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Abstract. In this paper we obtain the interior optimal C1,α regularity of weak solutions
for the following quasilinear elliptic equations with Orlicz growth in divergence form

−div a(x, Du) = −div F+ f in Ω ⊂ Rn,

including the following two special models

−div
(
(ADu · Du)

p−2
2 ADu

)
= −div F+ f

and

−div
(
(ADu · Du)

p−2
2 lnθ

(
1 + (ADu · Du)

1
2
)

ADu
)
= −div F+ f

for θ > 0, n ≥ 2, F(x) ∈ C0,σ0(Ω) for some σ0 ∈ (0, 1) and f ∈ Lq
loc(Ω) with n < q ≤

∞, where the symmetric matrix A(x) of coefficients is a Hölder continuous function
satisfying the uniformly elliptic condition. Moreover, we would like to remark that this
work can be viewed as a continuation and follow-up to the works [4, 33, 34].
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1 Introduction

In this paper we are mainly concerned with the interior optimal C1,α regularity estimates for
weak solutions of the following quasilinear elliptic equations with Orlicz growth in divergence
form

−div a(x, Du) = −divF+ f in Ω ⊂ Rn, (1.1)
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where n ≥ 2, f ∈ Lq(Ω) for n < q ≤ ∞, F(x) ∈ C0,σ0(Ω) for some σ0 ∈ (0, 1) and the vector
field a(x, ξ) : Ω × Rn → Rn is C1-regular in the variable ξ satisfying

|a(x, ξ)|+
∣∣Dξ a(x, ξ)

∣∣ |ξ| ≤ Cφ(|ξ|), (1.2)

Dξ a(x, ξ)η · η ≥ Cφ′(|ξ|)|η|2, (1.3)

|a(x1, ξ)− a(x2, ξ)| ≤ w (|x1 − x2|) φ(|ξ|). (1.4)

Here w : [0,+∞) → [0,+∞) belongs to C0,σ ([0,+∞)) for some σ ∈ (0, 1), w(0) = 0 and the
function φ(t) : [0,+∞) → [0,+∞) belongs to C1 ([0,+∞)) satisfying

0 < ia := inf
t>0

tφ′(t)
φ(t)

≤ sup
t>0

tφ′(t)
φ(t)

=: sa < ∞. (1.5)

Actually, the two special models of (1.1) are the nonhomogeneous p-Laplacian equation with
varying coefficients in divergence form

−div
(
(ADu · Du)

p−2
2 ADu

)
= −divF+ f

and the nonhomogeneous p-Laplacian equation with varying coefficients and the logarithmic
growth in divergence form

−div
(
(ADu · Du)

p−2
2 lnθ

(
1 + (ADu · Du)

1
2

)
ADu

)
= −divF+ f

for θ > 0.

It is well-known that the classical elliptic p-Laplacian equation

−div
(
|Du|p−2 Du

)
= f

can be derived from the variational problem

P(u, Ω) := min
v−g∈W1,p

0 (Ω)

P(v, Ω),

where

P(v, Ω) :=
∫

Ω

(
1
p
|∇v|p − f v

)
dx for any v ∈ W1,p(Ω).

Then P(v, Ω) attains its minimum at a unique function u, which implies u is the weak solution
of elliptic p-Laplacian equation with the boundary condition u = g on ∂Ω, satisfying∫

Ω

[
|Du|p−2 Du · Dϕ − f ϕ

]
dx = 0 for any ϕ ∈ W1,p

0 (Ω).

In reality, the nonlinear elliptic and parabolic PDEs can be derived from many important
practical problems among the natural sciences: nonlinear elasticity mechanics and dynamic
glaciology, non-Newtonian fluid mechanics, turbulent flows of a gas in porous media, thermo-
dynamics and so on. At the same time, they can also come from some financial and economic
problems and simultaneously the solutions of the nonlinear PDEs and their properties illus-
trate the features of these problems. Since the structure models in some real financial products
and the option price can be reduced to some nonlinear PDE boundary problems, it is useful to
adopt the existing theory and methods of PDEs as a fundamental approach to the study of the
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financial and economic theory (see [22]). For these reasons it is very meaningful and useful
for us to study various kinds of regularity estimates for the nonlinear elliptic and parabolic
PDEs with different coefficients and domain conditions. There have been a wide research
activities [5, 6, 8–10, 17, 23, 25] on Lp-type estimates for weak solutions of elliptic quasilinear
equations of p-Laplacian type with different coefficient and domain assumptions. On the
other hand, Duzaar, Kuusi and Mingione [19, 20, 24] also made a deep study of sharp local a
priori estimates and regularity results for solutions to

−div a(x, Du) = µ,

whose prototype is the elliptic p-Laplacian equation with coefficients and the right-hand side
measure µ

−div
(

γ(x) |Du|p−2 Du
)
= µ.

