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Abstract. In this paper we establish existence of solutions to the following boundary
value problem involving a p-gradient term

−∆pu + g(u)|∇u|p = λuσ + Ψ(x), u > 0 in Ω, u = 0 on ∂Ω,

where ∆p := div(|∇u|p−2∇u) is p-Laplacian operator, Ω ⊂ RN (N ≥ 3) is a bounded
domain with smooth boundary, 1 < p < N, 0 < σ < p∗ − 1 with p∗ := pN/ (N − p), Ψ
is a measurable function and g(s) ≥ 0 is a continuous function on the interval (0,+∞)
which may have a singularity at the origin, i.e. g(s) → +∞ as s → 0. Using the
topological degree theory, under certain assumptions on Ψ, we prove the existence of a
continuum of positive solutions.
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1 Introduction

In this paper we establish existence of a continuum of positive solutions to the following class
of singular quasilinear elliptic equations with a p-gradient term,

−∆pu + g(u)|∇u|p = λuσ + Ψ(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P)λσ

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, 1 < p < N, 0 < σ <

p∗ − 1 with p∗ := pN/ (N − p), g : (0, ∞) → R+ is a continuous measurable function in a
neighborhood of zero and Ψ : Ω → R+ is a Lq integrable function with q ∈

[ pN
N(p−1)+p , pN

N−p

)
.
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This type of equations involving singular nonlinearities appears in the models of several
physical phenomena, such as in theory of electric conductivity [19], in study of pseudoplastic
fluids [14], in minimal surfaces with isolated singularities [13] and several other models.

The classic references involving the problem (P)λσ were published by Leray and Lions [29]
in 1965 and by Ladyzenskaya and Uraltseva [26] in 1968.

For this class of equations involving the term gradient we quote [1–5,7–9,22,31] and with-
out the gradient term we quote [16–18, 20, 21, 23, 24, 27, 30, 36]. For existence results involving
quasilinear and parabolic elliptic problems with quadratic gradient term we quote [12] and
for existence of a continuum of solutions for a quasilinear singular elliptic problem we quote
[15].

In 2009, Arcoya, Barile and Martínez-Aparicio [3] studied the quasilinear elliptic boundary
value problem {

−∆u + g(x, u)|∇u|2 = a(x) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary and g(x, s) is a Cara-
théodory function on Ω × (0, ∞) which may have a singularity at s = 0 and may change of
sign. Assuming that a ∈ Lq(Ω), with q > N/2, satisfies the following inequality

inf {a(x) | x ∈ Ω0} > 0; ∀Ω0 ⊂⊂ Ω

they proved that if there exist a increasing function b : (0,+∞) → (0,+∞) and a parameter
µ ∈ (0, 1) such that

−µ ≤ sg(x, s) ≤ b(s); ∀s > 0; a.e. x ∈ Ω,

then the previous problem has at least one positive solution.
In 2015, Y. Wang and M. Wang [35] extended the result obtained by Arcoya, Barile and

Martínez-Aparicio [3] to the case involving the p-Laplacian operator.
Arcoya, Carmona and Martínez-Aparicio [5] studied the boundary value problem with a

power type nonlinearity {
−∆u + g(u)|∇u|2 = λup + f0(x) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ RN (N ≥ 3) is an open and bounded domain, λ ≥ 0, 0 ≤ p < N+2
N−2 , 0 ≨ f0 ∈

L
2N

N+2 (Ω) and g ≥ 0 is continuous in [0,+∞) or g ≥ 0 is continuous in (0,+∞), decreasing
and integrable in a neighborhood of zero with lims→0 g(s) = +∞. Using the Leray–Schauder
degree, the authors showed the existence of “continua of solutions” of (1.2), i.e., connected
and closed subsets in the solution set

Q :=
{
(λ, u) ∈ R × H1

0(Ω) : u = K(λ, u)
}

where K : R × H1
0(Ω) → H1

0(Ω) is an operator such that, for every λ ∈ R and for every
w ∈ H1

0(Ω), K(λ, w) is the unique solution u ∈ H1
0(Ω) of an auxiliary problem.

In this paper, we generalize the equation studied by Arcoya, Carmona and Martínez-
Aparicio [5] for the p-Laplacian operator ∆p := div(|∇u|p−2∇u), with a non negative contin-
uous function g which may have a singularity at the origin and a measurable function Ψ. To
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state our results, we say that u ∈ W1,p
0 (Ω) is a positive solution for (P)λσ if u > 0 a.e x ∈ Ω,

g(u) |∇u|p ∈ L1(Ω) and∫
Ω
|∇u|p−2∇u · ∇φdx +

∫
Ω

g(u)|∇u|p φdx = λ
∫

Ω
uσ φdx +

∫
Ω

Ψφdx (1.3)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Our main results read as follows.

Theorem 1.1. Let g : (0,+∞) → R+ be a continuous and integrable function in a neighborhood
of zero such that lims→0 g(s) = +∞. If Ψ ∈ Lq(Ω), be a function not identically zero with q ∈[ pN

N(p−1)+p , pN
N−p

)
, then problem (P)λσ has a unique solution u ∈ W1,p

0 (Ω) for λ = 0.

For q = pN
N(p−1)+p , Y. Wang and M. Wang [35, Theorem 3.1] proved the existence of a

solution to Theorem 1.1. Before we establish the next result we need some definitions. In this
way, we consider the auxiliary problem{

−∆pu + g(u)|∇u|p = λ+w+(x)σ + Ψ(x) in Ω,

u = 0 on ∂Ω,
(1.4)

where λ ≥ 0, w ∈ W1,p
0 (Ω) and w+ := max {0, w} .

By Theorem 1.1, for every (λ, w) ∈ [0,+∞) × W1,p
0 (Ω), the problem (1.4) has a unique

solution u = T(λ, w) ∈ W1,p
0 (Ω). Thus, by following ideas of Arcoya, Carmona and Martínez-

Aparicio [5], we define an operator K : ×W1,p
0 (Ω) → W1,p

0 (Ω) such that

K(λ, w) :=

{
T(λ, w), if λ ≥ 0;

T(0, w), if λ < 0,

and a set
S :=

{
(λ, u) ∈ R × W1,p

0 (Ω) : u = K(λ, u)
}

.

Notice that the function λw+(x)σ + Ψ(x) is in Lq(Ω), for q = Np
N(p−1)+p . Thus K(λ, w) is well

defined. Indeed,∫
Ω
|λw+(x)σ + Ψ(x)|qdx ≤ 2q−1

∫
Ω
|λw+(x)σ|qdx + 2q−1

∫
Ω
|Ψ(x)|qdx,

and σq = N(p−1)+p
N−p

pN
N(p−1)+p = pN

N−p = p∗.
Therefore, with this notation, (P)λσ can be rewritten as a fixed point problem, namely,

u = K(λ, u). (1.5)

The next result is related to the case Ψ ≩ 0 and it states the existence of global continua in
solution set S emanating from the unique solution of Theorem 1.1.

Theorem 1.2. Consider 0 ≨ Ψ ∈ L
pN

N(p−1)+p (Ω) and assume that g ≥ 0 is continuous in [0,+∞) or
g ≥ 0 is continuous in (0,+∞) and integrable in an neighborhood of zero with lims→0 g(s) = +∞.
Then there exists an unbounded continuum Σ ⊂ S of positive solutions which contains (0, u0), where
u0 is the unique solution of (P)λσ for λ = 0.
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To prove Theorem 1.1 we follow some general ideas of [3, 5], i.e., we construct a infinite
sequence of auxiliary problems (P)n with n ∈ N, such that (P)λσ for λ = 0 has at least one
solution as n → +∞. To prove the uniqueness of the solution we follows some general ideas
of [6]. Finally, to prove Theorem 1.2 we show that K is a compact operator and using the
Leray–Schauder degree theory we prove the existence of “continua of solutions” of (P)λσ, i.e.,
connected and closed subsets in the solution set S.

