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Abstract. We prove the uniqueness of positive radial solution to the (p, q)-Laplacian
problem {

−∆pu − ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,

where p > q > 1, ∆ru = div(|∇u|r−2∇u), Ω = B(0, 1) is the open unit ball in RN ,
f : (0, ∞) → R is q-sublinear at ∞ with possible semipositone structure at 0, and λ > 0
is a large parameter.
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1 Introduction

In this paper, we study the uniqueness of positive radial solutions for the (p, q)-Laplacian
boundary value problem {

−∆pu − ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is the open unit ball in RN , p > q > 1, ∆ru = div(|∇u|r−2∇u(|∇u|r−2∇u), f :
(0, ∞) → R is p-sublinear at ∞ i.e. limu→∞

f (u)
up−1 = 0 and λ is a positive parameter. The

(p, q)-Laplacian problems occurred in a variety of applied areas such as quantum physics,
plasma physics, and reaction diffusion to name a few, see e.g. [2, 4, 6, 13, 14, 23]. When f is
p-sublinear at ∞, the existence of positive solutions to (1.1) for λ large was recently established
in [1] under the mere additional natural condition that lim infu→∞ uβ f (u) > 0 and lim supu→0+

uβ| f (u)| < ∞ for some β ∈ [0, 1), which extended previous results in [10, 20]. When p = q,
the uniqueness of positive solutions to (1.1) for all λ > 0 was established in the pioneering
work [3] for p = 2 when f (u)

u is strictly decreasing on (0, ∞), and subsequently extended to the
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case p > 1 in [11]. When this monotonicity condition is assumed only for u large, uniqueness
results for λ large were obtained under additional hypotheses in [5,7–9,12,15–19,21,22,24–26],
where the semipositone case i.e. −∞ < f (0) < 0 is allowed in [18]. Note that previous
uniqueness proofs depend on the homogeneity of the p-Laplace and cannot be extended to the
(p, q)-Laplace operator. In this paper, we shall establish the uniqueness of positive solutions
to (1.1) for λ large when f is q-sublinear at ∞ with possible semipositone structure at 0, which
has not been obtained in the literature to the best of our knowledge. Related uniqueness
results for (1.1) in a bounded domain of RN can be found in [10, 13]. In [13, Theorem 2.2],
the uniqueness of positive solutions for all λ > 0 was established when z1−q f (z) is decreasing
for z > 0 and the assumption that any two positive solutions ui, i = 1, 2, of (1.1) satisfy
∆pui ∈ L∞(Ω), and ui/uj ∈ L∞(Ω), i ̸= j. The uniqueness for λ large in the semipositone case
was observed in [10] for the special Dirichlet two-point boundary problem{

−((u′)3)′ − u′′ = λ f (u) in (0, 1),

u(0) = u(1) = 0,

where f (u) = (u + 1)γ − 2 for some γ ∈ (0, 3). Note that this observation is generated by
Mathematica and does not constitute an analytical proof.

Since we are looking for radial solutions for (1.1), it reduces to finding solutions of the
ODE problem {

−(rN−1ϕ(u′))′ = λrN−1 f (u), 0 < r < 1,

u′(0) = 0, u(1) = 0,
(1.2)

where ϕ(x) = ϕp(x) + ϕq(x), ϕr(x) = |x|r−2x.

We make the following assumptions.

(A1) f : (0, ∞) → R is continuous and f is increasing on [L, ∞) for some L > 0.

(A2) lim supz→∞
z f ′(z)

f (z) < q − 1.

(A3) There exists γ ∈ [0, 1) such that lim supz→0+ zγ+1| f ′(z)| < ∞ and f (0+) < ∞ if γ = 0.