Moreover, Cianchi and Maz’ya [12–14] proved global Lipschitz regularity and sharp estimates
for weak solutions of

div
(

φ′ (|∇u|)∇u
)
= f in Ω (1.6)

with the condition (1.5). Meanwhile, Baroni [7] proved pointwise gradient estimates via linear
Riesz potentials for solutions to the following nonlinear elliptic equations with the right-hand
side measure

div
(

φ′ (|∇u|)∇u
)
= µ.

The theory of C1,α regularity estimates for weak solutions of the elliptic p-Laplacian equa-
tion

−div
(
|Du|p−2 Du

)
= 0 (1.7)

is well-known. Evans, Lewis, Tolksdorf, Uhlenbeck and Ural’ceva (see [21, 26, 29–31] and
references therein) have studied the theory of C1,α regularity estimates for weak solutions
of the elliptic p-Laplace equation (1.7) and the more general cases with variable coefficients.
Moreover, Wang [32] used compactness methods to give a different proof of the interior C1,α

regularity for weak solutions of (1.7). In addition, Colombo and Mingione [15, 16] obtained
the interior C1,α regularity of weak solutions for a class of variational problems whose model
is given by the functional

w 7→
∫ (

|Dw|p + a(x) |Dw|q
)

dx.

A longstanding conjecture in elliptic regularity theory inquires whether a W1,p function whose

p-Laplacian is bounded is locally of class Cp′ = C1, 1
p−1 . Recently, Araújo, Teixeira and Urbano

[2] proved the planar counterpart of Cp′-regularity in the plane that weak solutions of the
elliptic degenerate p-Laplacian equation

−div
(
|Du|p−2 Du

)
= f (x) in Ω ⊂ R2

with a bounded source f ∈ L∞ are locally of class Cp′ = C1, 1
p−1 , in which they gave the precise

control on a new oscillation of weak solutions in terms of the magnitude of its gradient and
then improved C1,α regularity estimates by geometric iteration. Moreover, we would like to
remark that this regularity in [2] is optimal. Subsequently, Araújo, Teixeira and Urbano [3]
solved the Cp′-regularity conjecture for weak solutions of the degenerate elliptic p-Laplacian
equation in higher dimensions n > 2. Very recently, Araújo and Zhang [4] established the
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interior optimal sharp C1,α estimates for weak solutions of quasilinear elliptic equations of
p-Laplacian type with varying coefficients

−div a(x, Du) = f in Ω ⊂ Rn,

where n ≥ 2, f ∈ Lq(Ω) for n < q ≤ ∞ and the vector field a(x, ξ) : Ω × Rn → Rn is
C1-regular in the variable ξ satisfying the following structural assumptions

|a(x, ξ)|+
∣∣Dξ a(x, ξ)

∣∣ |ξ| ≤ C|ξ|p−1,

Dξ a(x, ξ)η · η ≥ C|ξ|p−2|η|2,

|a(x1, ξ)− a(x2, ξ)| ≤ w (|x1 − x2|) |ξ|p−1

with w ∈ C0,σ(Ω) for some σ ∈ (0, 1), w(0) = 0 and f ∈ Lq(Ω). Additionally, Ding, Zhang
and Zhou [18] then studied the optimal C1,α estimates for the elliptic p(x)-Laplacian equation

div
(

a(x) |Du|p(x)−2 Du
)
= div h(x) + f (x) in Ω.

Just recently Teixeira [28] undertook further research of the p-degenerate elliptic equations in
a heterogeneous medium

−div a(x, Du) = f (x, u, Du) in Ω,

which cover the following degenerate-elliptic nonhomogeneous PDE of the general form

−div
(
|Du|p−2 Du

)
= f (x, u, Du) in Ω.

For the sake of convenience, we first elaborate on some definitions and fundamental results
about the general Orlicz spaces, which have been widely used in the area of analysis as one
of the most natural generalizations of Sobolev spaces (see [1, 27]). A function Φ : [0,+∞) →
[0,+∞) is said to be a Young function if it is convex and Φ(0) = 0. Moreover, a Young function
Φ is called an N-function if 0 < Φ(t) < ∞ for t > 0 and

lim
t→+∞

Φ(t)
t

= lim
t→0+

t
Φ(t)

= +∞.

Additionally, we call that a Young function Φ belongs to ∆2 if there exists a positive constant
K such that

Φ(2t) ≤ KΦ(t) for any t > 0.

Furthermore, we say that a Young function Φ belongs to ∇2 if there exists a number θ > 1
such that

Φ(t) ≤ Φ(θt)
2θ

for any t > 0.