The main difficulties found in the proof of these results are the existence of a singularity g,
the presence of the term gradient and the non-linearity of the operator in the case where p ∈
(1, N). The case where p = 2 has been extensively studied by several researches. For example,
in the case where g is continuous at zero the existence is due to [11] and the uniqueness to
[4]. Moreover, in the case where g is singular at zero the existence is due to [10] and the
uniqueness to [4].

This paper is organized as follows: in section 2 we introduce an approximated problem,
whose solutions are also solutions to problem (1.4); and we prove some auxiliary lemmas.
In section 3, we prove the integrability of g(u) |∇u|p φ and the compactness for the operator
K defined in (1.5). After, we prove the Theorem 1.2 using the topological Leray–Schauder
degree.

2 Proof of Theorem 1.1

To prove Theorem 1.1 first we give some preliminary considerations and lemmas. In this way,
motivated by [2, 3], we define

gn(s) =


0, if s ≤ 0;

npspTn(g(s)), if 0 < s < 1
n ;

Tn(g(s)), if 1
n ≤ s;

(2.1)

where Tn(s) is the truncate function given by

Tn(s) =


s, if |s| < n;

−n, if s ≤ −n;

n, if s ≥ n.

(2.2)

It is easy to verify that gn satisfies the following properties

(a) |gn(s)| ≤ min{n, g(s)};

(b) gn(s) ≤ npsp−1, for all s > 0;

(c) limn→∞ gn(s) = g(s), for all s > 0.

Consider the following approximated problem−∆pw + gn(w)|∇w|p
1+ 1

n |∇w|p = Ψn(x) in Ω,

w = 0 on ∂Ω,
(P)n

where Ψn := Tn(Ψ).
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Lemma 2.1. There exists at least one solution wn ∈ W1,p
0 (Ω) ∩ C1(Ω) of the approximated problem

(P)n.

Proof. Notice that, since the operator ∆−1
p is an homeomorphism, using the Browder–Minty

Theorem we obtain that

−∆p : W1,p
0 (Ω) → W−1,p′(Ω) is a homeomorphism. (2.4)

Furthermore, for every w ∈ C1(Ω) we define

Fn(w) = Ψn −
gn(w)|∇w|p

1 + 1
n |∇w|p

,

and for every u ∈ C1(Ω) we define the problem{
−∆pw = Fn(u) in Ω,

w = 0 on ∂Ω.
(2.5)

Let G : W1,p
0 (Ω) → R be the functional defined by

G(φ) =
∫

Ω
Fn(u)φdx.

Since Fn(u) is bounded independent of u, then G is well defined, linear and |G(φ)| ≤ Cn∥φ∥1,p,
for some Cn > 0, i.e., G ∈ W−1,p′(Ω). Hence, by (2.4) there exists a unique function w ∈
W1,p

0 (Ω) such that −∆pw = G, i.e.,∫
Ω
|∇w|p−2∇w∇φdx =

∫
Ω

Fn(u)φdx.

Thus, since all the assumptions of the regularity result obtained by Hai (see [24, Lemma
3.1]) are satisfied, there are constants α ∈ (0, 1) and M > 0 such that w ∈ C1,α(Ω) and
∥w∥C1,α(Ω) < M.

Let K : C1(Ω) → C1(Ω) be the operator defined by K(u) = w, where w is the unique
solution of (2.5). Since K(C1(Ω)) ⊂ C1,α(Ω) and ∥K(u)∥1,α ≤ M for every u ∈ C1(Ω), then K
is compact. Furthermore, K is continuous. Indeed, let {uk} ⊂ C1(Ω) be a sequence such that
uk → u in C1(Ω). Define now

wk = K(uk) and w = K(u).

By definition of K, we have

−∆pwk − (−∆pw) = Fn(uk)− Fn(u) in Ω,

and consequently∫
Ω

(
|∇uk|p−2∇uk − |∇u|p−2∇u

)
.∇(wk − w)dx =

∫
Ω

(
Fn(uk(x))− Fn(u(x))

)
(wk − w)dx

≤ 2M
∫

Ω
|Fn(uk)− Fn(u)|dx.

(2.6)

Since Fn(uk) is bounded and Fn(uk(x)) → Fn(u(x)) a.e. in Ω, then by the Dominated
Convergence Theorem we have ∫

Ω
|Fn(uk)− Fn(u)|dx → 0,
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as k → ∞.
Thus, applying in (2.6) the inequality (see [33])

⟨|x|p−2 x − |y|p−2 y, x − y⟩e ≥ C


|x − y|2

(|x|+ |y|)2−p if 1 < p < 2;

|x − y|p if p ≥ 2,

(2.7)

where x, y ∈N and C := C(p) is a constant, we obtain

wk → w in W1,p
0 (Ω).

On the other hand, since ∥wk∥C1(Ω) < M, by going to subsequence if necessary, there exists
w0 ∈ C1(Ω) such that

wk → w0 in C1(Ω).

Hence, by uniqueness of limits, we conclude K(uk) → K(u) in C1(Ω); i.e., K is continuous.
How K is a continuous and compact operator and K(C1(Ω)) ⊂ BM̃, where BM̃ is a ball

centered at the origin with radius M̃ in C1(Ω), then by Schauder’s Fixed Point Theorem, there
exists u ∈ BM̃, such that K(u) = u. Therefore, by definition of K, we have that u is solution of
(P)n.

Lemma 2.2. If Ψ ∈ Lq(Ω) with q ∈
[ pN

N(p−1)+p , pN
N−p

)
, then the solution wn of (P)n satisfies the

following statements,

(i) {wn} is bounded independent of n in W1,p
0 (Ω);

(ii) wn(x) > 0, for all x ∈ Ω.

Proof. (i) First, we will prove that wn ≥ 0 in Ω. Indeed, multiplying (P)n by w−
n and integrating

in Ω, we obtain∫
Ω
|∇wn|p−2∇wn.∇w−

n dx +
∫

Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

w−
n dx =

∫
Ω

Ψnw−
n dx. (2.8)

Since wn = w+
n − w−

n and ∇wn = ∇w+
n −∇w−

n , then

∇wn∇w−
n = (∇w+

n −∇w−
n )∇w−

n

= ∇wn∇w−
n − (∇w−

n )
2

− (∇w−
n )

2.

(2.9)

Furthermore, we have
gn(wn)w−

n = 0, for all wn ∈ W1,p
0 (Ω). (2.10)

Then, by relations (2.8), (2.9) and (2.10), we have

−
∫

Ω
|∇w−

n |pdx =
∫

Ω
Ψnw−

n dx ≥ 0,

i.e., w−
n ≡ 0. Therefore, wn = w+

n ≥ 0 in Ω.
Taking wn as test function in (P)n, we obtain∫

Ω
|∇wn|pdx +

∫
Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

wndx =
∫

Ω
Ψnwndx

≤
∫

Ω
Ψwndx.
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Since wn ≥ 0, we have that gn(wn)|∇wn|p
1+ 1

n |∇wn|
wn ≥ 0. Thus, using Hölder’s inequality, we obtain

∫
Ω
|∇wn|pdx ≤

∫
Ω

Ψnwndx

≤ ∥Ψ∥q∥wn∥q′ ,
(2.11)

where q′ := q
q−1 . Since q ≥ pN

N(p−1)+p , then q′ ≤ pN
N−p and Lp∗(Ω) ⊂ Lq′(Ω). Hence, there are

constants c1, c2 > 0 such that

∥wn∥q′ ≤ c1∥wn∥p∗ ≤ c2∥wn∥1,p.

By applying the previous inequality in the relation (2.11), we conclude that {wn} is bounded
in W1,p

0 (Ω).
(ii) Since wn ≥ 0 in Ω, by item (b) of properties of gn listed previously, we obtain

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

≤ np|wn|p−1n = np+1|wn|p−1. (2.12)

Let the function β : [0,+∞) → R be defined by

β(s) = np+1(s)p−1.

