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Abstract. In this paper we establish existence of solutions to the following boundary
value problem involving a p-gradient term

—Apu+g(u)|VulP =Au” +¥(x), u>0 inQ, u=0 ondQ,

where A, = div(|Vu|[P~2Vu) is p-Laplacian operator, O C RN (N > 3) is a bounded
domain with smooth boundary, 1 < p < N, 0 < ¢ < p* —1 with p* .= pN/ (N —p), ¥
is a measurable function and g(s) > 0 is a continuous function on the interval (0, +o0)
which may have a singularity at the origin, i.e. g(s) = +o as s — 0. Using the
topological degree theory, under certain assumptions on ¥, we prove the existence of a
continuum of positive solutions.
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1 Introduction

In this paper we establish existence of a continuum of positive solutions to the following class
of singular quasilinear elliptic equations with a p-gradient term,

—Apu+g(u)|VulP = Au’ +¥(x) inQ,
u>0 in (), (P)ac
u=20 on dQ),

where QO C RN (N > 3) is a bounded domain with smooth boundary, 1 < p < N, 0 < ¢ <
p* — 1 with p* := pN/ (N —p), ¢ : (0,00) — R™ is a continuous measurable function in a

neighborhood of zero and ¥ : Q) — R is a L7 integrable function with g € [WI\{HP’ I\?—Ejp).
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This type of equations involving singular nonlinearities appears in the models of several
physical phenomena, such as in theory of electric conductivity [19], in study of pseudoplastic
fluids [14], in minimal surfaces with isolated singularities [13] and several other models.

The classic references involving the problem (P),, were published by Leray and Lions [29]
in 1965 and by Ladyzenskaya and Uraltseva [26] in 1968.

For this class of equations involving the term gradient we quote [1-5,7-9,22,31] and with-
out the gradient term we quote [16-18,20,21,23,24,27,30,36]. For existence results involving
quasilinear and parabolic elliptic problems with quadratic gradient term we quote [12] and
for existence of a continuum of solutions for a quasilinear singular elliptic problem we quote
[15].

In 2009, Arcoya, Barile and Martinez-Aparicio [3] studied the quasilinear elliptic boundary
value problem

—Au+g(x,u)|Vul> =a(x) inQ,
u=20 on 0(),

where QO C RN (N > 3) is a bounded domain with smooth boundary and ¢(x,s) is a Cara-
théodory function on Q) x (0,00) which may have a singularity at s = 0 and may change of
sign. Assuming that a € L7(Q)), with ¢ > N/2, satisfies the following inequality

inf{a(x) | x € Oy} >0; V(o CC O

they proved that if there exist a increasing function b : (0, +00) — (0, +o0) and a parameter
1 € (0,1) such that

—u <sg(x,s) <b(s); Vs >0; ae. x€Q),

then the previous problem has at least one positive solution.

In 2015, Y. Wang and M. Wang [35] extended the result obtained by Arcoya, Barile and
Martinez-Aparicio [3] to the case involving the p-Laplacian operator.

Arcoya, Carmona and Martinez-Aparicio [5] studied the boundary value problem with a
power type nonlinearity

(1.2)

—Au+gw)|Vul> = AuP + fo(x) inQ,
u=0 on dQ),

where O C RN (N > 3) is an open and bounded domain, A > 0,0 < p < %, 0S fo e
LI%]Z(Q) and g > 0 is continuous in [0, +c0) or ¢ > 0 is continuous in (0, +c0), decreasing
and integrable in a neighborhood of zero with lim;_, g(s) = +co. Using the Leray-Schauder
degree, the authors showed the existence of “continua of solutions” of (1.2), i.e., connected
and closed subsets in the solution set

Q= {(/\,u) € R x HI(Q) : u :K(/\,u)}

where K : R x H{(Q)) — H}(Q) is an operator such that, for every A € R and for every
w € HY(Q), K(A, w) is the unique solution u € H}(Q) of an auxiliary problem.

In this paper, we generalize the equation studied by Arcoya, Carmona and Martinez-
Aparicio [5] for the p-Laplacian operator A, := div(|Vu|P~2Vu), with a non negative contin-
uous function ¢ which may have a singularity at the origin and a measurable function ¥. To
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state our results, we say that u € Wé’p(ﬂ) is a positive solution for (P),, if u > 0 a.e x € (),
g(u) |Vul? € L1(Q) and

YVulP 2V - Vod / Vpd:/\/"d /‘Pd 13
L IVulr2u- Vo + [ o) Vul'gdx = A [ wods+ [ ¥oix (3

forall ¢ € W&’p(ﬂ) NL®(Q).
Our main results read as follows.

Theorem 1.1. Let ¢ : (0,+00) — R™ be a continuous and integrable function in a neighborhood
of zero such that lims_,og(s) = +oo. If ¥ € LI(Q), be a function not identically zero with q €

[WI\{HP’ %)f then problem (P),, has a unique solution u € W, (Q) for A = 0.

WZ\{HP’ Y. Wang and M. Wang [35, Theorem 3.1] proved the existence of a

solution to Theorem 1.1. Before we establish the next result we need some definitions. In this
way, we consider the auxiliary problem

For g =

—Apu+ g(u)|VulP = ATwt(x)7 +¥(x) inQ,
u=20 on d(),

where A >0, w € Wé’p(ﬂ) and w* = max {0, w}.

By Theorem 1.1, for every (A, w) € [0,400) x Wg’p(Q), the problem (1.4) has a unique
solution u = T(A, w) € WS ?(Q). Thus, by following ideas of Arcoya, Carmona and Martinez-
Aparicio [5], we define an operator K : xWé’p Q) — Wg’p(Q) such that

T(A,w), ifA>0;

K(A,w) =
( ) {T(O,w), if A <0,

and a set
S = {(A,u) € R x W&’p(Q) S u :K(A,u)}.

Notice that the function Aw™ (x)7 + ¥ (x) is in L1(Q)), for g = %. Thus K(A, w) is well
defined. Indeed,

/ At (x)7 + ¥ (x)|9dx < 2971 / A (x)° |7dx + 2771 / ¥ (x)[9dx,
O Q O

N(p-D+p_ pN  _ pN _ &
N=p Np-D+p N-p P~
Therefore, with this notation, (P),, can be rewritten as a fixed point problem, namely,

and 0q =

u=K(Au). (1.5)

The next result is related to the case ¥ 2 0 and it states the existence of global continua in
solution set S emanating from the unique solution of Theorem 1.1.