By a positive solution of (1.2), we mean a function u ∈ C1[0, 1] with u > 0 on [0, 1) and
satisfying (1.2). Our main result is

Theorem 1.1. Let (A1)–(A3) hold and suppose either

(A4) f (z) > 0 for z > 0 with lim infz→0+
f (z)
zq−1 > 0.

or

(A5) −∞ < f (0+) < 0 and there exists β > 0 such that (z − β) f (z) > 0 for z ̸= β.

holds. Then there exists a constant λ̄ > 0 such that (1.2) has a unique positive solution for λ > λ̄.

Remark 1.2.

(i) Note that (A2) implies f (z)
zq−1 is decreasing for z large and limz→∞

f (z)
zq−1 = 0.

(ii) It is easily seen from (A3) that lim supz→0+ zγ| f (z)| < ∞. Since lim infz→∞ zγ f (z) > 0 and
lim supz→0+ zγ| f (z)| < ∞ , it follows from [1, Theorem 1.1] that (1.2) has a positive solution
for λ large under the assumptions of Theorem 1.1.
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2 Preliminary results

Let H(z) =
ϕp(z)
f (z) . Then H is increasing for z large and limz→∞ H(z) = ∞ in view of Re-

mark 1.2 (i).

Lemma 2.1. Let K > 0. Then for λ ≫ 1,

(i) H−1(λK) ≤ K
1

p−q H−1(λ) if K > 1.

(ii) H−1(λK) ≥ K
1

p−q H−1(λ) if K < 1.

Proof. Let zλ = H−1(λ) and K̃ = K
1

p−q . Then zλ → ∞ as λ → ∞.
Suppose K > 1. Then f (K̃zλ) ≤ K̃q−1 f (zλ) for λ large in view of Remark 1.2 (i), which

implies
ϕp(K̃zλ)

f (K̃zλ)
≥ K̃p−q ϕp(zλ)

f (zλ)
= λK̃p−q = λK,

i.e. K̃H−1(λ) = K̃zλ ≥ H−1(λK) and (i) holds. If K < 1 then by replacing λ by λK and K by
K−1 in (i), we obtain (ii).

Lemma 2.2. Let λ, x, c > 0. Then

ϕ−1(λx) ≥ aϕ−1
p (λx)

for λx > c, provided that ap−1 + aq−1c
q−p
p−1 ≤ 1.

Proof. Let y = ϕ−1
p (λx). Then

ϕ(ay) = (ay)p−1 + (ay)q−1 = ap−1λx + aq−1(λx)
q−1
p−1 . (2.1)

Since λx > c,

aq−1(λx)
q−1
p−1 = aq−1c

q−1
p−1

(
λx
c

) q−1
p−1

< aq−1c
q−1
p−1

(
λx
c

)
= aq−1c

q−p
p−1 λx,

which together with (2.1) imply

ϕ(ay) ≤
(

ap−1 + aq−1c
q−p
p−1

)
λx ≤ λx

if ap−1 + aq−1c
q−p
p−1 ≤ 1 i.e. ay ≤ ϕ−1(λx), which completes the proof.

If (A4) holds then clearly positive solutions to (1.2) are decreasing on (0,1). The next result
shows this is also true in the semipositone case under assumption (A5).

Lemma 2.3. Let (A1) and (A5) hold. Then any positive solution u of (1.2) is decreasing on (0, 1) with
u(0) ≥ θ, where θ > β is such that (z − θ)F(z) > 0 for z > 0, z ̸= θ. Here F(z) =

∫ z
0 f .

Proof. Let u be a positive solution of (1.2). Since f (0+) < 0, it follows that (rN−1ϕ(u′))′ > 0
for r near 1 and therefore u′(r) < u′(1) ≤ 0 for such r. Let r0 ∈ [0, 1) be the smallest number
such that u′ < 0 on (r0, 1) and suppose r0 > 0. Multiplying the equation in (1.2) by u′ gives

G′(r) = −(N − 1)rN−2Φ(u′) + λ(n − 1)rN−2F(u) on (0, 1),
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where Φ(z) =
∫ z

0 ϕ and G(r) = rN−1(ϕ(u′)u′ − Φ(u′) + λF(u)). Note that G(1) = (1 −
1/p)|u′(1)|p + (1 − 1/q)|u′(1)|q ≥ 0.