Notice that β is continuous, non-decreasing, β(0) = 0 and β(s) > 0, for all s > 0. Furthermore,

∫ 1

0
(β(s)s)−

1
p ds = ∞.

Hence, by relation (2.12) we have

−∆pwn + β(wn) ≥ Ψn ≥ 0 a.e. in Ω,

i.e., ∆pwn ≤ β(wn) a.e. in Ω.
Since Ψn ̸≡ 0, then by the Strong Principle of Maximum (see [34, Theorem 5]) we conclude

that wn > 0 in Ω.

Lemma 2.3. There are w ∈ W1,p
0 (Ω) and q ∈ (1, p) such that

(i) ∇wn → ∇w in Lq(Ω);

(ii) w > 0 in Ω.

Proof. (i) Since the sequence {wn} is bounded in W1,p
0 (Ω), going if necessary to a subsequence,

there exists w ∈ W1,p
0 (Ω) such that

(a) wn ⇀ w in W1,p
0 (Ω);

(b) wn → w in Lp(Ω);

(c) wn(x) → w(x) a.e. in Ω.
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By fixing compact set K ⊂ Ω, we take ϕK ∈ C∞
0 (Ω) with 0 ≤ ϕK ≤ 1 and ϕK = 1 in K. Thus,

taking vn as test function in (P)n defined by

vn := ϕK[Tη(wn − w)]+ ∈ W1,p
0 (Ω),

we have ∫
Ω
|∇wn|p−2∇wn∇vndx +

∫
Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

vndx =
∫

Ω
Ψnvndx. (2.13)

By applying in (2.13) the relations

∇vn = ∇ϕK[Tη(wn − w)]+ + ϕK∇[Tη(wn − w)]+

and
gn(wn)|∇wn|p

1 + 1
n |∇wn|p

vn ≥ 0,

we obtain ∫
Ω
|∇wn|p−2∇wnϕK∇[Tη(wn − w)]+dx

≤
∫

Ω
Ψnvndx −

∫
Ω
|∇wn|p−2∇wn∇ϕK[Tη(wn − w)]+dx.

Hence, we have ∫
Ω

ϕK
[
|∇wn|p−2∇wn − |∇w|p−2∇w

]
∇[Tη(wn − w)]+dx

≤
∫

Ω
Ψnvndx −

∫
Ω
|∇wn|p−2∇wn∇ϕK[Tη(wn − w)]+dx

−
∫

Ω
ϕK|∇w|p−2∇w∇[Tη(wn − w)]+dx.

(2.14)

Since wn ⇀ w in W1,p
0 (Ω), then we have [Tη(wn − w)]+ ⇀ 0, i.e.,

⟨ϕ, [Tη(wn − w)]+⟩ → 0 for all ϕ ∈ W1,p
0 (Ω)∗, (2.15)

where W1,p
0 (Ω)∗ is the dual space of W1,p

0 (Ω).
Note that, by the Dominated Convergence Theorem and by relation (2.15) we obtain∫

Ω
|∇wn|p−2∇wn∇ϕK[Tη(wn − w)]+dx → 0 as n → ∞ (2.16)

and ∫
Ω

ϕK|∇w|p−2∇w∇[Tη(wn − w)]+dx → 0 as n → ∞. (2.17)

Indeed, by Hölder’s inequality and by (2.15) we have

∣∣∣∣ ∫Ω
|∇wn|p−2∇wn∇ϕK[Tη(wn − w)]+dx

∣∣∣∣ ≤ ∥wn∥p−1
1,p

( ∫
Ω
|∇ϕK[Tη(wn − w)]+|pdx

) 1
p

,

where ∥wn∥1,p and ∇ϕK[Tη(wn − w)]+ are bounded and [Tη(wn − w)]+ → 0 a.e. in Ω. Thus,
by the Dominated Convergence Theorem the relation (2.16) holds true.
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Again, by Hölder’s inequality we have∣∣∣∣ ∫Ω
ϕK|∇w|p−2∇w∇[Tη(wn − w)]+dx

∣∣∣∣
≤ ∥wn∥p−1

1,p

[ ∫
Ω
|ϕk[∇Tη(wn − w)]+|pdx

] 1
p

= ∥wn∥p−1
1,p

[ ∫
Ω
|ϕk|p.χ{x∈Ω:|wn−w|<η}|∇(wn − w)]+|pdx

] 1
p

.

Since |ϕk|p.χ{x∈Ω:|wn−w|<η} is bounded in Lp(Ω)∗ and |ϕk|p.χ{x∈Ω:|wn−w|<η} → |ϕk|p a.e. in Ω,
then by Vitali’s Convergence Theorem we have

|ϕK|p.χ{x∈Ω:|wn−w|<η} → |ϕK|p in Lp(Ω)∗.

Hence, since
∣∣∇(wn − w)+

∣∣p
⇀ 0 in Lp(Ω), then the relation (2.17) holds true.

For fixed η, combining the relations (2.14), (2.16) and (2.17), we have

lim
n→∞

sup
∫

K

(
|∇wn|p−2∇wn − |∇w|p−2∇w

)
∇[Tη(wn − w)]+dx ≤ CΨη. (2.18)

Let H+
n defined by

H+
n (x) :=

[
|∇wn|p−2∇wn − |∇w|p−2∇w

]
∇[Tη(wn − w)]+(x).

By relation (2.18) we have that H+
n is bounded in L1(K). Moreover, by inequality (2.7) and

by definition of Tη , we have that H+
n ≥ 0.

By defining the sets

Aη
n :=

{
x ∈ K : |wn(x)− w(x)| ≤ η

}
and Bη

n :=
{

x ∈ K : |wn(x)− w(x)| > η
}

;

and fixing ν ∈ (0, 1), we obtain∫
K
(Hn

+)νdx ≤
( ∫

Aη
n

(H+
n )dx

)ν

|Aη
n|1−ν +

( ∫
Bη

n

(H+
n )dx

)ν

|Bη
n |1−ν.

For fixed η, we have that |Bη
n | → 0 as n → ∞. Moreover, since H+

n is bounded in L1(K), we
have

lim
n→∞

sup
∫

K
(H+

n )νdx ≤ (CΨη)ν|Ω|1−ν. (2.19)

By letting η → 0 in the previous inequality, we obtain

(H+
n )ν → 0 in L1(K).

Now, choose vn as test function in (P)n defined by

vn := ϕK[Tη(wn − w)]− ∈ W1,p
0 (Ω),

where s− := max{−s, 0}. Hence, repeating the arguments previously used, we can conclude
that

(H−
n )ν → 0 in L1(K),
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where

H−
n (x) :=

[
|∇wn|p−2∇wn − |∇w|p−2∇w

]
∇[(wn − w)]−(x).

Therefore, if Hn := H+
n − H−

n , then

Hn(x) =
[
|∇wn|p−2∇wn − |∇w|p−2∇w

]
∇[(wn − w)](x)

and Hn → 0 a.e. in K.
Consider Ω =

⋃∞
j=1 Ωj, such that Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω.

Thus, for K = Ω1, we have

H1
1(x), H1

2(x), H1
3(x), . . . , H1

n(x) → 0 a.e. in Ω1.

Analogously, for K = Ω2, we have

H2
1(x), H2

2(x), H2
3(x), . . . , H2

n(x) → 0 a.e. in Ω2.

Repeating the previous process, we obtain

H1
1(x) H1

2(x) H1
3(x) . . . H1

n(x) −→ 0 a.e. in Ω1

H2
1(x) H2

2(x) H2
3(x) . . . H2

n(x) −→ 0 a.e. in Ω2

H3
1(x) H3

3(x) H3
3(x) . . . H3

n(x) −→ 0 a.e. in Ω3

...
...

...
. . .

...
...

H j
1(x) H j

2(x) H j
3(x) . . . H j

n(x) −→ 0 a.e. in Ωj

...
...

...
...

...

Hence, taking the diagonal sequence Ĥj = H j
j , we have

Ĥj(x) → 0 a.e. in Ω.