Theorem 1.2. Consider 0 S ¥ € LWA{HP(Q) and assume that ¢ > 0 is continuous in [0, +o0) or
g > 0 s continuous in (0, +o0) and integrable in an neighborhood of zero with lims_o g(s) = +oo.
Then there exists an unbounded continuum X. C S of positive solutions which contains (0, ug), where
ug is the unique solution of (P),, for A = 0.
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To prove Theorem 1.1 we follow some general ideas of [3,5], i.e., we construct a infinite
sequence of auxiliary problems (P), with n € IN, such that (P),, for A = 0 has at least one
solution as n — +4-oc0. To prove the uniqueness of the solution we follows some general ideas
of [6]. Finally, to prove Theorem 1.2 we show that K is a compact operator and using the
Leray—-Schauder degree theory we prove the existence of “continua of solutions” of (P),, i.e.,
connected and closed subsets in the solution set S.

The main difficulties found in the proof of these results are the existence of a singularity g,
the presence of the term gradient and the non-linearity of the operator in the case where p €
(1, N). The case where p = 2 has been extensively studied by several researches. For example,
in the case where g is continuous at zero the existence is due to [11] and the uniqueness to
[4]. Moreover, in the case where g is singular at zero the existence is due to [10] and the
uniqueness to [4].

This paper is organized as follows: in section 2 we introduce an approximated problem,
whose solutions are also solutions to problem (1.4); and we prove some auxiliary lemmas.
In section 3, we prove the integrability of ¢(u) |Vu|? ¢ and the compactness for the operator
K defined in (1.5). After, we prove the Theorem 1.2 using the topological Leray-Schauder
degree.

2 Proof of Theorem 1.1

To prove Theorem 1.1 first we give some preliminary considerations and lemmas. In this way,
motivated by [2,3], we define

0, if s <0;
gn(s) =  nPsPT,(g(s)), if0<s<3; 2.1)
Tg),  ifl<s

where T}, (s) is the truncate function given by

s, if|s| <mn;
Tu(s) = —n, ifs<-—mn; (2.2)

n, if s > n.
It is easy to verify that g, satisfies the following properties
(@) [gn(s)| < min{n, g(s)};
(b) gu(s) < nPsP~1, forall s > 0;
(c) limy—e0 gn(s) = g(s), for all s > 0.
Consider the following approximated problem

14+ 1| Vwlp (P),

—Ayw+ 2@V g x) inQ,
w=20 on dQ),

where ¥, := T,, (7).
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Lemma 2.1. There exists at least one solution w, € W&’p (Q) N CY(Q) of the approximated problem
(P)n-

Proof. Notice that, since the operator A
Theorem we obtain that

-1

p is an homeomorphism, using the Browder-Minty

—Ap: W&’p(ﬂ) — W™ (Q) is a homeomorphism. (2.4)
Furthermore, for every w € C!(Q)) we define

8n(w)|[Vwl?

F.(w)=Y, — ,
() =¥ 1+ 2Vl

and for every u € C1(Q)) we define the problem

w=20 on 9Q).

Let G: Wol’p(Q) — R be the functional defined by

G(o) :/QFn(u)(pdx.

Since F,(u) is bounded independent of u, then G is well defined, linear and |G(¢)| < Cy|[¢||1,p,
for some C, > 0, ie.,, G € W*LPI(Q). Hence, by (2.4) there exists a unique function w €
Wg’p(ﬂ) such that —A,w = G, i.e,,

V”’ZVVd:/Fn dx.
[ IVl 2V = [ Fi(u)gdx

Thus, since all the assumptions of the regularity result obtained by Hai (see [24, Lemma
3.1]) are satisfied, there are constants « € (0,1) and M > 0 such that w € CY*(Q) and
@]l cra@) < M.

Let K : C1(Q) — C}(Q) be the operator defined by K(u) = w, where w is the unique
solution of (2.5). Since K(C'(Q)) C C**(Q) and ||[K(u)||1,» < M for every u € C}(Q), then K
is compact. Furthermore, K is continuous. Indeed, let {u;} C C'(Q) be a sequence such that
u — u in C'(Q). Define now

wy = K(ug) and w = K(u).
By definition of K, we have
—Apwi — (—=Apw) = Fy(ug) — Fy(u) in O,

and consequently

/ (| Vg2 Vug — [VulP2Vu).V (w — w)dx = / (Fa(ug(x)) — Fu(u(x))) (w — w)dx
o a (2.6)
< 2M/Q \En (i13) — o (1) |dox.

Since F,(uy) is bounded and F,(ui(x)) — F,(u(x)) a.e. in Q, then by the Dominated
Convergence Theorem we have

/ |Ey (it3) — En (1) |dx — 0,
(@)
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as k — oo.
Thus, applying in (2.6) the inequality (see [33])

x—y?* .
_ _ 5 lf 1 < p < 2,
(I[P 2 x = [y/P 2y, x —y)e >CL (x| +[y))* " 2.7)
lx—y|” if p>2,

where x,y €N and C := C(p) is a constant, we obtain
we —w in W7 (Q).

On the other hand, since ||wk|| @ < M, by going to subsequence if necessary, there exists
wo € C1(Q) such that
wy — wo in C1(Q).
Hence, by uniqueness of limits, we conclude K(u;) — K(u) in C1(Q); i.e., K is continuous.
How K is a continuous and compact operator and K(C!}(Q))) C By, where By is a ball
centered at the origin with radius M in C!(Q)), then by Schauder’s Fixed Point Theorem, there

exists u € By, such that K(u) = u. Therefore, by definition of K, we have that u is solution of
(P)n- O

Lemma 2.2. If ¥ € L1(Q) with g € [Wl\lj)ﬂ], %), then the solution w, of (P), satisfies the

following statements,

(i) {wy} is bounded independent of n in W&’p (Q);

(i) w,(x) > 0, forall x € Q.

Proof. (i) First, we will prove that w,, > 0in Q). Indeed, multiplying (P), by w,, and integrating

in (), we obtain
Sn(wn)|[Vw,|P

Vw,|P 2V, Vw, dx+/
/’ | 1+ 2| Vw,|r

w, dx = /Q Y, w, dx. (2.8)

. _ + — _ + —
Since w, = w,, —w,, and Vw,, = Vw, — Vw, , then

Vw,Vw, = (Vw, — Vw, )Vw,

= Vw,Vw, — (Vw, )? (2.9)
— (Vw, )2
Furthermore, we have
en(wy)w, =0, forallw, € Wg’p(ﬂ). (2.10)

Then, by relations (2.8), (2.9) and (2.10), we have
—/ |Vw, [Pdx = / Y, w, dx >0,
(@) Q

i.e.,, w,; = 0. Therefore, w, = w;’ > 0in Q.
Taking w, as test function in (P),, we obtain

P
/ wandex+/ 8 (W) | Vet | wndx:/ ¥, wdx
QO

1+ L Vw,|?
< / Yw,dx.
(@)
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n(Wn) | Vwn|?

