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Abstract. Denote by QS the class of all non-degenerate planar quadratic differential
systems and by QSP the subclass of QS of all systems possessing at least one invariant
parabola. In this paper we consider the subfamily of QSP defined by the condition
η ̸= 0, which means the presence of three distinct infinite singularities real or complex.
We denote this subfamily by QSP(η ̸=0). We investigate all possible configurations of
invariant parabolas and invariant straight lines which systems in QSP(η ̸=0) could pos-
sess and their geometric properties encoded in such configurations. The classification
presented here is taken modulo the action of the group of real affine transformations
and time rescaling and it is given in terms of affine invariant polynomials. It yields a
total of 144 distinct configurations. The obtained classification is an algorithm which
makes it possible for any given real quadratic differential system in QSP(η ̸=0) to specify
its configuration of invariant parabolas and straight lines. This work will prove helpful
in studying the integrability of the systems in QSP(η ̸=0).
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1 Introduction and statement of main results

For every planar differential system of the form

dx
dt

= P(x, y),
dy
dt

= Q(x, y), (1.1)
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where P, Q ∈ R[x, y], that is, P and Q are polynomials in x and y with real coefficients, we
associate the vector field

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

The degree of such a system is defined as the integer m = max(deg P, deg Q). In particular,
system (1.1) is called a quadratic differential system when m = 2; here, QS denotes the entire
class of real quadratic differential systems. From now on, we assume that P and Q are coprime
polynomials. Otherwise, by an appropriate rescaling of time, system (1.1) can be reduced to a
linear or constant system. Quadratic differential systems satisfying this coprimality condition
are referred to as non-degenerate quadratic systems.

Quadratic systems appear in various research fields including models of population dy-
namics [6], fluid dynamics [9], control systems [11] and even quantum dynamics [2]. They are
also of theoretical interest because we have open problems on these systems stated more than
a century ago; see for example [1] for a bibliographical survey.

Given f ∈ C[x, y], we say that the algebraic curve f (x, y) = 0 is an invariant algebraic curve
of systems (1.1) if there exists K ∈ C[x, y] (it is called cofactor of the invariant curve f = 0)
such that

P
∂ f
∂x

+ Q
∂ f
∂y

= K f .

Quadratic systems with invariant algebraic curves have been studied extensively by many
authors. For example, Druzhkova [10] (1968) presented necessary and sufficient conditions on
the coefficients of a quadratic system, as well as on the coefficients of a conic, for the conic to be
an invariant curve of the system. Christopher [7] (1989) provided a normal form for quadratic
systems possessing invariant parabolas. Qin Yuan-xum [18] (1996) investigated quadratic sys-
tems having an ellipse as a limit cycle. Cairó and Llibre [5] (2002) studied quadratic systems
with invariant algebraic conics in the context of Darboux integrability. Schlomiuk and Vulpe
[19, 21] (2004, 2008) classified quadratic systems with invariant straight lines of total multi-
plicity at least four, according to their geometric configurations. Many other works have also
contributed to this topic.

The primary objective of this research is to study non-degenerate quadratic systems that
possess invariant conics. Irreducible affine conics over the real field R include hyperbolas,
ellipses, and parabolas. These conics can be distinguished by analyzing their behavior at
infinity. Specifically, a hyperbola is a real irreducible affine conic with two distinct real points
at infinity. A parabola, in contrast, has a single real point at infinity, where the conic meets
the line at infinity with multiplicity two. An ellipse, on the other hand, has two complex
conjugate points at infinity.

The classifications of QS with invariant hyperbolas [14, 15] and with invariant ellipses
[13, 16] were obtained in previous works. In this study, we focus on the class QSP of non-
degenerate quadratic differential systems that possess an invariant parabola. The novel con-
tribution of this work lies in adopting a global approach, employing global tools such as the
theory of invariant polynomials for differential systems.

The group of real affine transformations combined with time rescaling acts on the class
QS. Consequently, modulo this group action, quadratic systems in this class depend on five
essential parameters. The same group also acts on the subclass QSP, and, modulo the group
action, systems in QSP depend on at most three parameters. To ensure our study is intrinsic
and independent of any particular normal form representation, we employ invariant polyno-
mials and geometric invariants to carry out the desired classification.
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In the paper [24], the necessary and sufficient conditions for a non-degenerate quadratic
system in QS to have invariant parabolas are established. Moreover, [24] presents invariant
criteria that determine the number, position, and multiplicity of such parabolas.

The present paper is a continuation of [24]. More precisely, using the conditions from
that work, we classify all possible configurations of invariant parabolas and invariant lines
that a system in QSP(η ̸=0) may possess. The investigation of configurations within the family
QSP(η=0) is currently in progress.

A key concept in this study is the notion of a configuration of algebraic invariant curves for
a polynomial differential system. This concept was first introduced in [22], with an earlier
version focusing solely on invariant lines presented in [19]. Following Darboux’s definition,
an algebraic solution of a polynomial differential system is an algebraic invariant curve defined
by an irreducible polynomial over C.

Definition 1.1. A configuration of invariant algebraic curves of a real polynomial differential
system is defined as a finite set of algebraic invariant curves of the system, each endowed
with its multiplicity, together with the real singularities, whether finite or infinite, located on
these curves, each also endowed with its multiplicity.

It is worth noting that [8] introduces various notions of multiplicity for an algebraic in-
variant curve, including infinitesimal, integrable, algebraic, geometric, and holonomic multi-
plicities. In this work, we adopt the concept of geometric multiplicity, defined via perturbations
within the family QS as follows.

Definition 1.2. An invariant conic

Φ(x, y) = p + qx + ry + sx2 + 2vxy + uy2 = 0,

with (s, v, u) ̸= (0, 0, 0) and parameters (p, q, r, s, v, u) ∈ C6, for a quadratic vector field X,
is said to have multiplicity m if there exists a sequence of real quadratic vector fields {Xk}
converging to X (under the topology induced by their coefficients on the sphere S11) such that
each Xk admits m distinct (complex) invariant conics

Φ1
k = 0, . . . , Φm

k = 0,

all converging to Φ = 0 as k → ∞ (under the topology induced by their coefficients on
the sphere S5). Moreover, this property does not hold for m + 1. When an invariant conic
Φ(x, y) = 0 has multiplicity one, it is called simple.

We note that two non-equivalent systems, modulo the group action, may have the “same
configuration” of invariant parabolas and straight lines. Therefore, it is necessary to define
when two configurations are considered “the same” or equivalent.

Definition 1.3. Suppose we have two systems (S1) and (S2) in QSP, each with a finite number
of singularities (finite or infinite), a finite set of invariant parabolas

Pi : gi(x, y) = 0, i = 1, . . . , k,

of (S1) (respectively
P ′

i : g′i(x, y) = 0, i = 1, . . . , k,

of (S2)), and a finite set (possibly empty) of invariant straight lines

Lj : f j(x, y) = 0, j = 1, . . . , k′,
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of (S1) (respectively
L′

j : f ′j (x, y) = 0, j = 1, . . . , k′,

of (S2)). We say that the configurations C1 and C2 of parabolas and lines of these systems are
equivalent if there exist one-to-one correspondences

ϕp : {Pi} → {P ′
i } and ϕl : {Lj} → {L′

j}

such that:

(i) ϕp and ϕl preserve multiplicities of parabolas and lines, and map real invariant curves
to real invariant curves, and complex invariant curves to complex invariant curves;

(ii) for each parabola P : g(x, y) = 0 in C1 (respectively each line L : f (x, y) = 0), there is a
one-to-one correspondence between the real singularities on P (respectively on L) and
the real singularities on ϕp(P) (respectively on ϕl(L)), preserving both their multiplici-
ties and locations;

(iii) furthermore, consider the total curves

F : ∏
i

Gi(X, Y, Z) · ∏
j

Fj(X, Y, Z) · Z = 0,

and

F ′ : ∏
i

G′
i(X, Y, Z) · ∏

j
F′

j (X, Y, Z) · Z = 0,

where Gi(X, Y, Z) = 0 and Fj(X, Y, Z) = 0 (respectively G′
i(X, Y, Z)= 0 and F′

j (X, Y, Z)=
0) are the projective completions of Pi and Lj (respectively P ′

i and L′
j). Then there is a

correspondence ψ between the singularities of F and F ′, preserving their multiplicities
as singularities of the total curves.

Our main results are summarized in the following theorem.

Main Theorem. Consider the class QSP(η ̸=0) of all non-degenerate quadratic differential sys-
tems (1.1) possessing an invariant parabola and three distinct infinite singularities (real or complex).

(A) This family is classified according to the configurations of invariant parabolas and invariant
straight lines, resulting in 144 distinct configurations. Among these, 112 configurations belong
to the subclass QSP(η>0) and 32 to the subclass QSP(η<0). This geometric classification is
illustrated in Figures 1.1 and 1.2, and is characterized by necessary and sufficient invariant
conditions presented in Diagrams 1.1, 1.2, and 1.3.