So, for the sequence of compact sets Ωj, there exists a subsequence {Hn′} such that

Hn′(x) → 0 a.e. in Ω.

By applying again the inequality (2.7), we obtain

∇wn′(x) → ∇w(x) a.e. in Ω.

Thus, since {∇wn} is bounded independent of n, by Vitali’s Convergence Theorem we have

∇wn → ∇w in Lq(Ω), q < p.

(ii) Now, we will prove that w is strictly positive in Ω. Indeed, we have wn > 0 in Ω with
wn ∈ C1,α(Ω) for some α ∈ (0, 1). In analogy to the proof of (i), we have∫

Ω
|∇wn|p−2∇wn∇φdx +

∫
Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

φdx =
∫

Ω
Ψn φdx, φ ∈ W1,p

0 (Ω). (2.20)
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Thus, taking vn as test function in (2.20) defined by

vn := e−H̃n(wn)φ, φ ∈ W1,p
0 (Ω) ∩ L∞(Ω), φ ≥ 0,

where H̃n(t) :=
∫ t

0 gn(s)ds and H̃n
′
(t) := gn(t), with gn(s) ≤ g(s), we obtain

−
∫

Ω
|∇wn|pH̃n

′
(wn)e−H̃n(wn)φdx +

∫
Ω
|∇wn|p−2∇wne−H̃n(wn)∇φdx

=
∫

Ω
Ψne−H̃n(wn)φdx −

∫
Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

e−H̃n(wn)φdx.

By applying in the previous equation the following inequality

|y|p

1 + 1
n |y|p

≤ |y|p for every y ∈ Rn,

we obtain ∫
Ω
|∇wn|p−2∇wne−H̃n(wn)∇φdx −

∫
Ω

Ψne−H̃n(wn)φdx

=
∫

Ω
|∇wn|pH̃n

′
(wn)e−H̃n(wn)φdx −

∫
Ω

gn(wn)|∇wn|p

1 + 1
n |∇wn|p

e−H̃n(wn)φdx

≥
∫

Ω
gn(wn)|∇wn|pe−H̃n(wn)φdx −

∫
Ω

gn(wn)|∇wn|pe−H̃n(wn)φdx

= 0.

Hence, ∫
Ω
|∇wn|p−2∇wn∇φe−H̃n(wn)dx ≥

∫
Ω

Ψne−H̃n(wn)φdx. (2.21)

Define H̃(w) = lim
n→∞

H̃n(wn). Taking the limit in (2.21) as n → ∞, since wn > 0 and e−H̃n(wn) <

1 in Ω, we obtain ∫
Ω
|∇w|p−2∇w∇φe−H̃(w)dx ≥

∫
Ω

Ψe−H̃(w)φdx

≥
∫

Ω
T1(Ψ)e−H̃(w)φdx.

(2.22)

Define v(x) := ψ(w(x)) =
∫ w(x)

0

(
e−H̃(s)) 1

p−1 dt, where ψ(s) :=
∫ s

0

(
e−H̃(s)) 1

p−1 dt is strictly in-
creasing. Let z be a solution of problem−∆pz =

T1(Ψ)

eH̃(w)
in Ω,

z = 0 on ∂Ω.

Since T1(Ψ)

eH̃(w) ∈ L∞(Ω), by a result of Lieberman (see [28, Theorem 1]), we have that z ∈ C1,α(Ω)

for some α ∈ (0, 1). Moreover, by strong maximum principle (see [34]), we conclude that z > 0
in Ω.
By applying in (2.22) the relation ∇v = ∇w

(
e−H̃(w)

) 1
p−1 , we obtain∫

Ω
|∇v|p−2∇v∇φdx =

∫
Ω
|∇w|p−2∇w∇φe−H̃(w)dx

≥
∫

Ω
T1(Ψ)e−H̃(w)φdx.

Hence, by weak comparison principle (see [34]), we have that v(x) ≥ z(x) > 0 in Ω. Finally,
since ψ(w(x)) = v(x) > 0 and ψ is strictly increasing in Ω, then w(x) > 0 in Ω.
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The following lemmas concerning with the uniqueness of solution will be useful in the
sequel and they can be deduced by using ideas of Bénilan, Boccardo, Gallouët, Gariepy, Pierre
and Vazquez [6].

Lemma 2.4. If w is a solution of (P)λσ for λ = 0, then for every a, k > 0

(i) 1
k

∫
{|w|<k} |∇w|pdx ≤

∫
Ω Ψdx;

(ii) 1
a

∫
{k<|w|<k+a} |∇w|pdx ≤

∫
Ω Tk,a(w)Ψdx ≤

∫
{|w|>k} Ψdx,

where Tk,a(s) := Ta
(
s − Tk(s)

)
.

Lemma 2.5. Let 1 < p < N. If Ω is a bounded domain in RN and w ∈ W1,p
0 (Ω) satisfies

1
k

∫
{|w|<k}

|∇w|pdx ≤ M (2.23)

for every k > 0, then there exists C = C(N, p) such that

meas {x ∈ Ω : |w| > k} ≤ CM
N

N−p k−p1 , (2.24)

where p1 = N(p−1)
N−p .

Completing the proof of Theorem 1.1: Let u and v solutions of (P)λσ for λ = 0, so∫
Ω
|∇u|p−2∇u∇φdx +

∫
Ω

g(u)|∇u|p φdx =
∫

Ω
Ψφdx (2.25)

and ∫
Ω
|∇v|p−2∇v∇φdx +

∫
Ω

g(v)|∇v|p φdx =
∫

Ω
Ψφdx, (2.26)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

For every h ≥ 0, choosing φ = Tk(u − Thv)+ and φ = Tk(v − Thu)+ in (2.25) and (2.26),
respectively, we obtain∫

{|u−Thv|<k}
⟨|∇u|p−2∇u,∇(u − Thv)+⟩dx ≤

∫
Ω

Tk(u − Thv)+Ψdx

and ∫
{|v−Thu|<k}

⟨|∇v|p−2∇v,∇(v − Thu)+⟩dx ≤
∫

Ω
Tk(v − Thu)+Ψdx.

Thus, if we define

I :=
∫
{|u−Thv|<k}

⟨|∇u|p−2∇u,∇(u − Thv)+⟩dx +
∫
{|v−Thu|<k}

⟨|∇v|p−2∇v∇(v − Thu)+⟩dx,

(2.27)
the conclusion u = v will be reached after passing to the limit h → ∞ in the previous rela-
tions and disregarding some positive terms. We will to split the previous integrals into the
contributions corresponding to different integration sets.

Consider the following set

A0 := {x ∈ Ω : |u − v| < k, |u| < h, |v| < h}.
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Thus, when restricted to A0 the first member of (2.27) gives the following main contribution

I0 :=
∫

A0

⟨|∇u|p−2∇u,∇(u − v)+⟩dx +
∫

A0

⟨|∇v|p−2∇v,∇(v − u)+⟩dx

=
∫

A0

⟨|∇u|p−2∇u − |∇v|p−2∇v,∇(u − v)+⟩dx.

The remaining first member of (2.27) is estimated taking the first term on the set

A1 := {x ∈ Ω : |u − Thv| < k, |v| > h},

i.e., ∫
A1

⟨|∇u|p−2∇u,∇(u − Thv)+⟩dx =
∫

A1

|∇u|pdx ≥ 0.

On the remaining set

A2 := {x ∈ Ω : |u − Thv| < k, |v| < h, |u| ≥ h}

we have ∫
A2

⟨|∇u|p−2∇u,∇(u − Thv)+⟩dx =
∫

A2

⟨|∇u|p−2∇u,∇(u − v)+⟩dx

≥ −
∫

A2

|∇u|p−2∇u∇vdx.

Now, we estimate the second member of (2.27) in the sets A′
1 where |u| ≥ h, and A′

2, where
|u| < h and |v| ≥ h. Notice that all these sets and integrals depend of k and h.