We claim that u(r0) > θ. Indeed, if u(r0) ≤ θ then u < θ on (r0, 1), which implies G is
decreasing on (r0, 1). Since u′(r0) = 0, it follows that

0 ≤ G(1) ≤ G(r) < G(r0) ≤ 0 on (r0, 1),

a contradiction. Hence u(r0) > θ and so (rN−1(ϕ(u′))′ < 0 near r0. Consequently, u′(r) >

0 for r near r0, r < r0. Let r1 ∈ [0, r0) such that u′ > 0 on (r1, r0) and u′(r1) = 0. Since
rN−1

0 ϕ(u′(r0)) = 0 = rN−1
1 ϕ(u′(r1)), there exists r2 ∈ (r1, r0) such that

−(rN−1ϕ(u′(r))′(r2) = λrN−1
2 f (u(r2)) = 0

i.e. u(r2) = β. Thus θ ∈ u ((r2, r0]) and there exists r3 ∈ (r2, r0) such that u < θ on [r2, r3) and
u(r3) = θ. Since u′ > 0 on (r1, r0), u < θ on [r1, r3) i.e. and so G′ < 0 on [r1, r3), which implies

0 ≤ G(r3) < G(r) < G(r1) < 0,

a contradiction. Thus r0 = 0, which completes the proof.

Lemma 2.4. Let c > 0 and suppose (A1), (A4) hold. Then

lim sup
x→0+

ϕ(cx)
f̌ (x)

< ∞,

where f̌ (x) = infy≥x f (y).

Proof. Since lim infy→0+
f (y)
yq−1 > 0, there exist constants k, δ > 0 such that

f (y) ≥ kϕ(cy) for y ∈ (0, δ). (2.2)

Let x < δ and y ≥ x. If y < δ then (2.2) gives

f (y) ≥ kϕ(cx), (2.3)

while if y > δ then
f (y) ≥ k0 = k1ϕ(cδ) ≥ k1ϕ(cx), (2.4)

where k0 = inf[δ,∞) f > 0 and k1 = k0/ϕ(cδ).
Combining (2.3) and (2.4), we obtain

f̌ (x) ≥ k2ϕ(cx) for x ∈ (0, δ),

where k2 = min(k, k1), which completes the proof.

The next result gives sharp lower and upper bound estimates for positive solution of (1.2)
when λ is large.

Lemma 2.5. Let the assumptions of Theorem 1.1 hold. Then there exist positive constants A1, A2, and
λ0 such that for λ > λ0, any positive solution of (1.2) satisfies

A1Bλ(1 − r) ≤ u(r) ≤ A2Bλ(1 − r) (2.5)

for r ∈ (0, 1), where Bλ = ϕ−1
p
(
λ f (H−1(λ)

)
.
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Proof. In what follows, λ ≫ 1 or λ large means λ > λ∗ for some λ∗ > 0 independent of u
and λ.

Case 1. Suppose (A4) holds.

Let λ > 0 and u be a positive solution of (1.2). Then u is decreasing on (0, 1). By integrat-
ing, we get

−u′(r) = ϕ−1
(

λ

rN−1

∫ r

0
sN−1 f (u)ds

)
, 0 < r < 1.

Recalling that f̌ (x) = inf
y≥x

f (y) and since f̌ is nondecreasing, we have

−u′(r) ≥ ϕ−1
(

λ

rN−1

∫ 1/2

0
sN−1 f̌ (u)ds

)
≥ ϕ−1

(
λc1 f̌ (u (1/2))

)
for r > 1/2, (2.6)

where c1 = 1
N2N , which implies upon integrating on (1/2, 1) that

2u(1/2) ≥ ϕ−1
(

λc1 f̌ (u (1/2))
)

i.e.
ϕ(2u(1/2))
f̌ (u (1/2))

≥ λc1. (2.7)

Since lim supx→0+
ϕ(2x)
f̌ (x)

< ∞ in view of Lemma 2.4, we deduce from (2.7) that u(1/2) → ∞ as
λ → ∞.

