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Abstract. In this article, we study the generalized solutions for singular elliptic equa-
tions with mixed boundary conditions, a nonlocal source term and a Hardy potential.
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1 Introduction

The study of the singular elliptic equations involving double-phase (p1(x), p2(x))-Laplacian
operators with Hardy potential in variable exponent spaces has attracted the interest of many
authors in different fields such as fluid dynamics, structural design and electrical systems [19].
In the recent years, several papers demonstrate the existence and multiplicity of solutions of
this type of singular elliptic problems, for more details, see [2, 4, 5, 7, 14–18]. Recently Jian Liu
et al. [16] established the existence of one weak solution, respectively two weak solutions to
the following singular elliptic problem with mixed boundary conditions in variable exponent
spaces 

−∆p(x)u − ∆q(x)u + a(x)|u|h−2u
|x|h = λ f (x, u) in Ω,

u = 0 on Γ1,(
|∇u|p(x)−2∇u + |∇u|q(x)−2∇u

)
· ν + c(x)|u|t(x)−2u = 0 on Γ2,

where Ω is a bounded subset in RN(N ≥ 2) with smooth boundary ∂Ω, ν is the outward
normal vector field on ∂Ω, Γ1 and Γ2 are two smooth (N − 1)-dimensional submanifolds
of ∂Ω such that Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 is a (N − 2)-dimensional submanifold

BCorresponding author. Email: haikel_ouerghi@yahoo.fr

https://doi.org/10.14232/ejqtde.2025.1.23
https://www.math.u-szeged.hu/ejqtde/
https://orcid.org/0000-0001-9277-5820
https://orcid.org/0009-0008-3100-1889
https://orcid.org/0000-0002-8797-9551


2 K. Kefi, H. Ouerghi and K. Benali

of ∂Ω, λ > 0, 0 < a(x) ∈ L∞(Ω), ∆p(x)u = div
(
|∇u|p(x)−2∇u

)
is p(x)-Laplacian operator,

∆q(x)u = div
(
|∇u|q(x)−2∇u

)
is q(x)-Laplacian operator, p(x), q(x) ∈ C(Ω̄) with 1 < q(x) <

p(x) < p∗(x), where

p∗(x) =

{ Np(x)
N−p(x) , p(x) < N

+∞, p(x) ≥ N

1 < h < p(x), t(x) ∈ C
(
Γ2
)

with 1 < t(x) < p∗(x), where

p∗(x) =

{
(N−1)p(x)

N−p(x) , p(x) < N

+∞, p(x) ≥ N

and 0 < c(x) ∈ Le(x) (Γ2), with e(x) > p∗(x)t(x)
p∗(x)−t(x) . The nonlinearity f (x, u) is assumed to be a

Carathéodory function such that f : Ω ×R → R which satisfy the following growth condition

| f (x, u)| ≤ M1(x) + M2|u|s(x)−1, a.e. (x, u) ∈ Ω × R

where M1(x) > 0, M1(x) ∈ L
s(x)

s(x)−1 (Ω), M2 > 0, s(x) ∈ C+(Ω̄) := {ξ : ξ ∈ C(Ω), ξ(x) >

1, for all x ∈ Ω} with s(x) < p∗(x). Moreover an Ambrosetti–Rabinowitz condition was
imposed to guaranty the existence of two weak solutions when λ is in an appropriate range
(See Theorem 3.1 in [16]).

In mathematical physics, the distinction between local and nonlocal source terms plays a
key role in understanding the nature of interactions within a system and in developing appro-
priate models. A local source term depends only on the solution and its derivatives at a single
point in the domain, capturing interactions that occur in a localized region. These terms are
typically encountered in problems where effects are confined to immediate neighborhoods,
such as local forces or reactions. However, in many physical systems, interactions can extend
over longer distances or be influenced by global effects. In such cases, a nonlocal source term
is more appropriate. This term involves the solution values from multiple points, often in-
tegrated over the domain, reflecting long-range interactions or global influences. Nonlocal
source terms are commonly found in models of nonlocal elasticity, diffusion with memory, or
biological systems with spatial coupling. This distinction motivates our study of a singular
elliptic equation in variable exponent spaces, where we consider a more complex nonlocal
source term to explore the existence of multiple weak solutions under mixed boundary con-
ditions.