Summing up we estimate the first member of (2.27) as follows

I ≥ I0 − I3,

where
I3 :=

∫
A2

|∇u|p−2∇u∇vdx +
∫

A′
2

|∇v|p−2∇v∇udx.

Now, we will check that I3 → 0 as h → ∞. Indeed, the first term of I3 can be estimated by

∫
A2

|∇u|p−2∇u∇vdx ≤
(∫

A2

|∇u|(p−1) p
p−1 dx

) p−1
p
(∫

A′
2

|∇v|pdx
) 1

p

=

(∫
{h≤|u|≤h+k}

|∇u|pdx
) p−1

p
(∫

{h−k≤|v|≤h}
|∇v|pdx

) 1
p

= ∥u∥p−1
Lp({h≤|u|≤h+k})∥v∥Lp({h≤|u|≤h+k}),

which converges to 0 as h → ∞ due to Lemmas 2.4 and 2.5. The treatment of the second term
is analogous.

Now, we will estimate ∫
Ω

Ψ
[
Tk(u − Thv)+ − Tk(v − Thu)+

]
dx.

The previous integral on the set B0 := {x ∈ Ω : |u| < h, |v| < h} gives

J0 :=
∫

B0

Ψ
[
Tk(u − Thv)+ − Tk(v − Thu)+

]
dx = 0.
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The integral on the set B1 := {x ∈ Ω : |u| ≥ h} is estimate by

|J1| :=
∣∣∣∣ ∫B1

Ψ
[
Tk(u − Thv)+ − Tk(v − Thu)+

]
dx

∣∣∣∣
=

∣∣∣∣ ∫B1

Ψ
[
Tk(u − Thv)+ − Tk(v − h)+

]
dx

∣∣∣∣
≤ 2k

∫
B1

|Ψ|dx,

while on B2 := {x ∈ Ω : |v| ≥ h} we get

|J2| :=
∣∣∣∣∫B2

Ψ
[
Tk(u − Thv)+ − Tk(v − Thu)+

]
dx

∣∣∣∣
=

∣∣∣∣∫B2

Ψ
[
Tk(u − h)+ − Tk(v − Thu)+

]
dx

∣∣∣∣
≤ 2k

∫
B2

|Ψ|dx.

Since the measure of both sets B1(h, k) and B2(h, k) converges to zero as h → ∞ for fixed k > 0,
then J1 + J2 → 0 as h → ∞.

Combining the previous estimates, for fixed k > 0, we get from (2.27)∫
A0(h,k)

⟨|∇u|p−2∇u − |∇v|p−2∇v,∇(u − v)+⟩dx ≤ ϖ(h),

where limh→∞ ϖ(h) = 0.
Since the set A0(h, k) converges to {x ∈ Ω : |u − v| < k}, then∫

{x∈Ω : |u−v|<k}
⟨|∇u|p−2∇u − |∇v|p−2∇v,∇(u − v)+⟩dx ≤ 0, k > 0 fixed.

Since the previous inequality is true for all k > 0, we conclude by (2.7) that ∇u(x) = ∇v(x)
a.e. in Ω. Thus, since u, v ∈ W1,p

0 (Ω) then u(x) = v(x) a.e. in Ω.
Now, we will prove that w satisfies∫

Ω
|∇w|p−2∇w∇φdx +

∫
Ω

g(w)|∇w|p φdx =
∫

Ω
Ψφdx, (2.28)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Indeed, we have∫
Ω
|∇wn|p−2∇wn∇φdx +

∫
Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

φdx =
∫

Ω
Ψn φdx ≤

∫
Ω

Ψφdx, (2.29)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0.

For every ϵ > 0, taking φ = 1
ϵ Tϵ(wn) as test function in the previous relation, we have

1
ϵ

∫
Ω
|∇wn|p−2∇wn∇Tϵ(wn)dx +

∫
Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

1
ϵ

Tϵ(wn)dx =
∫

Ω
Ψn

1
ϵ

Tϵ(wn)dx

≤
∫

Ω
Ψndx;
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hence, ∫
Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

Tϵ(wn)

ϵ
dx ≤

∫
Ω

Ψndx. (2.30)

Since Tϵ(wn(x))
ϵ = 1

ϵ wn(x)χ{x∈Ω : wn≤ϵ} + χ{x∈Ω : wn>ϵ} for every x ∈ Ω, then wn(x) > ϵ and
Tϵ(wn(x)) = ϵ as ϵ → 0. Taking the limit in (2.30) as ϵ → 0, by the Dominated Convergence
Theorem, we have ∫

Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

dx ≤
∫

Ω
Ψndx, (2.31)

i.e.,
g(wn)|∇wn|p

1 + 1
n |∇wn|p

φ ∈ L1(Ω), ∀φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Define An := |∇wn|p−2∇wn∇φ and Bn := g(wn)|∇wn|p
1+ 1

n |∇wn|p
φ. So, using Fatou’s lemma in (2.29), we

obtain ∫
Ω
|∇w|p−2∇w∇φdx +

∫
Ω

g(w)|∇w|p φdx ≤ lim
n→∞

inf
(∫

Ω

(
An + Bn

)
φdx

)
≤

∫
Ω

Ψφdx,

i.e., ∫
Ω
|∇w|p−2∇w∇φdx +

∫
Ω

g(w)|∇w|p φdx ≤
∫

Ω
Ψφdx, (2.32)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0.

Now, define S(t) :=
∫ t

0 β(s)ds, β ≥ 0 measurable, and take φ ∈ W1,p
0 (Ω) ∩ L∞(Ω), φ ≥ 0

and k > 0. Thus, taking vn as test function in (P)n defined by

vn := e−S(wn)eS(Tk(wn))φ,

we obtain ∫
Ω
|∇wn|p−2∇wn∇φe−S(wn)eS(Tk(wn))dx

+
∫

Ω
|∇wn|p−2∇wn∇Tk(wn)β(Tk(wn))e−S(wn)eS(Tk(wn))φdx

=
∫

Ω
|∇wn|p−2∇wn∇wnβ(wn)e−S(wn)eS(wn)φdx

−
∫

Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

e−S(wn)eS(Tk(wn))φdx

+
∫

Ω
Ψne−S(wn)eS(Tk(wn))φdx

≥ 0,

because ∫
Ω

g(wn)|∇wn|p

1 + 1
n |∇wn|p

e−S(wn)eS(Tk(wn))φdx ≤
∫

Ω
Ψne−S(wn)eS(Tk(wn))φdx.
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Again, by Fatou’s lemma, we have∫
Ω
|∇w|p−2∇w∇φe−S(w)eS(Tk(w))dx

+
∫

Ω
|∇w|p−2∇w∇Tk(w)β(Tk(w))e−S(w)eS(Tk(w))φdx

≥
∫

Ω
|∇w|p−2∇w∇wβ(w)e−S(w)eS(w)φdx

−
∫

Ω
g(w)|∇w|pe−S(w)eS(Tk(w))φdx

+
∫

Ω
Ψe−S(w)eS(Tk(w))φdx,

as n → ∞. Since 0 ≤ e−S(w)eS(Tk(w)) ≤ 1, by letting k → ∞, it follows immediately from the
previous inequality that∫

Ω
|∇w|p−2∇w∇φdx +

∫
Ω

g(w)|∇w|p φdx ≥
∫

Ω
Ψφdx, (2.33)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0.

Hence, using the relations (2.32) and (2.33), we conclude that the equality (2.28) holds for
all φ ∈ W1,p

0 (Ω) ∩ L∞(Ω) with φ ≥ 0.
Thus, since φ := φ+ − φ− and φ+, φ− ≥ 0, we obtain∫

Ω
|∇w|p−2∇w∇φdx +

∫
Ω

g(w)|∇w|p φdx =
∫

Ω
Ψφdx

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Therefore, (P)λσ has unique solution in W1,p
0 (Ω) for λ = 0.