(B) Using 70 invariant polynomials, we derive the bifurcation diagram in the space R12 of the coeffi-
cients of systems in QSP(η ̸=0). These diagrams, shown in Diagrams 1.1, 1.2, and 1.3, classify the
systems according to their configurations of invariant parabolas and straight lines. Furthermore,
the diagrams provide an algorithmic procedure to compute the configuration of any quadratic
differential system with an invariant parabola, irrespective of its chosen normal form.

(C) Figures 1.1 and 1.2 present all possible configurations for systems in the subclasses QSP(η>0)
and QSP(η<0), respectively. We prove that all 144 configurations are realizable within QSP(η ̸=0),
and that these configurations are topologically distinct. This proof, based on geometric invariants,
is provided in Subsection 3.4 and is illustrated in Diagrams 3.1 and 3.2.
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Figure 1.1: Configurations of systems in QSP in the case η > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case η > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case η > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case η > 0.
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Figure 1.2: Configurations of systems in QSP in the case η < 0.
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Diagram 1.1: Conditions for the configurations of systems in QSP in the case
η > 0, ζ1 ̸= 0.
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Diagram 1.1 (continued): Conditions for the configurations of systems in QSP in
the case η > 0, ζ1 ̸= 0.
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Diagram 1.1 (continued): Conditions for the configurations of systems in QSP in
the case η > 0, ζ1 ̸= 0.
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Figure 1.2 (continued): Configurations of systems in QSP in the case η < 0.

Diagram 1.1 (continued): Conditions for the configurations of systems in QSP in
the case η > 0, ζ1 ̸= 0.
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Diagram 1.2: Conditions for the configurations of systems in QSP in the case
η > 0, ζ1 = 0.
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Diagram 1.2 (continued): Conditions for the configurations of systems in QSP in
the case η > 0, ζ1 = 0.
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Diagram 1.3: Conditions for the configurations of systems in QSP in the case
η < 0.
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Remark 1.4. Every branch of the graphs in Diagrams 1.1, 1.2, and 1.3 terminates at a unique
configuration Config.P .1 through Config.P .144, with a single exception. Specifically, in Di-
agram 1.1 (page 11), there is a branch that leads to an indeterminacy between two config-
urations: either Config.P .32 or Config.P .33. We are convinced that there exists an invariant
polynomial capable of distinguishing between these two configurations, although we have not
yet identified it. The determination of such an invariant remains an open problem.

2 Preliminaries

Consider real quadratic systems of the form:

dx
dt

= p0 + p1(x, y) + p2(x, y) ≡ P(x, y),

dy
dt

= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),
(2.1)

where pi and qi (i = 0, 1, 2) are homogeneous polynomials of degree i in x and y:

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

Such a system (2.1) can be identified with a point in R12. Let

ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02),

and consider the polynomial ring R[a00, . . . , a02, b00, . . . , b02, x, y], which we denote by R[ã, x, y].
It is known that the group Aff (2, R) of affine transformations of the plane acts on the set

QS of all quadratic differential systems (2.1) (cf. [20]). For every subgroup G ⊆ Aff (2, R),
there is an induced action of G on QS.

We can identify the set QS with a subset of R12 via the map QS → R12, which associates
to each system (2.1) the 12-tuple ã = (a00, . . . , b02) of its coefficients.

To study this group action, we associate to the systems certain polynomials in x, y and the
system parameters that transform in a controlled way under the action. These are known as
GL-comitants, T-comitants, and CT-comitants. For detailed definitions and constructions of
these comitants, we refer the reader to [20] (see also [1]).

2.1 The main invariant polynomials associated to invariant parabolas

We single out the following five polynomials, which serve as basic ingredients in constructing
invariant polynomials for systems (2.1):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2),

Di(ã, x, y) =
∂pi

∂x
+

∂qi

∂y
, (i = 1, 2).

(2.2)

As shown in [23], these polynomials, which are linear in the coefficients of systems (2.1), are
GL-comitants of these systems.

For f , g ∈ R[ã, x, y], we define the transvectant of index k of ( f , g) by

( f , g)(k) =
k

∑
h=0

(−1)h
(

k
h

)
∂k f

∂xk−h∂yh · ∂kg
∂xh∂yk−h .

The resulting polynomial ( f , g)(k) belongs to R[ã, x, y] (cf. [12, 17]).
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Proposition 2.1 (see [25]). Any GL-comitant of systems (2.1) can be constructed from the ele-
ments (2.2) by using the operations +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 2.2. We point out that the elements (2.2) generate the entire set of GL-comitants, and
consequently also the full set of affine comitants and T-comitants, since any affine comitant
and any T-comitant can be constructed from GL-comitants using the same operations: +, −,
×, and (∗, ∗)(k).

We construct the following GL-comitants of second degree with respect to the coefficients
of the initial systems:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(2.3)

Using these GL-comitants, together with the polynomials defined in (2.2), we construct
additional invariant polynomials. To enable the direct computation of the required invariant
polynomials for each canonical system, we now define a family of T-comitants expressed in
terms of the polynomials Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 + D2

2
)(2)

/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[

D1(2T9 − T8)− 3 (C1, T9)
(1) − D2(3T7 + D1D2)

]
/72,

F̂ =
[
6D2

1(D2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(

C2, D̂
)(2)

+120
(

D2, D̂
)(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)
]

/144,

K̂ = (T8 + 4T9 + 4D2
2)/72,

Ĥ = (8T9 − T8 + 2D2
2)/72,

B̂ =
{

16D1 (D2, T8)
(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1) (3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1) (27C1T4 − 18C1D2

1 −32D1T2 + 32 (C0, T5)
(1) )

+ 6 (D2, T7)
(1) [8C0(T8 − 12T9) − 12C1(D1D2 + T7)

+ D1(26C2D1 + 32T5) +C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D2

1
]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)
− 32D1T8 (D2, T2)

(1) + 9D2
2T4 (T6 − 2T7)− 16D1 (C2, T8)

(1) (D2
1 + 4T3

)
+ 12D1 (C1, T8)

(2) (C1D2 − 2C2D1) + 6D1D2T4
(
T8 − 7D2

2 − 42T9
)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) + D2 (C0, T6)
(1)

]
−

− 16D1D2T3
(
2D2

2 + 3T8
)
− 4D3

1D2
(

D2
2 + 3T8 + 6T9

)
+ 6D2

1D2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833),

These polynomials, together with those defined in (2.2) and (2.3), will serve as fundamental
building blocks for constructing affine invariant polynomials for systems (2.1).
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The following 42 affine invariants, labeled A1, . . . , A42, constitute a minimal polynomial
basis of affine invariants up to degree 12. This result was established in [4], where the invari-
ants A1, . . . , A42 were explicitly constructed using the aforementioned building blocks:

A1 = Â,

A2 = (C2, D̂)(3)/12,

A3 =
[
C2, D2)

(1), D2
)(1), D2

)(1)/48,

A4 = (Ĥ, Ĥ)(2),

A5 = (Ĥ, K̂)(2)/2,

A6 = (Ê, Ĥ)(2)/2,

A7 =
[
C2, Ê)(2), D2

)(1)/8,

A8 =
[
D̂, Ĥ)(2), D2

)(1)/8,

A9 =
[
D̂, D2)

(1), D2
)(1), D2

)(1)/48,

A10 =
[
D̂, K̂)(2), D2

)(1)/8,

A11 = (F̂, K̂)(2)/4,

A12 = (F̂, Ĥ)(2)/4,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2), D2
)(1)/24,

A14 = (B̂, C2)
(3)/36,

A15 = (Ê, F̂)(2)/4,

A16 =
[
Ê, D2)

(1), C2
)(1), K̂

)(2)/16,

A17 =
[
D̂, D̂)(2), D2

)(1), D2
)(1)/64,

A18 =
[
D̂, F̂)(2), D2

)(1)/16,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)/16,

A20 =
[
C2, D̂)(2), F̂

)(2)/16,

A21 =
[
D̂, D̂)(2), K̂

)(2)/16,

A22 =
[
C2, D̂)(1), D2

)(1), D2
)(1), D2

)(1)D2
)(1)/1152,

A23 =
[
F̂, Ĥ)(1), K̂

)(2)/8,

A24 =
[
C2, D̂)(2), K̂

)(1), Ĥ
)(2)/32,

A25 =
[
D̂, D̂)(2), Ê

)(2)/16,

A26 = (B̂, D̂)(3)/36,

A27 =
[
B̂, D2)

