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Abstract. Investigation of the long-term behaviour of solutions to the nonlinear differ-
ence equation

xn+1 = A +
xp

n−m
xr

n−k
, n ∈ N0,

where A, p, q ∈ R, k, m ∈ N0, k ̸= m, was proposed by S. Stević about twenty years ago.
A very special case of the equation (p = 1, r = 2, m = 0) has been recently considered
in [J. Appl. Math. Comput. 67(2021), 423–437]. We show that the main results therein are
known or have some inaccuracies. Among other things, we show that the boundedness
result therein is a consequence of some known results and using one of our previous
methods we give a better upper bound for positive solutions to the equation, show
that the proof of the global convergence result therein is not correct and provide a
complete proof of a generalization, and also show that the results on semi-cycles of
positive solutions are not correct and present some correct ones. Several comments are
also given and some analyses are conducted.

Keywords: difference equation, positive solutions, boundedness, convergence, semi-
cycles.
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1 Introduction

There has been a considerable recent interest in investigating concrete nonlinear difference
equations and systems of difference equations (see, for instance, [1,3–19,29–61] and the related
references therein).
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1.1 Notation

The set of positive natural numbers is denoted by N, the set of whole numbers is denoted by
Z, the set of positive numbers (0,+∞) is denoted by R+, whereas the set of real numbers is
denoted by R. If l ∈ Z is fixed, then for the set {j ∈ Z : j ≥ l} we use the notation Nl . If
k, l ∈ Z and k ≤ l, then we use the notation j = k, l instead of writing the following expression:
k ≤ j ≤ l, j ∈ Z. By Cn

j where n ∈ N0, 0 ≤ j ≤ n, we denote the binomial coefficients, that
is, Cn

j = n!
j!(n−j)! , where n ∈ N0, 0 ≤ j ≤ n, and where, as usual, we regard that 0! = 1.

For some basic facts on the binomial coefficients consult, for instance, [2, 20, 21, 25, 26]. Let
us mention that in a part of the literature, such as [2, 21], is used the notation Cj

n for the
binomial coefficients. Another standard notation, that is, (n

j) is also frequently used (see, e.g.,
[20, 25, 26]), but it is more robust, so, as usual, we use here the above notation.

1.2 Two important classes of difference equations with powers

Investigation of the long-term behaviour of positive solutions to the nonlinear difference equa-
tion

xn+1 = A +
xp

n−m

xr
n−k

, n ∈ N0, (1.1)

where A > 0, min{p, q} ≥ 0, k, m ∈ N0, k ̸= m, as well as of its max-type counterpart

xn+1 = max

{
A,

xp
n−m

xr
n−k

}
, n ∈ N0, (1.2)

was suggested by S. Stević in January 2004, soon after acceptance of [42] where the bound-
edness, global attractivity, oscillations, and asymptotic periodicity of positive solutions to the
equation (1.1) in the case A ≥ 0, p = r, m = 1, k = 0 was investigated. This was probably the
first paper with some new and non-trivial results on an equation of the form in (1.1) which
is not rational (the case had been previously considered in [12], but the results therein were
essentially known or incorrect). It should be mentioned that [42] also contains a result on
convergence of solutions to equation (1.1) for the case of an arbitrary m ∈ N.

Equations (1.1) and (1.2) are good prototypes for developing the theory of nonlinear differ-
ence equations, because of which S. Stević proposed their investigation. Since the time of his
proposal for the investigation, the two classes of difference equations, as well as their various
generalizations, including some systems of difference equations, have been studied a lot.

Remark 1.1. If A = 0 then equations (1.1) and (1.2) are reduced to the following product-type
difference equation

xn+1 =
xp

n−m

xr
n−k

, n ∈ N0. (1.3)

If only positive solutions of equation (1.3) are considered, then employing the change of vari-
ables

yn = ln xn

for n ≥ −max{k, m}, which can be found in old literature [22] (see, for instance, also [2, 42]),
the difference equation is transformed to the linear one with constant coefficients

zn+1 − pzn−m + rzn−k = 0, n ∈ N0,
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which is (theoretically) solvable in closed form ([22–24, 26–28]). Bearing in mind this fact
and many known results on the linear difference equations with constant coefficients, the
equations (1.1) and (1.2) with A = 0 are usually not of a special interest. Hence, although we
have considered some special cases of the equation (1.3) with A = 0, as it was the case in [42],
we frequently skipped considering the case in our papers.