Definition 1.1 (see [1]). The Orlicz class KΦ(Ω) is the set of all measurable functions g : Ω → R

satisfying ∫
Ω

Φ(|g|)dx < ∞.

The Orlicz space LΦ(Ω) is the linear hull of KΦ(Ω). Furthermore, we define W1,Φ(Ω) as

W1,Φ(Ω) :=
{

u ∈ LΦ(Ω) | Du ∈ LΦ(Ω)
}

.

The space W1,Φ
0 (Ω) is the closure of C∞

0 (Ω) in W1,Φ(Ω).
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In this paper we define

Φ(t) :=
∫ t

0
φ(τ)dτ for t ≥ 0. (1.8)

Then from (1.5) it is easy to check that

φ(t) is strictly increasing and continuous over [0,+∞], (1.9)

and
Φ(t) is increasing over [0,+∞]. (1.10)

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of
weak solutions.

Definition 1.2. A function u ∈ W1,Φ
loc (Ω) is a local weak solution of of (1.1) in Ω if∫

Ω

[
a(x, Du) · Dϕ−F · Dϕ − f ϕ

]
dx = 0

holds for any ϕ ∈ C∞
0 (Ω).

A direct example

v(x) =
p − 1

p
|x|

p
p−1 =

p − 1
p

|x|1+
1

p−1 for p > 1,

which satisfies the elliptic p-Laplacian equation

div
(
|Dv|p−2 Dv

)
= n,

shows that if the optimal regularity for the elliptic p-Laplacian equations is C1,α, then we can
get to know that α is surely smaller than 1

p−1 . In particular, in [34] the authors proved that
weak solutions for a class of the homogeneous quasilinear elliptic equations

div
(

φ′ (|∇u|)∇u
)
= 0 in Ω (1.11)

with f , w ≡ 0 are locally C1,α for some α ∈ (0, 1) depending on n, ia, sa. Following the same
approach as Definition 3 of the article [28], we define the maximal C1,αm regularity for weak
solutions of (1.11) as corresponding to the maximal αm ∈ (0, 1], where αm is given by

αm := sup

{
α ∈ (0, 1) | h belongs to C1,α

loc (Ω) for every local weak solution

h ∈ W1,Φ
loc (Ω) of (1.11) with the condition (1.5)

}
.

Furthermore, in [33] authors have also extended the corresponding results in [34] to the non-
uniformly nonlinear elliptic equations.

Now let us state the main result of this work.

Theorem 1.3. Assume that the conditions (1.2)–(1.5) hold and let u ∈ W1,Φ
loc (Ω) be a local weak

solution of (1.1). Then we have u ∈ C1,α
loc (Ω) for some α ∈ (0, 1), where

α := min
{

αm − ϵ, ασ,ia,sa,q
}

(1.12)
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for any positive number ϵ less than αm, and

ασ,ia,sa,q :=


min

{
σ, σ0,1 − n

q

}
· min

{
1,

1
sa

}
if n < q < ∞,

min {σ, σ0} · min
{

1,
1
sa

}
if q = ∞.

(1.13)

Moreover, for every Ω′ ⊂⊂ Ω, the following estimates

sup
x,y∈Ω′

x ̸=y

|u(x)− u(y)|
|x − y|α ≤ C (1.14)

and

sup
x,y∈Ω′

x ̸=y

|Du(x)− Du(y)|
|x − y|α ≤ C (1.15)

hold, where C is a positive constant depending on n, ia, sa, α, σ, σ0, ∥u∥W1,Φ
loc (Ω), ∥w∥C0,σ

loc (Ω), [F]C0,σ0
loc (Ω)

,

∥ f ∥Lq
loc(Ω) and dist (Ω′, ∂Ω).

2 Auxiliary lemmas

In the following, we will introduce several auxiliary lemmas, which will be employed in the
proof of the conclusions stated in Theorem 1.3. Moreover, we stress the point that the proof
is much influenced by the papers [2–4, 11]. Let us first state a crucial lemma under present
assumptions on the function φ(t).

Lemma 2.1. If φ(t) satisfies (1.5), then we find that

θia φ(t) ≤ φ(θt) ≤ θsa φ(t) for θ ≥ 1 (2.1)

and
Cθia−1φ′(t) ≤ φ′(θt) ≤ Cθsa−1φ′(t) for θ ≥ 1. (2.2)

Proof. Firstly, (1.5) implies that

ia

θt
≤ φ′(θt)

φ(θt)
≤ sa

θt
for any t > 0,

which implies that ∫ θ

1

ia

θt
dθ ≤ 1

t
ln

[
φ(θt)
φ(t)

]
=

∫ θ

1

φ′(θt)
φ(θt)

dθ ≤
∫ θ

1

sa

θt
dθ.