(1), Ĥ
)(2)/24,

A28 =
[
C2, K̂)(2), D̂

)(1), Ê
)(2)/16,

A29 =
[
D̂, F̂)(1), D̂

)(3)/96,

A30 =
[
C2, D̂)(2), D̂

)(1), D̂
)(3)/288,

A31 =
[
D̂, D̂)(2), K̂

)(1), Ĥ
)(2)/64,
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A32 =
[
D̂, D̂)(2), D2

)(1), Ĥ
)(1), D2

)(1)/64,

A33 =
[
D̂, D2)

(1), F̂
)(1), D2

)(1), D2
)(1)/128,

A34 =
[
D̂, D̂)(2), D2

)(1), K̂
)(1), D2

)(1)/64,

A35 =
[
D̂, D̂)(2), Ê

)(1), D2
)(1), D2

)(1)/128,

A36 =
[
D̂, Ê)(2), D̂

)(1), Ĥ
)(2)/16,

A37 =
[
D̂, D̂)(2), D̂

)(1), D̂
)(3)/576,

A38 =
[
C2, D̂)(2), D̂

)(2), D̂
)(1), Ĥ

)(2)/64,

A39 =
[
D̂, D̂)(2), F̂

)(1), Ĥ
)(2)/64,

A40 =
[
D̂, D̂)(2), F̂

)(1), K̂
)(2)/64,

A41 =
[
C2, D̂)(2), D̂

)(2), F̂
)(1), D2

)(1)/64,

A42 =
[
D̂, F̂)(2), F̂

)(1), D2
)(1)/16.

In the above list, the bracket “[” is used as a typographical device to avoid writing up to five
consecutive parentheses “(” in some of the expressions.

Using the elements of the minimal polynomial basis listed above, we construct two groups
of affine invariant polynomials. The first group contains invariant polynomials associated
with the existence of an invariant parabola for a quadratic system, and they are:

χ1 = 32A3 + 45A4 − 160A5;

χ2 = 32A8(14A8 − 48A9 + 37A10 + 24A11) + 16A5(76A17 + 74A18 + 313A19 − 80A20

− 167A21) + A4(160A2
2 + 368A18 − 3363A19 + 736A20 + 2109A21) + 32(17A2

10

+ 27A10A11 + 24A2
11 − 48A9A12 + 51A10A12 + 24A11A12 + 288A6A14 − 96A7A14);

χ3 = 6520480A20(407A18 − 2253A21) + 24A18(1057715458A19 + 5944853225A21)

+ 28800A14(1872476A25 − 122259A26) + 144A12(3620283092A29 − 1554910481A30)

+ 1440A15(107225339A25 − 19561440A26)− 72A11(8198511476A29 − 2965514443A30)

+ 652048(4544A2
18 + 125A2

20 − 8955A2A42)− 9(264364688A2
19 + 39417454842A19A21

− 54474141921A2
21) + 3448898760A19A20;

χ4 = 62713A2
10 + 45787A10A11 − 157928A2

11 + 81202A10A12 + A19353474A11 A12 − 145848A2
12

+ 64320A7A15 + 28600A5A17;

ζ1 = 13A4 − 24A5;

ζ2 = − A4;

ζ3 = 16A5 − 17A4;

ζ4 = 9A1 A4 − 7A1A5 − 2A16;

ζ5 = 166A8 + 384A9 − 1120A10 − 512A11 − 62A12;

ζ6 = A6;

ζ7 = 40(71436A7A20 − 640883A7A21 + 1008622A1A32) + 12A12(3585035A14 + 14919259A15)

− 5(8092193A10 + 15970731A11)A14 − (129780821A10 + 269944167A11)A15;

ζ8 = A2;
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ζ9 = 1040(2256A7A15 + 143A3A21)− 264(162941A10 + 315202A11)A12

+ 3A11(25887132A10 + 24385177A11) + 20603609A2
10 + 24896016A2

12;

ζ10 = 250A2
1 + 34A11 − 41A12;

R1 = 531A2A4 − 1472A2A5 − 8352A1A6 + 320A22 − 3216A23 + 1488A24;

R2 = 15A10 − 10A8 − 6A9;

R3 = 4800(6650951968A14A15 − 2382132830A2
14 − 9860550485A2

15) + 1600(4765089473A11

− 7838161089A12)A20 + 640(15664652914A11 − 50944340271A12)A18

− 6(20392663986679A10 + 34357804389813A11 − 739275727012A12)A21

+ 3(46944212550227A10 + 83455057317969A11 − 22899810934956A12)A19;

R4 = 251A2
1 + 25A12;

R7 = 62250A2
1 + 8956A9 − 46223A10 − 50129A11 + 14766A12.

The invariant polynomials from the second group are responsible for the classification of
the configurations of invariant parabolas and lines. They are:

ξ1 = 342A2
1A2 + A2(35A10 − 15A8 − 16A9 + 97A11 − 83A12)− 48A1(4A14 + 3A15)

+ 16(2A32 + A33 − 3A34) + 90A31;

ξ2 = − A19;

ξ3 = 12(49836514A2
8 − 40804544A8A9 − 63384469A8A10 − 4515985A2

10 + 93824435A8A11

− 23552547A10A11 + 51595312A2
11 + 202411827A2

1A12)− 763176315A4A21

− 16(30603408A9A12 + 10917387A7A14 + 14011860A7A15 − 75865539A5A17

− 115398446A5A18 − 54568383A5A21)− 4(86656770A6A14 + 404823654A6A15

− 68396637A5A19 + 25391678A5A20)− 6A12(154041735A8 + 47473233A10

− 170661233A11 + 202411827A12);

ξ4 = 800(175A2A5A7 − 336A1A3A8 − 16500A13A14 − 9300A13A15 − 47001A6A22

+ 39861A7A23 − 3150A6A24 − 10242A7A24 + 168792A5A28) + 240(173478A8A16

+ 128774A10A16 + 151602A11A16 + 134102A12A16 + 8799A4A27 − 134102A5A27)

− 1879552(3A9A16 − A7A22) + 75(50400A6A23 − 646151A4A28);

ξ5 = 2000(802A13A14 + 315A6A23 − 210A6A24) + 320(28A1A3A11 − 13757A8A16

− 11282A12A16 + 3336A7A24 + 11282A5A27) + 80(16038A13A15 − 30398A10A16

− 36154A11A16 + 46738A6A22 − 45142A7A23 − 162339A5A28) + 151552(3A9A16

− A7 A22)− 15A4(28392A27 − 313721A28);

ξ6 = 1536(16671538A7A14 − 5655800A2
11 − 5655800A11A12 − 134975925A6A15

+ 14236220A7A15) + 128(42330182A8A9 + 279065017A8A11 − 857954A8A12

+ 138313062A9A12 − 633595086A6A14 − 35417298A5A20) + 64(171565045A2
8

+ 343921603A5A17)− 32(1111806317A8A10 + 256225409A2
10 + 874265715A10A11

+ 2536914399A10A12 − 936841383A5A18)− 16A5(2168875001A19 + 1048355233A21)

+ A4(26458433203A19 − 4734012269A21);

ξ7 = − A4
[
3200A12(14657A8 − 1615148A10 + 318175A11)− 640(388968A2

9 − 7748782A2
10

− 592379A9A12)− 160(13079737A8A10 − 27509045A8A11 − 63353923A9A11

− 16215395A10 A11 − 36662125A2
11) + 4121433952A9A10

]
;
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ξ8 = − A4
[
512A9(1275434A10 + 2193137A11 − 170333A12)− 1280(30087A2

9 + 424036A2
10

+ 1052798A10A11 + 48550A2
11 + 61603A8A12)− 640(608587A8A10 + 248041A8A11

+ 430261A10A12 + 525475A11A12)
]
;

ξ9 = − A4
[
48(675908847A8A9 + 1141726617A9A12 + 7216376855A10A12

− 4015621128A6A14 + 3915909450A7A15)− 12(16745223889A2
8 + 5997051735A8A11

− 26372062499A10A11 + 2601951027A8A12 − 7916516650A7A14 − 30105649725A6A15

+ 20512413539A5A17 − 1497206278A4A19 − 4791714129A4A21) + 2(220220676003A8A10

+ 58687175103A2
10 + 14685562719A2

11 + 9716839839A11A12 − 219193688911A5A18

− 4467110471A5A20) + 3A5(36033875127A19 − 37652431103A21)
]
;

ξ10 = A4
[
48(568199091031A8A9 − 248186616391A9A10 + 314207594667A9A11

+ 5804879973A9A12 − 3905825755777A10A12 − 2095407390920A6A14

− 546799764750A7A15) + 12(6550908482493A2
8 − 3402501855145A8A11

− 3448022811579A10A11 + 2284925158471A8A12 + 2482932379806A7A14

− 11017448610465A6A15 + 5894909506479A5A17)− 2(131290745988327A8A10

− 17334476527245A2
10 − 11980168965A2

11 + 21428060568795A11A12

− 62352140313275A5A18 + 3924064256285A5A20)− 3(2258722903315A5A19

+ 9533558573843A4A21 − 10218122423819A5A21)
]
;