Motivated by the above advantages of a nonlocal source term and the previous work of
Liu et al. [16], we shall study the singular elliptic equation with mixed boundary conditions
in variable exponent spaces

2

∑
i=1

−∆pi(x)u +
a(x)|u|q − 2u

|x|q
= λ f (x, u)

( ∫
Ω

F(x, u) dx
)r

in Ω,

u = 0 on Γ1,(
2

∑
i=1

|∇u|pi(x)− 2∇u

)
ν + b(x)|u|h(x)− 2u = 0, on Γ2,

(P)

where F(x, u) =
∫ u

0 f (x, t) dt, for all (x, u) ∈ Ω × R, r is a positive constant. In this given
context, Ω is assumed to be an open bounded subset of RN , (N > 2). The boundary of Ω



Study of singular elliptic equations with mixed boundary conditions 3

is denoted by ∂Ω, is a smooth surface. The outward normal vectors on this boundary are
represented by the vector field ν.

Additionally, there are two distinct smooth submanifolds, Γ1 and Γ2, which are parts of
the boundary ∂Ω. These submanifolds have a dimension of N − 1 and do not intersect.
The union of these submanifolds, denoted by Γ1 ∪ Γ2, covers the entire boundary, while their
intersection, denoted by Γ1 ∩ Γ2, forms a submanifold of dimension N − 2 within the boundary
∂Ω. Moreover λ is a positive parameter and the function a(x) is chosen to satisfy the assertion
0 < a(x) ∈ L∞(Ω).

In the whole paper and for i = 1, 2, −∆pi(x)u = div(|∇u|pi(x)− 2∇u) denotes the
pi(x)-Laplacian operator, where pi(x) ∈ C+(Ω). In the sequel, we denote by p̃(x) =

max{p1(x), p2(x)} such that 1 < p̃(x) < p̃∗(x), where

p̃∗(x) =


Np̃(x)

N − p̃(x)
, if p̃(x) < N,

+∞, if p̃(x) ≥ N,

1 < q < min{N, p̃(x)}, h(x) ∈ C(Γ2) with 1 < h(x) < p̃∗(x), where

p̃∗(x) =


(N − 1) p̃(x)

N − p̃(x)
, if p̃(x) < N,

+∞, if p̃(x) ≥ N,

the function b(x) ∈ Le(x)(Γ2), with e(x) > p̃∗(x)h(x)
p̃∗(x)−h(x) . We will assume in the next of this paper

that f : Ω × R −→ R is a Carathéodory function satisfying

(H) m1|u|α(x)−1 ≤ f (x, u) ≤ m2|u|β(x)−1,

where, m1, m2 are positive constants. The functions α(x) and β(x) belongs to the set C+(Ω)

and satisfy α(x) ≤ β(x) < p̃(x), for all x ∈ Ω.
The key differences between the problem of Liu et al. [16] and Problem (P) lie primarily

in the structure of the source term, the conditions required for the existence of solutions, and
the role of b(x). In [16], the source term is a local nonlinearity λ f (x, u), where f (x, u) is a
Carathéodory function satisfying specific growth conditions. The existence of two weak solu-
tions relies on the Ambrosetti–Rabinowitz condition, which ensures the existence of solutions
via variational methods. Additionally, the boundary condition on Γ2 requires the positivity of
c(x).

In contrast, our work involves a more complex source term, which includes a nonlocal
term

(∫
Ω F(x, u) dx

)r, where F(x, u) is the primitive of f (x, u). This nonlocal factor compli-
cates the analysis but allows for the existence of three weak solutions without the need for
the Ambrosetti-Rabinowitz condition. Moreover, the boundary condition on Γ2 in our work
involves b(x), which is not required to be positive, providing more flexibility in the bound-
ary conditions. These differences demonstrate how the second work handles a more intricate
problem setup and proves the existence of multiple solutions with fewer restrictions compared
to the first.