Hence u(1/2) > 1 for λ ≫ 1, and so

ϕ(2u(1/2)) ≤ 2ϕp(2u(1/2)) = 2pϕp(u(1/2)),

which together with (2.7) and the fact that f (z) = f̌ (z) for z > L, gives

H(u(1/2)) =
ϕp(u(1/2))
f (u (1/2))

≥ λc2

where c2 = min(c1/2p, 1). Hence by Lemma 2.1 (ii),

u(1/2) ≥ H−1(λc2) ≥ c3H−1(λ), (2.8)

where c3 = c
1

p−q
2 . From (2.6) and (2.8), we get

−u′(r) ≥ ϕ−1
(

λc1 f
(

c3H−1(λ)
))

≥ ϕ−1
(

λc1cq−1
3 f

(
H−1(λ)

))
for r > 1/2, (2.9)

For λ ≫ 1, λc1cq−1
3 f

(
H−1(λ)

)
> 1, from which (2.9) and Lemma 2.2 with c = 1 and x =

c1cq−1
3 f

(
H−1(λ)

)
give

−u′(r) ≥ aϕ−1
p

(
λc1cq−1

3 f
(

H−1(λ)
))

≡ a1ϕ−1
p (λ f

(
H−1(λ)

)
= a1Bλ for r > 1/2, (2.10)

where Bλ = ϕ−1
p
(
λ f (H−1(λ)

)
and a > 0 is such that ap−1 + aq−1 ≤ 1 and a1 = aϕ−1

p (c1cq−1
3 ).

Note that Bλ → ∞ as λ → ∞. Integrating (2.10) yields

u(r) ≥ a1Bλ(1 − r) (2.11)
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for r > 1/2, while for r < 1/2,

u(r) > u(1/2) ≥ a1

2
Bλ ≥ a1

2
Bλ(1 − r). (2.12)

Combining (2.11) and (2.12), we obtain

u(r) ≥ A1Bλ(1 − r) for r ∈ (0, 1), (2.13)

where A1 = a1/2 i.e. the lower bound estimate in (2.5) holds.
Let C = supz∈(0,L) zγ f (z) and note that 0 < C < ∞. Since f > 0 on (0, ∞),

f (z) ≤ C
zγ

+ f (max(z, L)) (2.14)

for z > 0. Since ∥u∥∞ → ∞ as λ → ∞, ∥u∥∞ > L for λ ≫ 1 and hence (2.13)–(2.14) yield

f (u(τ)) ≤ C
uγ(τ)

+ f (max(u(τ), L)) ≤ C1

Bγ
λ(1 − τ)γ

+ f (∥u∥∞),

for τ ∈ (0, 1), where C1 = C/Aγ
1 . Thus

u(r) =
∫ 1

r
ϕ−1

(
λ

sN−1

∫ s

0
τN−1 f (u)dτ

)
ds

≤
∫ 1

r
ϕ−1

(
λ

sN−1

∫ s

0
τN−1

(
C1

Bγ
λ(1 − τ)γ

+ f (∥u∥∞)

)
dτ

)
ds

≤
∫ 1

r
ϕ−1

(
λ

(
C1

∫ s

0

dτ

(1 − τ)γ
+ f (∥u∥∞)

))
≤ ϕ−1 (λ(C2 + f (∥u∥∞))) (1 − r)

≤ ϕ−1(λC3 f (∥u∥∞))(1 − r) ≤ ϕ−1
p (λC3 f (∥u∥∞))(1 − r) (2.15)

for r ∈ (0, 1), where C2 = C1
∫ 1

0
dτ

(1−τ)γ and C3 > 1 is such that (C3 − 1) f (L) > C2.
In particular,

∥u∥∞ ≤ ϕ−1
p (λC3 f (∥u∥∞)),

which implies

H(∥u∥∞) =
ϕp(∥u∥∞)

f (∥u∥∞)
≤ λC3,

and therefore
∥u∥∞ ≤ H−1(λC3) ≤ C4H−1(λ), (2.16)

in view of Lemma 2.1 (i), where C4 = C
1

p−q
3 .