ξ11 = ζ1ζ2ξ6;

ξ12 = 1288A2
1 + 117A10 + 351A11 − 352A12;

ξ13 = 61A2
2 − 20A17 − 8A18 + 24A19 − 28A20 + 12A21;

ξ14 = 9854A11 − 3005A8 − 3296A9 + 13578A10 − 991A12;

ξ15 = 8A5 − 9A4;

ξ16 = (525A8 − 4448A9 + 10554A10 − 1378A11 + 8087A12);

ξ17 = 10005A8 + 9856A9 − 38348A10 − 27404A11 + 8371A12;

ξ18 = 2240(15452233775A2
14 + 742923092360A14A15 − 145263086200A2

15

+ 10151798384A11A18 − 68919094926A12A18 − 14663220305A11A20

+ 7194838365A12A20) + 16A19(88266907919051A8 + 12824946044853A11

+ 119819326860153A12)− 7A21(138073671324637A10 + 258358507987439A11

− 32813284182036A12);

ξ19 = 429A9(629A10 + 1275A11 − 900A12) + 100(2145A8A11 − 1595A5A17 − 2970A5A18

+ 2886A2A23 − 559A2A24);

ξ20 = 4A2(47A2
2 − 468A18 + 3478A19 + 9A20)− 9189A2A21 + 12(−682A1A25 + 2592A1A26

+ 395A38 + 35A39);

ξ21 = 24(675906A40 − 672409A39 + 6578A41 + 110106A42)− 73404A2(74A18 + A20)

+ 4(99911A3
2 − 2048846A38)− 15133791A2A21;

ξ22 = 84A12 − 68A10 − 141A11;

ξ23 = 5A8 − 3A9;

ξ24 = 625A2(12A2A3 − 775A1A6)− 62(13500A2
1 + 275A8 − 276A9)A9 + 10A3(2561A17

+ 3240A18 + 2550A19);
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ξ25 = − (46A18 + 537A19 + 134A20);

ξ26 = 41A1 A2 + 16A14 − 18A15;

ξ27 = A1;

ξ28 = 64(72137434664A2
8 + 3322490880A2

9 − 58216412276A2
10 − 217656099219A10A11

− 63098236389A2
11 − 250756327503A10A12 − 71858710389A11A12 + 96A9(449920640A11

+ 1009660963A12) + 6A8(21795888048A9 − 66020231422A10 − 21118997424A11

+ 2573485725A12))− 384(62739943233A6A14 − 27065693406A7A14 + 7592410800A6A15

− 10442342780A7A15)+A4(2998959134256A17+4635359414448A18+1132776129074A19

− 1187818900002A20 − 5542617623395A21) + 32A3(19078937382A20 + 81853956367A21);

ξ29 = 497213324620A2
8 − 1001736600522A2

10 − 870653569536A9A11 + 337754949134A2
11

+ A8(2170429037822A10 − 1858453397512A9 + 2112595332132A11 − 304022217484A12)

− 987799827976A9A12 + 949933240214A11A12 + A10(−648979472052A11

+ 956487534504A12)− 4(125652578829A6A14 + 240347919318A7A14

− 775425835368A6A15 + 405563103412A7A15)− A4(197626785161A20

+ 1540932760870A21) + A5(1910970964424A17 + 2668708281714A18 + 182967974851A19

+ 280452031438A20 + 2136843181298A21);

ξ30 = 3512A10 − 1695A8 − 544A9 + 4576A11 − 3329A12.

2.2 Results involving the use of polynomial invariants

A few more definitions and results, which play an important role in the proof of part (A) of
the Main Theorem, are needed. We do not prove these results here but indicate where they
can be found.

Consider the differential operator L = x · L2 − y · L1, introduced in [3], acting on R[ã, x, y],
where the operators L1 and L2 are given by

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1
2

a01
∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1
2

b01
∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1
2

a10
∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1
2

b10
∂

∂b11
.

Using the differential operator L introduced above and the affine invariant

µ0 =
Resx

(
p2(ã, x, y), q2(ã, x, y)

)
y4 ,

we construct the following family of polynomials:

µi(ã, x, y) =
1
i!
L(i)(µ0), i = 1, . . . , 4,

where the iterated operator L(i) is defined recursively by

L(i)(µ0) = L
(
L(i−1)(µ0)

)
, with L(0)(µ0) = µ0.

These polynomials µi are GL(2, R)-comitants of the quadratic systems (2.1), as established
in [3]. Their geometric interpretation is detailed in Lemma 5.2 of [1].



24 R. D. S. Oliveira, A. C. Rezende, D. Schlomiuk and N. Vulpe

From these invariant polynomials, one constructs the affine invariant polynomials D and
R, which characterize the existence of multiple finite singularities in quadratic differential
systems:

D =
1
48

[
3
(
(µ3, µ3)

(2), µ2
)(2) − (

6µ0µ4 − 3µ1µ3 + µ2
2, µ4

)(4)] , R = 3µ2
1 − 8µ0µ2,

where (∗, ∗)(k) denotes the bilinear operation transvectant.
Next, we construct the following T-comitants (for the definition of T-comitants, see [20]),

which play a fundamental role in characterizing the existence of invariant straight lines for
systems (2.1):

B3(ã, x, y) = (C2, D̂)(1) = Jacob(C2, D̂),

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̂)(3),

B1(ã) =
Resx(C2, D̂)

y9 = −2−93−8 (B2, B3)
(4) .

The following result, whose proof can be found in [19], provides a necessary condition for
the existence of invariant straight lines in quadratic differential systems.

Lemma 2.3 (see [19]). For system (2.1) to possess invariant straight lines in one, two, or three distinct
directions in the affine plane, it is necessary that the following conditions hold, respectively:

B1 = 0, B2 = 0, B3 = 0.

In order to detect the presence of parallel invariant straight lines, we require the following
invariant polynomials:

N(ã, x, y) = D2
2 + T8 − 2T9 = 9N̂,

θ(ã) = 2A5 − A4
(
≡ Discriminant

(
N(ã, x, y)

)
/1296

)
.

With these definitions, the following necessary condition holds.

Lemma 2.4 (see [19]). A necessary condition for the existence of one couple (respectively two couples)
of parallel invariant straight lines in system (2.1), corresponding to a parameter vector ã ∈ R12, is that
θ(ã) = 0 (respectively N(ã, x, y) = 0).

Next, we introduce some important GL-comitants relevant to the study of invariant conics.
Let us consider

C2(ã, x, y) = y p2(ã, x, y)− x q2(ã, x, y),

which defines a cubic binary form in x and y. Using this form, we define the following
polynomials:

η = Discrim[C2], M = Hessian[C2].

It is worth noting (see [23]) that the invariant polynomials C2, η, and M are responsible for
controlling the number of infinite singularities (real or complex) of system (2.1).

Remark 2.5. In order to describe the various kinds of multiplicities for infinite singularities,
we use the concepts and notations introduced in [19]. Thus, we denote by (a, b) the maximum
number a (respectively, b) of infinite (respectively, finite) singularities that can be obtained by
perturbation of a multiple infinite singularity. In this case, we say that an infinite singular
point has multiplicity (a, b).
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In this paper, we consider only the case η ̸= 0, that is, η > 0 or η < 0. In the first case,
according to [23], a quadratic system possesses at infinity three real distinct singularities,
whereas in the second case, it possesses one real and two complex singularities.

In [24], necessary and sufficient conditions for a system to belong to the family QSP of
quadratic systems possessing at least one invariant parabola, in terms of invariant polynomi-
als, are determined.

We extract from [24] only the information related to the case η ̸= 0, and for this, we need
some notations.

Definition 2.6. By the direction of an invariant parabola of a quadratic system (S), we mean
the direction of its axis of symmetry, which intersects the invariant line Z = 0 at an infinite
singular point of (S).

In order to distinguish the invariant parabolas that a quadratic system could have, we use
the following notations:

• ∪ for a simple invariant parabola;

• ⋓ for two simple invariant parabolas in the same direction (they could intersect);

• ∪⊂ for two simple invariant parabolas in different directions;

• ∪∪∪2 for one double invariant parabola;

• ⋓⊂ for three simple invariant parabolas: two in one direction and one in another
direction.

The proof of the next proposition can be found in [24].

Proposition 2.7. Assume that for a non-degenerate arbitrary quadratic system, the conditions η > 0
and ζ1 ̸= 0 are satisfied. Then, this system could possess invariant parabolas only in one direction.
More exactly, it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and ∪∪∪2.
Moreover, this system has one of the above sets of parabolas if and only if χ1 = χ2 = 0 and one of the
following sets of conditions are satisfied, correspondingly:

(A1) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(A2) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;
(A3) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒∪∪∪2;
(A4) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;
(A5) ζ2 ̸= 0, ζ3 = 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(A6) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0 ζ5 ̸= 0 ⇒ ⋓;
(A7) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒∪∪∪2;
(A8) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;
(A9) ζ2 = 0, ζ6 ̸= 0, R1 = 0, R2 ̸= 0 ⇒ ∪.