The rest of this paper is structured as follows. In the next section we give some basic facts
and variational structure concerning our problem. In Section 3, we state and prove the main
result of this paper.
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2 Mathematical backgrounds

In this section, we recall some definitions and basic properties of the generalized Lebesgue
Sobolev spaces.

For any p ∈ C+(Ω), let p+ = maxx∈Ω p(x) and p− = minx∈Ω p(x). The generalized
Lebesgue Sobolev space is defined as

Lp(x)(Ω) =

{
u : Ω → R, u measurable :

∫
Ω
|u(x)|p(x) dx < ∞

}
.

The so-called Luxemburg norm on this spaces defined by

∥u∥Lp(x)(Ω) = ∥u∥p(x) = inf

{
η > 0 :

∫
Ω

∣∣∣∣u(x)
η

∣∣∣∣p(x)

dx ≤ 1

}
.

The Lebesgue–Sobolev space W1,p(x)(Ω) is defined as follows

W1,p(x)(Ω) :=
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,

and equipped with the norm

∥u∥W1,p(x)(Ω) = ∥∇u∥p(x) + ∥u∥p(x),

where

|∇u| =
(

N

∑
i=1

∣∣∣∣ ∂u
∂xi

∣∣∣∣2 dx

) 1
2

.

Let W1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in W1,p(x)(Ω). In the following, let

E = W1,p̃(x)
0 (Ω).

The set E is a closed subspace of W1,p̃(x)(Ω), then E is a reflexive, separable and uniformly
convex Banach space. So, we can get that ∥u∥W1,p̃(x)(Ω) is equivalent to the norm

∥u∥ = ∥∇u∥ p̃(x) = inf

{
η > 0 :

∫
Ω

∣∣∣∣∇u(x)
η

∣∣∣∣ p̃(x)

dx ≤ 1

}
.

Lemma 2.1 ([11]). The continuous embedding E ↪→ Lα(x) holds for any α ∈ C+(Ω) such that
α(x) ≤ p̃(x) a.e. on Ω. This leads to the inequality

∥u∥α(x) ≤ cα∥∇u∥ p̃(x), (2.1)

where cα is a positive constant.

Lemma 2.2 ([12]). If p̃ ∈ C+(Ω), then

min
{
∥∇u∥ p̃−

p̃(x), ∥∇u∥ p̃+

p̃(x)

}
≤
∫

Ω
|∇u(x)| p̃(x)dx ≤ max

{
∥∇u∥ p̃−

p̃(x), ∥∇u∥ p̃+

p̃(x)

}
,

for any u ∈ L p̃(x)(Ω) and for a.e. x ∈ Ω.

Lemma 2.3 ([10]). If s1, s2 ∈ C+(Ω) such that s1(x) ≤ s2(x) a.e. x ∈ Ω, then exists the continuous
embedding W1,s2(x)(Ω) ↪→ W1,s1(x)(Ω).
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Lemma 2.4 ([10]). Let Ω having the cone property on its boundary, and let p̃ ∈ C+(Ω). Suppose that
s ∈ C+(Ω) and s(x) < p̃∗(x) for all x ∈ Ω. Under these conditions, the embedding

W1,p̃(x)(Ω) ↪→ W1,s(x)(Ω)

is both continuous and compact.

Denote
C+(∂Ω) := {ξ : ξ ∈ C(∂Ω), ξ(x) > 1, on ∂Ω},

and the surface measure on ∂Ω by dσ.

L p̃(x)(∂Ω) :=
{

u | u : ∂Ω → R is measurable, and
∫

∂Ω
|u(x)| p̃(x) dσ < ∞

}
,

where p̃(x) denotes a variable exponent that may vary with the point x ∈ ∂Ω.
The norm associated with this space is given by the Luxemburg norm

∥u∥L p̃(x)(∂Ω) = ∥u∥ p̃(x)(∂Ω) = inf

{
η > 0 |

∫
∂Ω

∣∣∣∣u(x)
η

∣∣∣∣ p̃(x)

dσ ≤ 1

}
.

