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Abstract. In this article, we present Lyapunov-type results to study the stability of an
equilibrium of a Stieltjes dynamical system. We utilize prolongation results to establish
the global existence of the maximal solution. Using Lyapunov’s second method, we
establish results of stability (resp. uniform stability) and asymptotic stability (resp.
asymptotic uniform stability). Finally, we present examples and real-life applications to
study asymptotic stability of equilibria in two population dynamics models.
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1 Introduction

In recent years, the field of differential equations has witnessed a notable surge in interest
surrounding Stieltjes differential equations. This renewed focus is largely driven by the pur-
suit of results that not only unify existing findings but also extend those related to classical
derivatives [8, 9, 18, 19, 24, 27–30] through the Stieltjes derivative.

Unlike the classical derivative, the Stieltjes derivative consists of differentiating with re-
spect to a derivator g : R → R, assumed to be left-continuous and nondecreasing. Stieltjes
differential equations permit to obtain a broader range of applications, particularly in con-
texts where certain processes may exhibit discontinuities and/or stationary periods [1, 8, 9,
18–21, 24, 25]. Such situations are common in various fields, including population dynamics,
and physics, where classical differentiation has limitations in capturing the complexities of
real-world phenomena.

Typically, investigations into first-order Stieltjes differential equations and systems focus
on solutions defined on bounded intervals. However, Larivière in [17, Chapter 4] turned
his attention to Stieltjes differential equations on the positive real half-line. In doing so, he
provided results related to the prolongation of solutions and the existence of the maximal
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solution. The motivation behind exploring these equations on the positive real half-line lies
in the observation that many natural processes evolve over time without any inherent time
limit, while some phenomena can exhibit finite-time blow-up, leading to abrupt changes or
singularities. By considering Stieltjes differential equations, we aim to capture these nuanced
behaviors and enhance our understanding of more complex dynamical systems from a unified
perspective [22]. The reader is also referred to [5] for interesting results on prolongation of
solutions and the existence of maximal solutions to generalized ordinary equations on Banach
spaces relying on Kurzweil integration.

In the study of dynamical systems, the stability of equilibria holds significant importance.
Here, the term equilibrium refers to a state that does not change dynamically, in the sense
that if a system starts at an equilibrium point, it will stay in that state indefinitely. In order
to maintain the interactions between species within many ecosystems, stability may be suit-
able for their functioning, and resilience. Although stability is typically desirable, there are
some scenarios where stable equilibrium at zero can be critical and raise concerns for sev-
eral reasons. For instance, in ecological systems, this concern arises from the vulnerability to
perturbations of certain species, which may increase the risk of their extinction.

In this paper, we extend Lyapunov stability results from the classical literature to the
Stieltjes dynamical system:

x′g(t) = f(t, x(t)) for g-almost all t ≥ 0, (1.1)

where f = ( f1, . . . , fn) : [0,+∞)× B → Rn, B ⊂ Rn.
Within the realm of dynamical systems theory, Lyapunov’s Second Method [23] stands

as a fundamental approach for assessing the stability properties of a system near an equilib-
rium. This stability analysis provides insights into whether small perturbations around an
equilibrium lead to convergence or divergence of solutions. The core of this method lies in
the concept of the Lyapunov function V depending on time and state. This function can be un-
derstood as an energy representation of the system (1.1), since in numerous applications, the
function considered is the total energy of the system (1.1) through time, see for instance [3] for
an example of an energy-based Lyapunov function for physical systems. This function was the
subject of numerous works in the classical literature starting from the works [12,13,15,16,23,35]
and references therein. In our context, the derivator g takes into account the relevance of each
moment during the process by means of the changes of the slopes of g accordingly. Put differ-
ently, g amplifies an alternative measurement for time, which may differ from the linear time
line typically used in the classical case where g ≡ idR, see for instance the works [18–21,24,25]
where g represents the life cycle of some populations, also we refer to [1, 9] for more applica-
tions. Nevertheless, in the context of Stieltjes differentiation, we still can rely on Lyapunov’s
function which will then permit a better understanding of how the energy of the system (1.1)
changes, but with respect to this new observed time described by g. Our stability study is
inspired by results from classical theory and works such as [14, 16, 33, 34], which address
dynamic equations on time scales and impulsive differential equations. To the best of our
knowledge, this is the first work to introduce Lyapunov’s method adapted to Stieltjes differ-
ential equations.

This paper is organized as follows: we present the theoretical framework and some pre-
liminaries in Section 2. In Section 3, we focus on prolongation of solutions and the charac-
terization of the maximal solution. Then, based on a generalized version of the Grönwall
lemma [11, 17] for the Stieltjes derivative, we establish the existence of global solutions over
the whole positive real half-line. Section 4 is devoted to Lyapunov-like stability results using
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Lyapunov’s second method. We establish stability results inspired by the works [6, 10], to
extend some classical results from [14, 16].

In the last section of this paper, we present two applications to dynamics of population to
study the asymptotic stability of some critical equilibria. In the first application, we model the
dynamics of a population with Allee’s effect [2, 31] negatively impacted by train vibrations.
The second application concerns the dynamics of a population of Cyanobacteria in a cultured
environment, keeping track of ammonia levels in the process.

2 Preliminaries

For [a, b] ⊂ R, and u : [a, b] → Rn a regulated function, the symbols u(t+) and u(t−) will be
used to denote

u(t+) = lim
ε→0+

u(t + ε), for all t ∈ [a, b),

u(t−) = lim
ε→0−

u(t − ε), for all t ∈ (a, b].

Throughout this work, we will consider g : R → R a monotone, nondecreasing and left-
continuous function, also known as a derivator. We denote the set of discontinuity points of g
by

Dg = {t ∈ R : g(t+)− g(t) > 0}.

In addition, we denote

Cg = {s ∈ R : g is constant on (s − ε, s + ε) for some ε > 0}.

The set Cg is an open in the usual topology and it can be written as a countable union of
disjoint intervals

Cg =
⋃

n∈Λ

(an, bn),

with Λ ⊂ N, an, bn ∈ R. We set Ng = {an, bn : n ∈ Λ} \ Dg.
The function g defines a Lebesgue–Stieltjes measure µg such that µg([a, b)) = g(b)− g(a)

for any interval [a, b), so that µg({t}) = g(t+)− g(t) for all t ∈ R, and µg(Cg) = µg(Ng) = 0.
The reader is referred to [22] for more details. We refer to the measurability with respect to µg

by g-measurability. We denote by L1
g([a, b), R) the space of µg-integrable real-valued functions

on [a, b) endowed with the norm

∥ f ∥L1
g([a,b),R) :=

∫
[a,b)

| f (t)| dµg(t), for every f ∈ L1
g([a, b), R).

Given an interval I ⊂ R, we set

L1
g(I, Rn) :=

n

∏
i=1

L1
g(I, R),

and
L1

g,loc(I, Rn) = {u : I → Rn : u|[a,b] ∈ L1
g([a, b), Rn) for every [a, b] ⊂ I}.

The derivator g defines a pseudometric ρ : R × R → [0, ∞) given by

ρ(s, t) = |g(s)− g(t)|, for every s, t ∈ R.
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We denote τg the topology induced by the pseudometric ρ. Notice that the interval (t − ε, t]
is open in τg for all t ∈ Dg and all ε > 0. The reader is referred to [9, Section 2] for more
properties of the topology τg.

Throughout this paper, let ∥ · ∥ denotes the maximum norm in Rn defined by

∥x∥ = max{|x1|, . . . , |xn|} for x = (x1, . . . , xn) ∈ Rn,

and BRn(x, δ) denotes the open ball centered in x of radius δ > 0.
Now, we recall the notion of g-continuity introduced in [9].

Definition 2.1. Let u : [a, b] → Rn. We say that u is g-continuous at t ∈ [a, b] if, for every ε > 0,
there exists δ > 0 such that

∀s ∈ [a, b], |g(s)− g(t)| < δ =⇒ ∥u(s)− u(t)∥ < ε.

The following proposition relates the regularity of f and g, the reader is referred to [9,
Proposition 3.2].

Proposition 2.2. If u : [a, b] → Rn is g-continuous on [a, b], then the following statements hold:

(1) u is left-continuous at every t ∈ (a, b].

(2) If g is continuous at t ∈ [a, b), then so is u.

(3) If g is constant on some [c, d] ⊂ [a, b], then so is u.

Let BCg([a, b], Rn) denotes the Banach space of the bounded, g-continuous functions de-
fined on [a, b] with values in Rn, endowed with the supremum norm.

Now, we define the g-derivative of a real-valued function.

Definition 2.3. Let u : [a, b] → R be a function. The derivative of u with respect to g at a point
t ∈ [a, b] \ Cg is defined by:

u′
g(t) =


lim
s→t

u(s)− u(t)
g(s)− g(t)

if t /∈ Dg,

u(t+)− u(t)
g(t+)− g(t)

if t ∈ Dg,

provided that the limit exists. In this case, u is said to be g-differentiable at t and u′
g(t) is also

called the g-derivative of u at t.

In the next proposition, we recall the g-derivative of the composition of two functions
established in [26, Proposition 3.15]. Another version of this formula can be found in [7,
Proposition 4.1].

Proposition 2.4. Let t ∈ R \ Cg, f : R → R and h a real function defined on a neighborhood of f (t).
We assume that there exist h′( f (t)), f ′g(t) and that the function h is continuous at f (t+). Then, the
composition h ◦ f is g-differentiable in t and

(h ◦ f )′g(t) =


h′( f (t)) f ′g(t) if t /∈ Dg,

h( f (t+))− h( f (t))
f (t+)− f (t)

f ′g(t) if t ∈ Dg.
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In the particular case where the derivator g : R → R is increasing and continuous on an
interval [a, b] ⊂ R, we obtain easily a generalized version of the Mean Value theorem in the
context of Stieltjes differentiation.

Theorem 2.5. Let g : R → R be a left-continuous and nondecreasing function, continuous and
increasing on an interval [a, b] ⊂ R. Let f : [a, b] → R be g-continuous on [a, b] and g-differentiable
on (a, b). Then, there exists c ∈ (a, b) such that f ′g(c) =

f (b)− f (a)
g(b)−g(a) .

Proof. Let us consider the function F : [a, b] → R defined by

F(t) = f (t)−
(

f (b)− f (a)
g(b)− g(a)

(g(t)− g(a)) + f (a)
)

, for all t ∈ [a, b].

Clearly F is g-continuous on [a, b], g-differentiable on (a, b), and

F′
g(t) = f ′g(t)−

f (b)− f (a)
g(b)− g(a)

for all t ∈ (a, b).

It satisfies also F(a) = F(b).
Proposition 2.2 implies that F is continuous on [a, b]. We set

m = min
t∈[a,b]

F(t) and M = max
t∈[a,b]

F(t).