Furthermore, in the case of the existence of an invariant parabola, a system with η > 0 and ζ1 ̸= 0
could be brought via an affine transformation and time rescaling to the following canonical form:

ẋ = m + nx − 1
2
(1 + g)y + gx2 + xy, ẏ = 2mx + 2ny + (g − 1)xy + 2y2 (2.4)

possessing the invariant parabola Φ(x, y) = x2 − y = 0.
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However, examining the conditions (A1)–(A9), we detect that some of the sets of these
conditions could be joined. More exactly, we observe that (A1) and (A5) contain the same
conditions except for the condition involving ζ3. Therefore, by eliminating the conditions
involving only ζ3, we obtain a new set of conditions which we denote by (A∗

1 ): ζ2 ̸= 0, ζ4 ̸=
0, R1 ̸= 0.

We perform the analogous operation on (A2) and (A6) (respectively (A3) and (A7);
(A4) and (A8)), resulting in the new conditions (A∗

2 ) (respectively (A∗
3 ); (A∗

4 )).
Thus, we can replace the first part of Proposition 2.7 obtaining the following one:

Proposition 2.7∗. Assume that for a non-degenerate arbitrary quadratic system, the conditions η > 0
and ζ1 ̸= 0 are satisfied. Then, this system could possess invariant parabolas only in one direction.
More exactly, it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and ∪∪∪2.
Moreover, this system has one of the above sets of parabolas if and only if χ1 = χ2 = 0 and one of the
following sets of conditions are satisfied, correspondingly:

(A∗
1 ) ζ2 ̸= 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(A∗
2 ) ζ2 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;

(A∗
3 ) ζ2 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒∪∪∪2;

(A∗
4 ) ζ2 ̸= 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;

(A∗
5 ) ζ2 = 0, ζ6 ̸= 0, R1 = 0, R2 ̸= 0 ⇒ ∪.

The proof of the next two propositions could also be found in [24].

Proposition 2.8. Assume that for a non-degenerate arbitrary quadratic system, the conditions η > 0
and ζ1 = 0 are satisfied. Then, this system could possess invariant parabolas in one or two directions.
More exactly, it could only possess one of the following sets of invariant parabolas: ∪, ⋓,∪∪∪2, ∪⊂ and
⋓⊂. Moreover, this system has one of the above sets of invariant parabolas if and only if χ1 = χ3 = 0
and one of the following sets of conditions are satisfied, correspondingly:

(B1) χ4 ̸= 0, ζ7 ̸= 0, R3 ̸= 0 ⇒ ∪;
(B2) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 ̸= 0 ⇒ ⋓;
(B3) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 = 0 ⇒∪∪∪2;
(B4) χ4 ̸= 0, ζ7 = 0, R4 = 0 ⇒ ∪;
(B5) χ4 = 0, ζ5 ̸= 0, ζ9 ̸= 0 ⇒ ∪⊂;
(B6) χ4 = 0, ζ5 ̸= 0, ζ9 = 0, ζ10 ̸= 0 ⇒ ∪;
(B7) χ4 = 0, ζ5 = 0, ζ6 ̸= 0 ⇒ ⋓⊂.

Furthermore, in the case of the existence of an invariant parabola, a system with η > 0 and ζ1 = 0
could be brought via an affine transformation and time rescaling to the systems (2.4) with g = 2.

Proposition 2.9. Assume that for a non-degenerate arbitrary quadratic system, the conditions η < 0
is satisfied. Then, this system could only possess one of the following sets of invariant parabolas:
∪, ⋓ and ∪∪∪2. Moreover, this system has one of the above sets of invariant parabolas if and only if
χ1 = χ2 = 0 and ζ1 ̸= 0 and one of the following sets of conditions are satisfied, correspondingly:

(E1) ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(E2) ζ4 = 0, R7 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;
(E3) ζ4 = 0, R7 ̸= 0, ζ5 = 0 ⇒∪∪∪2;
(E4) ζ4 = 0, R7 = 0, ζ5 ̸= 0 ⇒ ∪.

Furthermore, in the case of the existence of an invariant parabola, a system with η < 0 could be
brought via an affine transformation and time rescaling to the following canonical form:

ẋ = m + (2n − 1)x/2 + gx2 − gy/2 − xy, ẏ = 2mx − x2 + 2ny + gxy − 2y2, (2.5)
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with C2 = x(x2 + y2), possessing the invariant parabola Φ(x, y) = x2 − y = 0.

3 The proof of the Main Theorem

The statement (B) follows directly from the form of the conditions given in Diagrams 1.1, 1.2,
and 1.3. These conditions can be evaluated for any point a ∈ R12 corresponding to a quadratic
system satisfying η ̸= 0.

In order to prove the statement (A) of the Main Theorem, we must examine the sets of
conditions provided by each one of Propositions 2.7∗, 2.8, and 2.9.

3.1 Systems in QSP(η>0) with the condition ζ1 ̸= 0

In what follows, we examine the configurations of the systems in QSP(η>0) in each one of the
cases provided by Proposition 2.7∗. According to Proposition 2.7, we consider the canonical
form (2.4), i.e., the systems:

ẋ = m + nx − 1
2
(1 + g)y + gx2 + xy, ẏ = 2mx + 2ny + (g − 1)xy + 2y2, (3.1)

possessing the invariant parabola Φ(x, y) = x2 − y = 0.

3.1.1 The statement (A∗
1 )

For systems (3.1), we calculate:

ζ1 = 2(g − 2)(3 + g), ζ2 = 4g(1 + g),

ζ4 = (g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m + 2n + 6gn)/16,

R1 = − 15g(1 + g)(g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m + 2n + 6gn)/2,

B1 = m(g + 8m + 4n)(gn − 2m − n)(1 + 2g + g2 − 4m + 2n + 2gn)

× (g + 2g2 + g3 + 4m + 2n + 2gn)/4.

(3.2)

We consider two cases: B1 ̸= 0 and B1 = 0.

The case B1 ̸= 0. Then, according to Lemma 2.3, systems (3.1) could not possess any invari-
ant line.

We examine the finite singularities of these systems. Following [1, Proposition 5.1], we
calculate the invariant polynomial D = 48F2

1 F2, where

F1 = −4m2 + 2(g + 1)m(g2 − 2n)− (g + 1)2n2,

F2 = 108m2 + 2(g − 1)m
(
1 − 2g + g2 − 18n

)
+ n2(16n − 1 + 2g − g2).

(3.3)

Thus, we discuss two subcases: D ̸= 0 and D = 0.
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The subcase D ̸= 0. We determine that systems (3.1) possess four finite singularities
Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = − 2m + n + gn
g(1 + g)

, y1 =
2m

1 + g
; x2 =

1
6Z1/3

[
Y + (1 − g)Z1/3 +Z2/3],

y2 =
1

36Z
[
3(Y + 4n)Z + Y2Z1/3 − 2(g − 1)YZ2/3 − 2(g − 1)Z4/3 +Z5/3;

x3 =
1

12Z1/3

[
− (1 + i

√
3)Y + 2(1 − g)Z1/3 − (1 − i

√
3)Z2/3],

y3 = − 1
72Z

[
− 6(Y + 4n)Z + (1 − i

√
3)Y2Z1/3 − 2(1 + i

√
3)(g − 1)YZ2/3

− 2(1 − i
√

3)(g − 1)Z4/3 + (1 + i
√

3)Z5/3];
x4 =

1
12Z1/3

[
(−1 + i

√
3)Y + 2(1 − g)Z1/3 − (1 + i

√
3)Z2/3],

y4 = − 1
72Z

[
− 6(Y + 4n)Z + (1 + i

√
3)Y2Z1/3 − 2(1 − i

√
3)(g − 1)YZ2/3

− 2(1 + i
√

3)(g − 1)Z4/3 + (1 − i
√

3)Z5/3],

(3.4)

where

Z = 1 − 3g + 3g2 − g3 − 108m − 18n + 18gn + 6
√

3
√

F2, Y = (1 − g)2 − 12n.

Calculations yield:

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) = − F1

g2(1 + g)2 ,

and therefore we deduce that three singularities M2, M3 and M4 of systems (3.1) are located
on the invariant parabola. Moreover, M1 is located outside the parabola and could belong
to it if and only if the condition F1 = 0 holds, where F1 is given in (3.3). However, we have
D = 48F2

1 F2 ̸= 0, and hence on the parabola we always have exactly three distinct singularities.
On the other hand, according to [1, Proposition 5.1], if D > 0, systems (3.1) possess two

real and two complex finite singularities. For D < 0, we could either have four real or four
complex finite singularities. However, since M1 is a real singular point for these systems, we
conclude that in the case D < 0 we have four real finite distinct singularities.