Combining (2.15)–(2.16) and Remark 1.2 (i), we infer that

u(r) ≤ ϕ−1
p (λC3 f

(
C4H−1(λ))

)
(1 − r) ≤ ϕ−1

p (λC3Cq−1
4 f (H−1(λ))(1 − r)

= A2ϕ−1
p (λ f (H−1(λ))(1 − r) ≡ A2Bλ(1 − r)

for r ∈ (0, 1), where A2 = ϕ−1
p
(
C3Cq−1

4

)
i.e. the upper bound estimate in (2.5) holds, which

completes the proof.

Case 2. Suppose (A5) holds.
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By Lemma 2.3, u is decreasing on (0, 1). Recall that β, θ > 0 are such that (z − β) f (z) > 0
for z ̸= β and (z − θ)F(z) > 0 for for z ̸= θ. Let ρ = β+θ

2 and δ ∈ (0, 1) be such that

δN

2N
inf
[ρ,∞)

f − (1 − δ)K > 0, (2.17)

where K > 0 is such that f (z) ≥ −K for all z ∈ (0, ∞).

We will show that u(δ) → ∞ as λ → ∞. To this end, we need to verify the following claims.
Let β1 ∈ (0, β) and δ0, δ1 satisfy δ < δ0 < δ1 < 1.

Claim 1. u(δ1) > β1 for λ ≫ 1.
Suppose to the contrary that u(δ1) ≤ β1. Then u < β1 on (δ1, 1), which implies

(rN−1ϕ(u′))′ = −λrN−1 f (u) ≥ λmrN−1 on (δ1, 1), (2.18)

where m = − sup(0,β1)
f > 0.

Let δ2 ∈ (δ1, 1). By the Mean Value Theorem, there exists σ ∈ (δ1, δ2) such that

|u′(σ)| = u (δ1)− u(δ2)

δ2 − δ1
≤ β1

δ2 − δ1
≡ β̄.

Hence by integrating (2.18) on (σ, 1), we obtain

0 ≥ ϕ(u′(1)) ≥ σN−1ϕ(u′(σ)) + λm
∫ 1

σ
rN−1dr ≥ λm

∫ 1

δ2

rN−1dr − ϕ(β̄) > 0,

for λ large, a contradiction which proves the claim.

Claim 2. u(δ0) > ρ for λ ≫ 1.

Suppose to the contrary that u(δ0) ≤ ρ. Then u < ρ on (δ0, 1) and therefore G′ < 0 on
(δ0, 1), where G is defined in the proof of Lemma 2.3. Hence G(r) ≥ G(1) ≥ 0 on (τ0, 1) i.e.

ϕ(u′)u′ − Φ(u′) + λF(u)) ≥ 0 on (δ0, 1),

or, equivalently,

(1 − 1/p)|u′|p + (1 − 1/q)|u′|q ≥ −λF(u) on (δ0, 1). (2.19)

By Claim 1 and the monotonicity of u,

β1 ≤ u ≤ ρ on (δ0, δ1),

and hence κ ≡ inf[β1,ρ](−F(z)) > 0. Consequently, (2.19) gives

|u′|p + |u′|q ≥ λqκ

q − 1
≡ λκ0 on (δ0, δ1).

For λκ0 > 2, this implies |u′| > 1 and hence 2|u′|p ≥ λκ0 on (δ0, δ1) follows i.e.