If m = M, then F is constant on [a, b] and F′
g(t) = 0 for all t ∈ (a, b). Otherwise if m < M,

we have F(a) ̸= m or F(a) ̸= M. As F(a) = F(b), without loss of generality, we assume that
F(a) = F(b) ̸= M. Thus, there exists c ∈ (a, b) such that F(c) = M. Therefore, there exists
δ > 0 such that (c − δ, c + δ) ⊂ (a, b) and F(s) ≤ F(c) = M for all s ∈ (c − δ, c + δ). Since g is
increasing and continuous on (a, b),

0 ≤ F′
g(c) = lim

s→c+

F(s)− F(c)
g(s)− g(c)

= lim
s→c−

F(s)− F(c)
g(s)− g(c)

≤ 0.

We deduce that F′
g(c) = 0. Hence, there exists c ∈ (a, b) such that f ′g(c) =

f (b)− f (a)
g(b)−g(a) .

Now, we recall the notion of g-absolute continuity.

Definition 2.6. A map F : [a, b] → R is g-absolutely continuous, if, for every ε > 0, there exists
δ > 0 such that, for any family {(ai, bi)}i=n

i=1 of pairwise disjoint open subintervals of [a, b],

n

∑
i=1

g(bi)− g(ai) < δ ⇒
n

∑
i=1

|F(bi)− F(ai)| < ε.

We denote by ACg([a, b], R) the space of g-absolutely continuous functions F : [a, b] → R

on the interval [a, b] and

ACg([a, b], B) = {u = (u1, . . . , un) : [a, b] → B ⊂ Rn : ui ∈ ACg([a, b], R) for i = 1, . . . , n}.

In [22, Theorem 5.4], a Fundamental Theorem of Calculus for Lebesgue–Stieltjes integrals
was established.

Theorem 2.7 (Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral). Let a, b ∈
R be such that a < b, and let F : [a, b] → R. The following assumptions are equivalent.
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(1) The function F is g-absolutely continuous,

(2) The function F satisfies the following conditions:

(a) there exists F′
g(t) for g-almost all t ∈ [a, b);

(b) F′
g ∈ L1

g([a, b), R);

(c) for each t ∈ [a, b], we have

F(t) = F(a) +
∫
[a,t)

F′
g(s) dµg(s).

The following lemma provides conditions ensuring the g-absolute continuity of the com-
position of two functions, the proof is based on arguments as in [9, Proposition 5.3].

Lemma 2.8. Let u : [a, b] → B ⊂ Rn be a g-absolutely continuous function, and let v : B → R be a
Lipschitz continuous function on B. Then, the composition v ◦ u ∈ ACg([a, b], R).

Now, we define the partial Stieltjes derivative as follows.

Definition 2.9. Given a function V : [a, b]× BRn(0, r0) → R. The partial g-derivative of V with
respect to the first argument at a point (t, x) ∈ ([a, b) \ Cg)× BRn(0, r0) is defined as:

∂V
∂gt

(t, x) =


lim
s→t

V(s,x)−V(t,x)
g(s)−g(t) , if t ∈ [a, b] \ Dg,

V(t+, x)− V(t, x)
g(t+)− g(t)

, if t ∈ [a, b] ∩ Dg,

provided that the limit exists.

The following proposition gives a formula related to the g-derivative of the composition
involving a function with two variables. Formulae of this fashion were stated without proof
in [29, Lemma 11] for t /∈ Dg. Here, we derive formulae in the case where Dg and Ng do not
have accumulation points.

Proposition 2.10. Let g : R → R be a left-continuous and nondecreasing function such that Dg and
Ng do not have accumulation points. Given a function V : [a, b] × BRn(0, r0) → R satisfying the
following assumptions:

(1) V(·, u) is g-differentiable on [a, b] \ (Dg ∪ Cg) for all u ∈ BRn(0, r0);

(2) V(t, ·) ∈ C1(BRn(0, r0), R) for all t ∈ [a, b];

(3) ∂V
∂gt (·, u) is continuous on [a, b] \ (Dg ∪ Cg) for all u ∈ BRn(0, r0);

(4) V(·, x(·)) ∈ ACg([a, b], R) for every x ∈ ACg
(
[a, b], BRn(0, r0)

)
.

Then, for every x ∈ ACg
(
[a, b], BRn(0, r0)

)
and for g-almost all t ∈ [a, b] \ (Dg ∪ Cg), one has that

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
n

∑
i=1

∂V
∂xi

(t, x(t))(xi)
′
g(t). (2.1)

Moreover, if t ∈ [a, b) ∩ Dg, then

V ′
g(t, x(t)) =

V
(
t+, x(t) + µg({t})x′g(t))− V(t, x(t))

g(t+)− g(t)
. (2.2)
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Proof. Let x ∈ ACg
(
[a, b], BRn(0, r0)

)
. By (4), V(·, x(·)) ∈ ACg([a, b], R). For g-almost every

t ∈ [a, b] \ (Dg ∪ Cg):

V ′
g(t, x(t)) = lim

s→t

V(s, x(s))− V(t, x(t))
g(s)− g(t)

= lim
s→t

V(s, x(s))− V(t, x(s))
g(s)− g(t)

+
V(t, x(s))− V(t, x(t))

g(s)− g(t)

= lim
s→t

V(s, x(s))− V(t, x(s))
g(s)− g(t)

+
n

∑
i=1

(
V(t, (x1(t), . . . , xi−1(t), xi(s), . . . , xn(s)))

g(s)− g(t)

− V(t, (x1(t), . . . , xi(t), xi+1(s), . . . , xn(s)))
g(s)− g(t)

)
.

For s sufficiently close to t, and since Dg and Ng do not have accumulation points, g is contin-
uous and increasing on the interval with endpoint points s and t. By applying Theorem 2.5 to
the function V(·, x(s)), we obtain that there exists c between s and t such that

V(s, x(s))− V(t, x(s))
g(s)− g(t)

=
∂V
∂gt

(c, x(s)).

As s → t, c → t, and using Condition (3) we obtain

V(s, x(s))− V(t, x(s))
g(s)− g(t)

=
∂V
∂gt

(c, x(s)) → ∂V
∂gt

(t, x(t)).

Therefore,

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
n

∑
i=1

∂V
∂xi

(t, x(t))(xi)
′
g(t).

For t ∈ [a, b) ∩ Dg, we obtain immediately that

V ′
g(t, x(t)) =

V(t+, x(t+))− V(t, x(t))
g(t+)− g(t)

=
V
(
t+, x(t) + µg({t})x′g(t)

)
− V(t, x(t))

g(t+)− g(t)
.

In [9, Definition 6.1], an exponential function was introduced.

Definition 2.11. Let p ∈ L1
g([a, b), R) be such that

1 + p(t)
(

g(t+)− g(t)
)
> 0 for every t ∈ [a, b) ∩ Dg. (2.3)

The exponential function ep(·, a) : [a, b] → (0, ∞) is defined by

ep(t, a) = e
∫
[a,t) p̃(s) dµg(s) for every t ∈ [a, b],

where

p̃(t) =


p(t) if t ∈ [a, b] \ Dg,

log
(
1 + p(t)(g(t+)− g(t))

)
g(t+)− g(t)

if t ∈ [a, b) ∩ Dg.
(2.4)
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In particular, given p ∈ L1
g([a, b), R) a function satisfying Condition (2.3), then p̃ ∈

L1
g([a, b), R) and ep(·, a) ∈ ACg([a, b), R). The reader is referred to [9, Lemmas 6.2 and 6.3]

and [27, Theorem 3.2] for more details.
Now, we recall the generalization of the Grönwall Lemma to the Stieltjes derivative ob-

tained by Larivière in [17, Proposition 4.1.4], and further generalized in [11, Theorem 5.4].
This lemma will play a crucial role in establishing global solutions defined on the positive real
half-line as we shall prove in the following section.

Lemma 2.12. Let u ∈ ACg([a, b], R). Assume that there exist functions k, p ∈ L1
g([a, b), R), satisfy-

ing 1 + p(t)µg({t}) > 0 for all t ∈ [a, b) ∩ Dg, such that

u′
g(t) ≤ k(t) + p(t)u(t) for g-almost all t ∈ [a, b).

Then,

u(t) ≤ ep(t, a)

( ∫
[a,t)

e−1
p (s, a)k(s)

1 + p(s)µg({s}) dµg(s) + u(a)

)
, t ∈ [a, b].

3 Prolongation of solutions and maximal interval of existence

Let O be a nonempty open set of Rn and I ⊂ R an open interval in the topology τg. We set
Ω := I × O. Let (t0, x0) ∈ Ω be such that t0 < sup I.

Let us consider the Stieltjes dynamical system:

x′g(t) = f(t, x(t)) for g-almost all t ≥ t0, t ∈ I,

x(t0) = x0,
(3.1)

where f = ( f1, . . . , fn) : Ω ∩
(
[t0, ∞)× Rn)→ Rn satisfies the following assumptions:

(Hx0,t0)
(
t0, x0 + µg({t0})f(t0, x0)

)
∈ Ω.

(Hf,t0) (a) for all u ∈ O, f(·, u) is g-measurable;

(b) f(·, u0) ∈ L1
g,loc([t0, ∞), Rn) for some u0 ∈ O;

(c) f is g-integrally locally Lipschitz continuous, i.e. for every r > 0, there exists a
function Lr ∈ L1

g,loc([t0, ∞), [0, ∞)) such that

∥f(t, u)− f(t, v)∥ ≤ Lr(t)∥u − v∥,

for g-almost all t ∈ I ∩ [t0, ∞) and all u, v ∈ BRn(x0, r) ∩ O.

(HΩ,t0) For every (t, u) ∈ Ω with t ≥ t0,

(a) one of the following conditions hold:

(a1) there exists δ > 0 such that (t − δ, t + δ)× BRn(u, δ) ⊂ Ω;
(a2) if for every δ > 0, (t − δ, t + δ)× BRn(u, δ) ̸⊂ Ω, then t ∈ Dg and there exists

ε > 0 such that (t − ε, t]× BRn(u, δ) ⊂ Ω;

(b) if (t, u) ∈ Ω ∩ (Dg × Rn) is such that (t, u+
f,t) ∈ Ω, then (t, u+

f,t) satisfies Condi-
tion (HΩ,t0)(a)(a1), where

u+
f,t := u + µg({t})f(t, u).
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We recall the local existence result established in [9, Theorem 7.4].

Theorem 3.1. Assume that (Hx0,t0) and (Hf,t0) holds. Then, there exists δ > 0 such that the sys-
tem (3.1) has a unique solution x ∈ ACg([t0, t0 + δ], Rn).

It should be noticed that Condition (Hx0,t0) permits to consider the problem (3.1) even in
the case where t0 ∈ Dg.

In the sequel, as shown in [17, Section 4.2], the solution given by Theorem 3.1 can be
extended up to a maximal interval of existence if Condition (HΩ,t0) is satisfied. Indeed, this
condition ensures that the solution x can be extended on some larger interval [t0, t0 + ε], ε > δ

if
t0 + δ ∈ Dg and

(
x(t0 + δ)

)+
f,t0+δ

∈ O.

Let us define the set

S(t0, x0) := {x : Ix = Jx ∩ [t0, ∞) → Rn : x is a solution of (3.1),

Jx is an open interval of τg such that sup Jx > t0 ∈ Jx}.