So, we can get the desired estimate (2.1)

θia φ(t) ≤ φ(θt) ≤ θsa φ(t) for θ ≥ 1.

On the other hand, by using (1.5) again we deduce that

ia
φ(θt)

θt
≤ φ′(θt) ≤ sa

φ(θt)
θt

for any t > 0
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and

ia
φ(t)

t
≤ φ′(t) ≤ sa

φ(t)
t

for any t > 0,

which imply, thanks to (2.1), that

ia

sa
θia−1φ′(t) ≤ ia

θia φ(t)
θt

≤ φ′(θt) ≤ sa
θsa φ(t)

θt
≤ sa

ia
θsa−1φ′(t).

Thus, we finish the proof of this lemma.

In the subsequent analysis, we proceed to verify that the weak solution u of equation (1.1)
can be approximated by that of a reference equation with constant coefficients, which exhibits
favorable analytical properties. Before proceeding, we first define the ball Br(x0) as the open
ball with center x0 and radius r, and specify Br as Br := Br(0).

Lemma 2.2. Assume that the conditions (1.2)–(1.5) hold and let u ∈ W1,Φ
loc (Ω) be a local weak solution

of (1.1) in Ω ⊃ B1 with ∥u∥L∞(B1) ≤ 1 and u(0) = 0. For any ϵ > 0, there exists a positive constant
δ, depending on n, q, ia, sa, σ, σ0 and ϵ, such that if

∥ f ∥Lq(B1) ≤ δ, [F]C0,σ0 (B1)
≤ δ

and
sup

B1

∣∣a(x, ξ)− a(0, ξ)
∣∣ ≤ φ(|ξ|)δ,

then there exists a function h weak solution of

−div ā(Dh) = 0 in B3/4 with h(0) = 0 (2.3)

for a constant coefficient field ā satisfying (1.2)–(1.5) and w ≡ 0, such that

sup
B1/2

|u − h|+ |Du(0)− Dh(0)| ≤ ϵ.

Proof. We prove this by contradiction. Suppose, for the sake of contradiction, that the result is
false. Then there exist ϵ0 > 0, { f j}∞

j=1, {Fj}∞
j=1, {aj(x, ξ)}∞

j=1 and {uj}∞
j=1 satisfying∫

Ω

[
aj(x, Duj) · Dϕ −Fj · Dϕ − f jϕ

]
dx = 0 for any ϕ ∈ C∞

0 (Ω), (2.4)

∥uj∥L∞(B1) ≤ 1,

uj(0) = 0,

∥ f j∥Lq(B1) ≤
1
j
,

[Fj]C0,σ0 (B1)
≤ 1

j
,∣∣aj(x, ξ)− aj(0, ξ)

∣∣ ≤ 1
j

φ(|ξ|),

so that for any weak solution h of the homogeneous constant-coefficient equation (2.3) in B3/4
satisfying h(0) = 0, we have

sup
B1/2

|uj − h|+ |Duj(0)− Dh(0)| ≥ ϵ0. (2.5)
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In light of this, a standard regularity estimate for weak solutions of (2.4) guarantees that
the sequence {uj}∞

j=1 satisfies |Duj| ≤ L/2 for some L > 0 and all x ∈ B3/4, and forms a
pre-compact sequence in the C1-topology (see [7, Corollary 1.3]). This further implies the
existence of a function u∞ ∈ C1 with u∞(0) = 0 and

sup
B1/2

|uj − u∞|+ |Duj(0)− Du∞(0)| → 0 as j → +∞. (2.6)

Define
bj(x, ξ) := aj(x, ξ)χ{|ξ|≤L} + L χ{|ξ|≥L}.

Since {bj(0, ·)} is equicontinuous and uniformly bounded, by the Ascoli–Arzelà theorem, we
can find b∞(0, ·) such that

bj(0, ·) → b∞(0, ·) uniformly in BL := {|ξ| ≤ L} as j → ∞,

which implies that∣∣aj(x, ξ)− b∞(0, ξ)
∣∣ ≤ φ(|ξ|)1

j
+

∣∣aj(0, ξ)− b∞(0, ξ)
∣∣ → 0 as j → +∞ (2.7)

uniformly in B3/4 × BL. Now, applying (2.4), (2.6)–(2.7) and standard arguments, we find that
u∞ is a weak solution of the constant-coefficient equation∫

B3/4

b∞(0, Du∞) · Dϕ dx = 0 for any ϕ ∈ C∞
0 (B3/4) (2.8)

with u∞(0) = 0. However, this contradicts (2.5) by (2.6) because u∞ can serve as the function
h described in (2.5). Thus, the proof is complete.