Thus, since the real singularity M1 is outside the invariant parabola and all other three
finite singularities on the parabola (real or complex) are distinct and furthermore we could
not have any invariant line, we arrive at the configuration Config.P .1 if D < 0 and Config.P .2
if D > 0.

The subcase D = 0. This implies F1F2 = 0, and for systems (3.1), we calculate:

ξ1 = −6ζ4F1 ⇒ F1 = 0 ⇔ ξ1 = 0.

So we examine two possibilities: ξ1 ̸= 0 and ξ1 = 0.

1: The possibility ξ1 ̸= 0. Then F1 ̸= 0, and therefore the condition D = 0 implies F2 = 0.
We observe that the polynomial F2 is quadratic with respect to the parameter m, and we

calculate
Discrim [F2, m] = 4(1 − 2g + g2 − 12n)3.
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Therefore, since the parameters m, n, and g of systems (3.1) must be real, we conclude that
the condition 1 − 2g + g2 − 12n ≥ 0 has to be fulfilled. Setting a new parameter v by 1 − 2g +
g2 − 12n = v2 ≥ 0, we get n =

[
(g − 1)2 − v2]/12, and then we calculate

F2 =
1

432
[
216m − (1 − g + v)2(g − 1 + 2v)

][
216m − (1 − g − v)2(g − 1 − 2v)

]
= 0

and due to the change v 7→ −v, we may force the first factor to vanish. Then we obtain

m =
(1 − g + v)2(g − 1 + 2v)

216
,

and considering the expressions for the parameters m and n, we arrive at the two-parameter
family of systems

ẋ =
(1 − g + v)2(g − 1 + 2v)

216
+

(g − 1)2 − v2

12
x − 1

2
(1 + g)y + gx2 + xy,

ẏ =
(1 − g + v)2(g − 1 + 2v)

108
x +

(g − 1)2 − v2

6
y + (g − 1)xy + 2y2,

(3.5)

possessing the invariant parabola Φ(x, y) = x2 − y = 0. We observe that for the above systems,
we have the following conditions on the parameters g and v:

ζ1ζ2ζ4R1 ̸= 0 ⇔ g(g − 2)(1 + g)(3 + g)(2 + 4g − v)(4 + 8g + v) ̸= 0;

ξ1 ̸= 0 ⇔ (g − 2)(3 + g)(g − 1 − v)(2 + g − v)(2 + 4g − v)(4 + 8g + v)2

× (4 − 2g − 2g2 − 4v − 8gv + v2) ̸= 0;

B1 ̸= 0 ⇔ (g − 1 − v)(2 + g − v)(2 + 4g − v)(2g − 2 + v)(1 + 2g + v)(4 + 2g + v)

× (g − 1 + 2v)(2 + g + 2v) ̸= 0.

(3.6)

We determine that systems (3.5) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with
the coordinates

x1 =
1 − g + v

6
, y1 =

(1 − g + v)2

36
; x2 =

1 − g − 2v
6

, y2 =
(1 − g − 2v)2

36
;

x3 =
(1 − g + v)(5g2 − 4 − g + 4v + 5gv − v2)

54g(1 + g)
, y3 =

(1 − g + v)2(g − 1 + 2v)
108(1 + g)

.
(3.7)

We calculate

Φ(x1, y1) = Φ(x2, y2) = 0,

Φ(x3, y3) =
(g − 1 − v)2(2 + g − v)2(4 − 2g − 2g2 − 4v − 8gv + v2)

2916g2(1 + g)2 ,

and we conclude that the singular points M1 and M2 are located on the invariant parabola.
On the other hand, considering the conditions (3.6), we obtain that M3 will be located on

Φ(x, y) = 0 if and only if

α = 4 − 2g(1 + g)− 4v − 8gv + v2 = 0.

However, considering (3.6), we conclude that α ̸= 0 (due to ξ1 ̸= 0), and hence the singularity
M3 is not located on the invariant parabola in the considered case.
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We claim that M1 is a multiple singularity of systems (3.5). Indeed, applying the corre-
sponding translation, we could place M1 at the origin of coordinates and arrive at the systems

ẋ = − (g − v − 1)(4g − v + 2)
18

x − 4g − v + 2
6

y + gx2 + xy,

ẏ =
(g − v − 1)2(2g + v − 2)

54
x +

(g − v − 1)(2g + v − 2)
18

y + (g − 1)xy + 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M2.
Considering [1, Lemma 5.2], we calculate the following invariant polynomials: µ4 = µ3 =

0, and

µ2 = − 1
324

v(g − v − 1)(g − v + 2)
[
(2g + v − 2)x + 6y

][
g(g − v − 1)x + (2 + 4g − v)y

]
.

Therefore, by [1, Lemma 5.2, statement (ii)], the point M0 is of multiplicity at least 2. We
observe that due to the condition ξ1 ̸= 0, we have µ2 = 0 if and only if v = 0. In this case, we
calculate

µ2 = 0, µ1 =
1

27
(g − 1)(g + 2)

[
g(g − 1)x + 2(2g + 1)y

]
̸= 0,

due to ξ1 ̸= 0. According to [1, Lemma 5.2, statement (ii)], M0(0, 0) is a double point if v ̸= 0,
and it is a triple one if v = 0.

On the other hand, for systems (3.5), we have

ξ2 =
1

209952
(g − 1 − v)2(2 + g − v)2v2α2,

and due to the conditions (3.6), we conclude that the condition v = 0 is equivalent to ξ2 = 0.
Thus, for systems (3.5), we have the configuration Config.P .3 if ξ2 ̸= 0 and Config.P .4 if

ξ2 = 0.

2: The possibility ξ1 = 0. This implies F1 = 0, and since the polynomial F1 is quadratic with
respect to the parameter m, we calculate

Discrim [F1, m] = 4g2(1 + g)2(g2 − 4n).

Since g(g + 1) ̸= 0 (due to ζ2 ̸= 0), we must have g2 − 4n ≥ 0. So we set a new parameter u
as follows: g2 − 4n = u2 ≥ 0, and we get n = (g2 − u2)/4. Then, calculation yields

F1 = − 1
16

[
8m − (1 + g)(g + u)2][8m − (1 + g)(g − u)2] = 0,

and due to the change u 7→ −u, we may force the second factor to vanish. In this case, we
obtain

m =
(1 + g)(g − u)2

8
,

and considering the expression for the parameters m and n, we arrive at the two-parameter
family of systems

ẋ =
(1 + g)(g − u)2

8
+

g2 − u2

4
x − 1

2
(1 + g)y + gx2 + xy,

ẏ =
(1 + g)(g − u)2

4
x +

g2 − u2

2
y + (g − 1)xy + 2y2,

(3.8)
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possessing the invariant parabola Φ(x, y) = x2 − y = 0. We observe that for the above systems,
we have the following condition on the parameters g and u:

ζ1ζ2ζ4R1 ̸= 0 ⇔ (g − 2)g(1 + g)(3 + g)(1 + 2g + u)(1 + 5g + 5g2 − u − 2gu) ̸= 0;

B1 ̸= 0 ⇔ g(1 + g)(g − u)(1 + g − u)(1 + 2g − u)(−1 + u)(1 + u) ̸= 0.
(3.9)

We determine that systems (3.8) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with
the coordinates

x1 =
u − g

2
, y1 =

(u − g)2

4
; x2,3 =

1
4
(
1 − u ±

√
Z1

)
,

y2,3 =
1
8
[
1 − 2g − 2g2 + 2gu + u2 ∓ (u − 1)

√
Z1

]
, Z1 = −4g2 + 4g(−1 + u) + (1 + u)2.

(3.10)
We calculate

Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0,

and therefore all three singularities are located on the invariant parabola.
We point out that M1 is a multiple singularity of systems (3.8). Indeed, applying the

corresponding translation, we could place M1 at the origin of coordinates and arrive at the
systems

ẋ = − 1
2

g(g − u)x +
1
2
(u − 2g − 1)y + gx2 + xy,

ẏ =
1
2

g(g − u)2x +
1
2
(2g − u + 1)(g − u)y + (g − 1)xy + 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.
Considering [1], we calculate the invariant polynomials µ4, µ3, µ2, and we obtain µ4 =

µ3 = 0, and

µ2 =
1
2

g(g + 1)(g − u)(g − u + 1)
[
g(g − u)x2 + (2g − 1 − u)xy + 2y2] ̸= 0,

due to the conditions (3.9). By [1, Lemma 5.2, statement (ii)], the point M0 is of multiplicity
exactly 2.