For x ∈ S(t0, x0), it is worth mentioning that x ∈ ACg([a, b], Rn) for every interval [a, b] ⊂ Ix.
In the sequel, for x ∈ S(t0, x0), we denote t̄x := sup Ix.

Definition 3.2. Let x, y ∈ S(t0, x0).

(1) We say that x is smaller than y (and we denote x ≺ y), if and only if

(i) Ix ⊂ Iy;

(ii) sup Iy > sup Ix;

(iii) y|Ix = x.

In this case, we say that x is extendible to the right and y is a prolongation to the right of x.

(2) We write that x ⪯ y ⇐⇒ x ≺ y or x = y.

Remark 3.3. It is worth mentioning that given a solution x : [t0, t1) → Rn of (3.1) such that

x(t−1 ) := lim
t→t−1

x(t) ∈ O and t1 ∈ Dg,

to not increase the notation, we will replace x by the function x : [t0, t1] → Rn defined by

x =

{
x(t) if t ∈ [t0, t1),

x(t−1 ) if t = t1.

The next result asserts that two prolongations to the right of a solution are equal on the
common interval of existence, the reader is referred to [17, Theorem 4.2.3] for the proof.

Theorem 3.4. Assume that (Hx0,t0) and (Hf,t0) hold. Let x, y, z ∈ S(t0, x0) be such that y and z are
two prolongations of x, then y = z on Iy ∩ Iz.

In [17, Theorem 4.2.4], extendible solutions to the right were characterized as follows.

Theorem 3.5. Assume that (Hx0,t0) and (Hf,t0) hold. Let x ∈ S(t0, x0). The following assumptions
are equivalent:
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(1) x is extendible to the right;

(2) (i) Graph(x) := {(t, x(t)) : t ∈ Ix} is bounded;

(ii) A ∪ A+ ⊂ Ω where

A = {(t̄x, u) ∈ [t0, ∞)× Rn : ∃{tn}n ⊂ Ix, tn ↗ t̄x and u = lim
n→∞

x(tn)},

A+ = {(t̄x, u+
f,t̄x

) : (t̄x, u) ∈ A}.

Definition 3.6. Let x ∈ S(t0, x0). We say that x is a maximal solution of (3.1) defined on an
interval Ix if, for every y ∈ S(t0, x0) satisfying x ⪯ y, we have x = y. Ix is referred to as the
maximal interval of existence.

As shown in [17, Theorem 4.2.5], the existence of the maximal solution holds. In addition,
Theorem 3.4 guarantees the uniqueness of the maximal solution, and we obtain the following
theorem.

Theorem 3.7. Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold. Then, there exists a unique maximal
solution x ∈ S(t0, x0) such that ω(t0, x0) := sup Ix ≤ ∞.

The next theorem highlights three alternative cases that occur, the reader is referred to [17,
Theorem 4.2.6] for the proof.

Theorem 3.8. Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold. Let x ∈ S(t0, x0) be the maximal
solution of (3.1), then one of the alternatives holds:

(A1) ω(t0, x0) = ∞;

(A2) ω(t0, x0) < ∞, and for every {tn}n ⊂ Ix such that tn ↗ ω(t0, x0), {x(tn)}n is not bounded;

(A3) ω(t0, x0) < ∞, and there exists {tn}n ⊂ Ix satisfying tn ↗ ω(t0, x0) and {x(tn)}n is a bounded
sequence such that, for every subsequence {tnk}k verifying x(tnk) → u, we have that

{(ω(t0, x0), u), (ω(t0, x0), u+
f,ω(t0,x0)

)} ̸⊂ Ω.

Remark 3.9. Notice that, if Alternative (A1) holds, then Ix = [t0, ∞), while if Alternative (A2)
or (A3) holds, then Ix = [t0, ω(t0, x0)) or Ix = [t0, ω(t0, x0)]. In [5], the assumptions made on
the Kurzweil integral of f do not allow the existence of a maximal solution on an interval of
the form [t0, ω(t0, x0)].

Here is a corollary of Theorem 3.8 which ensures the global existence of the maximal
solution over the whole interval [t0, ∞).

Corollary 3.10. Let I be an interval containing [t0, ∞). Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold.
Let x ∈ S(t0, x0) be the maximal solution of (3.1). If

Ω− :=
{
(t, u) ∈ Ω :

(
t, u+

f,t

)
∈ Ω

}
= Ω,

and there exists a compact set D ⊂ O such that x(t) ∈ D for every t ∈ Ix, then ω(t0, x0) = ∞.
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Proof. Let us assume that ω(t0, x0) < ∞. Since D is compact, for all {tn}n ⊂ Ix such that
tn ↗ ω(t0, x0), {x(tn)}n is bounded. Thus, it results from Theorem 3.8 that Alternative (A3)
holds. Therefore, there exists {tn}n ⊂ Ix with tn ↗ ω(t0, x0) and {(tn, x(tn))}n is bounded
and such that, for a fixed subsequence {tnk}k verifying x(tnk) → u, we have that{

(ω(t0, x0), u),
(
ω(t0, x0), u+

f,ω(t0,x0)

)}
̸⊂ Ω. (3.2)

On the other hand, D being a compact set yields that

(tnk , x(tnk)) → (ω(t0, x0), u) ∈ [t0, ω(t0, x0)]× D ⊂ Ω.

Now, since Ω− = Ω, we deduce that
(
ω(t0, x0), u+

f,ω(t0,x0)

)
∈ Ω, which contradicts (3.2). Hence,

ω(t0, x0) = ∞.

Now, based on Theorems 3.5 and 3.8, we provide a characterization of the maximal solu-
tion of the problem (3.1).

Theorem 3.11. Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold. Let x ∈ S(t0, x0). The following
assumptions are equivalent:

(1) x is maximal;

(2) for every compact set K ⊂ Ω, there exists tK ∈ Ix such that{
(t, x(t)),

(
t, (x(t))+f,t

)}
̸⊂ K,

for all t ≥ tK, t ∈ Ix.

Proof. Assume that x is maximal. By Theorem 3.8, two cases may occur:

Case 1: If ω(t0, x0) = sup Ix = ∞, by contradiction, assume that there exist a compact set
K ⊂ Ω and a sequence {tn}n ⊂ Ix such that

tn ↗ ω(t0, x0) and
{
(tn, x(tn)),

(
tn, (x(tn))

+
f,tn

)}
⊂ K for all n ∈ N.

This implies that {(tn, x(tn))} is bounded. Therefore, there exists a convergent subsequence
{(tnk , x(tnk))} such that

(tnk , x(tnk)) → (τ, u) ∈ K ⊂ [t0, ∞)× O.

This contradicts that tn ↗ ω(t0, x0) = ∞.

Case 2: If ω(t0, x0) < ∞, then, by Theorem 3.8, there are two subcases:

Subcase 1: if Alternative (A2) holds, then

Ix = [t0, ω(t0, x0)) and ∥x(t)∥ → ∞ as t ↗ ω(t0, x0).

Thus, for every M > 0, there exists t∗ ∈ Ix such that ∥x(t)∥ ≥ M for all t ≥ t∗ with t ∈ Ix.
Hence, for every compact K ⊂ Ω, there exists tK ∈ Ix such that for all t ≥ tK with t ∈ Ix, we
have (t, x(t)) /∈ K. In particular, {

(t, x(t)),
(
t, (x(t))+f,t

)}
̸⊂ K.

Subcase 2: If Alternative (A3) holds, then we distinguish two cases.



12 L. Maia, N. El Khattabi, and M. Frigon

If Ix = [t0, ω(t0, x0)), then the distance between Graph(x) and the boundary of Ω is zero, so(
ω(t0, x0), x(ω(t0, x0)

−)
)

/∈ Ω.

Thus, for every compact K ⊂ Ω, there exists tK ∈ [t0, ω(t0, x0)) such that, for all t ≥ tK with
t ∈ Ix, (t, x(t)) /∈ K, which yields{

(t, x(t)),
(
t, (x(t))+f,t

)}
̸⊂ K.

Now, if Ix = [t0, ω(t0, x0)], then ω(t0, x0) ∈ Dg, (ω(t0, x0), x(ω(t0, x0))) ∈ Ω and(
ω(t0, x0),

(
x(ω(t0, x0))

)+
f,ω(t0,x0)

)
/∈ Ω.

Thus, for every compact K ⊂ Ω, and for tK = ω(t0, x0),(
tK, (x(tK)

)+
f,tK

)
/∈ K, hence

{
(tK, x(tK)),

(
tK, (x(tK))

+
f,tK

)}
̸⊂ K.

Conversely, by contradiction, let us assume that x : Ix → Rn is not maximal. Thus,
t̄x = sup Ix < ∞ and x is extendible to the right. From Theorem 3.5, it follows that Graph(x)
is bounded and A ∪ A+ ⊂ Ω. Thus, [t0, t̄x]× Graph(x) is compact,

x(t̄−x ) = x(t̄x) ∈ O and
(

x(t̄x)
)+

f,t̄x
∈ O.

Therefore, for the compact

K = Graph(x) ∪
{(

t̄x,
(
x(t̄x)

)+
f,t̄x

)}
⊂ Ω,

we have that {
(t, x(t)),

(
t, (x(t))+f,t

)}
⊂ K for all t ∈ Ix,

which yields a contradiction. Hence, x is maximal.

The negation of Theorem 3.11 provides also an interesting characterization of extendible
solutions.

Corollary 3.12. Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold. Let x ∈ S(t0, x0). The following
statements are equivalent:

(1) x extendible to the right;

(2) there exist a compact set K ⊂ Ω and a sequence {tn} ⊂ Ix with tn ↗ ω(t0, x0) such that{
(tn, x(tn)),

(
tn,
(
x(tn)

)+
f,tn

)}
⊂ K for all n ∈ N.

Given the generalization of the Grönwall lemma, Lemma 2.12, we can state the next the-
orem which provides the global existence of the solution over [t0, ∞) and a bound of the
solution.

Theorem 3.13. Let Ω ⊃ [t0, ∞)× Rn. Assume that (Hx0,t0), (Hf,t0) and (HΩ,t0) hold. In addition,
assume that
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(HLG) there exist k ∈ L1
g,loc([t0, ∞), R), and p ∈ L1

g,loc([t0, ∞), [0, ∞)) such that

∥f(t, u)∥ ≤ k(t) + p(t)∥u∥ for g-almost all t ∈ [t0, ∞) and all u ∈ Rn.

If x ∈ S(t0, x0) is the maximal solution of (3.1), then

∥x(t)∥ ≤ ep(t, t0)

( ∫
[t0,t)

e−1
p (s, t0)k(s)

1 + p(s)µg({s}) dµg(s) + ∥x0∥
)

, for all t ∈ [t0, T] with T ∈ Ix. (3.3)

Moreover, we have Ix = [t0, ∞).