For a measurable function v on a subset Γ2 ⊂ ∂Ω, the space L p̃(x)(Γ2) consists of functions
that are measurable on Γ2 and can be extended to some function u ∈ L p̃(x)(∂Ω) such that
u = v on Γ2. Specifically, we define

L p̃(x)(Γ2) =
{

v | v is measurable on Γ2, ∃u ∈ L p̃(x)(∂Ω) such that u = v on Γ2

}
.

The corresponding norm on L p̃(x)(Γ2) is

∥v∥L p̃(x)(Γ2)
= ∥v∥ p̃(x)(Γ2) = inf

{
∥u∥ p̃(x)(∂Ω) | u = v on Γ2

}
.

Lemma 2.5 ([8]). Assume that the boundary of Ω possesses the cone property and p̃ ∈ C+(Ω), if
h ∈ C+(∂Ω) and h(x) < p̃∗(x) for all x ∈ ∂Ω then the trace embedding

W1,p̃(x)(Ω) ↪→ Lh(x)(∂Ω)

is compact and continous.

Lemma 2.6 ([12]). Let G ⊂ RN be a measurable subset with 0 < meas(G) < +∞. Consider a
Carathéodory function f : G × R → R satisfying the estimate

| f (x, u)| ≤ M1(x) + M2|u|
p(x)
q(x) , for almost every (x, u) ∈ G × R,

where p(x), q(x) ∈ C+(Ω), 0 < M1(x) ∈ Lq(x)(G), and M2 > 0. In this case, the Nemytskii
operator

N f (u)(x) = f (x, u(x))

maps the space Lp(x)(G) into Lq(x)(G), and it is both continuous and bounded.
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Lemma 2.7 (Hölder type inequality [1, 9]). Let p, q, and s be measurable functions defined on Ω
with the condition

1
s(x)

=
1

p(x)
+

1
q(x)

, for almost every x ∈ Ω.

If f ∈ Lp(x)(Ω) and g ∈ Lq(x)(Ω), then the product f g belongs to Ls(x)(Ω), and the following
inequality holds

∥ f g∥s(x) ≤ 2∥ f ∥p(x)∥g∥q(x).

Furthermore, if the condition

1
s(x)

+
1

p(x)
+

1
q(x)

= 1, for almost every x ∈ Ω,

is satisfied, then it follows that∫
Ω
| f (x)g(x)h(x)| dx ≤ 3∥ f ∥s(x)∥g∥p(x)∥h∥q(x).

Hereinafter, for M > 0 and r(x) ∈ C+(Ω), we use the following notations

[M]r = max{Mr− , Mr+} and [M]r = min{Mr− , Mr+}.

In order to formulate the variational approach of the problem (P), we define the functional
Jλ : E −→ R by

Jλ = J1 − λJ2,

where

J1(u) =
2

∑
i=1

(∫
Ω

1
pi(x)

|∇u|pi(x)dx
)
+
∫

Ω

a(x)|u|q
q|x|q dx,

J2(u) =
1

r + 1

(∫
Ω

F(x, u) dx
)r+1

− 1
λ

∫
Γ2

b(x)|u|h(x)

h(x)
dσ,

where F(x, u) =
∫ u

0 f (x, t) dt, ∀ (x, u) ∈ Ω × R.
It is clear that u ∈ E is a weak solution of the problem (P) if

J′λ(u)(v) = J′1(u)(v)− λJ′2(u)(v) = 0, ∀ v ∈ E,

where J1, J2 are continuously Gâteaux differentiable and we have

J′1(u)(v) =
2

∑
i=1

(∫
Ω
|∇u|pi(x)−2∇u∇v dx

)
+
∫

Ω

a(x)|u|q−2uv
|x|q dx,

and

J′2(u)(v) =
(∫

Ω
F(x, u) dx

)r ∫
Ω

f (x, u)v dx − 1
λ

∫
Γ2

b(x)|u|h(x)−2uv dσ,

Lemma 2.8 ([16]). The operator J′1 verifies the following properties

(i) J′1 is coercive and strictly monotone in E.

(ii) J′1 is an homeomorphism.

