisfying 1(0) = 0, we have

%up |uj — h| + |Du;j(0) — Dh(0)| > eo. (2.5)
1/2
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In light of this, a standard regularity estimate for weak solutions of (2.4) guarantees that
the sequence {uj};?‘;l satisfies |Du;| < L/2 for some L > 0 and all x € Bs/4, and forms a

pre-compact sequence in the C!-topology (see [7, Corollary 1.3]). This further implies the
existence of a function u«, € C! with 1 (0) = 0 and

sup |uj — Ueo| + [Duj(0) — Duco(0)] — 0 as j — +oo. (2.6)
Bi/2
Define
bj(x, &) = aj(x, O)xqje1<ey + Lx(jei>1y-
Since {b;(0, )} is equicontinuous and uniformly bounded, by the Ascoli-Arzela theorem, we
can find b (0, ) such that
b;(0,-) = be(0,-) uniformly in By := {|¢| < L} asj— oo,

which implies that
l0(x,8) — bo(0,8)] < q)(lél)} 1 10(0,8) — be(0,8)| 5 0 as j — +oo 2.7)

uniformly in Bs,4 X Br. Now, applying (2.4), (2.6)—(2.7) and standard arguments, we find that
s is a weak solution of the constant-coefficient equation

/ bs (0, Do) - Dpdx =0 for any ¢ € C5°(B3/4) (2.8)
B34

with 14(0) = 0. However, this contradicts (2.5) by (2.6) because u« can serve as the function
h described in (2.5). Thus, the proof is complete. O

In addition, by making full use of the above lemma we are able to prove the following
crucial results which play an essential role in the subsequent discussion.

Lemma 2.3. Assume that the conditions (1.2)—(1.5) hold and let u € Wllo’CqD(Q) be a local weak solution
of (1.1) in Q D By with ||u|~p,) < 1and u(0) = 0.
1. There exist two positive constants 5y and py € (0,1), depending on n,q, i, ., 0,00 and «, such
that if
1 fllzaesy) < 00, [Flcow ) < do, Sgp |a(x, &) —a(0,8)] < @(|])édo (2.9)
1

and

1
|Du(0)| < ZPS/

then we have
sup |u(x)| < p}**.
BPO

2. If
1.
IDu(0)] < i
for some positive integer i € IN and (2.9) hold, then we have
sup lu(x)| < Coy ™,

%

where C depends on n,q,1,,5,, 0, 0p and «.
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3. If
Du(0)] < 3¢
forany 0 < p < po < 1and (2.9) hold, then we have
sup |u(x)| < Cp'**,
BP
where C depends on n,q,i,,54,0,0p and «.

Proof. (1) In accordance with Lemma 2.2, for any € > 0, there exists a weak solution & to the
constant-coefficient equation (2.3) satisfying

|Du(0) — Dh(0)| <€

and
sup [u] < ¢+ sup |1
B, B,
for any 0 < p < 1/2. Meanwhile, from the interior C*"-regularity estimates for the constant
coefficient equation (2.3) together with the fact that #(0) = 0, we conclude that

sup || < Co'**" 4 [Dh(0)|p,
BP
where the positive constant C > 1 depends on n, i, and s,, which implies that
sup |u| < e+ Cp(l]”‘"’ + (€ + |Du(0)]) po
BPO
1
<e+Coptr + (e + 4p8‘> 00

1+
<pp"

by choosing pp = (4(:)%% and € = %p(l)m'

(2) We prove it by induction. From (1) we know that the result is true for i = 1. Let us
assume the conclusion is true for 1,2, ...i. Suppose u satisfies

Du(0)] < 2ol 210)

We denote u;(x) by

u (phx
) = )
Po

Then u;(x) solves
—diV{Jli(X, Dui) = fz in Bl,

where

ai(x,§) == a(p;)é;ﬁ%a :
0
£ POf (%X),
9(p5)
_ F(ppx)

o(of)

7
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We set ( , )
Pyt
Pi(t) == .
: ¢(0g')
It is easy to check that a;(x, ) and ¢; still satisfy the assumptions (1.2)-(1.5), and f;(x) and
F;(x) satisfy

i(1-1)

i(1—2—us,)
1filla s, < ‘;f(pm) Uy <oo " flluagey < b
0
and
|F;(x) — Fi(y)|
[Fz] 0,07 = Su - 00
co(By) x,ye}lzl |x_y| ’

1 |F(px) — F(ohy)|
in su 0o
P(04') xyeB, lx —y|

i(To

Po
S n [F] 0,07
o))
< PE)(UO_“S”) [Fl coon sy
< 0o

in view of (1.12), (1.13), (2.1) and the facts that

n
1—a—zxsa >0 and op—as, > 0.
Moreover, using the inductive result for the case i, one can deduce that
1 o
IDui(0)] < 48

by the assumed condition (2.10). Then it follows from (1) that

sup |u;(x)| < pp"™.