On the other hand, it is clear that the singularities M2 and M3 could be complex (re-
spectively real; coinciding) if Z1 < 0 (respectively Z1 > 0; Z1 = 0). We observe that for
systems (3.8), we have:

ξ2 = g2(1 + g)2(g − u)2(1 + g − u)2Z1,

and due to the conditions (3.9), we conclude that the sign of Z1 is governed by the invariant
polynomial ξ2. So we discuss three cases: ξ2 < 0, ξ2 > 0, and ξ2 = 0.

2.1: The case ξ2 < 0. This implies Z1 < 0, and then systems (3.5) possess only one real
singular point M1 (which is double), and evidently we get the configuration Config.P .5.

2.2: The case ξ2 > 0. Then Z1 > 0, and this implies the existence of three real singularities,
and we have to determine the position of the double point with respect to the simple ones. So
we calculate

(x3 − x1)(x2 − x1) =
(g − u)(1 + g − u)

2
≡ α1

2
, sign

(
(x3 − x1)(x2 − x1)

)
= sign (α1), (3.11)

where α1 ̸= 0 due to B1 ̸= 0. This means that the singularity M1 could not coalesce with one
of the singularities M2 or M3.
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On the other hand, for systems (3.5), calculations yield:

ξ3 =
27249129

2
g2(1 + g)2α3

1Z1.

So, due to the conditions (3.9), we deduce that sign (ξ3) = sign (α1Z1).
Therefore, in the case ξ3 < 0, the double singular point M1 is located on the parabola

between M2 and M3, and we arrive at the configuration Config.P .6. If ξ3 > 0, we evidently
get the configuration Config.P .7.

2.3: The case ξ2 = 0. Then Z1 = 0, which implies the coalescence of the singularities M2

and M3. Therefore, systems (3.5) possess two double singularities located on the invariant
parabola. So we obtain the configuration Config.P .8.

It remains to mention that the case u = 0 (i.e., when the discriminant of F1 vanishes) is
included in the previous examination because the condition u ̸= 0 was not necessary. So, in
this case, we obtain the same configurations for the corresponding conditions, respectively.

The case B1 = 0. Considering (3.2), we observe that the condition B1 = 0 splits into five
conditions at the coefficient level. However, due to an affine transformation, we can reduce
this number. More precisely, we have the following lemma.

Lemma 3.1. The condition (g + 8m + 4n)(1 + 2g + g2 − 4m + 2n + 2gn) = 0 for systems (3.1) can
be transformed into the condition m(gn − 2m − n) = 0 via an affine transformation.

Proof. Applying to systems (3.1) the transformation

x1 = −x +
1
2

, y1 = −x + y +
1
4

,

we obtain the systems

ẋ1 =− 1
8
(g + 8m + 4n) +

1
4
(1 + 2g + 4n)x1 +

g
2

y1 − (1 + g)x2
1 + x1y1,

ẏ1 =− 1
4
(g + 8m + 4n)x1 +

1
2
(1 + 2g + 4n)y1 − (g + 2)x1y1 + 2y2

1.

So, setting the new parameters

m1 = −1
8
(g + 8m + 4n), n1 =

1
4
(1 + 2g + 4n), g1 = −(1 + g) ⇒

m = −1
8
(g1 + 8m1 + 4n1), n =

1
4
(1 + 2g1 + 4n1), g = −(1 + g1),

(3.12)

we obtain the family of systems

ẋ1 = m1 + n1x1 −
1 + g1

2
y1 + g1x2

1 + x1y1, ẏ1 = 2m1x1 + 2n1y1 + (g1 − 1)x1y1 + 2y2
1.

which has the same form as (3.1).
Then, considering (3.12), calculations yield:

g + 8m + 4n = −8m1, 1 + 2g + g2 − 4m + 2n + 2gn = 2(2m1 + n1 − g1n1),

and this completes the proof of the lemma.
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Thus, by Lemma 3.1, in order to examine the condition B1 = 0, it is sufficient to consider
the condition

m(gn − 2m − n)(g + 2g2 + g3 + 4m + 2n + 2gn) = 0.

In order to determine the invariant conditions that distinguish the three possibilities pro-
vided by the above equality, for systems (3.1) we calculate:

ξ4 = 21 · 2654m(g + 8m + 4n)ζ4,

ξ5 =− 14 · 55(gn − 2m − n)(1 + 2g + g2 − 4m + 2n + 2gn)ζ4.
(3.13)

Hence, due to ζ4 ̸= 0, the condition ξ4 = 0 is equivalent to m(g+ 8m+ 4n) = 0 (which implies
B1 = 0), whereas the condition ξ5 = 0 is equivalent to (gn − 2m − n)(1 + 2g + g2 − 4m + 2n +

2gn) = 0 (which also implies B1 = 0).

The subcase ξ4 ̸= 0. Then m(g + 8m + 4n) ̸= 0, and we consider two possibilities: ξ5 ̸= 0
and ξ5 = 0.

1: The possibility ξ5 ̸= 0. In this case, we have (gn− 2m− n)(1+ 2g+ g2 − 4m+ 2n+ 2gn) ̸= 0,
and therefore the condition B1 = 0 implies g + 2g2 + g3 + 4m + 2n + 2gn = 0. This yields
m = −(1 + g)(g + g2 + 2n)/4, and we get the family of systems

ẋ =− 1
4
(1 + g − 2x)(g + g2 + 2n + 2gx + 2y),

ẏ = − (1 + g)(g + g2 + 2n)
2

x + 2ny + (g − 1)xy + 2y2
(3.14)

possessing the invariant line x = (g + 1)/2. For these systems, we calculate

B2 = − 81g2(1 + g)2(g + g2 + 2n)(1 + 4g + 2g2 + 4n)(1 + 2g + g2 + 4n)2x4,

ξ4 = 13125g(1+ g)(g − 2)(3 + g)(1+ 2g)(g + g2 + 2n)(1+ 4g + 2g2 + 4n)(1+ 6g + 5g2 + 4n),

ξ5 = − 21875(g − 2)g(1 + g)(3 + g)(1 + 2g)(1 + 2g + g2 + 4n)2(1 + 6g + 5g2 + 4n)/16,

and we observe that the condition ξ4ξ5 ̸= 0 implies B2 ̸= 0.
Then, by Lemma 2.3, besides the invariant line x = (g + 1)/2, systems (3.14) could not

possess invariant lines in other directions. However, they could have a parallel invariant
line, and by Lemma 2.4, for this to occur it is necessary that θ = 0. This condition implies
(g − 1)(g + 2) = 0. A straightforward calculation shows that neither of the conditions g = 1
nor g = −2 could imply the appearance of an additional parallel invariant line.

Next, we determine that systems (3.14) possess four finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with the coordinates

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 =

1 + g
2

, y2 = − g + g2 + 2n
2

; x3,4 =
1
2
(
− g ±

√
Z2

)
,

y3,4 =
1
2
(
− g − 2n ∓ g

√
Z2

)
, Z2 = −(2g + g2 + 4n).

(3.15)
We determine that the singularities M1, M3, and M4 are located on the invariant parabola. At
the same time, M1 and M2 are located on the invariant line x = (g + 1)/2, and M1 is the point
of intersection of this invariant line with the parabola.
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In order to determine the relative position of the singularities M1 and M2 on the vertical
invariant line, we calculate

y2 − y1 = −1 + 4g + 3g2 + 4n
4

≡ −α2

4
⇒ sign (y2 − y1) = −sign (α2). (3.16)

Since the singularities M3 and M4 are either complex, real, or coinciding depending on the
value of Z2, we need to distinguish these conditions using affine invariant polynomials. For
systems (3.14), we calculate:

ζ4 =
1

16
(g − 2)(3 + g)(1 + 2g)(1 + 6g + 5g2 + 4n) ≡ 1

16
(g − 2)(3 + g)(1 + 2g)β2,

D = − 3
4

g4(1 + g)4β2
2α2

2Z2, ζ2 = 4g(1 + g),
(3.17)

and due to ζ2ζ4 ̸= 0, we conclude that D = 0 is equivalent to α2Z2 = 0. Moreover, if D ̸= 0,
then sign (D) = −sign (Z2). Thus, we discuss three cases: D < 0, D > 0, and D = 0.

1.1: The case D < 0. This implies Z2 > 0, and systems (3.14) possess four real singularities.
Clearly, it is necessary to know the position of the real singularities M3,4 with respect to M1,
all located on the invariant parabola. We calculate:

(x3 − x1)(x4 − x1) =
β2

4
, (x3 − x1) + (x4 − x1) = −(1 + 2g),

sign
(
(x3 − x1)(x4 − x1)

)
= sign (β2), sign

(
(x1 − x3) + (x1 − x4)

)
= −sign (1 + 2g).