Proof. Let x ∈ S(t0, x0) be the maximal solution of (3.1) defined on the maximal interval Ix.
By (HLG), for T > t0 with T ∈ Ix, we have that

(∥x∥)′g(t) ≤ ∥x′g(t)∥ = ∥f(t, x(t))∥ ≤ k(t) + p(t)∥x(t)∥ for g-almost all t ∈ [t0, T).

Observe that ∥ · ∥ is Lipschitz continuous on Rn. Thus, by Lemma 2.8, ∥x(·)∥ ∈ ACg([t0, T], R).
Using the generalized version of the Grönwall Lemma, Lemma 2.12, we obtain

∥x(t)∥ ≤ ep(t, t0)

( ∫
[t0,t)

e−1
p (s, t0)k(s)

1 + p(s)µg({s}) dµg(s) + ∥x0∥
)

for all t ∈ [t0, T].

Assume by contradiction that ω(t0, x0) < ∞. Since p ∈ L1
g,loc([t0, ∞), [0, ∞)), then

ep(t, t0)(1 + p(t)µg({t})) ≥ 1 for all t ∈ [t0, ∞).

Consequently,

∥x(t)∥ ≤ sup
t∈[t0,T]

ep(t, t0)
( ∫

[t0,t)
|k(s)| dµg(s) + ∥x0∥

)
≤ ep(ω(t0, x0), t0)

(
∥k∥L1

g([t0,ω(t0,x0)),R) + ∥x0∥
)

= M1.

As T ↗ ω(t0, x0) < ∞, x(t) ∈ BRn(0, M1) for all t ∈ Ix. As x(ω(t0, x0)−) = u ∈ Rn, then

u+
f,ω(t0,x0)

∈ Rn.

Therefore, for the compact set

K = [t0, ω(t0, x0)]× BRn(0, M) with M = max
{

M1,
∥∥u+

f,ω(t0,x0)

∥∥},

we have that {
(t, x(t)),

(
t, (x(t))+f,t

)}
⊂ K for all t ∈ Ix.

By Corollary 3.12, we obtain that x is extendible to the right which is a contradiction. Hence,
ω(t0, x0) = ∞.
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4 Lyapunov-like stability results

In this section, we assume that [0, ∞) ⊂ I and Ω = I × BRn(0, r). We present Lyapunov-type
results in the context of Stieltjes dynamical systems, based on the classical Lyapunov’s second
method, considering Stieltjes dynamical systems of the form:

x′g(t) = f(t, x(t)) for g-almost all t ≥ θ ≥ 0, t ∈ I, (4.1θ)

where f : Ω → Rn satisfies f(t, 0) = 0 for all t ≥ 0. This study permits to draw conclusions
about the behavior of solutions of the dynamical system (4.1θ) around the equilibrium x = 0,
which is also called the trivial solution.

Notice that, under hypotheses (HΩ,0) and (Hf,0) and for (t0, x0) ∈ [0, ∞) × BRn(0, r), if
(Hx0,t0) is satisfied, it follows from Theorem 3.7 that there exists a unique maximal solution
x = x(·, t0, x0) ∈ S(t0, x0) ∩ ACg,loc(It0,x0 , Rn) of (4.1θ) with θ = t0 and satisfying x(t0) = x0

which is defined on a maximal interval of existence It0,x0 . As before, we denote ω(t0, x0) =

sup It0,x0 ≤ ∞.

4.1 Lyapunov stability notions

In this subsection, we present stability concepts within the framework of Stieltjes’ differentia-
tion. Through illustrative examples, we highlight the influence of the sets Cg and Dg on the
change of stability properties.

Definition 4.1. The trivial solution x = 0 of the system (4.1θ) with θ = 0 is said to be

• stable if, for all ε > 0 and t0 ∈ [0, ∞), there exists δ = δ(ε, t0) ∈ (0, r) such that

∥x0∥ < δ implies that ∥x(t, t0, x0)∥ < ε for all t ∈ It0,x0 ;

• uniformly stable if, for all ε > 0, there exists δ = δ(ε) ∈ (0, r) such that for all t0 ∈ [0, ∞),

∥x0∥ < δ implies that ∥x(t, t0, x0)∥ < ε for all t ∈ It0,x0 .

Remark 4.2. In the case where the trivial solution x = 0 of the system (4.1θ) with θ = 0 is
stable, observe that, for ε = r and t0 ≥ 0, there exists δ = δ(ε, t0) ∈ (0, r) such that, for all
x0 ∈ BRn(0, δ),

∥x(t, t0, x0)∥ < ε for all t ∈ It0,x0 .

Using Theorem 3.8 under (HΩ,0), (Hf,0) and (Hx0,t0), we deduce that It0,x0 = [t0, ∞). Further-
more, observe that if the stability of the trivial solution x = 0 is uniform, then δ do not depend
on t0.

The following definition is a notion of asymptotic stability. This concerns the behavior of
solutions as t → ∞.

Definition 4.3. The trivial solution x = 0 of the system (4.1θ) with θ = 0 is said to be

• asymptotically stable if it is stable and, for every t0 ∈ [0, ∞), there exists δ = δ(t0) ∈ (0, r)
such that, for all x0 ∈ BRn(0, δ) and ε > 0, there exists σ = σ(t0, x0, ε) > 0 such that

∥x(t, t0, x0)∥ < ε for all t ∈ [t0 + σ, ∞) ∩ It0,x0 ;
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• uniformly asymptotically stable if it is uniformly stable and there exists δ ∈ (0, r) such that,
for every ε > 0, there exists σ = σ(ε) > 0 such that, for all t0 ∈ [0, ∞) and x0 ∈ BRn(0, δ),

∥x(t, t0, x0)∥ < ε for all t ∈ [t0 + σ, ∞) ∩ It0,x0 .

In the following example, we compare the stability properties of the trivial solution of a
linear Stieltjes dynamical system to the ones in the classical case, observing the change of
the stability properties depending on the sets Cg and Dg. The resolution of linear Stieltjes
differential equations has been studied in the literature, see for instance [7, 9, 17, 26, 27].

Example 4.4. Let us consider the linear Stieltjes dynamical system

x′g(t) = cx(t) for g-almost all t ≥ θ ≥ 0, (4.2θ)

for c ∈ R. In the classical case of derivation where g ≡ idR, for c > 0, the equilibrium
x = 0 is not stable given that the solutions of (4.2θ) with θ = t0 and satisfying x(t0) = x0 are
x(t, t0, x0) = x0ec(t−t0) for every x0 ∈ R and t0 ≥ 0, and they are not bounded on [t0, ∞) for
x0 ̸= 0.

However, for c < 0, the equilibrium x = 0 is asymptotically stable since stability holds and
x(t, t0, x0) = x0ec(t−t0) t→∞−−→ 0 for all x0 ∈ R. In the case where c = 0, every constant z ∈ R is
a uniformly stable equilibrium.

Now, let us reconsider the dynamical system (4.2θ), where g : R → R is defined by g(t) = t
for t ≤ 1 and g(t) = 1 for t ≥ 1. Thus, the solution of the problem (4.2θ) with θ = t0 and
satisfying x(t0) = x0 is x(t, t0, x0) = x0ec(g(t)−g(t0)), for every x0 ∈ R and t0 ≥ 0. Now, we
show that the stability properties of the trivial solution x = 0 of the system (4.2θ) with θ = 0
differ from the classical case, for c ̸= 0. Indeed, for c > 0, we deduce the stability of the trivial
solution x = 0 since, for all ε > 0 and t0 ≥ 0, one can take δ = ε/

(
ec(g(1)−g(t0))

)
which is such

that
|x0| < δ implies that |x0ec(g(t)−g(t0))| < ε for all t ≥ t0.

Whereas, for c < 0 the equilibrium x = 0 is uniformly stable since, for all ε > 0, with δ = ε > 0,
one has that

|x0| < δ implies that |x0ec(g(t)−g(t0))| < ε for all t ≥ t0.

Observe that asymptotic stability does not hold for any c ∈ R, since

x0ec(g(t)−g(t0)) → x0ec(g(1)−g(t0)) ↛ 0,

as t → ∞ for all t0 ≥ 0 and x0 ̸= 0.
Next, we define the derivator g1 by g1(t) = t + ∑n∈N χ[n,∞)(t) for all t ∈ R. We consider

the dynamical system with g1:

x′g1
(t) =

{
cx(t) if t ≥ θ ≥ 0, with t /∈ Dg1 = N,

νx(t), if t ≥ θ ≥ 0, with t ∈ Dg1 ,
(4.3θ)

where c, ν ∈ R with ν ∈ (−1, ∞) \ {0}. Again the solution of (4.3θ) with θ = t0 and satisfying
x(t0) = x0 has the form

x(t, t0, x0) = x0ec∗(t, t0) = x0e
∫
[t0,t) c∗(s) dµg1 (s),
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where

c∗(t) =

{
c if t ∈ [t0, ∞) \ Dg1 ,

log(1 + ν) if t ∈ [t0, ∞) ∩ Dg1 .

In Figure 4.1, we can observe different patterns depending on the values of c and ν. This
implies that the presence of discontinuities can destabilize or restore the stability properties
of a dynamical system.
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(a) The case of c = −0.4, and ν = −0.5.
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(b) The case of c = 0.4, and ν = −0.5.
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(c) The case of c = −2, and ν = 1.
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(d) The case of c = −1, and ν = 2.

Figure 4.1: Behaviour of solutions of (4.3θ) with θ = 0 in a neighborhood of
x = 0.

4.2 Stability results based on Lyapunov’s function

In order to establish sufficient conditions for different types of stability of the trivial solution
x = 0 of the system (4.1θ) with θ = 0, we introduce specific sets of functions.

Definition 4.5. A function V : [0, ∞)× BRn(0, r0) → R is said to belong to class V g
1 if it satisfies

the following conditions:

1. V(t, ·) is continuous for all t ≥ 0;
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2. V(·, x(·)) ∈ ACg,loc(It0,x0 , R) for every function x : It0,x0 → BRn(0, r0) of ACg,loc(It0,x0 , Rn)

maximal solution of the system (4.1θ) with θ = 0;

3. V(t, 0) = 0 for all t ≥ 0.

Definition 4.6. A function φ : [0, ∞) → [0, ∞) belongs to the class K if it fulfills the following
assumptions:

1. φ is continuous;

2. φ(0) = 0;

3. φ is increasing.

In the following, we simply write φ ∈ K to mean that φ belongs to the class K. Now, we
state the first stability result.

Theorem 4.7. Assume that Conditions (HΩ,0) and (Hf,0) hold. If there exist functions V ∈ V g
1 and

a ∈ K such that

(a) a(∥u∥) ≤ V(t, u) for all (t, u) ∈ [0, ∞)× BRn(0, r0);

(b) there exists r ∈ (0, r0] such that, for every (t0, x0) ∈ [0, ∞)× BRn(0, r), (Hx0,t0) holds and, for
x : It0,x0 → BRn(0, r0) the maximal solution of the system (4.1θ) with θ = t0 and satisfying
x(t0) = x0, one has that V ′

g(t, x(t)) ≤ 0 for g-almost all t ∈ It0,x0 .