B 0]
Finally, the definition of u; implies that

Sup |7/l(x)| S p(()i-‘rl)(l-‘rlx)l

BPZ)H
which completes the proof of (2).
(3) For 0 < p < po < 1, there exists a positive integer k € IN such that p’é“ <p< p'é. By
the given conditions, we derive

1 14
< Zo% < Zpfr
1Du(0)| = 70" = 760
and then by (2),
sup ()] < sup u(x)| < o) = gy 1HplF ) < p () pia,
0 Plé

This completes our proof. O
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Our approach is based on the following two oscillation estimates, which are similarly to
the classical Taylor expansion, themselves interesting and can reveal some essential qualities
or characteristics of the solutions to the problem (1.1). More precisely, they can give the precise
control on the oscillation of weak solutions to the problem (1.1) in term of the magnitude of
the gradients

sup |u(x) —u(0)| < r'** + [Du(0)|r.
It is noteworthy that we shall need to solve some difficulties cased by the differences of balls
B, with large radii: |Du(0)| < r and with small radii: r < |Du(0)|. Next, we shall first
derive the following sharp regularity estimates for the large radii. Moreover, we would like to
remark that the positive constants C are called universal if they only depend on 1, i, 5,4, o, 0,4,

lullwre ) 10l o), [l como ) I1f iy () and dlist (Y, 0Q).

loc

Proposition 2.4. Assume that the conditions (1.2)—(1.5) hold and let u € Wl}f (Q) be a local weak
solution of (1.1). Let O CC Q) and let xo € (), there exist universal positive constants x, C and p
such that if

|Du(x0)| < xp* @11)

for some 0 < p < po with By, (x9) C QO CC Q, then we have

sup |u(x) — u(xg)| < Cp'™* (2.12)
Bp(xo)
and
sup |u(x) — u(xg) — Du(xp) - (x — x0)| < Cp ™ (2.13)

BP(XO)
forany0 < p <p<po <1l

Proof. We denote v(x) by

o(x) = u(xo + Aogx) — u(xp)
: B,

and then v(x) solves
—diVﬂo(x, DU) = —diVFO+f0 in By,

where

@ wfl (50)
27 dy

Ap = min {1, } with dy = dist (Y, 0Q)),

1 L
BO = Mmax {1,2||MHL00(Q/), (Hf||Lq(Q/)5O_1> a , ([F]CO,UO(Q/)(S()_1> a } ,

By
20(x,2) = a(xo —l—A;)x, 05),
o (%)

A
. Aof(xo0 + Aox)

fo: fP(%) ,

o Fo(XO + on)

o(%)
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We set

@o(t) :== , (%)

It is easy to check that ao(x, ) and ¢ still satisfy the assumptions (1.2)—(1.5), v(0) = 0,
10llLeB,) <1,

a(xo + Aox, %C) a(xg, Bog)

0

o(B) ()
< w (Ao|x|) ¢o([¢])
< dopo([S]),

|a0(x, ér) - a0<01 €>| =

1_n
A q

I follLaca,) < OBO
o (%)

1,

£ llzs vy

1 i
< 4 By |l fll Lacery
< By || fllLacery < o,

AQ
[FO]CO’VO(Bl) S T[F]Co,zro (Q/)
o (%)
S A8—0+la BO_ZH [F] CO/”O (Q/)
< do
in view of (1.5) and (2.1), and
|Do(0)] < Cp*

for p < pp, by the assumed condition (2.11). Then by Lemma 2.3, we obtain
sup [o(x)| < Cp'™*
BP
for some 0 < p < pg, which implies that

sup [u(x) —u(xo)| < Cp'™* < C (Agp)" ™.

BAOp (x0)

Thus, we can finish the proof of (2.12)=(2.13) by choosing p = Agpo < po. O

Here we are going to prove another regularity estimates in the balls B, with small radii
r < |Du| which enable the vector field a(x,&) can be viewed as essentially a function with
linear growth in the variable ¢.

Proposition 2.5. Assume that the conditions (1.2)—(1.5) hold and let u € Wllo’cq)(Q) be a local weak
solution of (1.1). Let O CC Q and let xy € Q, there exist universal positive constants x, C and p
such that if

|Du(xg)| > xp* (2.14)
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for 0 < p < p with B5(xg) C Y CC Q, then for 0 < p < f we have

sup |u(x) —u(xo)| < Cp" (2.15)
Bp(xo)
and
sup |u(x) — u(xo) — Du(xo) - (x — x0)| < Cp' ™. (2.16)

Bp(xo)

Proof. We define v(x) by
o(x) = T P2) Zu(x0)

‘O}F-HX
and then v(x) solves
—diva,(x,Dv) = —divF.(x)+f.(x) in By, (2.17)
where
po = [ Du(x)]]",
a(xo + p+x, piC)
a,(x,¢) = ,
8= T o)
£, i Pf 0t %)
¢ (p%)
F(x0 + p«x)
F, = ———=.
¢ (0%)
We set

24
at
¢*(t) = go(pa )'
¢(p%)
It is easy to check that a.(x,§) and ¢, still satisfy the assumptions (1.2)—~(1.5). Now we divide
into two cases.