−u′ = |u′| ≥ (λκ0/2)1/p on (δ0, δ1). (2.20)

Integrating (2.20) on (δ0, δ1) gives

u(δ0) ≥ (λκ0/2)1/p(δ1 − δ0) > ρ
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for λ ≫ 1, a contradiction which proves Claim 2.

By Claim 2, u > ρ on (0, δ0) and hence

f (u) ≥ κ1 on (0, δ0),

where κ1 = inf[ρ,∞) f > 0. This implies

u(δ) = u(δ0) +
∫ δ0

δ
ϕ−1

(
λ

sN−1

∫ s

0
τN−1 f (u)dτ

)
ds ≥ (δ0 − δ)ϕ−1

(
λκ1

∫ δ

0
τN−1dτ

)
ds,

and thus u(δ) → ∞ as λ → ∞.

Hence for λ large, u(δ) > ρ and for r > δ, we have∫ r

0
sN−1 f (u)ds =

∫ δ

0
sN−1 f (u)ds +

∫ r

δ
sN−1 f (u)ds ≥ δN

N
f (u(δ))− (1 − δ)K ≥ δN

2N
f (u(δ))

in view of (2.17). Hence

−u′(r) = ϕ−1
(

λ

rN−1

∫ r

0
sN−1 f (u)ds

)
≥ ϕ−1

(
λδN f (u(δ)

2N

)
, (2.21)

for r > δ, and upon integrating on (δ, 1), we get

u(δ) ≥ (1 − δ)ϕ−1
(

λδN f (u(δ))
2N

)
i.e.

ϕ (cu(δ))
f (u(δ))

≥ λD1, (2.22)

where c = (1 − δ)−1 and D1 = δN

2N .
For λ ≫ 1, cu(δ > 1 and ϕ (cu(δ)) ≤ 2ϕp(cu(δ)) = 2ϕp(c)ϕp(δ) and (2.22) becomes

H(u(δ)) =
ϕp(u(δ))
f (u(δ))

≥ λD2,

where D2 = D1
2ϕp(c)

< 1, which implies

u(δ) ≥ H−1(λD2) ≥ D3H−1(λ) (2.23)

follows, where D3 = D
1

p−q
2 .

Combining (2.21), (2.23), Remark 1.2 (i), and Lemma 2.2, we obtain for λ ≫ 1,

−u′(r) ≥ ϕ−1
(

λδN f (D3H−1(λ))

2N

)
≥ ϕ−1

(
λδN Dq−1

3 f (H−1(λ))

2N

)
,

≥ aϕ−1
p

(
λδN Dq−1

3 f (H−1(λ))

2N

)
= D4ϕ−1

p

(
λ f (H−1(λ))

)
,

for r ∈ (δ, 1), where D4 = aϕ−1
p
( δN Dq−1

3
2N

)
. Integrating this inequality gives

u(r) ≥ D4ϕ−1
p (λ f (H−1(λ))(1 − r) for r ∈ (δ, 1),
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which, together with the monotonicity of u, gives the lower bound estimate in (2.5).
For the upper bound estimate, by increasing L if necessary, we can assume L > β with

f (L) > 0. Hence
f (z) ≤ C1 + f (max(z, L))

for z > 0, where C1 = max[β,L] f .
Suppose ∥u∥∞ > L and C2 > 1 be such that

C1 < (C2 − 1) f (L) < (C2 − 1) f (∥u∥∞).

Then

u(r) =
∫ 1

r
ϕ−1

(
λ

sN−1

∫ s

0
τN−1 f (u)dτ

)
ds ≤

∫ 1

r
ϕ−1

(
λ

sN−1

∫ s

0
τN−1 (C1 + f (∥u∥∞)) dτ

)
ds

≤
∫ 1

r
ϕ−1

(
λ

sN−1

∫ s

0
τN−1 (C2 f (∥u∥∞)) dτ

)
ds ≤ ϕ−1 (λ(C2 f (∥u∥∞)) (1 − r)

≤ ϕ−1
p (λC2 f (∥u∥∞))(1 − r)

for r ∈ (0, 1). The rest of the proof uses the same arguments as in the upper bound estimate
for Case 1, which completes the proof.