Then, the trivial solution of the system (4.1θ) with θ = 0 is

(1) stable,

(2) uniformly stable if there exists b ∈ K such that

V(t, u) ≤ b(∥u∥) for all (t, u) ∈ [0, ∞)× BRn(0, r0). (4.4)

Proof. (1) Since V ∈ V g
1 , then, for all ε > 0 and t0 ∈ [0, ∞), there exists δ = δ(ε, t0) ∈ (0, r)

such that
sup
∥u∥<δ

V(t0, u) < a(ε).

For x0 ∈ BRn(0, δ), let x : It0,x0 → BRn(0, r0) be the maximal solution of the system (4.1θ) with
θ = t0 and x(t0) = x0. It follows from Conditions (a) and (b) that

a(∥x(t)∥) ≤ V(t, x(t)) ≤ V(t0, x0) < a(ε).

Thus, for all t ∈ It0,x0 , we have that

∥x(t, t0, x0)∥ < ε.

Therefore, the trivial solution x = 0 is stable.

(2) Arguing as in (1), we can choose a δ = δ(ε) ∈ (0, r) independent of t0 such that

b(δ) < a(ε).

Thus, using (4.4), we obtain for all t ∈ It0,x0 ,

a(∥x(t)∥) ≤ V(t, x(t)) ≤ V(t0, x0) ≤ b(∥x0∥) < b(δ) < a(ε).

This yields that the trivial solution x = 0 is uniformly stable.
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In the next theorem, we impose additional assumptions which will permit to ensure the
asymptotic stability of the trivial solution x = 0 to the system (4.1θ) with θ = 0.

Theorem 4.8. Assume that Conditions (HΩ,0) and (Hf,0) hold. Let V ∈ V g
1 , ϕ : [0, ∞) → [0, ∞)

continuous, a, b ∈ K, and a g-measurable function v : [0, ∞) → [0, ∞) be such that

(a) a(∥u∥) ≤ V(t, u) for every (t, u) ∈ [0, ∞)× BRn(0, r0);

(b) ϕ(s) = 0 if and only if s = 0;

(c) there exists r ∈ (0, r0] such that, for every (t0, x0) ∈ [0, ∞)× BRn(0, r), (Hx0,t0) holds and, for
x : It0,x0 → BRn(0, r0) the maximal solution of the system (4.1θ) with θ = t0 and satisfying
x(t0) = x0, one has that

V ′
g(t, x(t)) ≤ −v(t)ϕ(∥x(t)∥) for g-almost all t ∈ It0,x0 ;

(d) inft0∈[0,∞) limt→+∞
∫
[t0,t0+t) v(s) dµg(s) = ∞.

If the trivial solution x = 0 of the system (4.1θ) with θ = 0 is uniformly stable, then x = 0 is
asymptotically stable.

Proof. The stability of the trivial solution x = 0 holds from uniform stability. Let us choose
δ0 ∈ (0, r) associated to an ε0 ≤ r given by the uniform stability. Now, for a fixed t0 ≥ 0, let
ε > 0. Again, by the uniform stability, there exists δ ∈ (0, δ0) such that, for all t̂ ∈ [0, ∞) and
every x̂0 satisfying ∥x̂0∥ < δ, one has

∥x̂(t, t̂, x̂0)∥ < ε for all t ∈ [t̂, ∞) ∩ It̂,x̂0
.

We denote
M = inf

s∈[δ,r0)
|ϕ(s)|. (4.5)

By Condition (b), observe that M > 0.
Let x0 ∈ BRn(0, δ0). Since

lim
t→+∞

∫
[t0,t0+t)

v(s) dµg(s) = ∞,

we can choose σ > 0 such that ∫
[t0,t0+σ)

v(s) dµg(s) >
V(t0, x0)

M
.

Let x : It0,x0 → BRn(0, r0) be the maximal solution of (4.1θ) with θ = t0 and satisfying x(t0) = x0.
Using Remark 4.2, notice that It0,x0 = [t0, ∞). Now, if there exists t̂ ∈ [t0, t0 + σ] such that
∥x(t̂)∥ < δ, then, by the uniform stability

∥x̂(t)∥ < ε for all t ∈ [t̂, ∞) ∩ It̂,x(t̂),

where x̂ : It̂,x(t̂) → BRn(0, r0) is the maximal solution of (4.1θ) with θ = t̂ satisfying the initial
condition x̂(t̂) = x(t̂). By the uniqueness of the maximal solution, one has

ω(t0, x0) = ω(t̂, x(t̂)) = ∞ and x(t) = x̂(t) for all t ∈ [t̂, ∞).
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Hence,
∥x(t)∥ < ε for all t ∈ [t0 + σ, ∞) ∩ It0,x0 .

On the other hand, if ∥x(t)∥ ≥ δ for all t ∈ [t0, t0 + σ], then using Conditions (a), (c), Theo-
rem 2.7, and (4.5), we obtain

a(∥x(t0 + σ)∥) ≤ V(t0 + σ, x(t0 + σ))

= V(t0, x(t0, t0, x0)) +
∫
[t0,t0+σ)

V ′
g(s, x(s)) dµg(s)

≤ V(t0, x0)−
∫
[t0,t0+σ)

v(s)ϕ(∥x(s)∥) dµg(s)

≤ V(t0, x0)− M
∫
[t0,t0+σ)

v(s) dµg(s)

< 0.

This is a contradiction. Therefore, x = 0 is asymptotically stable.

In the example below, we present an application of Theorem 4.8.

Example 4.9. Let us consider the Stieltjes dynamical system

x′g(t) = f (t, x(t)) for g-almost all t ≥ θ ≥ 0, (4.6θ)

with g : R → R defined by g(t) = t for all t ≤ 1, and g(t) = t + 1 for t > 1, and where
f : [0, ∞)× R → R is a function defined by

f (t, x) =

− xt
1 + t2 if t ∈ [0, ∞) \ Dg,

νx if t ∈ [0, ∞) ∩ Dg,

for some ν ∈ R \ {−1, 0}. The function f satisfies conditions of Theorem 3.13, thus, for every
(t0, x0) ∈ [0, ∞)× R, the problem (4.6θ) with θ = t0 has a maximal solution x : [t0,+∞) → R

satisfying x(t0) = x0. Observe that x = 0 is an equilibrium of the dynamical system (4.6θ)
with θ = 0.

Let us define the function V : [0, ∞)× R → R for every (t, x) ∈ [0, ∞)× R by

V(t, x) =


x2 if t ∈ [0, 1],

x2

(1 + ν)2 if t > 1.

Clearly V ∈ V1
g , and a(|u|) ≤ V(t, u) ≤ b(|u|) for all (t, u) ∈ [0, ∞)× R, where a, b ∈ K are

given by

a(s) = min
{

s2,
s2

(1 + ν)2

}
and b(s) = max

{
s2,

s2

(1 + ν)2

}
for all s ∈ [0, ∞).

In addition, for all (t, x) ∈ [0, ∞)× R:

∂V
∂gt

(t, x) =


0 if t ∈ [0, 1) ∪ (1, ∞),

x2

(1+ν)2 − x2

g(1+)− g(1)
if t = 1,

=


0 if t ∈ [0, 1) ∪ (1, ∞),

1 − (1 + ν)2

(1 + ν)2 x2 if t = 1.
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Thus, by means of Proposition 2.10, for t ∈ [t0, ∞) \ Dg, we obtain

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t)) f (t, x(t))

=


− 2t

1 + t2 x(t)2 if t ∈ [t0, ∞) ∩ [0, 1),

− 2t
(1 + t2)(1 + ν)2 x(t)2 if t ∈ [t0, ∞) ∩ (1, ∞).

For t ∈ [t0, ∞) ∩ Dg, if t0 ≤ 1, then t = 1 and we have that

V ′
g(1, x(1)) =

V(1+, x(1+))− V(1, x(1))
g(1+)− g(1)

=
V(1+, x(1) + µg({1}) f (1, x(1)))− V(1, x(1))

g(1+)− g(1)

=

(1+ν)2x(1)2

(1+ν)2 − x(1)2

g(1+)− g(1)
= 0.

This implies that
V ′

g(t, x(t)) ≤ −v(t)ϕ(|x(t)|), for every t ≥ t0,

with v : [0, ∞) → [0, ∞), defined by

v(t) =



2t
1 + t2 if t ∈ [0, 1),

0 if t = 1,
2t

(1 + t2)(1 + ν)2 if t ∈ (1, ∞),

and ϕ ∈ K, defined by ϕ(y) = y2 for all y ∈ [0, ∞). Moreover, for every t0 ∈ [0, ∞), we have

lim
t→∞

∫
[t0,t0+t)

v(s) dµg(s) = lim
t→∞

∫
[t0,t0+t)∩([0,1)∪{1}∪(1,∞))

v(s) dµg(s)

≥ lim
t→∞

1
(1 + ν)2

∫
[t0,t0+t)∩(1,∞)

2s
1 + s2 ds

= lim
t→∞

1
(1 + ν)2

(
log(1 + (t0 + t)2)− sup{log(2), log(1 + t2

0)}
)

= ∞.

Hence,
inf

t0∈[0,∞)
lim

t→+∞

∫
[t0,t0+t)

v(s) dµg(s) = ∞.

Thus, Condition (d) holds. Therefore, by means of Theorem 4.8, we deduce that x = 0 is an
asymptotically stable equilibrium. Figure 4.2 illustrates the asymptotic behavior of solutions
of the dynamical system (4.6θ) with θ = 0.

In the following example, we consider the case where g has an infinite number of discon-
tinuities.
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Figure 4.2: Asymptotic behavior of solutions of the dynamical system (4.6θ)
with θ = 0 obtained with a time-discretization step-size of 10−3, with ν = 0.5.

Example 4.10. Let us consider the dynamical system

x′g(t) = f (t, x(t)) for g-almost all t ≥ θ ≥ 0, (4.7θ)

where g : R → R is the derivator defined by

g(t) = t + ∑
k∈N

χ[tk ,+∞)(t) for all t ∈ R, (4.8)

where {tk} is an unbounded, increasing sequence in (0, ∞), and where the function f : [0, ∞)×
R → R is defined by

f (t, x) =

− xt
1 + t2 if t ∈ [0, ∞) \ Dg,

νx if t ∈ [0, ∞) ∩ Dg,

for some ν ∈ [−2,−1). The function f satisfies conditions of Theorem 3.13. Thus, for every
(t0, x0) ∈ [0, ∞)× R, the problem (4.6θ) with θ = t0 has a maximal solution x : [t0,+∞) → R

satisfying x(t0) = x0. Observe that x = 0 is an equilibrium of the dynamical system (4.7θ)
with θ = 0.

Let us define the function V : [0, ∞)× R → R by V(t, x) = x2. Clearly, V ∈ V1
g and

a(|u|) ≤ V(t, u) ≤ b(|u|) for all (t, u) ∈ [0, ∞)× R,

where a, b ∈ K are given by

a(s) = s2 and b(s) =
s2

(1 + ν)2 for all s ∈ [0, ∞).