3 Proof of Theorem 1.2

In this section, first we prove some results which are used in the proof of our main theorem.
Notice that our definition of solution of (P)λσ includes the integrability of g(u)|∇u|p. Using
some ideas of Arcoya, Carmona and Martínez-Aparicio [5], we will see in the following result
that a consequence is the integrability of g(u)|∇u|p φ for all φ ∈ W1,p

0 (Ω).

Lemma 3.1. If 0 < u ∈ W1,p
0 (Ω) is a solution for (P)λσ, then g(u)|∇u|p φ is integrable in Ω for all

φ ∈ W1,p
0 (Ω). Moreover, we have∫

Ω
|∇u|p−2∇u · ∇φdx +

∫
Ω

g(u)|∇u|p φdx = λ
∫

Ω
uσ φdx +

∫
Ω

Ψφdx. (3.1)

Proof. Since σ ≤ p∗ − 1, note that uσ, uσ φ ∈ L1(Ω). Indeed, since u ∈ Lp(Ω) and W1,p
0 (Ω) ↪→

Lp∗(Ω) for p < N, we have ∫
Ω

uσdx ≤
∫

Ω
|u|σdx < ∞.

On the other hand, we have

σ
p∗

p∗ − 1
≤ (p∗ − 1)

p∗

p∗ − 1
= p∗;
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thus, by Hölder’s inequality we obtain

∫
Ω

uσ φdx ≤

(∫
Ω
|u|σ

p∗
p∗−1 dx

) p∗−1
σp∗

σ (∫
Ω
|φ|p∗dx

) 1
p∗

≤ C∥u∥σ
1,p∥φ∥.

(3.2)

Hence, by previous relations, we conclude that uσ, uσ φ ∈ L1(Ω).
By taking Tk(φ+) as test function in (1.3) and using Hölder’s inequality we have∫

Ω
g(u)|∇u|pTk(φ+)dx = −

∫
Ω
|∇u|p−2∇u∇Tk(φ+)dx +

∫
Ω
(λuσ + Ψ)Tk(φ+)dx

≤
∫

Ω
|∇u|p−1|∇Tk(φ+)|dx +

∫
Ω
(λuσ + Ψ)Tk(φ+)dx

≤
(∫

Ω

(
|∇u|p−1) p

p−1

) p−1
p
(∫

Ω
|∇Tk(φ+)|pdx

) 1
p

+
∫

Ω
(λuσ + Ψ)Tk(φ+)dx

≤ ∥u∥p−1
1,p ∥φ∥1,p +

∫
Ω
(λuσ + Ψ)Tk(φ+)dx.

Now, by taking limit as k → ∞ and using Fatou’s lemma, we deduce that g(u)|∇u|p φ+ ∈
L1(Ω) with ∫

Ω
g(u)|∇u|p φ+dx ≤ ∥u∥1,p∥φ∥1,p +

∫
Ω
(λuσ + Ψ)φ+dx. (3.3)

Similarly, by taking Tk(−φ−) as test function in (1.3), we obtain that g(u)|∇u|p φ− ∈ L1(Ω)

with
−

∫
Ω

g(u)|∇u|p φ−dx ≤ ∥u∥1,p∥φ−∥1,p +
∫

Ω
(λuσ − Ψ)φ−dx. (3.4)

By combining the relations (3.3) and (3.4), we conclude that g(u)|∇u|p φ ∈ L1(Ω) for all
φ ∈ W1,p

0 (Ω) with ∫
Ω

g(u)|∇u|p φdx ≤ ∥u∥1,p∥φ∥1,p +
∫

Ω
(λuσ + Ψ)φdx.

Lastly, note that this integrability of g(u)|∇u|p φ allows to use a density argument to con-
clude (3.1) from (1.3).

The next result will be related with the compactness for the operator K(λ, w) defined in
(1.5).

Lemma 3.2. Assume that Ψ ∈ Lq(Ω) with q = pN
N(p−1)+p , g ≥ 0 is continuous in [0,+∞) or g ≥ 0

is continuous in (0,+∞) and integrable in an neighborhood of zero with lims→0 g(s) = +∞. If the
sequences {tn} ⊂ [0, 1] and {λn} ⊂ (0, ∞) are convergent, respectively, to t∗ and λ, and {wn} ⊂
W1,p

0 (Ω) weakly convergent to w, then the sequence of (uniquely defined) solutions {un} ⊂ W1,p
0 (Ω)

of {
−∆pun + tng(un)|∇un|p = λn(w+

n (x))σ + Ψ(x) in Ω,

u = 0 on ∂Ω,
(3.5)

is strongly convergent in W1,p
0 (Ω) to the solution u of{

−∆pu + t∗g(u)|∇u|p = λ(w+(x))σ + Ψ(x) in Ω,

u = 0 on ∂Ω.
(3.6)



18 J. V. A. Gonçalves, M. R. Marcial, O. H. Miyagaki and B. M. Rodrigues

Proof. Since the functions λn(w+
n (x))σ + Ψ(x) and λ(w+(x))σ + Ψ(x) are in Lq(Ω) with q =

pN
N(p−1)+p , then by Theorem 1.1 the existence of an unique solution of (3.5) and (3.6) it is holds.
Indeed, we have that∫

Ω
|λw+

n (x)σ + Ψ(x)|qdx ≤ 2q−1
∫

Ω
|λw+

n (x)σ|qdx + 2q−1
∫

Ω
|Ψ(x)|qdx

and σq ≤ N(p−1)+p
N−P

pN
N(p−1)+p = pN

N−p = p∗.
In order to prove the compactness of K(λ, u) is suffices to prove that every subsequence of

{un} possesses a subsequence converging to the unique solution u ∈ W1,p
0 (Ω) of (3.6). First we

will prove that {un} is a bounded sequence in W1,p
0 (Ω). Indeed, choosing un as test function

in (3.5) and using that tn and g(un) are nonnegative, we have∫
Ω
|∇un|pdx ≤

∫
Ω
|∇un|pdx + tn

∫
Ω

g(un)|∇un|pundx

= λn

∫
Ω
(w+

n (x))σundx +
∫

Ω
Ψundx.

(3.7)

Since W1,p
0 (Ω) ↪→ Lp∗(Ω), by Hölder’s inequality we obtain∫

Ω
Ψundx ≤ C∥Ψ∥ pN

N(p−1)+p
∥un∥1,p. (3.8)

Furthermore, since σ
N(p−1)+p

pN = p∗
p∗−1 ≤ p∗, again by Hölder’s inequality we have

λn

∫
Ω
(w+

n (x))σundx ≤ C

(∫
Ω
|wn|σ

N(p−1)+p
pN dx

) pN
σ[N(p−1)+p]

σ (∫
Ω
|un|

pN
N−p dx

) N−p
pN

≤ C∥wn∥σ
p∗∥un∥p∗

≤ C∥wn∥σ
1,p∥un∥1,p.

(3.9)

By combining the relations (3.7), (3.8) and (3.9) we conclude that

∥un∥1,p ≤
[

C∥wn∥σ
1,p + ∥Ψ∥ pN

N(p−1)+p

] 1
p−1

.

Therefore, {un} is a bounded sequence in W1,p
0 (Ω). Thus, going if necessary to a subsequence,

still denoted by {un}, there exists u ∈ W1,p
0 (Ω) such that un ⇀ u weakly in W1,p

0 (Ω).
Repeating the arguments used in the proof Lemma 2.3, we obtain that

∇un(x) → ∇u(x) a.e in Ω and ∇un → ∇u in Lq(Ω), q < p.

Now, we will prove that u satisfies the following equality∫
Ω
|∇u|p−2∇u · ∇φdx + t∗

∫
Ω

g(u)|∇u|p φdx =
∫

Ω
(λ(w+)σ + Ψ)φdx, φ ∈ W1,p

0 (Ω). (3.10)

First, we will show that u > 0 in Ω. Indeed, we have∫
Ω
|∇un|p−2∇un · ∇φdx + tn

∫
Ω

g(un)|∇un|p φdx =
∫

Ω
(λn(w+

n )
σ + Ψ)φdx, φ ∈ W1,p

0 (Ω).