Lemma 2.9. The operator J′2 : E −→ E∗ is compact.
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Proof. Let J′2 = φ′
1(u)− 1

λ φ′
2(u), where

φ′
1(u)(v) =

(∫
Ω

F(x, u) dx
)r ∫

Ω
f (x, u)v dx, φ′

2(u)(v) =
∫

Γ2

b(x)|u|h(x)−2uv dσ, ∀v ∈ E.

From condition (H), the compact embeddings E ↪→ Lβ(x)(Ω), where 1 < β(x) < p̃∗(x),
and E ↪→ Lh(x)(∂Ω), where 1 < h(x) < p̃∗(x), imply the compactness of φ′

1(u) and φ′
2(u).

Consequently, the functional J′2(u) : E → E∗ is compact.
To demonstrate this, let (uk)k ⊂ E be a sequence such that uk ⇀ u weakly in E. Due to

the compactness of the embeddings, there exists a subsequence, still denoted by (uk)k, such
that uk → u strongly in Lβ(x)(Ω), and uk(x) → u(x) for almost every x ∈ Ω. The continuity
of F(x, u) with respect to u ensures that

F(x, uk) → F(x, u) for almost every x.

Also, there exists C > 0 such that

|F(x, uk)| < C|uk|β(x).

By using the dominated convergence theorem, we can write∫
Ω

F(x, uk) dx →
∫

Ω
F(x, uk) dx as k → +∞. (2.2)

In the subsequent part of the proof, we employ the approach introduced by Liu et al. [16].
Specifically, we assert that the Nemytskii operator N f (u)(x) = f (x, u(x)) is continuous, as
f : Ω × R → R is a Carathéodory function that satisfies condition (H). Consequently, it

follows that N f (uk) → N f (u) in L
β(x)

β(x)−1 (Ω).
Next, utilizing Lemma 2.1 and the Hölder inequality, for any v ∈ E, we have the estimate∣∣∣∣∫Ω

f (x, uk)v dx −
∫

Ω
f (x, u)v dx

∣∣∣∣ ≤ ∫
Ω
|( f (x, uk)− f (x, u))v| dx

≤ 2∥N f (uk)− N f (u)∥ β(x)
β(x)−1

∥v∥β(x), (2.3)

≤ 2cβ∥N f (uk)− N f (u)∥ β(x)
β(x)−1

∥∇v∥ p̃(x),

where cβ is the constant associated with the embedding E ↪→ Lβ(x)(Ω) with 1 < β(x) < p̃∗(x).
By combining the results from equations (2.2) and (2.3), we deduce that φ′

1(uk) → φ′
1(u)

in E, which implies that φ′
1 is completely continuous. Therefore, φ′

1 is a compact operator.
By similar argument for φ′

2 on Γ2, The Nemytskii operator Nh(u) = |u|h(x)−2u is continuous

and Nh(uk) −→ Nh(u) in L
h(x)

h(x)−1 (Γ2). According to the Hölder type inequality in Lemma 2.7
and the compact embedding E ↪→ Lh(x)(∂Ω), 1 < h(x) < p̃∗(x), thus for all v ∈ E, we have∣∣∣φ′

2(uk)(v)− φ′
2(u)(v)

∣∣∣ = ∣∣∣ ∫
Γ2

b(x)|uk|h(x)−2ukv dσ −
∫

Γ1

b(x)|u|h(x)−2uv dσ
∣∣∣

≤ 3∥b∥e(x)∥Nh(uk)− Nh(u)∥ h(x)
h(x)−1 (Γ2)

∥v∥ e(x)h(x)
e(x)−h(x) (Γ2)

≤ 3∥b∥e(x)∥Nh(uk)− Nh(u)∥ h(x)
h(x)−1 (Γ2)

∥v∥ e(x)h(x)
e(x)−h(x) (∂Ω)

≤ 3bh∥b∥e(x)∥Nh(uk)− Nh(u)∥ h(x)
h(x)−1 (Γ2)

∥v∥,
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where bh is the embedding constant of the trace embedding W1,p̃(x) ↪→ L
e(x)h(x)

e(x)−h(x) (∂Ω). Thus
φ′

2(uk) −→ φ′
2(u) in E∗ as n −→ +∞, i.e. φ′

2 is completely continuous, so φ′
2 is compact.