In addition,
∂V
∂gt

(t, x) = 0 for all (t, x) ∈ [0, ∞)× R.

Thus, by means of Proposition 2.10, for g-almost every t ∈ [t0, ∞) \ Dg, we obtain

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t)) f (t, x(t))

= − 2t
1 + t2 x(t)2.
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For tk ∈ [t0, ∞) ∩ Dg, we have that

V ′
g(tk, x(tk)) =

V(t+k , x(t+k ))− V(tk, x(tk))

g(t+k )− g(tk)

=
V(t+k , x(tk) + µg({tk}) f (tk, x(tk)))− V(tk, x(tk))

g(t+k )− g(tk)

=
((1 + ν)x(tk))

2 − x(tk)
2

g(t+k )− g(tk)

= ν(2 + ν)x(tk)
2.

This implies that

V ′
g(t, x(t)) ≤ −v(t)ϕ(|x(t)|) for g-almost every t ≥ t0,

with v : [0, ∞) → [0, ∞) defined by

v(t) =


2t

1 + t2 if t ∈ [0, t1) ∪ (tk, tk+1), k ∈ N,

−ν(2 + ν) if t ∈ {tk}k∈N,

and ϕ ∈ K defined by ϕ(y) = y2 for all y ∈ [0, ∞). For t0, t ∈ [0, ∞), observe that v satisfies:∫
[t0,t0+t)

v(s) dµg(s) = ∑
s∈[t0,t0+t)∩Dg

−ν(2 + ν)µg({s}) +
∫ t0+t

t0

2s
1 + s2 ds

= ∑
s∈[t0,t0+t)∩Dg

−ν(2 + ν)µg({s}) + log
(1 + (t0 + t)2

1 + t2
0

)
.

Thus,
inf

t0∈[0,∞)
lim

t→+∞

∫
[t0,t0+t)

v(s) dµg(s) = +∞.

Consequently, Condition (d) holds. Therefore, by means of Theorem 4.8, we deduce that
x = 0 is an asymptotically stable equilibrium. Figure 4.3 illustrates the asymptotic behavior
of solutions of the dynamical system (4.7θ) with θ = 0.
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Figure 4.3: Asymptotic behavior of solutions of the dynamical system (4.7θ) with
θ = 0 obtained with a time-discretization step-size of 10−3, with ν = −3/2.
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The following result gives conditions to ensure the uniform asymptotic stability of the
trivial solution of (4.1θ) with θ = 0.

Theorem 4.11. Assume that Conditions (HΩ,0), (Hf,0) hold. If there exist V ∈ V g
1 , a, b ∈ K, ϕ :

[0, ∞) → [0, ∞) continuous, and a g-measurable function v : [0, ∞) → [0, ∞) such that

(a) a(∥u∥) ≤ V(t, u) ≤ b(∥u∥) for every (t, u) ∈ [0, ∞)× BRn(0, r0);

(b) ϕ(s) = 0 if and only if s = 0;

(c) there exists r ∈ (0, r0] such that, for every (t0, x0) ∈ [0, ∞)× BRn(0, r), (Hx0,t0) holds and, for
x : It0,x0 → BRn(0, r0) the maximal solution of the system (4.1θ) with θ = t0 and satisfying
x(t0) = x0, one has that

V ′
g(t, x(t)) ≤ −v(t)ϕ(∥x(t)∥) for g-almost all t ∈ It0,x0 .

(d) limt→+∞ inft0∈[0,∞)

∫
[t0,t0+t) v(s) dµg(s) = +∞.

Then, the trivial solution x = 0 of the system (4.1θ) with θ = 0 is uniformly asymptotically stable.

Proof. By (2) of Theorem 4.7, the trivial solution x = 0 is uniformly stable. Thus, let us choose
δ0 ∈ (0, r) associated to an ε0 ≤ r. Let ε > 0. Again, by uniform stability, there exists δ ∈ (0, r)
such that, for all t̂ ∈ [0, ∞) and every x̂0 such that ∥x̂0∥ < δ, one has

∥x̂(t, t̂, x̂0)∥ < ε for all t ∈ [t̂, ∞) ∩ It̂,x̂0
.

Let M be as defined in (4.5). Since

lim
t→+∞

inf
t0∈[0,∞)

∫
[t0,t0+t)

v(s) dµg(s) = ∞,

we can choose σ > 0 such that∫
[t0,t0+σ)

v(s) dµg(s) >
b(δ0)

M
for all t0 ∈ [0, ∞).

Let (t0, x0) ∈ [0, ∞)× BRn(0, δ0) and x : It0,x0 → BRn(0, r0) a maximal solution of (4.1θ) with
θ = t0 and satisfying x(t0) = x0.

If there exists t̂ ∈ [t0, t0 + σ] ∩ It0,x0 such that ∥x(t̂)∥ < δ, then

∥x̂(t)∥ < ε for all t ∈ [t̂, ∞) ∩ It̂,x(t̂),

where x̂ : It̂,x(t̂) → BRn(0, r0) is the maximal solution of (4.1θ) with θ = t̂ satisfying the initial
condition x̂(t̂) = x(t̂). By the uniqueness of the maximal solution, one has

ω(t0, x0) = ω(t̂, x(t̂)) and x(t) = x̂(t) for all t ∈ [t̂, ∞) ∩ It0,x0 .

Hence,
∥x(t)∥ < ε for all t ∈ [t0 + σ, ∞) ∩ It0,x0 .
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On the other hand, if ∥x(t)∥ ≥ δ for all t ∈ [t0, t0 + σ], then, using Conditions (a), (c),
Theorem 2.7, and (4.5), we obtain

a(∥x(t0 + σ)∥) ≤ V(t0 + σ, x(t0 + σ))

= V(t0, x(t0, t0, x0)) +
∫
[t0,t0+σ)

V ′
g(s, x(s)) dµg(s)

≤ V(t0, x0)−
∫
[t0,t0+σ)

v(s)ϕ(∥x(s)∥) dµg(s)

≤ V(t0, x0)− M
∫
[t0,t0+σ)

v(s) dµg(s)

< b(∥x0∥)− b(∥x0∥)
= 0.

This is a contradiction. Hence, we conclude that x = 0 is uniformly asymptotically stable.

In the next example, we provide an application of Theorem 4.11 for a system subject to a
derivator having an infinite number of discontinuities and for which the trivial solution x = 0
is uniformly asymptotically stable.

Example 4.12. Let us consider the dynamical system

x′g(t) = f (t, x(t)) for g-almost all t ≥ θ ≥ 0, (4.9θ)

where g : R → R is given in (4.8), and f : [0, ∞)× R → R is the function defined by

f (t, x) =

{
−t arctan(x) if t ∈ [0, ∞) \ Dg,

νkx if t = tk, k ∈ N,

where {νk}k ⊂ R∗
+ is a sequence satisfying

lim
k→∞

1

∏k
i=1(1 + νi)2

= a0 > 0.

The map f satisfies conditions of Theorem 3.13. Thus, for every (t0, x0) ∈ [0, ∞) × R, the
problem (4.9θ) with θ = t0 has a maximal solution x : [t0,+∞) → R satisfying x(t0) = x0.
Observe that x = 0 is an equilibrium of the Stieltjes dynamical system (4.9θ) with θ = 0.

Let us define the function V : [0, ∞)× R → R by

V(t, x) =


x2 if t ∈ [0, t1],

x2

∏k
i=1(1 + νi)2

if t ∈ (tk, tk+1], k ∈ N.

Clearly V ∈ V1
g , and a(|x|) ≤ V(t, x) ≤ b(|x|) for all (t, x) ∈ [0, ∞) × R, where a, b ∈ K

are functions defined by a(s) = a0s2 and b(s) = s2 for all s ∈ [0, ∞). In addition, for all
(t, x) ∈ [0, ∞)× R:

∂V
∂gt

(t, x) =


0 if t ∈ [0, t1] ∪ (tk, tk+1), k ∈ N,

x2

∏k
i=1(1+νi)2 − x2

∏k−1
i=1 (1+νi)2

g(t+k )− g(tk)
if t = tk, k ∈ N,

=


0 if t ∈ [0, t1) ∪ (tk, tk+1), k ∈ N,

1 − (1 + νk)
2

∏k
i=1(1 + νi)2

x2 if t = tk, k ∈ N.



Prolongation of solutions and Lyapunov-like stability results 25

For g-almost every t ∈ [t0, ∞) \ Dg, we have that t ∈ [0, t1) or there exists k ∈ N such that
t ∈ (tk, tk+1). Thus, by means of Proposition 2.10, we obtain if t ∈ [0, t1),

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t)) f (t, x(t))

= −2x(t)t arctan(x(t))

≤ −2t
x(t)2

1 + x(t)2 ,

where the last inequality follows from the Mean Value Theorem. While if there exists k ∈ N

such that t ∈ (tk, tk+1), then

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t)) f (t, x(t))

=
−2x(t)

∏k
i=1(1 + νi)2

t arctan(x(t))

≤ −2tx(t)2

(1 + x(t)2)
(

∏k
i=1(1 + νi)2

) .

For tk ∈ [t0, ∞) ∩ Dg, we have that

V ′
g(tk, x(tk)) =

V(t+k , x(t+k ))− V(tk, x(tk))

g(t+k )− g(tk)

=
V(t+k , x(tk) + µg({tk}) f (tk, x(tk)))− V(tk, x(tk))

g(t+k )− g(tk)

=

(1+νk)
2x(tk)

2

∏k
i=1(1+νi)2 − x(tk)

2

∏k−1
i=1 (1+νi)2

g(t+k )− g(tk)

= 0.

Therefore, we conclude that

V ′
g(t, x(t)) ≤ −v(t)ϕ(|x(t)|) for g-almost all t ≥ t0,

where v : [0, ∞) → [0, ∞) is the function defined for every t ∈ [0, ∞) by

v(t) =


2t if t ∈ [0, t1),

0 if t = tk, k ∈ N,
2t

∏k
i=1(1 + νi)2

if t ∈ (tk, tk+1), k ∈ N,

and ϕ ∈ K the function given by ϕ(y) = y2/(1 + y2) for all y ∈ [0, ∞).
Observe that the function v satisfies

lim
t→+∞

inf
t0∈[0,∞)

∫
[t0,t0+t)

v(s) dµg(s) ≥ lim
t→+∞

inf
t0∈[0,∞)

∫ t0+t

t0

a02s ds

= a0 lim
t→+∞

inf
t0∈[0,∞)

2tt0 + t2

= ∞.
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Figure 4.4: Asymptotic behavior of solutions of the dynamical system (4.9θ)
with θ = 0 and Dg = N, obtained with a time-discretization step-size of 10−3,

with νk = e
2

k2 − 1 for all k ∈ N.

By means of Theorem 4.11, we deduce that x = 0 is uniformly asymptotically stable equilib-
rium. Figure 4.4 illustrates the asymptotic behavior of solutions of the dynamical system (4.9θ)
with θ = 0 and Dg = N.

Remark 4.13. Observe that, in Example 4.9, the function v satisfies

lim
t→+∞

inf
t0∈[0,∞)

∫
[t0,t0+t)

v(s) dµg(s) = 0 ̸= ∞.