Since w, > 0, we have that & V| wy, > 0. Thus, using Holder’s inequality, we obtain

/ |Vw,|Pdx < / Y, wy,dx
0 0

< [[Fllgllwnlly,

(2.11)

I 19 : pN / pN '
where g" := -27. Since g > T then ' < §—; and LP*(Q)) C L7(Q)). Hence, there are
constants ¢, c> > 0 such that

Hwan’ < Clnwan* < C2||wnH1,p-

By applying the previous inequality in the relation (2.11), we conclude that {w,} is bounded
in W,” ().
(ii) Since w;, > 0 in (), by item (b) of properties of g, listed previously, we obtain

gn(wWn) [ Vwy|?

< nPlw,|P"'n = nPH|w, P71 2.12

Let the function B : [0, +00) — R be defined by

B(s) = n""(s)"~".

Notice that 8 is continuous, non-decreasing, f(0) = 0 and S(s) > 0, for all s > 0. Furthermore,

[ B Hs = o
Hence, by relation (2.12) we have
—Apywy + B(wy) > ¥, >0 ae in (),
ie, Ayw, < B(wy) ae. in Q.

Since ¥, # 0, then by the Strong Principle of Maximum (see [34, Theorem 5]) we conclude
that w, > 0in Q. ]

Lemma 2.3. There are w € Wg’p(ﬂ) and q € (1, p) such that
(i) Vw, — Vwin L1(Q);
(ii) w > 0in Q.

Proof. (i) Since the sequence {w, } is bounded in Wol’p (Q)), going if necessary to a subsequence,
there exists w € W, (Q) such that

(@) w, = w in Wg’p(ﬂ);
(b) w, — w in LF(Q);

() wy(x) = w(x) a.e.in Q.
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By fixing compact set K C (), we take ¢x € CS"(Q) with 0 < ¢x < 1 and ¢x = 1 in K. Thus,
taking v, as test function in (P), defined by
v = P [Ty (wn — w)|t e W&’p(Q),
we have

Sn(wy)|Vwy|P

Vw,|P~ Zanander/
/ | | 1+ 1| Vw,|r

Updx = /Q Y,0,dx. (2.13)
By applying in (2.13) the relations

Vo, = Vor[Ty(wn —w)]" + ¢xV[Ty(wn —w)] "
and

Sn(wn)|[Vw,|P
14 1 Vw,|r

we obtain
/Q |an|p*2an4)KV[T,7(wn —w)|Tdx
< [ Hooudx — [V, 2V, Vgu[T, (wy — w)] .
Hence, we have
/QCPKUan!pQan — |Vw|P2Vw| V[T, (w, — w)] T dx
< /Q‘I’nvndx — /Q |V, |P~2Vw, Vi [Ty (wn — w)]*dx (2.14)

—/ ¢x|Vw|P~2VwV [T, (w, — w)] dx.
0
Since w, — w in Wg’p(ﬂ), then we have [T, (w, —w)]" — 0, ie,
(@, [Ty(wy —w)]*) =0 forall ¢ € W,”(Q)F, (2.15)

where W&’p(Q)* is the dual space of Wg’p(Q).
Note that, by the Dominated Convergence Theorem and by relation (2.15) we obtain

/ VWP 2Vw, Vi [T, (wy — w)]Tdx = 0 asn — oo (2.16)
0

and
/quK\VwV’_szV[Tﬂ(wn —w)]Tdx — 0 asn — co. (2.17)

Indeed, by Holder’s inequality and by (2.15) we have

1
_ r
‘/Q\an\%’ZanV¢K[T7;(wn—w)]+dx < Hwan,p1</Q|V¢K[Tq(wn—w)]+!de> ,

where ||w,||1,, and V¢x[T,(w, —w)]" are bounded and [T, (w, —w)]" — 0 a.e. in Q). Thus,
by the Dominated Convergence Theorem the relation (2.16) holds true.
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Again, by Holder’s inequality we have

’/0471<|Vw|p_2VwV[T,7(wn—w)]+dx

< ol [ [ 10098 o — )]

—_ P
= leonlly | 1067 Rtvecrt e |7 (o = )] 7]

Since ¢k |7 X {xe:|w,—w|<y} 18 bounded in LP(Q)* and |¢x|P X (xeq:|wy—w]|<yy = [PklP a.e. in Q,
then by Vitali’s Convergence Theorem we have

x| -X (requiw,—wl<yy = [@x[P in LP(Q)".

Hence, since |V (w, —w)™" |p — 01in LP(Q)), then the relation (2.17) holds true.
For fixed 77, combining the relations (2.14), (2.16) and (2.17), we have

n—o0

lim sup/ <|an|p2an — \Vw\”ZVw> V(T (wy — w)|tdx < Cyy. (2.18)
K

Let H, defined by

HY(x):= [|an|p_2an — |Vw|p_2Vw} V[T (wy — w)] " (x).

By relation (2.18) we have that H,| is bounded in L!(K). Moreover, by inequality (2.7) and
by definition of T, we have that H,/ > 0.
By defining the sets

Al ={xeK:|wy(x) —w(x)| <y} and B} :={x€K:|wy(x)—w(x)| >n};

and fixing v € (0, 1), we obtain

/K(Hn+)”dx < (AZ(HI)dx>V!AZ!1”+ (/BZ(H,j)dx>vyBZ\1V.

For fixed 7, we have that |B)| — 0 as n — oo. Moreover, since H, is bounded in L!(K), we

have

lim sup / (H:)Ydx < (Cyn)*|Q) . (2.19)
K

n—o0

By letting 7 — 0 in the previous inequality, we obtain
(HF)" =0 in LY(K).
Now, choose v, as test function in (P), defined by

0, = gx[Ty (w, — w)]~ € Wy? (),

where s~ = max{—s,0}. Hence, repeating the arguments previously used, we can conclude
that
(H;)Y =0 inLY(K),
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where

H, (x):= [[an]p2an — |Vw]p2Vw} Vi(w, —w)] ™ (x).
Therefore, if H, :== H," — H,;, then
Hy,(x) = [|an|p2an — |Vw|p2Vw} Vi(w, —w)](x)

and H, — O a.e. in K.
Consider Q) = Uf'il Qj, such that O; CC Q1 CC Q.
Thus, for K = O, we have

Hi(x),H}(x), Hi(x),...,H}{(x) = 0 ae. in Q.
Analogously, for K = )y, we have
H3(x), H3(x), H3(x),...,H3(x) = 0 a.e. in ().