Therefore J′2 is compact.

To obtain our result, we use the following critical points theorem.

Theorem 2.10 ([6, Theoem 3.6]). Consider a reflexive real Banach space E, and J1 : E → R be a
coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional.
Assume that the Gâteaux derivative of J1 has a continuous inverse on E∗. Furthermore, let J2 : E → R

be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact, assume that

inf
E

J1 = J1(0) = J2(0) = 0.

Suppose that there exist d > 0 and x ∈ E, with d < J1(x), such that

(i)
supJ1(x)<d J2(x)

d < J2(x)
J1(x) ,

(ii) for every λ ∈ Ψd :=
]

J1(x)
J2(x) , d

supJ1(x)≤d J2(x)

[
, Jλ := J1 − λJ2 is coercive.

Then, for every λ ∈ Ψd, J1 − λJ2 has at least three distinct critical points in E.

3 Main results

Before giving our result, we recall the Hardy inequality (for more details, see [13]), if 1 < q <

N, then∫
Ω

|u(x)|q
|x|q dx ≤ 1

H

∫
Ω
|∇u|q dx, ∀u ∈ W1,q

0 (Ω) = {u ∈ W1,q(Ω) : u|Γ1 = 0},

where H =
(N−q

q

)q.

Using (2.2) and due to q < p̃(x) for any x ∈ Ω, we conclude that E ↪→ W1,q
0 (Ω), thus there

is a positive constant k such that∫
Ω

|u(x)|q
|x|q dx ≤ kq

H
∥u∥q, ∀ u ∈ E. (3.1)

To present our main result, we define

D(x) = sup{D > 0 | B(x, D) ⊆ Ω},

for all x ∈ Ω, here B(x, D) represents a ball centered at x with radius D. It is simple to see
that there exists a point x0 ∈ Ω such that B(x0, R) ⊆ Ω, where R = supx∈Ω D(x).

Theorem 3.1. Assume that p̃− > β+(r + 1), and that there exists d, δ > 0 such that(
1

p−1

[
2δ

R

]p1

+
1

p−2

[
2δ

R

]p2
) ∣∣∣∣B(x0, R) \ B

(
x0,

R
2

)∣∣∣∣ = d,

then for every λ ∈]Aδ, Bd[, where

Aδ =

(
1

p−1

[ 2δ
R

]p1 + 1
p−2

[ 2δ
R

]p2
)∣∣∣B(x0, R) \ B(x0, R

2 )
∣∣∣+ kq∥a∥∞

qH M̃q

mr+1
1

(
[δ]α
)r+1

(r+1)(α+)r+1

∣∣∣B(x0, R
2 )
∣∣∣r+1

,
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and

Bd =
d

mr+1
2 ([cβ]β)r+1( p̃+)

β+(r+1)
p̃−

(r+1)(β−)r+1

([[
d
] 1

p̃
]β)r+1

,

problem (P) admits at least three weak solutions.

Proof. It is worth noting that J1 and J2 satisfy the regularity assumptions outlined in Theorem
2.10. We will now establish the fulfillment of conditions (i) and (ii). To this end, let’s consider(

1
p−1

[
2δ

R

]p1

+
1

p−2

[
2δ

R

]p2
) ∣∣∣∣B(x0, R) \ B

(
x0,

R
2

)∣∣∣∣ = d,

and consider vδ ∈ E such that

vδ



0 x ∈ Ω \ B(x0, R),

2δ

R
(R − |x − x0|) ∈ B(x0, R) \ B

(
x0,

R
2

)
,

δ x ∈ B
(

x0,
R
2

)
.

Then, from Lemma 2.2 and by a direct calculation, shows that ∇vδ(x) = 2δ
R , thus

∥∇vδ(x)∥ p̃(x)

≤ max{∥∇vδ∥
p̃−

p̃(x), ∥∇vδ∥
p̃+

p̃(x)},

≤ max
{([

2δ

R

] p̃) p̃− ∣∣∣∣B(x0, R) \ B
(

x0,
R
2

)∣∣∣∣ p̃− ,
([

2δ

R

] p̃) p̃+ ∣∣∣∣B(x0, R) \ B
(

x0,
R
2

)∣∣∣∣ p̃+},

= M̃.