Thus, Condition (d) of Theorem 4.11 does not hold. Consequently, uniform asymptotic stabil-
ity cannot be deduced.

In the classical case where g ≡ idR, corollary results [13, Theorem 4.2] and [23] are well-
known when Conditions (b) of Theorem 4.8 is replaced by V ′

g(t, x(t)) being negative definite
along each maximal solution x for every t ≥ t0. However, to present an analogous statement,
we require an additional assumption to avoid the case when limt→∞ g(t) = l < ∞, and in
particular, when there exists T ≥ 0 such that (T, ∞) ⊂ Cg. Example 4.4 provides an interesting
illustration of attractivity lack for asymptotic stability.

Corollary 4.14. Assume that g is not bounded from above and Conditions (HΩ,0) and (Hf,0) hold. If
there exist V : [0, ∞)× BRn(0, r0) → R; V ∈ V g

1 and a, b, ϕ ∈ K such that

(a) a(∥u∥) ≤ V(t, u) ≤ b(∥u∥), for every (t, u) ∈ [0, ∞)× BRn(0, r0);

(b) there exists r ∈ (0, r0] such that, for every (t0, x0) ∈ [0, ∞)× BRn(0, r), (Hx0,t0) holds and, for
x : It0,x0 → BRn(0, r0) the maximal solution of the system (4.1θ) with θ = t0 and satisfying
x(t0) = x0, one has that

V ′
g(t, x(t)) ≤ −ϕ(∥x(t)∥), for g-almost all t ≥ t0.

Then, the trivial solution x = 0 of the system (4.1θ) with θ = 0 is asymptotically stable. Furthermore,
if

lim
t→+∞

inf
t0∈[0,∞)

g(t + t0)− g(t0) = ∞,

then, the trivial solution x = 0 of the system (4.1θ) with θ = 0 is uniformly asymptotically stable.
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Proof. Observe that Conditions of Theorem 4.8 hold for v ≡ 1 as

inf
t0∈[0,∞)

lim
t→+∞

∫
[t0,t+t0)

ω(s) dµg(s) = inf
t0∈[0,∞)

lim
t→+∞

g(t + t0)− g(t0) = ∞.

Hence, the trivial solution is x = 0 of the system (4.1θ) with θ = 0 is asymptotically stable.
Moreover, if

lim
t→+∞

inf
t0∈[0,∞)

g(t + t0)− g(t0) = ∞, (4.10)

then, Theorem 4.11 ensures that x = 0 is uniformly asymptotically stable.

Remark 4.15. In Corollary 4.14, it is worth mentioning that the assumption that the derivator g
is not bounded from above does not necessarily imply that (4.10) holds. Indeed, let us consider
the increasing sequence {tn}n∈N defined by{

tn = 2tn−1 − tn−2 + 1, n ∈ N, n ≥ 3,

t2 = 3, t1 = 1.

Now, consider the derivator g : R → R defined by

g(t) =


t if t ≤ 0,

0 if t ∈ [0, t1],

n if t ∈ (tn, tn+1], n ∈ N.

Observe that

Dg = {tn}n∈N = {1, 3, 6, 10, 15, . . . } and Cg = (0, t1) ∪
⋃

n∈N

(tn, tn+1).

Notice that for every t > 0, there exists t0 ∈ [0, ∞) such that [t0, t + t0] ⊂ Cg. Thus,

lim
t→+∞

inf
t0∈[0,∞)

g(t + t0)− g(t0) = 0 ̸= ∞.
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Figure 4.5: Graph of the derivator g in Remark 4.15.
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5 Applications to dynamics of population

5.1 Stable equilibrium of a population subject to train vibrations

In this subsection, by means of a system of Stieltjes differential equations, we study the long-
term impact of high-speed train vibrations and noise pollution on a population of animals
living near railways. Depending on the species and their sensitivity to vibrations, various
implications can be observed, we mention for instance:

• Hearing damage resulting in from the significant noise and vibrations that can poten-
tially harm animals with sensitive hearing such as certain small mammals, birds, and
bats which rely heavily on their hearing for communication, navigation, detection of
predators, and finding food, thus, prolonged exposure to train vibrations may lead to
hearing impairment or damage, disrupting their normal behaviors and increasing their
death rate.

• Increased stress levels since some animals may be startled by the vibrations. This can
affect their feeding patterns, reduce their reproduction rate, or lead to emigration result-
ing in a loss of suitable habitat and altering the composition and diversity of the local
ecosystem

• Ecological interactions disruption which can affect pollination for instance if the vibra-
tions deter insects that are important pollinators, disturb ground-dwelling organisms
(insects, reptiles, and small mammals. . . ) which can implicitly impact other species that
rely on them as a food source.

In particular, an Allee effect can be observed in this regard, especially when the survival of the
population depends on a minimum threshold size M > 0. In the follows, we denote by x(t)
the number of individuals of a population living in a region near a railway with a carrying
capacity K > M.

Let us assume that a certain number m > 0 of trains pass through the area every day.
We refer to {δi}i=m

i=1 as the moments when trains pass in a single day. Once a train pass
by the area, its impact is significant for a proportion of individuals living near the railway.
They may experience vibrations or direct injuries. In the following analysis, we use a Stieltjes
differential equation to model the dynamics of this population affected by train vibrations,
and we study the asymptotic behavior of its solutions. In doing so, we require a derivator
g : R → R presenting discontinuities for t ∈ {δi}i=m

i=1 + 24N such that µg({t}) quantifies
the rate at which the risk of damage varies. Depending on the specific δi, this rate can either
increase or decrease, reflecting the varying impact of vibrations during daylight and nighttime
hours. For simplicity, we can take for instance:

g(t) = t + ∑
k∈N

m

∑
i=1

χ[δi+24k,∞)(t) for all t ∈ R,

with µg({·}) ≡ 1 on Dg = {δi : i = 1, . . . , m}+ 24N.
In the sequel, we suggest to analyse the asymptotic behaviour of the dynamics of this

population, through the study of asymptotic stability of the zero equilibrium of the Stieltjes
dynamical system:

x′g(t) = f (t, x(t)) for g-almost every t ≥ θ ≥ 0, (5.1θ)
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where f : [0, ∞)× R → R is defined by

f (t, x) =

ρx
(

1 − x
K

) ( x
M

− 1
)

, if t /∈ {δi + 24k}m
i=1, k = 0, 1, 2 . . .

−dx, if t ∈ {δi + 24k}m
i=1, k = 0, 1, 2 . . .

(5.2)

The parameters of the model can be understood as:

K > M: the carrying capacity of the environment;

ρ > 0: the intrinsic rate of reproduction of the population;

d ∈ (0, 1): a constant related to the impact induced by trains, either a migration rate immedi-
ately following the passage of trains or a mortality rate for certain populations that live
in close proximity to the railway.

To simplify the analysis, we make the assumption that a train passes every hour over a
24-hour period. Thus, we consider

g(t) = t + ∑
n∈N

χ[n,∞)(t) for all t ∈ R,

which is such that Dg = N and µg({t}) = 1 for all t ∈ Dg.
Now, we will focus on the zero equilibrium to study its local asymptotic stability within

a region (−r0, r0) for some r0 > 0 that will be determined to enhance the impact of environ-
mental factors threatening this population.

Since the trivial solution x = 0 is an equilibrium of the dynamical system (5.1θ) with θ = 0,
let us consider r0 ≤ M. For all (t0, x0) ∈ ([0, ∞) ∩ Dg)× (−r0, r0), if x is a solution of (5.1θ)
with θ = t0 and satisfying x(t0) = x0, then

x0 + µg({t0}) f (t0, x0) = (1 − d)x0 ∈ (−r0, r0).

Thus, (Hx0,t0) holds for r = r0. One can also verify that f satisfies (H f ,0) and (HΩ,0). Hence,
Theorem 3.7, yields the existence of a maximal solution x : It0,x0 → R of (5.1θ) with θ = t0 and
satisfying x(t0) = x0. Let us show that ω(t0, x0) = ∞. First of all, let τ ∈ (t0, ω(t0, x0)) be such
that x : [t0, τ] → (−r0, r0). Observe that, if x(τ) = 0, by uniqueness of the solution, we deduce
that x ≡ 0 which lies in (−r0, r0). Thus, two other cases occur when x(τ) ̸= 0.

Case 1: If τ ∈ Dg, then x(τ+) = x(τ) + µg({τ}) f (τ, x(τ)) = (1 − d)x(τ) ∈ (−r0, r0).

Case 2: If τ /∈ Dg, and if we assume that x(τ) ∈ (0, r0), then x′g(τ) = f (τ, x(τ)) < 0. Thus, by
g-continuity of x at τ, there exists τ1 ∈ (τ, ω(t0, x0)) such that

x : [t0, τ1] → (0, x(τ)] ⊂ (0, r0).

Similarly, if x(τ) ∈ (−r0, 0) then x′g(τ) = f (τ, x(τ)) > 0. Thus, there exists τ2 > 0 such that

x : [τ, τ2] → [x(τ), 0) ⊂ (−r0, 0).

Repeating the same argument, we deduce that

x(t) ∈ [−λx0,t0 , λx0,t0 ] ⊂ (−r0, r0) for all t ∈ It0,x0

where
λx0,t0 = sup

t∈[t0,τ]
|x(t, t0, x0)|.
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By Corollary 3.10, we deduce that ω(t0, x0) = ∞.
Now, we define the function V : [0, ∞)× (−r0, r0) → R by

V(t, x) = x2 for all (t, x) ∈ [0, ∞)× (−r0, r0).

Clearly, V ∈ V1
g . For all (t0, x0) ∈ [0, ∞)× (−r0, r0), let x : [t0, ∞) → (−r0, r0) be the maximal

solution of (5.1θ) with θ = t0 and satisfying x(t0) = x0. Thus, using Proposition 2.10, we
obtain, for t0 ∈ [0, ∞) and for g-almost all t ∈ [t0, ∞) \ Dg,

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t))x′g(t)

=
∂V
∂gt

(t, x(t)) +
∂V
∂x

(t, x(t)) f (t, x(t))

= 2ρx(t)2
(

1 − x(t)
K

)(
x(t)
M

− 1
)

.

While for t ∈ [t0, ∞) ∩ Dg, we obtain

V ′
g(t, x(t)) =

V(t+, x(t+))− V(t, x(t))
g(t+)− g(t)

=
V(t+, x(t) + µg({t}) f (t, x(t)))− V(t, x(t))

g(t+)− g(t)
= (1 − d)2x(t)2 − x(t)2

= (−2d + d2)x(t)2.