In addition, by making full use of the above lemma we are able to prove the following
crucial results which play an essential role in the subsequent discussion.

Lemma 2.3. Assume that the conditions (1.2)–(1.5) hold and let u ∈ W1,Φ
loc (Ω) be a local weak solution

of (1.1) in Ω ⊃ B1 with ∥u∥L∞(B1) ≤ 1 and u(0) = 0.

1. There exist two positive constants δ0 and ρ0 ∈ (0, 1), depending on n, q, ia, sa, σ, σ0 and α, such
that if

∥ f ∥Lq(B1) ≤ δ0, [F]C0,σ0 (B1)
≤ δ0, sup

B1

∣∣a(x, ξ)− a(0, ξ)
∣∣ ≤ φ(|ξ|)δ0 (2.9)

and
|Du(0)| ≤ 1

4
ρα

0 ,

then we have
sup
Bρ0

|u(x)| ≤ ρ1+α
0 .

2. If

|Du(0)| ≤ 1
4

ρiα
0

for some positive integer i ∈ N and (2.9) hold, then we have

sup
B

ρi
0

|u(x)| ≤ Cρ
i(1+α)
0 ,

where C depends on n, q, ia, sa, σ, σ0 and α.
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3. If

|Du(0)| ≤ 1
4

ρα

for any 0 < ρ ≤ ρ0 < 1 and (2.9) hold, then we have

sup
Bρ

|u(x)| ≤ Cρ1+α,

where C depends on n, q, ia, sa, σ, σ0 and α.

Proof. (1) In accordance with Lemma 2.2, for any ϵ > 0, there exists a weak solution h to the
constant-coefficient equation (2.3) satisfying

|Du(0)− Dh(0)| ≤ ϵ

and
sup

Bρ

|u| ≤ ϵ + sup
Bρ

|h|

for any 0 < ρ ≤ 1/2. Meanwhile, from the interior C1,αm -regularity estimates for the constant
coefficient equation (2.3) together with the fact that h(0) = 0, we conclude that

sup
Bρ

|h| ≤ Cρ1+αm + |Dh(0)|ρ,

where the positive constant C > 1 depends on n, ia and sa, which implies that

sup
Bρ0

|u| ≤ ϵ + Cρ1+αm
0 + (ϵ + |Du(0)|) ρ0

≤ ϵ + Cρ1+αm
0 +

(
ϵ +

1
4

ρα
0

)
ρ0

≤ ρ1+α
0

by choosing ρ0 = (4C)
1

α−αm and ϵ = 1
4 ρ1+α

0 .
(2) We prove it by induction. From (1) we know that the result is true for i = 1. Let us

assume the conclusion is true for 1, 2, . . . i. Suppose u satisfies

|Du(0)| ≤ 1
4

ρ
(i+1)α
0 . (2.10)

We denote ui(x) by

ui(x) :=
u
(
ρi

0x
)

ρ
i(α+1)
0

.

Then ui(x) solves
−div ai(x, Dui) = fi in B1,

where

ai(x, ξ) :=
a(ρi

0x, ρiα
0 ξ)

φ(ρiα
0 )

,

fi :=
ρi

0 f (ρi
0x)

φ(ρiα
0 )

,

Fi :=
F(ρi

0x)
φ(ρiα

0 )
.
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We set

φi(t) :=
φ(ρiα

0 t)
φ(ρiα

0 )
.

It is easy to check that ai(x, ξ) and φi still satisfy the assumptions (1.2)–(1.5), and fi(x) and
Fi(x) satisfy

∥ fi∥Lq(B1) ≤
ρ

i(1− n
q )

0

φ(ρiα
0 )

∥ f ∥Lq(B1) ≤ ρ
i(1− n

q −αsa)

0 ∥ f ∥Lq(B1) ≤ δ0

and

[Fi]C0,σ0 (B1)
:= sup

x,y∈B1

|Fi(x)− Fi(y)|
|x − y|σ0

=
1

φ(ρiα
0 )

sup
x,y∈B1

∣∣F(ρi
0x)− F(ρi

0y)
∣∣

|x − y|σ0

≤
ρiσ0

0

φ(ρiα
0 )

[F]C0,σ0 (B1)

≤ ρ
i(σ0−αsa)
0 [F]C0,σ0 (B1)

≤ δ0

in view of (1.12), (1.13), (2.1) and the facts that

1 − n
q
− αsa ≥ 0 and σ0 − αsa ≥ 0.

Moreover, using the inductive result for the case i, one can deduce that

|Dui(0)| ≤
1
4

ρα
0

by the assumed condition (2.10). Then it follows from (1) that

sup
Bρ0

|ui(x)| ≤ ρ1+α
0 .