Case 1: p. < p < 1, where p is defined in Proposition 2.4. Then we find that
|Du(xo)| = Kot < xp".

From Proposition 2.4, we know that

sup |u(x) —u(xo)| < Col™ (2.18)
Bp* (XO)
and
sup [u(x) — u(xo) — Du(xo) - (x — x0)| < Coi**, (2.19)
BP* (xo)
which implies that
sup |v(x)| < C sup M <C.
B By, (xo) P

Consequently, by applying the C’-estimates to Dv, there exists 7, > 0 such that
K

oscg,, |Dv| < 5
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Since Dv(0) = «, it follows that |[Dv(x)| > x/2 in Br,. Thus, there is a universal constant
co > 1 satisfying
¢! < |Dv(x)| <co in B,

At this stage, the nonlinear PDE (2.17) can be treated as essentially linear because
|a.(x, )| + [Dea.(x,5)|I1Z] < Co' (co) I2],
Dra. (e O 0 = ¢ () i
|a- (x1,€) — 4. (x2,€)| < Cw (|x1 — x2[) ¢’ (c0) [¢]

in view of (1.5) and Lemma 2.1. Hence, by the C/f estimates for linear equations (see Theo-
rem 3.1 in [4]), we obtain
sup |o(x) — v(0)| < CrP

B,

and

sup |v(x) — v(0) — Dv(0) - x| < Crith
B,

forany 0 <r < t./2 and

B {min {0’,0’0,1 — g} if n <q < oo,

min {c, 0y} if g = oo.
Consequently, we deduce that

sup [u(x) —u(xo)| < Coy™rP < C(pur)"
Bp,r(x0)

and
sup [1u(x) — (o) — Du(xo) - (x — x0)| < CpLHr1 B < C(p,r)'*
Bp,.r(x0)

for any 0 < r < 7,./2, which implies that

sup [1u(x) — u(x0)| < Cp*
BP(XO)

and
sup [1(x) — u(xo) — Du(xo) - (x — x0)| < Cp***
BP(XO)

for any 0 < p < T.0+/2. On the one hand, if T,p./2 < p < p. < p <1, (2.18) implies that

2 o
sup |u(x) —u(x)| < Coltf<Cpt<C () p" < Cp*
By (o) T
and then
2 1+«
sup }u(x) —u(xo) — Du(xp) - (x — xo)‘ <Cpl™<cC (T> plt® < Ccol™,
Bp(x()) *

which completes the proof of Case 1.
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Case 2: p, > p. Then the definition of p, implies that
IDu(xo)| = xpt > xp*.

Since the argument applied previously in Case 1 for the function v can also be directly used
to the function u for the universal constant xp* > 0, we can directly get the desired results
(2.15)—(2.16) for any 0 < p < p’ with some positive constant p’ and then finish the final proof
of this proposition by choosing g := min{p’, 5}. O

3 Final proof

Finally, we shall combine the previous Proposition 2.4 and Proposition 2.5 for the large radii
and small radii cases respectively to finish the proof of the main result in this paper.

Proof of Theorem 1.3. From Proposition 2.4 and Proposition 2.5 we can find that for any com-
pact subset Q) of Q) there exist positive constants x,C and g, depending on #,i,,5,, &, 0,09,
Hunllu,:p(Q), Hch%;’(Q)' [F]CO,VO(Q), HfHLZ)E(Q) and dist (€Y, 9Q)), such that for 0 < p < § < 1 with

loc

Bs(xp) C O CC Q) we have
sup |u(x) —u(xo)| < Cp* (3.1)
By (o)
and
sup [(x) — #(xo) — Du(xo) - (x — x0)| < Cp'*?, (62)

where « is defined in (1.13). Let x,y € () and R = |x — y| < ¢ < 1. Then from (3.1) we deduce
that
lu(x) —u(y)| < CR™

And then we can conclude that

u(x) — )| _

sup
xyeqy |x - y|a
x#Y
holds true by a standard finite covering argument, which implies that (1.14) is true. Fur-
thermore, without loss of generality we may as well assume that x = (x1,x’) € O and y =
(x2,x') € (Y with x' € R"~1. At this time we can obtain that R = |x —y| = |x; —x2| < p < 1,
du(x)

u(y) = u(x) + Txl(xz —x1)+0 (!x1 — x2|"‘+1)

and

() = uy) = 2 (1) 0 (1 -l ),

which implies that
du(x) du(y)
8x1 E)x1

|X2 — X1| = O (]xl — XZ‘“JA) .

Therefore, we can reach the conclusion that

ou(x) ou(y)

ax1 axl

sup ——ax—
x,yel(?’ ’x - y’“
x#y
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by a standard finite covering argument. Similarly, we also can prove that

du(x)  du(y)
9x; 9x; .
supx—ang for2 <i<n.
xyeq ’x - y|
x#y
Thus, we can finish the final proof of the conclusion (1.15). O
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