Repeating the previous process, we obtain

Hi(x) Hi(x) Hi(x) ... Hi(x) —0 aein
H3(x) H3(x) H3(x) ... Hi(x) —0 ae in
Hj(x) H3(x) H3(x) H}(x) — 0 ae. in 3
H{(x) H(x) Hé(x) ... Hi(x) —0 ae. in Q)

Hence, taking the diagonal sequence Hj = H;, we have

ﬁj(x) —0 ae inQ.
So, for the sequence of compact sets (), there exists a subsequence {H,} such that

H,(x) — 0 ae.in Q.
By applying again the inequality (2.7), we obtain

Vwy(x) - Vw(x) ae. in Q.
Thus, since { Vw, } is bounded independent of n, by Vitali’'s Convergence Theorem we have
Vw, - Vw inL1(Q), gq<p.

(ii) Now, we will prove that w is strictly positive in (). Indeed, we have w, > 0 in () with
wy, € CY*(Q) for some & € (0,1). In analogy to the proof of (i), we have

Sn(wy) | Vwy|P

YV, | van+/
/| w| w pax 1+1|an|7’

pdx = /Q‘I’n(pdx, e W' (Q).  (2.20)
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Thus, taking v, as test function in (2.20) defined by

—Hy (wy)

Upi=¢e ?, NS Wé’p(Q) NLT(Q), ¢ >0,

where H, ( fo gu(s)ds and H,'(t) := g,(t), with g,(s) < g(s), we obtain
— /Q |an’pHn/(wn)ean(wn)(pdx _|_/ |an|P*2vwne*Hn(wn)V(de

:/ ‘I’nefﬁn(w")godx— 8n(w111)’vwn’ —H,( w")godx
0 Q 1+ o |Vw,|?

By applying in the previous equation the following inequality
% <|y|? forevery y € R",
L+ 5lylP
we obtain

wy|P*Vw, e~ T (w x— | Y,e~ 1 (wn) oy
/ VWP 2V wpe B @)V g / Haw01) g
Q

- / |an|pI—]n/(wn)e_H”(wn)(de M _Hn zUn)qn;lx
Q

0 1+ |Vw,l?
- /Qg"<wn>|anl"e‘H"(“’"’dex— /Qgn<wn)\anV’e—H"<w">qodx
= 0.
Hence,
/Q |V |P 2V, Vge ) dx > / ¥ e~ ) oy, (2.21)

Define H(w) = 1i_r>n H,(wy). Taking the limit in (2.21) as n — oo, since w, > 0 and e~ Hu(wn) <
n—oo
1 in (), we obtain

/ ]Vw\’”’ZVwV(pe’H(w)dxz/‘I’e’H(w)godx
0 0
2/ Ty (¥)e 1) pdx.
0

Define v(x) = ¢(w fo ( )%dt where y(s) = [ (e F ))%dt is strictly in-
creasing. Let z be a solutlon of problem

{Apz = TL(T) in Q),

(2.22)

z=20 on 0Q).

( € L*(Q), by a result of Lieberman (see [28, Theorem 1]), we have that z € C#(Q)
for some lX € (0,1). Moreover, by strong maximum principle (see [34]), we conclude thatz > 0
in Q). .

By applying in (2.22) the relation Vo = Vw (e~ H7(®)) 7T, we obtain

/|Vv|”_2VvVgodx:/ IVw|P2VwV ge @) dx
o o

> / Ty (¥)e H® gdx.
0

Hence, by weak comparison principle (see [34]), we have that v(x) > z(x) > 0 in Q. Finally,
since P(w(x)) = v(x) > 0 and ¥ is strictly increasing in ), then w(x) > 0 in Q. O
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The following lemmas concerning with the uniqueness of solution will be useful in the
sequel and they can be deduced by using ideas of Bénilan, Boccardo, Gallouét, Gariepy, Pierre
and Vazquez [6].

Lemma 2.4. If w is a solution of (P),, for A = 0, then for every a,k > 0

() %f{\w|<k} [Vw|Pdx < [, Ydx;

Q) 7 [iecpojarra) | VOIPdx < fo Tioa(w)¥dx < [, Yz,

where Ty ,(s) == Ta(s — Ti(s)).

Lemma 2.5. Let 1 < p < N. If Q) is a bounded domain in RN and w € W&’p(Q) satisfies

1

= Vw|Pdx < M 2.23
p {|w|<k}| w|Pdx < (2.23)

for every k > 0, then there exists C = C(N, p) such that

meas {x € Q : |w| >k} < CMNL*Pk_”l, (2.24)

where p1 = lejp:pl) .

Completing the proof of Theorem 1.1: Let u and v solutions of (P),, for A =0, so

/ |Vu|”_2VuV(pdx+/ g(u)|Vu|pq)dx:/ ¥ pdx (2.25)
0 o 0

and

/ \Vv|p’2Vqu>dx—|—/ g(v)\Vv|pq0dx:/ Y odx, (2.26)
0 0 0

for all ¢ € Wg’p(Q) NLe(Q).
For every h > 0, choosing ¢ = Ty(u — Tyv)* and ¢ = Ti(v — Tpu)" in (2.25) and (2.26),
respectively, we obtain

/ (IVuP~2Vu, V (u — Tyo)")dx < / Ty (i — Tyo) " Fax
{lu—Tyv|<k} Q

and

/ (|Vo|P~2Vo, V(v — Thu) )dx < / T (v — Typu) " Ydx.
{lo—Tyu|<k} 0
Thus, if we define

I= / (IVuP~2Vu, V (1 — Tyo) " )dx + / (IVo|P-2VoV (0 — Tyu)*)dx,
{[u—Tio| <k} {lo—Tyu|<k}

(2.27)
the conclusion u = v will be reached after passing to the limit # — oo in the previous rela-
tions and disregarding some positive terms. We will to split the previous integrals into the
contributions corresponding to different integration sets.