Remark 1.2. It should be also mentioned that solvability of product-type systems of difference
equations on the domain of complex numbers, as well as the difference equations and sys-
tems which are transformed to them by some changes of variables, has attracted some recent
attention. See, for example, [59, 60] and the related references therein.

Remark 1.3. Note that equations (1.1) and (1.2) are some kind of perturbations of equation
(1.3), which is one of the reasons why they are good prototypes for some detailed investiga-
tions. Although, they have similar forms, the long-term behavior of their positive solutions
can be quite different.

1.3 A bit on the history of investigations of equations (1.1) and (1.2)

In what follows we briefly mention some of the previous investigations of equations (1.1)
and (1.2), and some of their generalizations. As we have already mentioned, in [42] was
considered equation (1.1) in the case A ≥ 0, p = r > 0, m = 1, k = 0. The case was also
studied later in [5]. The boundedness, global attractivity, and periodicity of positive solutions
to equations (1.1) and (1.2) in the case A > 0, p = r > 0, m = 0, k = 1 were investigated
in [46] and [49], respectively. Equations (1.1) and (1.2) in the case min{A, p, q} > 0, m = 0,
k = 1 were considered in [47] (this was probably the first paper which also considered the case
p ̸= r). The boundedness character of positive solutions to equations (1.1) and (1.2) in the case
min{A, p, q} > 0, m = 0, k = 2 was studied in [52], where S. Stević used several new ideas
and methods, among others, a new method that we called “oachkatzlschwoif/squirrel-tail”
method. Equation (1.2) in the case A > 0, p = r > 0, m = 0, k = 3 was considered first in [51]
and later in [16].

The boundedness character of positive solutions to the following extensions of the equa-
tions in [47]

xn+1 = A +
xp

n

xq
n−1xr

n−2
, n ∈ N0,

xn+1 = max

{
A,

xp
n

xq
n−1xr

n−2

}
, n ∈ N0,

was considered in [17] and [54], respectively.
The following generalization of equation (1.1) in the case p = r

xn = A +

(
∑k

i=1 αixn−2pi

∑m
j=1 β jxn−qj

)p

, n ∈ N0,

where min{p, A} > 0, k, m ∈ N, pi ∈ N, i = 1, k, qj, j = 1, m, are odd natural numbers
such that p1 < p2 < · · · < pk, q1 < q2 < · · · < qm, min1≤i≤k,1≤j≤m{αi, β j} > 0 such that
∑k

i=1 αi = ∑m
j=1 β j, was considered in [53].

The boundedness character of the equations (1.1) and (1.2) in the case A > 0, p = r > 0,
m = 0, k ∈ N was completely characterized in [50]. Equation (1.2) in the case p ̸= q was
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considered in [55], whereas the corresponding results for equation (1.1) in the case were pre-
sented in [15]. The case min{p, q} > 0, m = 1, k = 0 was considered in [35], whereas the case
where the constant A is replaced by a sequence An was considered in [36]. For some special
cases of equations (1.1) and (1.2) in rational form see [1, 3, 4, 40] and the references therein,
and with a variable coefficient An, see [31, 32, 41] and the related references therein. A cyclic
system of difference equations corresponding to the equation (1.1) in the case A > 0, m = 0,
k = 1, was considered in [57], whereas the corresponding cyclic system to the equation (1.2)
in the case A > 0, m = 0, k = 1, was studied in [61]. A quite general boundedness result for a
generalization of equation (1.1) was given in [58]. For some related difference equations and
systems of difference equations, some of which also contain powers of dependent variables,
see also [18, 29, 37, 38, 56].

1.4 A recent investigation

Recently, in [62], E. Tasdemir considered the following difference equation

xn+1 = A + B
xn

x2
n−m

, n ∈ N0, (1.4)

where m ∈ N and min{A, B} > 0.
Note that by using the change of variables

xn =
√

B yn, n ∈ N0, (1.5)

equation (1.4) is transformed to the equation

yn+1 =
A√
B
+

yn

y2
n−m

, n ∈ N0, (1.6)

which is a very special case of equation (1.1). This immediately implies that equation (1.4) is
equivalent with a special case of equation (1.1), and consequently it is not a new equation at
all.