Finally, the definition of ui implies that

sup
B

ρi+1
0

|u(x)| ≤ ρ
(i+1)(1+α)
0 ,

which completes the proof of (2).
(3) For 0 < ρ ≤ ρ0 < 1, there exists a positive integer k ∈ N such that ρk+1

0 < ρ ≤ ρk
0. By

the given conditions, we derive

|Du(0)| ≤ 1
4

ρα ≤ 1
4

ρkα
0

and then by (2),

sup
Bρ

|u(x)| ≤ sup
B

ρk
0

|u(x)| ≤ ρ
k(1+α)
0 = ρ

−(1+α)
0 ρ

(k+1)(1+α)
0 ≤ ρ

−(1+α)
0 ρ1+α.

This completes our proof.
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Our approach is based on the following two oscillation estimates, which are similarly to
the classical Taylor expansion, themselves interesting and can reveal some essential qualities
or characteristics of the solutions to the problem (1.1). More precisely, they can give the precise
control on the oscillation of weak solutions to the problem (1.1) in term of the magnitude of
the gradients

sup
Br

∣∣u(x)− u(0)
∣∣ ≲ r1+α + |Du(0)| r.

It is noteworthy that we shall need to solve some difficulties cased by the differences of balls
Br with large radii: |Du(0)| ≲ r and with small radii: r ≲ |Du(0)|. Next, we shall first
derive the following sharp regularity estimates for the large radii. Moreover, we would like to
remark that the positive constants C are called universal if they only depend on n, ia, sa, σ, σ0,α,
∥u∥W1,Φ

loc (Ω), ∥w∥C0,σ
loc (Ω), [F]C0,σ0

loc (Ω)
, ∥ f ∥Lq

loc(Ω) and dist (Ω′, ∂Ω).

Proposition 2.4. Assume that the conditions (1.2)–(1.5) hold and let u ∈ W1,Φ
loc (Ω) be a local weak

solution of (1.1). Let Ω′ ⊂⊂ Ω and let x0 ∈ Ω′, there exist universal positive constants κ, C and ρ̄

such that if
|Du(x0)| ≤ κρα (2.11)

for some 0 < ρ ≤ ρ0 with Bρ0(x0) ⊂ Ω′ ⊂⊂ Ω, then we have

sup
Bρ(x0)

∣∣u(x)− u(x0)
∣∣ ≤ Cρ1+α (2.12)

and
sup

Bρ(x0)

∣∣u(x)− u(x0)− Du(x0) · (x − x0)
∣∣ ≤ Cρ1+α (2.13)

for any 0 < ρ ≤ ρ̄ < ρ0 < 1.

Proof. We denote v(x) by

v(x) :=
u(x0 + A0x)− u(x0)

B0

and then v(x) solves
−div a0(x, Dv) = −divF0+ f0 in B1,

where

A0 := min
{

1,
d0

2
,

w−1(δ0)

d0

}
with d0 = dist

(
Ω′, ∂Ω

)
,

B0 := max
{

1, 2∥u∥L∞(Ω′),
(
∥ f ∥Lq(Ω′)δ

−1
0

) 1
ia ,

(
[F]C0,σ0 (Ω′)δ

−1
0

) 1
ia

}
,

a0(x, ξ) :=
a(x0 + A0x, B0

A0
ξ)

φ
(

B0
A0

) ,

f0 :=
A0 f (x0 + A0x)

φ
(

B0
A0

) ,

F0 :=
F0(x0 + A0x)

φ
(

B0
A0

) .
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We set

φ0(t) :=
φ( B0

A0
t)

φ
(

B0
A0

) .

It is easy to check that a0(x, ξ) and φ0 still satisfy the assumptions (1.2)–(1.5), v(0) = 0,
∥v∥L∞(B1) ≤ 1,

|a0(x, ξ)− a0(0, ξ)| =

∣∣∣∣∣∣ a(x0 + A0x, B0
A0

ξ)

φ
(

B0
A0

) −
a(x0, B0

A0
ξ)

φ
(

B0
A0

)
∣∣∣∣∣∣

≤ w (A0|x|) φ0(|ξ|)
≤ δ0φ0(|ξ|),

∥ f0∥Lq(B1) ≤
A

1− n
q

0

φ
(

B0
A0

)∥ f ∥Lq(Ω′)

≤ A
1− n

q +ia

0 B−ia
0 ∥ f ∥Lq(Ω′)

≤ B−ia
0 ∥ f ∥Lq(Ω′) ≤ δ0,

[F0]C0,σ0 (B1)
≤

Aσ0
0

φ
(

B0
A0

) [F]C0,σ0 (Ω′)

≤ Aσ0+ia
0 B−ia

0 [F]C0,σ0 (Ω′)

≤ δ0

in view of (1.5) and (2.1), and
|Dv(0)| ≤ Cρα

for ρ ≤ ρ0, by the assumed condition (2.11). Then by Lemma 2.3, we obtain

sup
Bρ

|v(x)| ≤ Cρ1+α

for some 0 < ρ ≤ ρ0, which implies that

sup
BA0ρ(x0)

|u(x)− u(x0)| ≤ Cρ1+α ≤ C (A0ρ)1+α .