Consider the following set

Avy={xeQ : jlu—v| <k, |u| <h, |v| <h}.
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Thus, when restricted to Ag the first member of (2.27) gives the following main contribution

Io ::/ (|VulP=2Vu,V(u—0)Ndx + | (|Vo|P Vo, V(o —u)")dx
Ay Ap

- / (|VulP=2Vu — |Vo|P2Vo, V(4 —v) " )dx.
Ag
The remaining first member of (2.27) is estimated taking the first term on the set
Ay ={xeQ : |u—Tyw| <k, |v| > h},

ie.,

/ (IVuP~2Vu, V (u — Tyo)")dx = / VulPdx > 0.
Al Al
On the remaining set
Ay ={xeQ : lu—Tyo| <k, |v| <h, |u| > h}
we have
/ (IVuP~2Vu, V (1 — Tyo)")dx = / (IVulP~2Vu, V (1 — v)")dx
Az AZ

> —/ |VulP2VuVodx.
Ay

Now, we estimate the second member of (2.27) in the sets A} where |u| > &, and A}, where
|u| < h and |v| > h. Notice that all these sets and integrals depend of k and h.
Summing up we estimate the first member of (2.27) as follows

1210_13/

where
I3 ::/ ]Vu|”’2Vqudx+/ |Vo|P~2VoVudx.
Ay Ay

Now, we will check that I; — 0 as i — co. Indeed, the first term of I3 can be estimated by

1 1
/ |VulP~2VuVudx < </ \Vu](p_l)ﬂpldx> ’ (/ ]Vv\’%lx) ’
A2 AZ AIZ
1 1
P p
= </ |Vu|”dx> </ \Vv|pdx>
{(h<|u| <h-+k} {h—k<[v|<h}

-1
= H“HZ;}({hgu\ng})HUHLP({hg\u|§h+k})/

which converges to 0 as h — co due to Lemmas 2.4 and 2.5. The treatment of the second term
is analogous.
Now, we will estimate

/ ¥ [T (1 — Tyo)* — Ti(o — Tyu)*]dx.
0
The previous integral on the set By := {x € Q : |u| < h, |v| < h} gives

Jo = /B ¥ [Ty (u — Tyo)* — Ti(v — Tyu)*]dx = 0.



14 J. V. A. Gongalves, M. R. Marcial, O. H. Miyagaki and B. M. Rodrigues

The integral on the set By := {x € Q : |u| > h} is estimate by

1J1| == ‘ /B Y [Ti(u — Tyo)" — Ti(v — Tyu) ™ |dx

/B Y [Ti(u — Tyo)" — Ti(v — h)*]dx

<2k [ |¥|dx,
By
while on By == {x € Q : |v| > h} we get

2| =

/B Y[T(u — Tyo)" — Ti(v — Typu) ™ |dx

/l; Y[ Ti(u—h)* — Ti(v — Thu) " |dx

<2k [ [¥|dx.
B>

Since the measure of both sets By (I, k) and B, (h, k) converges to zero as h — oo for fixed k > 0,
then 1+, - 0as h — oo.
Combining the previous estimates, for fixed k > 0, we get from (2.27)

/( (|VulP~2Vu — |Vo|P~2Vo, V(1 — o) *)dx < o (h),
Ag(h

where limy,_,,, @(h) = 0.
Since the set Ag(h, k) converges to {x € Q : |u —v| < k}, then

/ (|IVu|P=2Vu — |Vo|F~2Vo,V(u — v)T)dx <0, k > 0 fixed.
{xeQ : Ju—v|<k}
Since the previous inequality is true for all k > 0, we conclude by (2.7) that Vu(x) = Vo(x)
a.e. in Q). Thus, since u,v € Wé'p(()) then u(x) = v(x) a.e. in Q.
Now, we will prove that w satisfies

/ |Vw|P~ 2Vngodx—|—/ ]Vw\pqodx—/ ¥ pdx, (2.28)

for all ¢ € Wol’p(Q) NLe(Q).
Indeed, we have

< (wy)|Vwy|P

Vw,|P~2V Vd+/—
/' wn| n ¥ Pax 1+ L Vw,|r

dx = [ Wugdx < [ Yodx, (@229
pax = | Fnpdx < | Fodx (2.29)
for all ¢ € Wg’p(ﬂ) NL®(Q) with ¢ > 0.

For every € > 0, taking ¢ = %Te(wn) as test function in the previous relation, we have

g(wy)|Vwy|P 1

Yw,|P*Vw, VT, d+/
o IVl Ve T s [ S0,

1
Te(wp)dx = | ¥ —Te(wy)d
(wn)dx = [ - Te(w,)dx

< / Y, dx;
@)
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hence,

g(wy)[Vw,|P Te(wy,)
al+lvw,lr e

dx < / Y, dx. (2.30)
Q

Since M = %wn(x))({xeg L wp<e} T X{xeq : w,>e} for every x € Q, then wy(x) > € and
Te(wy(x)) = € as € — 0. Taking the limit in (2.30) as € — 0, by the Dominated Convergence
Theorem, we have

p
gwn)lVeoul” ;- | ¥, (231)
ie.,
g(wn)|Vw,|? 1 Lp 0
e — e L (), Yo € W' (Q) N LT (Q)).
Define A, = |Vw,|P2Vw,V¢ and B, = %q). So, using Fatou’s lemma in (2.29), we
obtain
/ |Vw|P2VwV pdx —|—/ w) | Vw|Ppdx < hm inf </ (An+ Bn)(pdx>
o)
< | Yodx,
= /Q pax
ie.,
/ Vw|P-2VwV pdx + / )| Vw|P gdx < / ¥ odx, (2.32)

for all ¢ € Wl’p(Q) N L°°(Q) with ¢ > 0.
Now, define S(t fo s)ds, B > 0 measurable, and take ¢ € Wlp(Q) NL®(Q), ¢ >0
and k > 0. Thus, takmg U, as test function in (P), defined by

_S(wn)es(Tk(wn))

v, i=e 9,
we obtain
/Q |an|pfsznV¢e*5(wn)e5(Tk(wn))dx
+/Q|an|P—2anVTk(wn)‘B(Tk(wn))e—S(wn)eS(Tk(wn))(de
_ / |V 0|2V 0, Ve B (10 )~ S eS) ol
we wn)eS(Tk(wn))(de
a1+ 5 |Vw,|P
+ / oS00 STk (wn) iy
>0 ?
because

g(wn)|an|p

S(wn) oS (Te(@n) g d </l{! S(wn) pS(Te(@n) .
Ql+,11|an!7’ e pax e pax
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Again, by Fatou’s lemma, we have
/ V[P 2V eSS Te®) gy
Q
+ [ 1Vl 2wV T (w)p(Ti(w))e ST g
> / |Vw|"’_ZVwVw,B(w)e_S(w)es(w)(pdx
o)

as n — 0. Since 0 < e~ 5®)S(Tk®)) < 1, by letting k — oo, it follows immediately from the
previous inequality that

/ IVw|P- VoV gdx + / )|V pdx > / Yodx, (2.33)

for all ¢ € Wg’p(Q) N L®(Q) with ¢ > 0.