(3.11)
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Thus, choosing vn as test function in the previous equality such that

vn := e−H(un)φ, φ ∈ W1,p
0 (Ω) ∩ L∞(Ω), φ ≥ 0,

we obtain

−
∫

Ω
|∇un|pH′(un)e−H(un)φdx +

∫
Ω
|∇un|p−2∇une−H(un)∇φdx

=
∫

Ω
(λn(w+

n )
σ + Ψ)e−H(un)φdx − tn

∫
Ω

g(un)|∇un|pe−H(un)φdx,

where H(t) :=
∫ t

0 g(s)ds.
By ordering the terms of the previous equation, by using H′

n(t) = g(t), we obtain∫
Ω
|∇un|p−2∇une−H(un)∇φdx −

∫
Ω
(λn(w+

n )
σ + Ψ)e−H(un)φdx

= (1 − tn)
∫

Ω
g(un)|∇un|pe−H(un)φdx

≥ 0,

i.e., ∫
Ω
|∇un|p−2∇un∇φe−H(un)dx ≥

∫
Ω
(λn(w+

n )
σ + Ψ)e−H(un)φdx.

Thus, by taking limit as n → ∞, we have∫
Ω
|∇u|p−2∇u∇φe−H(u)dx ≥

∫
Ω
(λ(w+)σ + Ψ)e−H(u)φdx. (3.12)

Define v(x) := ψ(u(x)) =
∫ u(x)

0

(
e−H(s)) 1

p−1 dt, where ψ(s) :=
∫ s

0

(
e−H(s)) 1

p−1 dt is strictly in-
creasing. Let z be a solution of problem−∆pz =

T1((w+)σ + Ψ)

eH(u)
in Ω,

z = 0 on ∂Ω.

Since T1(Ψ)

eH(u) ∈ L∞(Ω), by a result of Lieberman (see [28, Theorem 1]), we have that z ∈ C1,α(Ω)

for some α ∈ (0, 1). Furthermore, by strong maximum principle, we conclude that z > 0 in Ω.

By applying in (3.12) the relation ∇v = ∇u
(
e−H(u)) 1

p−1 , we obtain∫
Ω
|∇v|p−2∇v∇φdx ≥

∫
Ω

T1(Ψ)e−H(u)φdx.

Thus, by weak comparison principle, we have v(x) ≥ z(x) > 0 in Ω. However, since
ψ(u(x)) := v(x) > 0 and ψ is strictly increasing in Ω, then u(x) > 0 in Ω.

Now, we resume the proof of (3.10). For every ϵ > 0, taking φ := 1
ϵ Tϵ(un) as test function

in (3.10), we obtain

1
ϵ

∫
Ω
|∇un|p−2∇un∇Tϵ(un)dx + tn

∫
Ω

g(un)|∇un|p
1
ϵ

Tϵ(un)dx =
∫

Ω
(λn(w+

n )
σ + Ψ)

1
ϵ

Tϵ(un)dx

≤
∫

Ω
(λn(w+

n )
σ + Ψ)dx;

hence,

tn

∫
Ω

g(un)|∇un|p
Tϵ(un)

ϵ
dx ≤

∫
Ω
(λn(w+

n )
σ + Ψ)dx. (3.13)
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Since Tϵ(un(x))
ϵ = 1

ϵ un(x)χ{x∈Ω : wn≤ϵ} + χ{x∈Ω : un>ϵ} for every x ∈ Ω, then un(x) > ϵ and
Tϵ(un(x)) = ϵ as ϵ → 0. Taking the limit in (3.13) as ϵ → 0, by the Dominated Convergence
Theorem, we have

tn

∫
Ω

g(un)|∇un|pdx ≤
∫

Ω
(λn(w+

n )
σ + Ψ)dx, (3.14)

i.e.,
g(un)|∇un|p φ ∈ L1(Ω), ∀φ ∈ W1,p

0 (Ω) ∩ L∞(Ω).

Define An := |∇un|p−2∇un∇φ and Bn := g(un)|∇un|p φ. Hence, using Fatou’s lemma in
(3.14), we have∫

Ω
|∇u|p−2∇u∇φdx + t∗

∫
Ω

g(u)|∇u|p φdx ≤ lim
n→∞

inf
(∫

Ω

(
An + Bn

)
φdx

)
=

∫
Ω
(λ(w+)σ + Ψ)φdx,

i.e., ∫
Ω
|∇u|p−2∇u∇φdx + t∗

∫
Ω

g(u)|∇u|p φdx ≤
∫

Ω
(λ(w+)σ + Ψ)φdx, (3.15)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0.

Now, define S(t) :=
∫ t

0 β(s)ds, β ≥ 0 measurable, and take φ ∈ W1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0

and k > 0. Hence, taking vn as test function in (3.12) defined by

vn := e−S(un)eS(Tk(un))φ,

we obtain ∫
Ω
|∇un|p−2∇un∇φe−S(un)eS(Tk(un))dx

+
∫

Ω
|∇un|p−2∇un∇Tk(un)β(Tk(un))e−S(un)eS(Tk(un))φdx

=
∫

Ω
|∇un|p−2∇un∇unβ(un)e−S(un)eS(un)φdx

− tn

∫
Ω

g(un)|∇un|pe−S(un)eS(Tk(un))φdx

+
∫

Ω
(λ(w+

n )
σ + Ψ)φe−S(un)eS(Tk(un))φdx

≥ 0,

because

tn

∫
Ω

g(un)|∇un|pe−S(un)eS(Tk(un))φdx ≤
∫

Ω
(λ(w+

n )
σ + Ψ)φe−S(un)eS(Tk(un))φdx.

Again, by Fatou’s lemma, we have∫
Ω
|∇u|p−2∇u∇φe−S(u)eS(Tk(u))dx

+
∫

Ω
|∇u|p−2∇u∇Tk(u)β(Tk(u))e−S(u)eS(Tk(u))φdx

≥
∫

Ω
|∇u|p−2∇u∇uβ(u)e−S(u)eS(u)φdx

− t∗
∫

Ω
g(u)|∇u|pe−S(u)eS(Tk(u))φdx

+
∫

Ω
(λ(w+)σ + Ψ)φe−S(u)eS(Tk(u))φdx.

(3.16)



Existence of solutions for singular quasilinear elliptic problems 21

as n → ∞. Since 0 ≤ e−S(u)eS(Tk(u)) ≤ 1, by letting k → ∞, it follows from (3.16) that∫
Ω
|∇u|p−2∇u∇φdx + t∗

∫
Ω

g(u)|∇u|p φdx ≥
∫

Ω
(λ(w+)σ + Ψ)φdx, (3.17)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) with φ ≥ 0.

Thus, by (3.15) and (3.17), we conclude that (3.10) holds for all for all φ ∈ W1,p
0 (Ω)∩ L∞(Ω)

with φ ≥ 0.
Hence, since φ := φ+ − φ− and φ+, φ− ≥ 0, we have∫

Ω
|∇u|p−2∇u∇φdx + t∗

∫
Ω

g(u)|∇u|p φdx =
∫

Ω
(λ(w+)σ + Ψ)φdx, (3.18)

for all φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Since problem (3.6) has an unique solution, then u = u.
We still need to prove that un → u in W1,p

0 (Ω). For fixed k > 0, by taking un = Gk(un) +

Tk(un), we have

∥un − u∥1,p = ∥un − Tk(u) + Tk(u)− u∥1,p

≤ ∥un − Tk(u)∥1,p + ∥Tk(u)− u∥1,p

= ∥Gk(un) + Tk(un)− Tk(u)∥1,p + ∥Tk(u)− u∥1,p

≤ ∥Gk(un)∥1,p + ∥Tk(un)− Tk(u)∥1,p + ∥Tk(u)− u∥1,p.