Instead of using the change of variables in (1.5) the author of [62] used the change of
variables

yn =
xn

A
, n ∈ N0, (1.7)

and obtained the equation

yn+1 = 1 + p
yn

y2
n−m

, n ∈ N0, (1.8)

where p = B/A2, which is, of course, equivalent with the special case of equation (1.1)
mentioned above.

The equilibria of equation (1.8) satisfy the algebraic equation

ȳ = 1 +
p
ȳ

and are equal to
1 +

√
1 + 4p
2

and
1 −

√
1 + 4p
2

.

From this and since p > 0, we see that

ȳ =
1 +

√
1 + 4p
2

(1.9)
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is a unique positive equilibrium of equation (1.8).
A simple calculation shows that the linearized equation associated with (1.8) about the

positive equilibrium ȳ is given by

zn+1 −
p
ȳ2 zn +

2p
ȳ2 zn−m = 0, n ∈ N0. (1.10)

It is well-known that
m

∑
j=0

|aj| < 1 (1.11)

is a sufficient condition for the asymptotic stability of the difference equation

zn+1 + a0zn + a1zn−1 + · · ·+ amzn−m = 0, (1.12)

from which it follows immediately that if 3p
ȳ2 < 1 and p > 0, equation (1.10) is asymptotically

stable. A simple calculation shows that this is satisfied for p ∈ (0, 3/4). This implies that the
equilibrium point ȳ of equation (1.8) is locally asymptotically stable for p ∈ (0, 3/4), which
was noted in [62].

Remark 1.4. Condition (1.11) is a practical condition which guarantees asymptotic stability
of equation (1.12), but his disadvantage is that it is not necessary. Moreover, there are better
sufficient conditions guaranteeing asymptotic stability of the equation. Unfortunately, many
authors use only this one and obtain pretty narrow sets of parameters which guarantee the
stability.

The following claims should be the main results in [62].

Theorem 1.5. Every solution (yn)n∈N−m of equation (1.8) is bounded and persist and satisfies the
following estimates

1 < yn < 1 + p(1 + p)m, (1.13)

for n ≥ 2m + 2.

Theorem 1.6. Let 0 < p < 3/4. Then, the positive equilibrium point ȳ of equation (1.8) is globally
asymptotically stable.

Theorem 1.7. Every solution of equation (1.8) satisfies the following statements:

(a) Every solution of equation (1.8) has semi-cycles of length at most 2m + 1.

(b) If every solution of equation (1.8) has a semi-cycle of length at least k, then, the following semi-cycle
has at least k + 1 terms.

Beside these three claims, and the observation related to the local asymptotic stability of
the equilibrium ȳ, [62] also gives a few other simple results, which are easily proved by well
known methods and simple calculations such as the nonexistence of two periodic solutions
and a growth rate result for solutions converging to the equilibrium ȳ.

Remark 1.8. At the end of [62] is proposed studying two special cases of equation (1.1) as
’Open Problems’ despite the fact that these, as well as some general difference equations have
been studied considerably so far, as we have mentioned in the previous subsection. The author
of [62] might have not seen any of the papers: [3,15–17,31,32,35,36,42,46,47,49–55,57,58,61],
which have been published in several popular journals.



6 S. Stević, B. Iričanin and W. Kosmala

1.5 Our aim

Here we show that Theorem 1.5 directly follows form some of our previous results, and
that employing one of known methods can be obtained a better upper estimate than the one
given in (1.13). Further, we show that the proof of Theorem 1.6 is not correct and provide a
complete proof of a generalization. We also show that the proof of Theorem 1.7 is not correct,
and present some correct ones related to it. We also conduct some analyses and present some
additional comments.

2 Main results, counterexamples and comments

In this section we give several comments concerning the claims and results in [62], conduct
some analyses, correct some of the proofs therein, and extend some of the claims and results
therein.

2.1 On Theorem 1.5 and relating results

As far as concerning Theorem 1.5, the fact that all positive solutions to equation (1.8) are
bounded follows from several results in the literature. For example, by using one of the
methods presented in [50], which essentially originates from [47], in [15] was proved the
following generalization of the boundedness results in [47] and [52]:

Theorem 2.1. Assume p, r > 0 and k ∈ N2. Then every positive solution of the equation

xn = A +
xp

n−1

xr
n−k

, n ∈ N0, (2.1)

is bounded if

0 < p <

(
rkk

(k − 1)k−1

)1/k

. (2.2)

Now note that in equation (1.4) or in the equivalent equation (1.8), we have p = 1 and
r = 2 for which the condition in (2.2) is satisfied for any k ∈ N2, from which the boundedness
part of Theorem 1.5 immediately follows.