Hence, using the relations (2.32) and (2.33), we conclude that the equality (2.28) holds for
all ¢ € WP (Q) N L®(Q) with ¢ > 0.

Thus, since ¢ := ¢ — ¢~ and ¢, ¢~ > 0, we obtain

/ |Vw|P~ ZVwV(pdx—i—/ \Vw|f’(pdx—/ ¥ pdx

for all ¢ € WP (Q) N L®(Q).
Therefore, (P),, has unique solution in W&’p(ﬂ) for A =0. 0

3 Proof of Theorem 1.2

In this section, first we prove some results which are used in the proof of our main theorem.
Notice that our definition of solution of (P),, includes the integrability of g(u)|Vu|F. Using
some ideas of Arcoya, Carmona and Martinez-Aparicio [5], we will see in the following result

that a consequence is the integrability of g(u)|Vu|P¢ for all ¢ € Wg P(Q).

Lemma 3.1. If0 < u € Wé’p(Q) is a solution for (P),,, then g(u)|Vu|? ¢ is integrable in Q) for all
< W&’p (Q). Moreover, we have

/ |VulP~2Vu - Vq)dx—i—/ \Vu]pq)dx—)t/ u qodx—i—/ Y dx. (3.1)
Proof. Since o < p* — 1, note that u’, u’¢ € L'(Q)). Indeed, since u € LP(Q) and W&’p(Q) —

L' (Q) for p < N, we have
/ u’dx S/ |u|7dx < oo.
0 0

*

On the other hand, we have
4 " p’ *
< (p* — = p*;
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thus, by Holder’s inequality we obtain

/ugodx{(/ ul d> ] (

< Cllullfpllell-

Hence, by previous relations, we conclude that u”, u’¢ € L'(Q).
By taking Ty (¢™) as test function in (1.3) and using Holder’s inequality we have

p + - _ p—2 + o +
/Qg(u)|Vu| Ty (9™ )dx /Qyw| VuVTi(e )dx+/Q(Au )T (¢ )dx

< / VP V() \dx—i—/ (A +¥) Ty (¢ )dx
Q

(/ (1Vulp) ”1) (/ VTi(g \de>

+/ (Au” +¥)Ti(@")dx

S

IN

< [l gl + [ (" +¥)Ti(p" )

Now, by taking limit as k — oo and using Fatou’s lemma, we deduce that g(u)|VulPp™ €
LY(Q) with

[ 8@l Vulg*dx < lullsliglh, + [ (A +¥)g*dx. ©3)
Similarly, by taking Ty(—¢~) as test function in (1.3), we obtain that g(u)|Vu|P¢~ € L1(Q)
with
~ [ 8GIvulgax < Julspllg iy + [ (A —¥)gmax e
By combining the relations (3.3) and (3.4), we conclude that ¢(u)|Vu|Pp € L'Y(Q) for all
¢ € W,? (Q) with

[ s@IVulrgdx < Julyllpl, + [ (7 +¥)pdx.

Lastly, note that this integrability of g(u)|Vu|?¢ allows to use a density argument to con-
clude (3.1) from (1.3). O

The next result will be related with the compactness for the operator K(A, w) defined in
(1.5).
Lemma 3.2. Assume that ¥ € L1(Q) with q = Wz\lj)ﬂg, ¢ > 0 is continuous in [0,+o0) or g > 0
is continuous in (0,+o0) and integrable in an neighborhood of zero with lims_,o g(s) = +oo. If the
sequences {t,} C [0,1] and {A,} C (0,00) are convergent, respectively, to t* and A, and {w,} C
WS””(Q) weakly convergent to w, then the sequence of (uniquely defined) solutions {u,} C W&’P(Q)

of

—Aptty + tng(un) | Vun [P = Ay(w;i (x))7 +¥(x) inQ, (3.5)
u=20 on d(), '
is strongly convergent in W&’p(Q) to the solution u of
—Apu+tg(u)|[Vulp = AMw™(x))7 +¥(x) inQ,
(3.6)
u=20 on dQ).
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Proof. Since the functions A, (w; (x))? + ¥ (x) and A(w™(x))? + ¥(x) are in L7(Q)) with g =
WZ\{)W' then by Theorem 1.1 the existence of an unique solution of (3.5) and (3.6) it is holds.
Indeed, we have that

/ A (x)7 + ¥ (x)]9dx < 2971 / A (x) |7dx + 271 / ¥ (x)|9dx
Q Q Q

N(p-l)+p _pN__ _ pN
and 0q < =x—p N(p—1)+p — N-p =7
In order to prove the compactness of K(A, u) is suffices to prove that every subsequence of
{u, } possesses a subsequence converging to the unique solution u € Wé’p (Q)) of (3.6). First we
will prove that {u,} is a bounded sequence in W&’p (Q)). Indeed, choosing u, as test function

in (3.5) and using that t, and g(u,) are nonnegative, we have

/Q|Vun|pdx§/ \Vun|pdx+tn/g(un)|Vun|pundx

(3.7)
= Ay / ) uydx —|—/ Yu,dx.

Since W&’p(ﬂ) — LP*(Q)), by Holder’s inequality we obtain

. Fundx < CIEI ol (38)

Furthermore, since o ” p1\1])+p = pf — < p*, again by Holder’s inequality we have
P 1 o[N(p=1)+7]
Ay / ) uydx < C {(/ |y, | dx> ] </ |un\N ndx>
_ (3.9)

EHw”HlpHuﬂulp

By combining the relations (3.7), (3.8) and (3.9) we conclude that

1

p—1
il < [Cllwallf 4120 oy |

Therefore, {u,} is a bounded sequence in Wg 7(Q). Thus, going if necessary to a subsequence,

still denoted by {u,}, there exists u € Wé’p (Q)) such that u, — u weakly in Wg’p (Q).
Repeating the arguments used in the proof Lemma 2.3, we obtain that

Vu,(x) - Vi(x) aeinQ and Vu, - Vu inLi(Q), g<p.
Now, we will prove that u satisfies the following equality
/Q Va|P2Vii - Vdx + t* /Q ()| V| gdx = /Q AMwh) +¥)pdr, ¢ € WP (Q). (3.10)
First, we will show that # > 0 in (. Indeed, we have