As (−2d + d2) < 0, it follows that V ′
g(t, x(t)) is negative definite. Since

a(|x|) ≤ V(t, x) ≤ b(|x|) for all (t, x) ∈ [0, ∞)× (−r0, r0),

with a, b ∈ K defined by a(s) = b(s) = s2 for all s ∈ [0, ∞), Corollary 4.14 ensures that the
trivial solution x = 0 is uniformly asymptotically stable.
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Figure 5.1: Asymptotic behavior of solutions of the dynamical system (5.1θ)
with θ = 0 obtained with a time-discretization step-size of 10−3, with ρ = 0.1,
K = 1000, M = 40, and d = 0.03.
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The asymptotic behavior of solutions is illustrated in Figure 5.1. It illustrates the long-
term effect of the high-speed trains vibrations. The outcome raises alarm about the overall
stability and the persistence of the whole ecosystem in this region. Specifically, the impact of
the vibrations shifts the minimum threshold size M to a new threshold M′ > M, as shown in
Figure 5.1 (where we observe that M′ = 53 individuals whereas M = 40 individuals). This
shift indicates a heightened likelihood of population extinction if there is no measure ensuring
that the initial population exceeds M′ at the onset of trains activity.

5.2 Stable equilibrium of bacteria–ammonia dynamics

Cyanobacteria, similar to plants, participate in oxygenic photosynthesis as they are photosyn-
thetic bacteria. Photosynthesis is the biochemical process through which organisms convert
light energy into chemical energy in the form of glucose or other organic compounds result-
ing oxygen release. The energy captured is then used to fuel the synthesis of organic molecules
such as glucose, serving as an energy source for the bacteria.

Cyanobacteria are found in diverse habitats, including freshwater, marine environments,
and terrestrial ecosystems. In this subsection, we consider a species of cyanobacteria that
has also the ability to fix nitrogen such as Anabaena cyanobacteria. Through nitrogen fixa-
tion, atmospheric nitrogen gas (N2) is converted into a form that can be used by plants and
other organisms by means the enzyme nitrogenase. This enzyme catalyzes the conversion of
nitrogen gas (N2) into ammonium ions (NH+

4 ) based on a considerable amount of energy
obtained from photosynthesis, these ammonium ions are assimilated into amino acids and
proteins, which are essential for the growth and survival of Cyanobacteria. As a by product of
nitrogen fixation, ammonia gas (NH3) can be released. Some of the assimilated ammonium
ions (NH+

4 ) are released back into the environment providing neighboring vegetative cells
with a source of nitrogen.

To avoid losing valuable nitrogen nutrients and optimizing nitrogen utilization efficiency,
this population has mechanisms allowing ammonium ions (NH+

4 ) reabsorption, and am-
monia gas (NH3) assimilation through converting ammonia gas (NH3) into ammonium ions
(NH+

4 ). In what follows, the term “ammonia” refers to both the protonated and unprotonated
forms, which are denoted as (NH3) and (NH+

4 ) respectively [4]. It is worth mentioning that
ammonia is commonly used in cleaning products, fertilizers. Beyond that, ammonia’s cooling
properties make it an essential refrigerant in air conditioning systems and refrigerators.

To optimize resource utilization and adapt to the varying environmental conditions, the
population undergoes a day-night cycling of nitrogen fixation and carbon consumption [32].
This is due to the sensitivity of the nitrogenase enzyme responsible for nitrogen fixation to
oxygen. Thus, nitrogen fixation is carried out during daylight hours when the photosynthesis
can provide the necessary energy and oxygen levels are relatively low. During the nights, since
oxygen levels within the cells would be higher, this population of cyanobacteria reduces their
metabolic activity and growth and relies on stored carbon compounds to fulfill their energy
needs. Our objective in the sequel is to observe the dynamics of this population which thrives
in the presence of ammonia in a culture room without exposure to artificial light, tracking the
levels of the ammonia during this process. Here, we assume that the carbon dioxide (CO2),
the nitrogen gas (N2) and nutrients supply are maintained steady as well as the PH level.
Since the population undergoes dormancy phases during the nights, we identify the days with
intervals of the form [2k, 2k + 1], k = 0, 1, 2, . . . , and the night with intervals [2k + 1, 2k + 2],
k = 0, 1, 2, . . . In our example, we differentiate with respect to a derivator g whose slopes
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describe the intensity of light, which is necessary for the photosynthesis process. We require
that g presents smaller slopes at the beginning and at the end of the daylight hours, with a
maximal slope of 1 representing the peak light intensity at middays where t = 2k + 1/2, and
remains constant during the dormancy phases in the night [2k + 1, 2k + 2], k = 0, 1, 2, . . . For
instance, we consider g : R → R defined by

g(t) =


sin(π(t − 1/2)) + 1

π
if t ∈ [0, 1]

2/π if t ∈ (1, 2],

and g(t) = 2/π + g(t − 2) for t ≥ 2.
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Figure 5.2: Graph of the derivator g.

We denote by N(t) the biomass of cyanobacteria (grams per liter), and A(t) the ammonia
concentration in the environment at time t ≥ 0. Since the population thrives in the presence
of ammonia, we can assume that the growth rate is proportional to the level of ammonia. We
denote ρ the maximal intrinsic coefficient of reproduction that the population can reach in the
presence of one unit of ammonia with maximal sunlight intensity. Thus, the dynamics can be
modeled using the autonomous system of Stieltjes differential equations:

u′
g(t) = F(u(t)), for g-almost every t ≥ θ ≥ 0, (5.3θ)

where u = (N, A) and F = (F1, F2) : R2 → R2 is defined by

F(N, A) =

(
ρAN

(
1 − N

K

)
, (αN − βAN)

)
, (5.4)

and where the parameters of the model can be understood as:

K > 0: the carrying capacity of the culture room, which forms a spacial constraint for growth;

α > 0: a constant related to the production of ammonia through nitrogen fixation.

β > 0: a constant related to the proportion of the reabsorption of ammonia by the population
depending on the level of ammonia in the environment.

Observe that u∗ = (K, α/β) is an equilibrium of the system (5.3θ) with θ = 0 among other
equilibria. Its asymptotic stability would guarantee the persistence of the population with
nonzero ammonia production. Therefore, we study local asymptotic stability in a neighbor-
hood BR2(u∗, r0) for some r0 > 0 of this equilibrium. To this aim, we translate our study in a
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neighborhood of x = 0 = (0, 0) ∈ R2 with the change of variables x = (x1, x2) := u − u∗, we
obtain the system

x′g(t) = f(x(t)) for g-almost every t ≥ θ ≥ 0, (5.5θ)

where f = ( f1, f2) : R2 → R2 is defined by

f(x1, x2) =

(
−ρ

x1

K

(
x2 +

α

β

) (
x1 + K

)
,−βx2(x1 + K)

)
. (5.6)

So, x = 0 = (0, 0) ∈ R2 is an equilibrium of the dynamical system (5.5θ) with θ = 0. Next,
we prove that x = 0 is asymptotically stable, and hence, u∗ =

(
K, α/β

)
is an asymptotically

stable equilibrium of the system (5.3θ) with θ = 0.
Let us consider r0 = min{K, α/β}, and let (t0, x0) ∈ [0, ∞) × BR2(0, r0). Arguing as in

the previous subsection, since the function f satisfies conditions of Theorem 3.7, there exists,
x = (x1, x2) : It0,x0 → R2, the maximal solution of the system (5.5θ) with θ = t0 and satisfying
x(t0) = x0. Let τ ∈ (0, ω(t0, x0)) \ Cg be such that x = (x1, x2) : [t0, τ] → BR2(0, r0). In what
follows, we analyze the possible cases:

Case 1: If x1(τ), x2(τ) ∈ (0, r0) (resp. x1(τ), x2(τ) ∈ (−r0, 0)), then, for i = 1, 2, we have
(xi)

′
g(τ) = fi(x(τ)) < 0 (resp. (xi)

′
g(τ) = fi(x(τ)) > 0). Therefore, by the g-continuity of x at

τ, there exists τ1 ∈ (τ, ω(t0, x0)) (τ1 can be chosen such that τ1 /∈ Cg) such that

xi : [t0, τ1] → (0, xi(τ)] ⊂ (0, r0) (resp. xi : [t0, τ1] → [xi(t0), 0) ⊂ (−r0, 0)).

Case 2: If x1(τ) ∈ (0, r0) and x2(τ) ∈ (−r0, 0), then

(x1)
′
g(τ) = f1(x(τ)) < 0 and (x2)

′
g(τ) = f2(x(τ)) > 0.

Therefore, there exists τ2 ∈ (τ, ω(t0, x0)) \ Cg such that

x1 : [τ, τ2] → (0, x1(τ)] ⊂ (0, r0) and x2 : [τ, τ2] → [x2(τ), 0) ⊂ (−r0, 0).

Case 3: If x1(τ) ∈ (−r0, 0) and x2(τ) ∈ (0, r0), then, similarly to Case 2, we deduce that there
exists τ3 ∈ (τ, ω(t0, x0)) such that

x1 : [τ, τ3] → [x1(τ), 0) ⊂ (−r0, 0) and x2 : [τ, τ3] → (0, x2(τ)] ⊂ (0, r0).

From this argument, we deduce that the solution

x(t) ∈ [−λx0,1,t0 , λx0,1,t0 ]× [−λx0,2,t0 , λx0,2,t0 ] ⊂ BR2(0, r0) for all t ∈ It0,x0 ,

where
λx0,i ,t0 = sup

t∈[t0,τ]
|xi(t, t0, x0)| for i = 1, 2, and x0 = (x0,1, x0,2).

Using Corollary 3.10, we deduce that ω(t0, x0) = ∞.
Now, let us consider the function V : [0, ∞)× BR2(0, r0) → R defined by V(t, x) = x2

1 + x2
2

for all t ∈ [0, ∞) and x = (x1, x2) ∈ R2. It is clear that V ∈ V g
1 . Let (t0, x0) ∈ [0, ∞)× BR2(0, r0),
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and x : [t0, ∞) → BR2(0, r0) the maximal solution of (5.5θ) with θ = t0 and satisfying x(t0) = x0.
By means of Proposition 2.10, for g-almost all t ∈ [t0, ∞), we obtain

V ′
g(t, x(t)) =

∂V
∂gt

(t, x(t)) +
2

∑
i=1

∂V
∂xi

(t, x(t))(xi)
′
g(t)

=
∂V
∂gt

(t, x(t)) +
2

∑
i=1

∂V
∂xi

(t, x(t)) fi(t, x(t))

= −2ρ
x1(t)2

K
(x2(t) + α/β)(x1(t) + K)− 2βx2(t)2(x1(t) + K).

(5.7)

Thus, V ′
g(t, x(t)) is negative definite. Since

a(∥z∥) ≤ V(t, z) ≤ b(∥z∥) for all (t, z) ∈ [0, ∞)× BR2(0, r0),

where a, b ∈ K are defined by a(s) = s2 and b(s) = 2s2 for all s ∈ [0, ∞). It follows from
Corollary 4.14 that x = 0 is uniformly asymptotically stable. Hence, u∗ = (K, α/β) is a
uniformly asymptotically stable equilibrium of the system (5.3θ). The graph of asymptotic
behavior of solutions near the equilibrium u∗ = (K, α/β) is given in Figure 5.3 with θ = 0.
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Figure 5.3: Asymptotic behavior of solutions of the dynamical system (5.3θ) with
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