Regarding the upper bound for positive solutions to equation (1.8) given in (1.13), we
must say that there is a procedure, which nowadays can be regarded as standard one, for
getting upper bounds for positive solutions of related difference equations. The procedure was
essentially used, e.g., in [40] and it was a starting point for getting the squirrel-tail method.
Namely, by iterating the numerators of the fractions in equation (1.8) m-times, and employing
a simple inductive argument we have

yn+1 = 1 + p
yn

y2
n−m

= 1 +
p

y2
n−m

(
1 + p

yn−1

y2
n−m−1

)

= 1 +
p

y2
n−m

+ p2 yn−1

y2
n−my2

n−m−1
= 1 +

p
y2

n−m
+

p2

y2
n−my2

n−m−1

(
1 + p

yn−2

y2
n−m−2

)

= 1 +
p

y2
n−m

+
p2

y2
n−my2

n−m−1
+

p3yn−2

y2
n−my2

n−m−1y2
n−m−2
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...

= 1 +
p

y2
n−m

+
p2

y2
n−my2

n−m−1
+ · · ·+

pmyn−(m−1)

y2
n−my2

n−m−1 · · · y2
n−2m+1

= 1 +
p

y2
n−m

+
p2

y2
n−my2

n−m−1
+ · · ·+ pm

y2
n−my2

n−m−1 · · · y2
n−2m+1

(
1 + p

yn−m

y2
n−2m

)

= 1 +
p

y2
n−m

+ · · ·+ pm

y2
n−my2

n−m−1 · · · y2
n−2m+1

+
pm+1yn−m

y2
n−my2

n−m−1 · · · y2
n−2m

= 1 +
p

y2
n−m

+ · · ·+ pm

y2
n−my2

n−m−1 · · · y2
n−2m+1

+
pm+1

yn−my2
n−m−1 · · · y2

n−2m
. (2.3)

From (2.3) and since
yn > 1, n ∈ N,

we have

yn+1 < 1 + p + · · ·+ pm + pm+1 =
1 − pm+2

1 − p
, (2.4)

for n ≥ 2m + 1, when p ̸= 1 and
yn+1 < m + 2, (2.5)

for n ≥ 2m + 1, when p = 1.
Let

Sm(p) :=
m−1

∑
j=0

pj, m ∈ N.

Since

Sm+2(p) = 1 + p
m

∑
j=0

pj < 1 + p
m

∑
j=0

Cm
j pj = 1 + p(1 + p)m

we have that the upper bound given in (2.4) is better than the corresponding one in (1.13).
Hence, the following result holds.

Theorem 2.2. Let p > 0 and m ∈ N. Then, every positive solution (yn)n∈N−m to equation (1.8) is
bounded and persistent and satisfies the following estimates

1 < yn < Sm+2(p),

for n ≥ 2m + 2.

Remark 2.3. Some other methods which can be used in showing the boundedness of posi-
tive solutions to nonlinear difference equations, including applications of invariants, can be
found, for instance, in [6,15–17,30,33,34,39,46,47,49–51,53–55,57,58], as well as in the related
references therein.

2.2 On Theorem 1.6 and some related results

The proof of Theorem 1.6 in [62] is not correct. Namely, to prove it, beside some nonessential
conventional inaccuracies, the author of [62] only claims that from

m = 1 + p
m

M2 , M = 1 + p
M
m2 (2.6)
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follows m = M and apply a known result (i.e, [13, Theorem 1.15]) from which Theorem 1.6
immediately follows, but only if it is also employed Theorem 1.5 (this was not mentioned in
[62], what can be regarded as an oversight). However, the above claim was not proved therein.
It should be pointed out that its proof is neither obvious nor quite simple, although it uses
only elementary mathematics (see the proof of Theorem 2.4 below). Moreover, it is possible
to prove a better convergence result than Theorem 1.6. Namely, the following result holds.