Lemma 2.6. Let α ∈ (0, 1) and τ > 0. Then

min(τ, 1)(1 − α) ≤ 1 − ατ ≤ max(τ, 1)(1 − α). (2.24)

Proof. Suppose τ < 1. Then 1− ατ ≤ 1− α. By the Mean Value Theorem with g(α) = (1− α)τ,

(1 − α)τ = |g(α)− g(1)| = (1 − α)
τ

(1 − ξ)1−τ
≥ τ(1 − α),

for some ξ ∈ (α, 1) i.e. (2.24) holds. The case τ > 1 is proved in the same way.

The existence of a positive solution to (1.1) in a general bounded domain is based on the
following result:

Lemma 2.7 ([1, Theorem 1.1]). Suppose

(A1) f : (0, ∞) → R is continuous and limu→∞
f (u)
up−1 = 0.

(A2) There exist constants A, L > 0 and 0 ≤ β < 1 such that

f (u) ≥ A
uβ

for u > L

and
lim sup

u→0+
uβ| f (u)| < ∞.

Then there exists a constant λ0 > 0 such that (1.1) has a positive solution uλ for λ > λ0 with
infΩ

uλ
d → ∞ as λ → ∞, where d(x) denotes the distance from x to ∂Ω.
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3 Proof of Theorem 1.1

By Lemma 2.7, (1.2) has a positive solution for λ large. Let u, v be such solutions. In view of
Lemma 2.5, there exists a maximum constant α ∈ (0, 1] such that αv ≤ u ≤ α−1v on (0, 1). Then
α ≥ A1/A2 ≡ α0 by (2.5). Recalling that L > 0 is such that f is increasing on (L, ∞). By using
(A2) and increasing L if necessary, we can assume that f (L) > 0 and z−q0 f (z) is decreasing on
[L, ∞) for some q0 ∈ (0, q − 1). We will show that α ≥ 1. Suppose to the contrary that α < 1.
Suppose λ > λ0, where λ0 is defined in Lemma 2.5.

Let L1 = α−1
0 L. Then

v(1/2) > L1

for λ > λ∗ for some λ∗ > 0 independent of u, v.
For r ≤ 1/2,

u(r) ≥ αv(r) ≥ α0v(1/2) > α0L1 = L,

which implies
f (u(r)) ≥ f (αv(r)) ≥ αq0 f (v(r)). (3.1)

Suppose r > 1/2.

Case 1. v(r) ≥ L1

Then u(r) > L and therefore (3.1) holds.

Case 2. v(r) < L1.

Then
u(r) ≤ α−1

0 v(r) < α−1
0 L1 ≡ L2.

Let K0 = supz∈(0,L2)
zγ| f (z)| and K1 = supz∈(0,L2)

zγ+1| f ′(z)|. Then K0, K1 < ∞ by (A3) and
(A5). Then the lower bound estimate in Lemma 2.5 gives,

| f (v(r))| ≤ K0

vγ(r)
≤ K0

Aγ
1 Bγ

λ(1 − r)γ
, (3.2)

which implies in view of Lemma 2.6,

f (v(r)) ≥ αq0 f (v(r))− (1 − αq0)| f (v(r))| ≥ αq0 f (v(r))−
K0cq0(1 − α)

Aγ
1 Bγ

λ(1 − r)γ
, (3.3)

where cq0 = max(1, q0), and

| f (u(r))− f (v(r))| = |u(r)− v(r)|| f ′(ξ)| ≤ K1(1 − α)v(r)
αξγ+1

≤ K1(1 − α)