/Q|wn|P—2wn-v(pdx+tn/0g(un)|wn|rﬂ¢dx:/Q(An(w;)u‘f)q)dx, 9 € WP (Q).
(3.11)
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Thus, choosing v, as test function in the previous equality such that
v, =e Hig ¢ ¢ W&’p(Q) NL®(Q), ¢ >0,
we obtain

—/ \Vun|pH’(un)e‘H(“”)(pdx+/ Vi, |P~2Vu,e 1)V pdx
o 0
:/(/\n(w:{)a%—‘l’)e_H(””)(pdx—fn/ g (1) | Vi, |Pe=H0) gy,
0

where H(t fo
By ordermg the terms of the previous equation, by using H,,(t) = g(t), we obtain

/ Vit [P~ 2V e 100V pdx — / (A ()7 + ) Hm) oy
Q 0

=(1- tn)/ (un)|Vun]”e_H(””)godx
0
>0,

ie.,

/ |Vun]p_2Vuanoe_H(”")dx2/(An(w;“)”%—‘F)e_H(””)Q)dx.
0 o

Thus, by taking limit as n — co, we have

/ |Va|P2VaV e T dx > / (A(wt) +¥)e B pdx. (3.12)
o 0

1 1
Define v(x) := y(u fo ( (5))P1dt, where y(s) := [y (e7H())PTdt is strictly in-
creasing. Let z be a solut1on of problem

+\o
{Apz = L ((w )u +¥) in (),

z=20 on 0Q).

( ) € L*(Q), by a result of Lieberman (see [28, Theorem 1]), we have that z € C#(Q)
for some lX € (0,1). Furthermore, by strong maximum principle, we conclude that z > 0 in Q).

N
By applying in (3.12) the relation Vo = Vii(e~H(#) 7, we obtain
/ |Vo|P2VoV gdx > / Ty (¥)e ) pdx.
0 0
Thus, by weak comparison principle, we have v(x) > z(x) > 0 in Q. However, since
P(u(x)) :=v(x) > 0 and ¢ is strictly increasing in (), then u(x) > 0 in Q.

Now, we resume the proof of (3.10). For every € > 0, taking ¢ := 1T, (u,) as test function
in (3.10), we obtain

1 1 1
z p—2 r- = o -
= [ 19l 2TV T + [ g(0n) [ Vual? Te(otn)dx = [ (An(w )7 + %) “Te(ma)dx
< [ (awi)” + ¥)dx;
Q

hence,

by /Q g(un)|Vun|pTe(€u")dx < /Q (An(w)7 +¥)dx. (3.13)
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Since M = %un(x))({xeg - wp<e} T X{xeq : u,>e) for every x € Q, then u,(x) > € and
Te(un(x)) = € as € — 0. Taking the limit in (3.13) as € — 0, by the Dominated Convergence
Theorem, we have

tn/Qg(un)|Vun|”dx§/Q(An(w,f)”—i—‘l’)dx, (3.14)

ie.,

()| Vuu[Pp € LN(Q), Vg € WP (Q) N L=(0).
Define A, = |Vu,|P~2Vu,V¢ and B, = g(u,)|Vu,|’¢. Hence, using Fatou’s lemma in
(3.14), we have
/ |Vu|P2VuV gdx + t* / u)|ViulP pdx < hm inf (/ (An+ Bn)q)dx>

_/ "+ Y¥)pdx,

ie.,

/ VP 2VaY gdx + £ / ()| ViIlP pdx < / (A(w*)? +¥)gdx, (3.15)
(@) @) (@)

for all ¢ € Wl’p(Q) N L°°(Q) with ¢ > 0.
Now, define S(t fo s)ds, B > 0 measurable, and take ¢ € Wlp(Q) NL®(Q), ¢ >0
and k > 0. Hence, takmg v, as test function in (3.12) defined by

Uy = e_S(“n)es(Tk(“n)) ?,

we obtain
/Q Vit P2V 1, V pe5 (1) 5 (Tk(tn)) g
+/ Vit P2V 11, V T (1) B( Ty (1) )&~ S0 5 Telt)) o ¢
- / |Vt |2V 11y Vit B 10 )~ ) S ot
—ty / 9(1t) [ Vity [P S eS(T:(0)) i
_|_/ (Pe—S(un)eS(Tk(u,,))(de
because

t”/og(un)\Vun\pe*s(”")es(T"(”"))ﬁvdxS/Q(A( )7+ ) ge 2SIl iy,
Again, by Fatou’s lemma, we have
/Q IVa|P2VaY ge S S Tm) gy
+ /Q VP2V EV T (1) B(Te (7))o~ S @ S Te®) gy
> /O |Vﬁ|P—vaw(ﬁ)e—s(ﬁ)es(ﬁ)cpdx (3.16)
—t*/ g (1) | Vi |Pe= S eST(®)
I / ¥) g S@eST(®) gy
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as 1 — 0. Since 0 < e~ 5#eS(Tk() < 1, by letting k — oo, it follows from (3.16) that
/ VP -2VaY gdx + t* / ()| ViI]P pdx > / (A(w)7 + ¥)gdx, (3.17)
O 0 Q

for all ¢ € W&’p(Q) N L*(Q) with ¢ > 0.

Thus, by (3.15) and (3.17), we conclude that (3.10) holds for all for all ¢ € W&’p (Q)NL®(Q)
with ¢ > 0.

Hence, since ¢ := ¢™ — ¢~ and ¢ T, ¢~ > 0, we have

/ VP 2VaV gdx + t* / ()| ViI]P pdx = / (A(w)7 + ¥)gdx, (3.18)
@) (@) @)

for all ¢ € W&’p(Q) NL®(Q).

Since problem (3.6) has an unique solution, then u = u.

We still need to prove that u, — u in W&’p (Q)). For fixed k > 0, by taking u, = Gy(u,) +
Ty (11n), we have

[t — ullyp = [lun — Tie(u) + Tic(u) — ufl1,p
< lun = Tie()[l1,p + 1 T () — 11,
= [|Gi(un) + Ti(un) — Tk(”)“Lp + || Tie(u) — “”Lp
< | Gi(un) lp + 1 Te(un) — Tie(u)[|1,p + | Te(ue) — ulls,p-

(3.19)

Hence, the strong convergence of {u,} in Wé’p(ﬂ) is stated provided that we show the strong

convergence of {Ti(uy,)} to Ty(u) in W(}’p (Q) and that for every § > 0 there exists kg = ko(J)
such that k > ko implies
|G (un)l1,p <90, for all n € IN.