Theorem 2.4. Let m ∈ N and p ∈ (0, 3/4] ∪ [1, ∞). Then, the unique positive equilibrium point ȳ
of equation (1.8) is global attractor of all positive solutions.

Proof. Since
Ip := [1, Sm+2(p)]

is an invariant interval for positive solutions to equation (1.8), as mentioned above, to apply
[13, Theorem 1.15], it is enough to prove that the algebraic system (2.6) has only the solution
M = m = ȳ on the set I2

p.
Assume that there is a solution to system (2.6) such that

M ̸= m, (2.7)

where m, M ∈ Ip.
From (2.6) we have

m − M = p
(

m
M2 − M

m2

)
=

p(m3 − M3)

(mM)2

from which along with (2.7) it follows that

(Mm)2 = p(m2 + mM + M2). (2.8)

Further, from (2.6) we have

Mm = M + p
m
M

= m + p
M
m

from which along with (2.7) it follows that

Mm = p(M + m). (2.9)

From (2.6) we also have

M2m = M2 + pm, Mm2 = m2 + pM

from which along with (2.7) it follows that

Mm = M + m − p. (2.10)

From (2.8) and (2.9) we have

p(M + m)2 = m2 + mM + M2 = (M + m)2 − Mm

and consequently
Mm = (1 − p)(M + m)2. (2.11)
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If it were p = 1, then from (2.11) we would have Mm = 0, which contradicts to the assumption
m, M ∈ Ip.

Now assume that p ̸= 1. From (2.10) and (2.11) we have

(1 − p)(M + m)2 − (M + m) + p = (M + m − 1)(M + m − p(M + m + 1)) = 0. (2.12)

Since m, M ∈ Ip it is not possible to be M + m = 1. Hence, it must be M + m = p(M + m + 1),
that is

M + m =
p

1 − p
. (2.13)

From (2.13) and since M + m > 0 it follows that it must be p ∈ (0, 1).
Using this fact, (2.10) and (2.13) we have

Mm =
p

1 − p
− p =

p2

1 − p
. (2.14)

From (2.13) and (2.14) we see that M and m are the two positive distinct roots of the
quadratic polynomial

P̂2(t) := t2 − p
1 − p

t +
p2

1 − p
. (2.15)

By direct calculation we see that the roots of polynomial (2.15) are

t1 =
p(1 +

√
4p − 3)

2(1 − p)
and t2 =

p(1 −
√

4p − 3)
2(1 − p)

. (2.16)

From (2.16) we see that it is not possible to be p ∈ (0, 3/4], since then t1,2 will be complex
numbers if p ∈ (0, 3/4), or equal if p = 3/4.

Hence, the assumption m ̸= M is not possible, from which it follows that M = m, com-
pleting the proof of the theorem.

Remark 2.5. From Theorem 2.4 and since the equilibrium ȳ is locally asymptotically stable for
p ∈ (0, 3/4), the claim in Theorem 1.6 follows.

Remark 2.6. It is interesting to note that if p ∈ (3/4, 1), then t2 > 1. Indeed, we have

t2 =
2p

1 +
√

4p − 3

and consequently

t2 − 1 =
2p − 1 −

√
4p − 3

1 +
√

4p − 3
.

From this and since 2p − 1 −
√

4p − 3 > 0 for p ∈ (3/4, 1) is equivalent to 4(p − 1)2 > 0, the
claim follows.

To prove that Theorem 2.4 holds also for p ∈ (3/4, 1) it will be enough to prove that

t1 >
1 − pm+2

1 − p
, (2.17)

which is equivalent to
p(1 +

√
4p − 3) + 2pm+2 > 2.
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Note that the function
fm(t) := 2tm+2 + t(

√
4t − 3 + 1) (2.18)

is increasing for t ≥ 3/4, and consequently on the interval (3/4, 1).
On the other hand, we have

fm

(3
4

)
= 2

(3
4

)m+2
+

3
4
≤ 51

32
< 2

for any m ∈ N, and
fm(1) = 4 > 2.

Hence, for each m ∈ N, there is a unique t̂m ∈ (3/4, 1), so that

fm(t̂m) = 2.

This with the monotonicity of the function fm implies that inequality (2.17) holds when p > t̂m.

This analysis shows that the following extension of Theorem 2.4 holds.