(3.19)

Hence, the strong convergence of {un} in W1,p
0 (Ω) is stated provided that we show the strong

convergence of {Tk(un)} to Tk(u) in W1,p
0 (Ω) and that for every δ > 0 there exists k0 = k0(δ)

such that k ≥ k0 implies
∥Gk(un)∥1,p < δ, for all n ∈ N.

This is done in two steps.

Step 1. For fixed k > 0, we have that Tk(un) → Tk(u) in W1,p
0 (Ω). Indeed, by fixing compact

set K ⊂ Ω we take φK ∈ C∞
0 (Ω) with 0 ≤ φK ≤ 1 and φ = 1 in K. Thus, taking vn as test

function in (3.5) defined by

vn :=
(
Tk(un)− Tk(u)

)+
φK ∈ W1,p

0 (Ω),

we have

(i) ∇vn = ∇φK
(
Tk(un)− Tk(u)

)+
+∇

(
Tk(un)− Tk(u)

)+
φK;

(ii) tng(un)|∇un|pvn ≥ 0;

(iii) un ⇀ u in W1,p
0 (Ω).

In addition, we also have∫
Ω

φK|∇un|p−2∇un∇
(
Tk(un)− Tk(u)

)+dx

≤
∫

Ω
(λ(w

+
n )

σ + Ψ)vndx −
∫

Ω
|∇un|p−2∇un∇ϕK

(
Tk(un)− Tk(u)

)+dx.
(3.20)

Thus, by Kavian (see [25, Lemma 4.8]), we conclude that

Tk(un) ⇀ Tk(u) in W1,p
0 (Ω). (3.21)
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For fixed k > 0, combining the relations (3.20) and (3.21), we obtain∫
Ω

φK|∇un|p−2∇un∇
(
Tk(un)− Tk(u)

)+dx → 0, as n → ∞. (3.22)

By define the sets

Sn := {x ∈ Ω : |un(x)| ≤ k}| and Gn := {x ∈ Ω : |un(x)| > k},

and denote by χGn the characteristic function of Gn. Moreover, take

E+
n :=

∫
Ω

φK
[
|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx

=
∫

Ω
φK|∇un|p−2∇un∇

(
Tk(un)− Tk(u)

)+dx

−
∫

Ω
φK

[
|∇un|p−2∇un − |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx

−
∫

Ω
φK|∇Tk(u)|p−2∇Tk(u)∇

(
Tk(un)− Tk(u)

)+dx.

(3.23)

By using the relations (3.21) and (3.22), we conclude that the first and third term of (3.23)
tends to zero as n → ∞.

With respect to the second term of (3.23), we have

−
∫

Ω
φK

[
|∇un|p−2∇un − |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx

= −
∫

Gn

φK
[
|∇un|p−2∇un − |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx

−
∫

Sn

φK
[
|∇un|p−2∇un − |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx

= −
∫

Gn

φK|∇un|p−2∇un∇
(
Tk(un)− Tk(u)

)+dx.

Furthermore, by the Dominated Convergence Theorem, we have∫
Gn

φK|∇un|p−2∇un∇
(
Tk(un)− Tk(u)

)+dx =
∫

Ω
φK|∇un|p−2∇un.χGn

(
∇
(
Tk(un)− Tk(u)

)+)dx

≤ ∥un∥p−1
1,p

[∫
Ω

χGn |∇Tk(u)|pdx
] 1

p

→ 0,

as n → ∞.
Therefore, we conclude that E+

n → 0 as n → ∞ and thus,∫
K

[
|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)+dx → 0. (3.24)

Now, taking vn as test function in (3.5) defined by

vn =
(
Tk(un)− Tk(u)

)−
φK ∈ W1,p

0 (Ω)

and repeating the previous arguments, we obtain∫
K

[
|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)−dx → 0. (3.25)
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By combining the relations (3.24) and (3.25), we have∫
K

[
|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u)

]
∇
(
Tk(un)− Tk(u)

)
dx → 0.

Thus, by inequality (2.7) we conclude that ∇Tk(un) → ∇Tk(u) in Lp(K). Since Tk(un) ∈
W1,p

0 (Ω), then
∇Tk(un) → ∇Tk(u) in Lp(Ω).

Therefore, the sequence {Tk(un)} converges strongly to Tk(u) in W1,p
0 (Ω).

Step 2. By taking vn := Gk(un) as test function in (3.5) we have∫
Ω
|∇Gk(un)|pdx =

∫
{un≥k}

|∇un|p−2∇un∇Gk(un)dx

≤
( ∫

{un≥k}
(λn(w+

n )
σ + Ψ)dx

) pN
N(p−1)+p

∥Gk(un)∥p∗ .

Since pN
N(p−1)+p σ < p∗, {wn} is strongly convergent in L

pN
N(p−1)+p σ

(Ω), {λn} is bounded and

Ψ ∈ L
pN

N(p−1)+p (Ω), the right-hand side of the previous inequality tends uniformly in n to zero
as k0 diverges, i.e., for every δ > 0 there exists k0 = k0(δ) such that k ≥ k0 implies

∥∇Gk(un)∥1,p < δ, for all n ∈ N.

Therefore, by step 1 and 2 and by inequality (3.19), we conclude that {un} converges
strongly to u in W1,p

0 (Ω).

Completing the proof of Theorem 1.2: Let u0 ∈ W1,p
0 (Ω) be solution of (P)λσ for λ = 0. For

every isolated solution uλ ∈ W1,p
0 (Ω) of (P)λσ for some λ ∈ R, we denote by i

(
Kλ, , uλ

)
the

index of such a solution, that is, the topological Leray–Schauder degree deg(I − Kλ, Bϵ(uλ), 0)
of the operator I − Kλ in a ball Bϵ(uλ) centered at uλ with radius ϵ > 0 small enough.

We will prove that deg(I − Kλ, Bϵ(uλ), 0) ̸= 0 for λ = 0. Indeed, we denote by U(t) the
unique solution for {

−∆pu + tg(u)|∇u|p = Ψ(x) in Ω,

u = 0 on ∂Ω,

and we define the following homotopy

H : [0, 1]× W1,p
0 (Ω) −→ W1,p

0 (Ω)

(t, w) 7−→ H(t, w) := U(t).

Hence,
H(1, w) = U(1) = K0(w) = K(0, w) = u0

and
H(0, w) = U(0) = (−∆−1

p )(Ψ(x)).

Since i
(
(−∆−1

P )(Ψ(x)), U(0)
)
̸= 0, by Lemma 3.2 we deduce that H is compact. Observing the

first part of the proof of Lemma 3.2 we obtain R > 0 such that

∥U(t)∥1,p < R, for all t ∈ [0, 1].
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If u ∈ W1,p
0 (Ω) and ∥u∥1,p ≥ R, then u ̸= H(t, u). Thus, by the homotopy invariance of the

degree, we conclude that

i(K0, u0) = i
(

H(1, ·), U(1)
)

= i
(

H(0, ·), U(0)
)

= i
(
(−∆−1

P )(Ψ(x)), U(0)
)

̸= 0.

(3.26)

Hence, we have that K : ×BR → BR is continuous and compact and u0 is an isolated solution
of (P)λσ in the ball Bϵ(uλ) for λ = 0. Thus, for λ0 > 0 small enough, we have

K : [0, λ0]× Bϵ(u0) −→ Bϵ(u0).

If Φ(λ, u) := u − K(λ, u), then deg
(
Φ(λ, ·), Bϵ(u0), 0

)
is well defined for λ ≤ λ0. Hence, by

applying the homotopy invariance of the degree, we have

deg
(
Φ(λ, ·), Bϵ(u0), 0

)
= constant, λ ≤ λ0.

Thus, by relation (3.26), we conclude that

deg
(
Φ(λ, ·), Bϵ(u0), 0

)
̸= 0, |λ| ≤ λ0.

The theorem follows now from the Rabinowitz Theorem 3.2 in [32].
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