Thus, we can finish the proof of (2.12)–(2.13) by choosing ρ̄ = A0ρ0 ≤ ρ0.

Here we are going to prove another regularity estimates in the balls Br with small radii
r ≲ |Du| which enable the vector field a(x, ξ) can be viewed as essentially a function with
linear growth in the variable ξ.

Proposition 2.5. Assume that the conditions (1.2)–(1.5) hold and let u ∈ W1,Φ
loc (Ω) be a local weak

solution of (1.1). Let Ω′ ⊂⊂ Ω and let x0 ∈ Ω′, there exist universal positive constants κ, C and ρ̃

such that if
|Du(x0)| > κρα (2.14)
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for 0 < ρ ≤ ρ̃ with Bρ̃(x0) ⊂ Ω′ ⊂⊂ Ω, then for 0 < ρ ≤ ρ̃ we have

sup
Bρ(x0)

∣∣u(x)− u(x0)
∣∣ ≤ Cρα (2.15)

and
sup

Bρ(x0)

∣∣u(x)− u(x0)− Du(x0) · (x − x0)
∣∣ ≤ Cρ1+α. (2.16)

Proof. We define v(x) by

v(x) :=
u(x0 + ρ∗x)− u(x0)

ρ1+α
∗

and then v(x) solves

−div a∗(x, Dv) = −divF∗(x)+ f∗(x) in B1, (2.17)

where

ρ∗ :=
[
κ−1|Du(x0)|

] 1
α

,

a∗(x, ξ) :=
a(x0 + ρ∗x, ρα

∗ξ)

φ (ρα
∗)

,

f∗ :=
ρ∗ f (x0 + ρ∗x)

φ (ρα
∗)

,

F∗ :=
F(x0 + ρ∗x)

φ (ρα
∗)

.

We set

φ∗(t) :=
φ(ρα

∗t)
φ(ρα

∗)
.

It is easy to check that a∗(x, ξ) and φ∗ still satisfy the assumptions (1.2)–(1.5). Now we divide
into two cases.

Case 1: ρ∗ ≤ ρ̄ < 1, where ρ̄ is defined in Proposition 2.4. Then we find that

|Du(x0)| = κρα
∗ ≤ κρ̄α.

From Proposition 2.4, we know that

sup
Bρ∗ (x0)

∣∣u(x)− u(x0)
∣∣ ≤ Cρ1+α

∗ (2.18)

and
sup

Bρ∗ (x0)

∣∣u(x)− u(x0)− Du(x0) · (x − x0)
∣∣ ≤ Cρ1+α

∗ , (2.19)

which implies that

sup
B1

|v(x)| ≤ C sup
Bρ∗ (x0)

∣∣u(x)− u(x0)
∣∣

ρ1+α
∗

≤ C.

Consequently, by applying the C0-estimates to Dv, there exists τ∗ > 0 such that

oscBτ∗ |Dv| < κ

2
.
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Since Dv(0) = κ, it follows that |Dv(x)| > κ/2 in Bτ∗ . Thus, there is a universal constant
c0 > 1 satisfying

c−1
0 ≤ |Dv(x)| ≤ c0 in Bτ∗ .

At this stage, the nonlinear PDE (2.17) can be treated as essentially linear because

|a∗(x, ξ)|+ |Dξ a∗(x, ξ)||ξ| ≤ Cφ′ (c0) |ξ|,

Dξ a∗(x, ξ)η · η ≥ Cφ′
(

1
c0

)
|η|2,

|a∗(x1, ξ)− a∗(x2, ξ)| ≤ Cw (|x1 − x2|) φ′ (c0) |ξ|

in view of (1.5) and Lemma 2.1. Hence, by the C1,β estimates for linear equations (see Theo-
rem 3.1 in [4]), we obtain

sup
Br

|v(x)− v(0)| ≤ Crβ

and
sup

Br

|v(x)− v(0)− Dv(0) · x| ≤ Cr1+β

for any 0 < r ≤ τ∗/2 and

β :=

min
{

σ, σ0,1 − n
q

}
if n <q < ∞,

min {σ, σ0} if q = ∞.