By equation (3.1), we have

J1(vδ) =
2

∑
i=1

(∫
Ω

1
pi(x)

|∇vδ|pi(x) dx
)
+
∫

Ω

a(x)|vδ|q
q|x|q dx,

≤
(

1
p−1

[
2δ

R

]p1

+
1

p−2

[
2δ

R

]p2
) ∣∣∣∣B(x0, R) \ B

(
x0,

R
2

)∣∣∣∣+ kq∥a∥∞

qH
∥vδ∥q,

=

(
1

p−1

[
2δ

R

]p1

+
1

p−2

[
2δ

R

]p2
) ∣∣∣∣B(x0, R) \ B

(
x0,

R
2

)∣∣∣∣+ kq∥a∥∞

qH
∥∇vδ(x)∥q

p̃(x),

≤
(

1
p−1

[
2δ

R

]p1

+
1

p−2

[
2δ

R

]p2
) ∣∣∣∣B(x0, R) \ B

(
x0,

R
2

)∣∣∣∣+ kq∥a∥∞

qH
M̃q.

Therefore, J1(vδ) > d. however, it is important to consider the following

J2(vδ) ≥
1

r + 1

(∫
Ω

F(x, vδ)dx
)r+1

≥
mr+1

1
(r + 1)(α+)r+1

(∫
B(x0, R

2 )
|δ|α(x) dx

)r+1

,

≥
mr+1

1 ([δ]α)r+1

(r + 1)(α+)r+1

∣∣∣∣B(x0,
R
2
)

∣∣∣∣r+1

. (3.2)
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In addition, for every u ∈ J−1
1 (]− ∞, d[), one has the following

1
p̃+

[
∥∇u∥ p̃(x)

]
p̃
≤ d, (3.3)

therefore,

∥∇u∥ p̃(x) ≤
[

p̃+ J1(u)
] 1

p̃
<
[

p̃+d
] 1

p̃
.

Under the assumption (H), we conclude the following

J2(u) ≤
1

r + 1

(∫
Ω

F(x, u) dx
)r+1

,

≤ mr+1
2

(r + 1)(β−)r+1

(∫
Ω
|u|β(x) dx

)r+1

,

≤ mr+1
2

(r + 1)(β−)r+1

([
∥u∥β(x)

]β
)r+1

,

≤ mr+1
2

(r + 1)(β−)r+1

([
cβ∥∇u∥ p̃(x)

]β
)r+1

. (3.4)

This leads to the following result

sup
J1(u)<d

J2(u) ≤
mr+1

2 ([cβ]
β)r+1( p̃+)

β+(r+1)
p̃−

(r + 1)(β−)r+1

([[
d
] 1

p̃
]β)r+1

,

and
1
d

sup
J1(u)<d

J2(u) <
1
λ

.

Furthermore, we can establish the coerciveness of Jλ for any positive value of λ by employing
inequality (3.4) once more. This yields the following result

J2(u) ≤
mr+1

2 ([cβ]
β)r+1

(r + 1)(β−)r+1

([
∥∇u∥ p̃(x)

]β)r+1
.

When ∥u∥ > 1, the following can be inferred

J1(u)− λJ2(u) ≥
1

p̃+
∥∇u∥ p̃−

p̃(x) − λ
mr+1

2 ([cβ]
β)r+1

(r + 1)(β−)r+1

([
∥∇u∥ p̃(x)

]β)r+1
.

By considering the fact that p̃− > β+(r + 1), we can reach the desired conclusion. In conclu-
sion, considering the aforementioned fact that

Ψ−
d = (Aδ, Bd) ⊆

(
J1(v)
J2(v)

,
d

supJ1(u)<d J2(u)

)
.

Based on Theoem 2.10, it can be deduced that for λ ∈ Ψ−
d , the function J1 − λJ2 possesses

at least three critical points in E. These critical points correspond to weak solutions of prob-
lem (P).
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