This is done in two steps.

Step 1. For fixed k > 0, we have that Ty(u,) — Ti(u) in W&’p (Q). Indeed, by fixing compact
set K C Q) we take ¢x € C3°(Q) with 0 < gx < 1and ¢ = 1 in K. Thus, taking v, as test
function in (3.5) defined by

vy = (Ti(un) — Ti(u)) "ok € WyP(QQ),
we have
() Vou = Vor (Te(un) = Te(w)) " + V (Telun) = Te(w)) " gx
(i) tng(un)|Vuu|fo, >0;
(iii) #, — u in Wy (QQ).
In addition, we also have
/ k| Vitn| P2V 1,V (T (i) — Te(w)) dx
Q (3.20)
< /Q(A(wf{)” +¥)v,dx — /Q (V| P2V 1,V i Ty (1) — Tk(u))+dx.

Thus, by Kavian (see [25, Lemma 4.8]), we conclude that

Ti(un) — Te(u) in Wy (QQ). (3.21)
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For fixed k > 0, combining the relations (3.20) and (3.21), we obtain
/Q @k|Vun P2V u, V Ty (uy) — Tk(u))+dx — 0, as n — . (3.22)
By define the sets
Sp={xeQ : |Ju,(x)| <k} and G,:={xeQ : |u,(x)| >k},
and denote by x, the characteristic function of G,,. Moreover, take
E; = /Q ok [IV T (t4) P72V T () — |V T () P2V T ()| V(T () — Ti(1)) " dx
= [ ol () - Tew) 62
— [ oIVl 2V = [V T) P2V T ()] ¥ (Te(u,) = Te(w) '
— [ oIVl 2V L)V (Ti(ma) = Tiw)) ' .
By using the relations (3.21) and (3.22), we conclude that the first and third term of (3.23)

tends to zero as n — oo.
With respect to the second term of (3.23), we have

— [ oIVl 2V, = [Vl 2V T ()] V (Te(ha) = Tiw))
S /G o [| Vit P2V 1ty — |V T () P2V T (1) |V (T (10) — Ti(w)) ¥ dx
- [Vl 2V [VTiw) "2V Ti(0)] 9 (Tiot) — Ti)) "
_ /G K| Vit P2V 1, V (Ti (1) — Te(w)) " dx.
Furthermore, by the Dominated Convergence Theorem, we have

/G ¢K|Vun]’”’2VunV(Tk(un) — Tk(u))+dx :/Q ok |Vin P2 Vuy.xc, (V(Tie(un) — Tk(u))+)dx

1
1 P
<l | [ xe VTG0 Pax] " o,

as n — oo.
Therefore, we conclude that E;” — 0 as n — oo and thus,

/K [V T () [P~2V Tic () — |V T () P2V Ti()] V (Ti(un) — Tie(w)) "dx — 0. (3.24)
Now, taking v, as test function in (3.5) defined by

on = (Ti(n) — Te(u)) gk € Wy? (Q)

and repeating the previous arguments, we obtain

/K [V T (un) P2V Ty () = [V T () [PV T ()] V (Tic () — Te(w)) dx — 0. (3.25)
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By combining the relations (3.24) and (3.25), we have
/K [V T () [P 2V Ti () — |V Tie(w) [P 2V T ()| V (Tie (1) — Tie(u) )dx — 0.

Thus, by inequality (2.7) we conclude that VT (u,) — VTi(u) in LP(K). Since Ty(u,) €
Wg’p(Q), then

VTi(un) = VTi(u) in LP(Q).
Therefore, the sequence {Ti(u,)} converges strongly to Ty (u) in Wg’p (Q).

Step 2. By taking v, := Gy (u,) as test function in (3.5) we have

[ VG iz = [ Va2V, VG, )dx
QO {u,>k}

pN
N(p—1)+p

< ( / un>k}<An<w:>a+‘F>dx) 1Gi11) -

N
Since o < p*, {w,} is strongly convergent in LNW{UHU(Q), {An} is bounded and

pN
N (;’;1)‘*‘19
¥ € LNv-1+ (Q)), the right-hand side of the previous inequality tends uniformly in # to zero
as ko diverges, i.e., for every é > 0 there exists ko = ko(J) such that k > ko implies

|VGi(un)|1,p <6, forallneIN.

Therefore, by step 1 and 2 and by inequality (3.19), we conclude that {u,} converges
strongly to u in Wol’p (Q). O

Completing the proof of Theorem 1.2: Let 1y € Wg’p (Q) be solution of (P),, for A = 0. For

every isolated solution u, € Wé’p (Q)) of (P)), for some A € R, we denote by i(K,,,u,) the
index of such a solution, that is, the topological Leray—Schauder degree deg(I — K,, B¢(14),0)
of the operator I — K, in a ball B¢(u,) centered at u, with radius € > 0 small enough.

We will prove that deg(I — Kj, Be(u,),0) # 0 for A = 0. Indeed, we denote by U(t) the
unique solution for

—Apu+tg(u)|VulP =¥(x) inQ,
u=20 on d(),

and we define the following homotopy

H:[0,1] x Wy? (Q) — WP (Q)
(t,w) — H(t,w) := U(t).
Hence,
H(1,w) =U(1) = Ko(w) = K(0,w) = uyg
and
H(0,w) = U(0) = (=4, ")(¥(x)).

Since i((—Ap')(¥(x)),U(0)) # 0, by Lemma 3.2 we deduce that H is compact. Observing the
first part of the proof of Lemma 3.2 we obtain R > 0 such that

IU(t)|l, <R, forallt € [0,1].
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If u e Wé’p(ﬂ) and [[ul|y, > R, then u # H(t,u). Thus, by the homotopy invariance of the
degree, we conclude that

i(KQ, uo) = i(H

(3.26)

Hence, we have that K : xBg — Bg is continuous and compact and uy is an isolated solution
of (P),, in the ball B¢(u, ) for A = 0. Thus, for Ay > 0 small enough, we have

K : [0,/\0] X Be(uo) — Be(uo).

If ®(A,u) = u—K(A, u), then deg (P(A, ), Be(up),0) is well defined for A < Ag. Hence, by
applying the homotopy invariance of the degree, we have

deg (®(A, ), Be(uo),0) = constant, A < Ap.
Thus, by relation (3.26), we conclude that
deg (<I>()\, 9, Be(uo),O) #0, A < Ap.

The theorem follows now from the Rabinowitz Theorem 3.2 in [32]. 0
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