Consequently, we deduce that

sup
Bρ∗r(x0)

|u(x)− u(x0)| ≤ Cρ1+α
∗ rβ ≤ C(ρ∗r)α

and
sup

Bρ∗r(x0)

|u(x)− u(x0)− Du(x0) · (x − x0)| ≤ Cρ1+α
∗ r1+β ≤ C(ρ∗r)1+α

for any 0 < r ≤ τ∗/2, which implies that

sup
Bρ(x0)

|u(x)− u(x0)| ≤ Cρα

and
sup

Bρ(x0)

|u(x)− u(x0)− Du(x0) · (x − x0)| ≤ Cρ1+α

for any 0 < ρ ≤ τ∗ρ∗/2. On the one hand, if τ∗ρ∗/2 < ρ ≤ ρ∗ ≤ ρ̄ < 1, (2.18) implies that

sup
Bρ(x0)

∣∣u(x)− u(x0)
∣∣ ≤ Cρ1+α

∗ ≤ Cρα
∗ ≤ C

(
2
τ∗

)α

ρα ≤ Cρα

and then

sup
Bρ(x0)

∣∣u(x)− u(x0)− Du(x0) · (x − x0)
∣∣ ≤ Cρ1+α

∗ ≤ C
(

2
τ∗

)1+α

ρ1+α ≤ Cρ1+α,

which completes the proof of Case 1.
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Case 2: ρ∗ > ρ̄. Then the definition of ρ∗ implies that

|Du(x0)| = κρα
∗ > κρ̄α.

Since the argument applied previously in Case 1 for the function v can also be directly used
to the function u for the universal constant κρ̄α > 0, we can directly get the desired results
(2.15)–(2.16) for any 0 < ρ < ρ′ with some positive constant ρ′ and then finish the final proof
of this proposition by choosing ρ̃ := min{ρ′, ρ̄}.

3 Final proof

Finally, we shall combine the previous Proposition 2.4 and Proposition 2.5 for the large radii
and small radii cases respectively to finish the proof of the main result in this paper.

Proof of Theorem 1.3. From Proposition 2.4 and Proposition 2.5 we can find that for any com-
pact subset Ω′ of Ω there exist positive constants κ, C and ρ̃, depending on n, ia, sa, α, σ, σ0,
∥u∥W1,Φ

loc (Ω), ∥w∥C0,σ
loc (Ω), [F]C0,σ0

loc (Ω)
, ∥ f ∥Lq

loc(Ω) and dist (Ω′, ∂Ω), such that for 0 < ρ ≤ ρ̃ < 1 with

Bρ̃(x0) ⊂ Ω′ ⊂⊂ Ω we have
sup

Bρ(x0)

∣∣u(x)− u(x0)
∣∣ ≤ Cρα (3.1)

and
sup

Bρ(x0)

∣∣u(x)− u(x0)− Du(x0) · (x − x0)
∣∣ ≤ Cρ1+α, (3.2)

where α is defined in (1.13). Let x, y ∈ Ω′ and R = |x − y| ≤ ρ̃ < 1. Then from (3.1) we deduce
that ∣∣u(x)− u(y)

∣∣ ≤ CRα.

And then we can conclude that

sup
x,y∈Ω′

x ̸=y

|u(x)− u(y)|
|x − y|α ≤ C

holds true by a standard finite covering argument, which implies that (1.14) is true. Fur-
thermore, without loss of generality we may as well assume that x = (x1, x′) ∈ Ω′ and y =

(x2, x′) ∈ Ω′ with x′ ∈ Rn−1. At this time we can obtain that R = |x − y| = |x1 − x2| ≤ ρ̃ < 1,

u(y) = u(x) +
∂u(x)

∂x1
(x2 − x1) + O

(
|x1 − x2|α+1

)
and

u(x) = u(y)− ∂u(y)
∂x1

(x2 − x1) + O
(
|x1 − x2|α+1

)
,

which implies that ∣∣∣∣∂u(x)
∂x1

− ∂u(y)
∂x1

∣∣∣∣ |x2 − x1| = O
(
|x1 − x2|α+1

)
.

Therefore, we can reach the conclusion that

sup
x,y∈Ω′

x ̸=y

∣∣∣ ∂u(x)
∂x1

− ∂u(y)
∂x1

∣∣∣
|x − y|α

≤ C
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by a standard finite covering argument. Similarly, we also can prove that

sup
x,y∈Ω′

x ̸=y

∣∣∣ ∂u(x)
∂xi

− ∂u(y)
∂xi

∣∣∣
|x − y|α

≤ C for 2 ≤ i ≤ n.

Thus, we can finish the final proof of the conclusion (1.15).
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