Theorem 2.7. Let m ∈ N, fm be the function defined in (2.18), and p ∈ (0, 3/4] ∪ (t̂m,+∞), where
t̂m is the unique solution to the equation fm(t) = 2 on the interval (3/4, 1). Then, the unique positive
equilibrium point ȳ of equation (1.8) is global attractor of all positive solutions.

Remark 2.8. For each m ∈ N the value of t̂m can be approximated by a numeric calculation,
but it seems cannot be expressed in closed form.

2.3 On Theorem 1.7 and relating results

The proof of the claim (a) in Theorem 1.7 is not correct. Before we present the arguments for
the claim, let us mention that the constant/equilibrium solution

yn = ȳ, n ∈ N−m,

should have been excluded from the consideration therein, since for the solution the claim is
obviously not true. Namely, the solution has only one semi-cycle, which can be regarded as
positive, but also it can be regarded as negative, depending on a definition of semi-cycles.

To prove the claim (for the nonconstant solutions), the author of [62] unsuccessfully copied
a known method, which can be found, for example, in [1]. Namely, he chooses a positive
solution (yn)n≥N−m to equation (1.8) and considers one of its negative semi-cycles (it is claimed
that a similar argument proves the claim also for positive semi-cycles), say

yN , yN+1, . . . , yN+2m < ȳ

where yN is the first term in the negative semi-cycle.
It is claimed that

yN+m+i = 1 + p
yN+m+i−1

y2
N+i−1

> 1 + p
yN+m+i−1

ȳ2

>

(
1 +

p
ȳ2

)
yN+m+i−1 > yN+m+i−1

(2.19)

for i = 0, m − 1, from which it is concluded that

yN+m < yN+m+1 < · · · < yN+2m−1 < yN+2m,
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and consequently

yN+2m+1 = 1 + p
yN+2m

y2
N+m

> ȳ.

However, the second inequality in (2.19) is not correct, since if it was true, then it would be
yN+m+i−1 < 1, which is not possible for any N satisfying the condition N + m + i − 1 ≥ 1.

The above proof can be applied to positive solutions to the difference equation

yn+1 = 1 + p
yn

yn−m
, (2.20)

however, as we have just noticed, it does not hold for the case of equation (1.8).
One of the interesting problems is the existence of solutions of difference equations which

do not oscillate around an equilibrium. The characteristic polynomials associated to their lin-
earizations can be of some help in the study. Namely, if a characteristic polynomial has a zero
in the interval (0, 1), then it suggests the existence of solutions of the original difference equa-
tion which do not oscillate around an equilibrium. Some methods for showing the existence
of such solutions, which use the idea, have been developed in the last few decades (see, e.g.,
[6–11, 14, 43–45, 48] and the related references therein; for another method see [19]).

These facts suggest to consider the problem of the existence of zeros of the associated
characteristic polynomial

Pm+1(t) = tm+1 − p
ȳ2 tm +

2p
ȳ2 = 0, m ∈ N0. (2.21)

to equation (1.10), in the interval (0, 1).
First note that

Pm+1(0) =
2p
ȳ2 =

4p
1 + 2p +

√
1 + 4p

∈ (0, 2) (2.22)

and
Pm+1(1) = 1 +

p
ȳ2 = 1 +

2p
1 + 2p +

√
1 + 4p

∈ (1, 2) (2.23)

when p > 0.
We have

P′
m+1(t) = (m + 1)tm−1

(
t − 2mp

(m + 1)(1 + 2p +
√

1 + 4p)

)
, m ∈ N0. (2.24)

Hence, the polynomial P′
m+1(t) has two zeros t̃1 = 0 and

t̃2 =
2mp

(m + 1)(1 + 2p +
√

1 + 4p)
∈ (0, 1).