α
2+γ
0 vγ(r)

≤ K1(1 − α)

α
2+γ
0 Aγ

1 Bγ
λ(1 − r)γ

(3.4)

for some ξ between u(r) and v(r). From (3.3) and (3.4), we deduce that

f (u(r)) ≥ f (v(r))− | f (u(r))− f (v(r))| ≥ αq0 f (v(r))− K2(1 − α)

Bγ
λ(1 − r)γ

, (3.5)

where K2 = (K0cq0 + K1α
−2−γ
0 )/Aγ

1 . Hence (3.5) holds for r > 1/2 in both cases.
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Let q1 ∈ (q0, q − 1). Then for r > 1/2, it follows from (3.2), (3.5) and Lemmas 2.5–2.6 that

f (u(r))− αq1 f (v(r)) ≥ (αq0 − αq1) f (v(r))− K2(1 − α)

Bγ
λ(1 − r)γ

≥ − (1 − αq1−q0)K0

Aγ
1 Bγ

λ(1 − r)γ
− K2(1 − α)

Bγ
λ(1 − r)γ

≥ − K3(1 − α)

Bγ
λ(1 − r)γ

, (3.6)

where K3 = K0A−γ
1 max(1, q1 − q0) + K2.

We claim next that
ϕ(u′) ≤ αq1 ϕ(v′) (3.7)

on (0, 1). Using the formula

−rN−1[ϕ(u′(r)))− αq1 ϕ(v′(r)] = λ
∫ r

0
sN−1( f (u)− αq1 f (v))ds, (3.8)

for r ∈ (0, 1), we see from (3.1) that for r ≤ 1/2,

f (u(s))− αq1 f (v(s)) ≥ (αq0 − αq1) f (v(s)) > 0 (3.9)

for s ≤ 1/2 i.e. (3.7) holds on (0, 1/2]. For r > 1/2, it follows from (3.6), (3.8), (3.9), and
Lemma 2.6 that

−rN−1(ϕ(u′)− αq1 ϕ(v′)) = λ

(∫ 1/2

0
sN−1( f (u)− αq1 f (v))ds +

∫ r

1/2
sN−1( f (u)− αq1 f (v))ds

)
≥ λ

[
(αq0 − αq1)

∫ 1/2

0
sN−1 f (v)ds − K3(1 − α)

Bγ
λ

∫ 1

1/2

1
(1 − s)γ

ds

]

≥ λ(1 − α)

[
K4 f (v(1/2))− K3

Bγ
λ

∫ 1

δ

1
(1 − s)γ

ds

]
> 0,

where K4 =
α

q0
0 min(1,q1−q0)

N2N , provided that λ > λ̄, where λ̄ > λ0 is such that

K4 f (L1)−
K3

Bγ
λ

∫ 1

1/2

1
(1 − s)γ

ds > 0.

Note that this is possible since f (L1) > 0 and Bλ → ∞ as λ → ∞. Hence (3.7) holds on (0, 1),
which implies

ϕ(u′) + αq1 ϕ(|v′|) ≤ 0. (3.10)

Since

ϕ
(

α
q1

q−1 |v′|
)
= αq1 |v′|q−1 + α

q1(p−1)
q−1 |v′|p−1 ≤ αq1(|v′|q−1 + |v′|p−1) = αq1 ϕ(|v′|),

it follows from (3.10) that
ϕ(u′) + ϕ

(
α

q1
q−1 |v′|

)
≤ 0,

i.e.
ϕ(u′) ≤ −ϕ

(
α

q1
q−1 |v′|

)
= ϕ

(
α

q1
q−1 v′

)
.

Hence
(
u − α

q1
q−1 v

)′ ≤ 0 on (0, 1) and since u(1) = v(1) = 0, it follows that u ≥ α
q1

q−1 v on
(0, 1), a contradiction with the maximality of α since q1 < q − 1. This completes the proof of
Theorem 1.1.
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