From (2.24) we have that the polynomial Pm+1(t) has a local minimum at t̃2, which is equal to

Pm+1(t̃2) =
p
ȳ2

(
2 − mm

(m + 1)m+1

(
2p

1 + 2p +
√

1 + 4p

)m)
. (2.25)

From (2.25) it is easy to see that

Pm+1(t̃2) >
p
ȳ2 > 0.
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Thus, for any m ∈ N, the polynomial Pm+1(t) does not have a zero on the interval [0, 1].
If m is odd, i.e., m = 2l − 1 for some l ∈ N, than t2 is a unique local and global extremum

(minimum).
If m is even, i.e., m = 2l for some l ∈ N, then P2l+1(t) has a local maximum at t̃1, and

increases on the interval (−∞, 0]. Hence, it has a unique negative zero. From this, (2.22) and
since

P2l+1(−1) = −1 +
p
ȳ2 = −

1 +
√

1 + 4p
1 + 2p +

√
1 + 4p

< 0 (2.26)

when p > 0, we have that the polynomial P2l+1(t) has a unique zero t0 in the interval (−1, 0).
This fact suggests the existence of oscillatory solutions to equation (1.8) in this case, which
is not so surprising. It also suggests that the asymptotics of some oscillatory solutions can
be find by using some of the methods presented in [6–11, 14, 43–45, 48]. We will not pursue
the investigation in the direction here, since the above conducted analysis also suggests that
all non-equilibrium solutions are oscillatory. Indeed, the following result on the oscillatory
character of positive solutions to equation (1.8) holds.

Theorem 2.9. Let m ∈ N and p > 0. Then, equation (1.8) does not have positive non-equilibrium
solutions which are eventually bigger or smaller than the positive equilibrium ȳ.

Proof. Assume that (yn)n≥N−m is a positive non-equilibrium solution to equation (1.8) such
that

yn ≥ ȳ, (2.27)

for n ≥ n0, for some n0 ∈ N−m. Since equation (1.8) is autonomous we may assume that
n0 = −m.

From (1.8) and (2.27) we have

yn+1 − ȳ = p
yn

y2
n−m

− p
ȳ
= p

ynȳ − y2
n−m

y2
n−mȳ

≥ 0,

for n ∈ N0, from which along with (2.27) it follows that

yn ≥ y2
n−m

ȳ
≥ yn−m, (2.28)

for n ∈ N0.
From (2.28) we see that the subsequences ymk+i, k ∈ N−1, i = 0, m − 1, are nondecreasing.

From this and Theorem 1.5 it follows that there are finite limits

lim
k→+∞

ymk+i = ȳi, i = 0, m − 1. (2.29)

Note also that it must be
ȳi ≥ ȳ, i = 0, m − 1. (2.30)

Letting k → +∞ in the relations

ymk+i+1 = 1 + p
ymk+i

y2
m(k−1)+i

, i = 0, m − 1

we get that (ȳ1, ȳ2, . . . , ȳm) is a solution to the algebraic system

ȳi+1 = 1 +
p
ȳi

, i = 0, m − 1, (2.31)
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where we use the standard convention ȳi = ȳj when i ≡ j ( mod m).
If ȳi0+1 = ȳi0 , for some i0 ∈ {0, 1, . . . , m − 1}, then from (2.31) we see that it must be

ȳi0+1 = ȳi0 = ȳ, from which together with (2.31) we easily get ȳi = ȳ, for i = 0, m − 1, which
contradicts to (2.30), the monotonicity of the subsequences (ymk+i)k∈N−1 , i = 0, m − 1, and the
assumption that the solution is non-equilibrium.

Now we assume that
ȳi ̸= ȳi+1, i = 0, m − 1. (2.32)

From (2.31) we have

ȳi+1 − ȳi =
p
ȳi

− p
ȳi−1

=
p(ȳi−1 − ȳi)

ȳi−1ȳi
, i = 0, m − 1, (2.33)

and
ȳiȳi+1 = ȳi + p, i = 0, m − 1. (2.34)

From (2.33) it follows that

m−1

∏
i=0

(ȳi+1 − ȳi)

(
m−1

∏
i=0

ȳi

)2

= (−1)m pm
m−1

∏
i=0

(ȳi+1 − ȳi), (2.35)

from which along with (2.32) we immediately get a contradiction when m is an odd number.
If m is an even number we get (

m−1

∏
i=0

ȳi

)2

= pm. (2.36)

On the other hand, from (2.34) we have(
m−1

∏
i=0

ȳi

)2

=
m−1

∏
i=0

(ȳi + p). (2.37)

From (2.36) and (2.37) and since

m−1

∏
i=0

(ȳi + p) ≥
m−1

∏
i=0

(ȳ + p) > pm (2.38)

we get a contradiction.
If we assume that the inequality

yn ≤ ȳ,

holds eventually, then as above is obtained that the subsequences ymk+i, k ∈ N−1, i = 0, m − 1,
are nonincreasing and convergent, whereas the proof that the algebraic system (2.31) in this
case, does not have a nontrivial solution follows by using the same argument and the inequal-
ities

m−1

∏
i=0

(ȳi + p) ≥
m−1

∏
i=0

(p + 1) > pm

first of which follows from the first inequality in (1.13).
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Concerning the proof of the claim (b) in Theorem 1.7, it is quite confusing. Namely, the
number k is not specified at all. It does not have any connection with the claim of the theorem
and the proof given therein is incorrect.

Here we formulate a claim which should generalize what should have been the claim of
Theorem 1.7 (b) and give a detailed and complete proof.

Before it, we quote the following convention: a positive semicycle of a solution (yn)n∈N−m

to a difference equation is a finite or infinite subsequence/string yl , yl+1, . . . , yN−1 satisfying
the condition

yj ≥ ȳ, j = l, N − 1,

with l ≥ −m and N ≤ +∞, such that either l = −m, or l > −m and yl−1 < ȳ, and either
N = +∞, or N < +∞ and yN < ȳ; a negative semicycle of a solution (yn)n∈N−m to the
difference equation is a finite or infinite subsequence/string yl , yl+1, . . . , yN−1 satisfying the
condition

yj < ȳ, j = l, N − 1,

with l ≥ −m and N ≤ +∞, such that either l = −m, or l > −m and yl−1 ≥ ȳ, and either
N = +∞, or N < +∞ and yN ≥ ȳ.

Theorem 2.10. Let A > 0, m ∈ N and g : R+ → R+ be a nondecreasing continuous function.
Consider the difference equation

yn+1 = A +
yn

yn−mg(yn−m)
, n ∈ N0. (2.39)

If a solution to equation (2.39) has a semi-cycle of length at least m, then every semi-cycle after that has
at least m + 1 terms.

Proof. First note that equation (2.39) has a unique positive equilibrium ȳ which satisfies the
relation

ȳ = A +
1

g(ȳ)
. (2.40)

Indeed the function
f (t) := A +

1
g(t)

is a positive nonincreasing continuous function, from which the claim follows.
Let yN−m, yN−m+1, . . . , yN−1 be a semi-cycle of length at least m. We may assume that it is

a negative one and that yN ≥ ȳ. So, we have

max{yN−m, yN−m+1, . . . , yN−1} < ȳ ≤ yN . (2.41)

We may also assume that N − m ≥ 1.
From (2.40), (2.41), the monotonicity of the function g, and since

yn > A, n ∈ N,

we have
yN+1 = A +

yN

yN−mg(yN−m)
≥ A +

yN

yN−mg(ȳ)
> A +

1
g(ȳ)

= ȳ. (2.42)

If we have proved that
yN+i ≥ ȳ
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for some 0 ≤ i < m, then similar to (2.42) we have

yN+i+1 = A +
yN+i

yN+i−mg(yN+i−m)
≥ A +

yN+i

yN+i−mg(ȳ)
> A +

1
g(ȳ)

= ȳ. (2.43)

From the relations in (2.42) and (2.43), and employing the method of mathematical induction,
we obtain that

yN+i ≥ ȳ,

for i = 0, m, proving the claim for the case of the first semi-cycle after the chosen one.
If yN−m, yN−m+1, . . . , yN−1 is a positive semi-cycle of length at least m and yN < ȳ, that is

min{yN−m, yN−m+1, . . . , yN−1} ≥ ȳ > yN ,

the proof is similar/dual, so is omitted.
Repeating the same procedure/arguments for the each next semi-cycle the theorem fol-

lows.

A historical remark. A slightly different version of this paper was submitted to the Journal of
Applied Mathematics and Computing on February 19, 2023. However, the paper has not been
accepted for publication in the journal, and we have not received a real scientific explanation
for the unexpected (at least for us) decision.
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[15] B. Iričanin, On a higher-order nonlinear difference equation, Abstr. Appl. Anal. 2010,
Article ID 418273, 8 pp. https://doi.org/10.1155/2010/418273; MR2660393
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[54] S. Stević, On a generalized max-type difference equation from automatic control the-
ory, Nonlinear Anal. 72(2010), 1841–1849. https://doi.org/10.1016/j.na.2009.09.025;
MR2577582
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