We observe that β2 ̸= 0 due to the condition ζ4 ̸= 0, and moreover α2 ̸= 0 due to D ̸= 0.
On the other hand, we need the invariant polynomials that govern the signs of β2 and α2.

Thus, for systems (3.14), we calculate:

ξ7 = 1174627500 g2(1 + g)2(1 + 2g)2α2
2β2Z2, ξ8 = 61822500g2(1 + g)2(1 + 2g)2α2β2

2Z2.

Due to the conditions ζ4 ̸= 0 and D < 0, which imply g(1 + g)(1 + 2g)α2β2 ̸= 0 and Z2 > 0
(also ensuring ξ7ξ8 ̸= 0), we have the following relations:

sign (β2) = sign (ξ7), sign (α2) = sign (ξ8).

Thus, considering the above relations, in the case D < 0 we detect the following configu-
rations:

ξ7 < 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 > y1 ⇒ Config.P .9;
ξ7 < 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 < y1 ⇒ Config.P .10;
ξ7 > 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 > y1 ⇒ Config.P .11;
ξ7 > 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 < y1 ⇒ Config.P .12.

1.2: The case D > 0. Then Z2 < 0, and we claim that this condition implies α2 > 0. Indeed,
supposing the contrary (i.e., α2 < 0), we must have Z2 + α2 < 0. However, calculations yield:

Z2 + α2 = −(2g + g2 + 4n) + (1 + 4g + 3g2 + 4n) = (1 + g)2 + g2 > 0. (3.18)

The contradiction obtained proves our claim.
Therefore, since M3 and M4 are complex, we arrive at the configuration Config.P .13.

1.3: The case D = 0. Considering (3.17), we deduce that, due to ζ2ζ4 ̸= 0, the condition
D = 0 implies α2Z2 = 0.
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On the other hand, for systems (3.14), we calculate:

ξ1 =
3

32
g2(1 + g)2(g − 2)(3 + g)(1 + 2g)α2β2.

Thus, due to ζ2ζ4 ̸= 0 (i.e., g(1+ g)(g − 2)(3+ g)(1+ 2g)β2 ̸= 0), we obtain that the condition
α2 = 0 is equivalent to ξ1 = 0. Therefore, we discuss two subcases: ξ1 ̸= 0 and ξ1 = 0.

1.3.1: The subcase ξ1 ̸= 0. In this case, we have α2 ̸= 0, and the condition D = 0 implies
Z2 = 0. Then M3 and M4 coalesce, producing a double point located on the invariant parabola.
Considering (3.18), we deduce that the condition Z2 = 0 implies α2 > 0.

Thus, it is not difficult to determine that, in this case, we arrive at the configuration Con-
fig.P .14.

1.3.2: The subcase ξ1 = 0. This implies α2 = 0, and, as we have mentioned earlier (see
formulas (3.16)), in this case, we get y2 = y1, and hence the intersection point M1 of the
invariant line x = (g + 1)/2 with the parabola becomes a double singularity of systems (3.14).
Moreover, the position of the real singularities M3 and M4 with respect to M1 depends on the
sign of β2.

Thus, the condition α2 = 0 implies n = −(1 + g)(1 + 3g)/4, and then we obtain

β2 = 2g(1 + g), ζ2 = 4g(1 + g) ⇒ sign (β2) = sign (ζ2).

Therefore, in the case α2 = 0 (i.e., ξ1 = 0), we obtain the following two configurations:

ζ2 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 = y1 ⇒ Config.P .15;
ζ2 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 = y1 ⇒ Config.P .16.

2: The possibility ξ5 = 0. Considering (3.13) and the condition ζ4 ̸= 0, we obtain that the
condition ξ5 = 0 implies

(gn − 2m − n)(1 + 2g + g2 − 4m + 2n + 2gn) = 0.

On the other hand, according to Lemma 3.1, it is sufficient to examine the condition given
by the first factor, because the condition defined by the second factor can be brought to the
first one via an affine transformation.

Thus, in what follows, we assume that for systems (3.1), the condition gn − 2m − n = 0
holds. Then m = n(g − 1)/2, and we arrive at the family of systems

ẋ =
n(g − 1)

2
+ nx − 1

2
(1 + g)y + gx2 + xy, ẏ = (n + y)(gx − x + 2y), (3.19)

which possess the invariant line y = −n and the invariant parabola Φ(x, y) = x2 − y = 0. For
these systems, we calculate

B2 = − 81g2(1 + 4n)
[
(1 + g)2 + 4n

]2y4/2,

ξ4 = 26250(g − 1)g(1 + g)(g − 2)(3 + g)n(1 + 4n)(1 + 6g + 9g2 + 4n),
(3.20)

and we consider two cases: B2 ̸= 0 and B2 = 0.

2.1: The case B2 ̸= 0. In this case, by Lemma 2.3, systems (3.19) cannot possess invariant lines
in other directions than the invariant line y = −n. However, by Lemma 2.4, these systems
could possess an invariant line parallel to the existing one if θ = −8(g − 1)(2 + g) = 0. Thus,
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due to ξ4 ̸= 0, this condition implies g = −2. However, in this case, systems (3.19) do not
have any invariant line parallel to y = −n.

Next, we determine that systems (3.19) possess the finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with coordinates

x1 =
√
−n, y1 = −n; x2 = −

√
−n, y2 = −n; x3 =

1 − g
2

, y3 =
(1 − g)2

4
;

x4 = − 2n
1 + g

, y4 =
n(g − 1)

1 + g
.

(3.21)

We observe that the singular points M1, M2, and M3 lie on the invariant parabola Φ(x, y) =
x2 − y = 0. Moreover, M1 and M2 are the points of intersection between the parabola and the
invariant line y = −n, and since n ̸= 0 (due to ξ4 ̸= 0), they are either complex (for n > 0) or
real (for n < 0).

On the other hand, for systems (3.19), calculations yield:

D = 48g4n3(1 − g2 + 4n)2(1 − 2g + g2 + 4n)2 ≡ 48g4n3 α2
3 β2

3,

and it is clear that, in the case D ̸= 0, we have sign (D) = sign (n).
To determine the position of the singular point M4, we calculate

Φ(x4, y4) =
nα3

(1 + g)2 ,

and since n ̸= 0 (due to ξ4 ̸= 0), we deduce that the singular point M4 lies on the invariant
parabola if and only if α3 = 0.

To examine the configurations of the systems, we consider three subcases: D < 0, D > 0,
and D = 0.

2.1.1: The subcase D < 0. Then n < 0, and the singular points M1 and M2 are real. In
order to determine the position of the singularity M3 with respect to the real singularities M1

and M2, we calculate

(x3 − x1)(x3 − x2) =
1
4
[
(1 − g)2 + 4n

]
≡ β3, (x3 − x1) + (x3 − x2) = 1 − g;

sign
(
(x3 − x1)(x3 − x2)

)
= sign (β3), sign

(
(x3 − x1) + (x3 − x2)

)
= sign (1 − g).

We observe that α3β3 ̸= 0 due to D ̸= 0, and we need to determine the invariant polyno-
mials responsible for the signs of β3 and g − 1. Calculations yield:

ξ9 = 22359252960 g6(1 + g)2(1 + 2g + g2 + 4n)2β3,

ξ10 = 24814861965 (g − 1)g2(1 + g)2(1 + 2g + g2 + 4n)2(1 + 6g + 9g2 + 4n)2/2.
(3.22)

Taking into account the condition ξ4B2 ̸= 0 and from (3.20), we deduce that sign (β3) =

sign (ξ9) and sign (g − 1) = sign (ξ10).
Thus, considering the above relations, in the case D < 0, we arrive at the following config-

urations:
ξ9 < 0 ⇒ (x3 − x1)(x3 − x2) < 0 ⇒ Config.P .17;

ξ9 > 0, ξ10 < 0 ⇒ (x3 − x1) > 0, (x3 − x2) > 0 ⇒ Config.P .18;
ξ9 > 0, ξ10 > 0 ⇒ (x3 − x1) < 0, (x3 − x2) < 0 ⇒ Config.P .19.

2.1.2: The subcase D > 0. Then n > 0, and the singular points M1 and M2 are complex.
Therefore, due to the condition α3 ̸= 0, we arrive at the configuration Config.P .20.
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2.1.3: The subcase D = 0. Since n ̸= 0 (due to ξ4 ̸= 0), this implies α3 β3 = 0, and we have
to distinguish two cases: β3 ̸= 0 and β3 = 0. From (3.22) we observe that, due to ξ4B2 ̸= 0, the
condition ξ9 = 0 is equivalent to β3 = 0.

2.1.3.1: The possibility ξ9 ̸= 0. Then β3 ̸= 0, and the condition D = 0 implies α3 = 0,
yielding n = (g2 − 1)/4. Considering (3.21), we observe that in this case the singular point
M4 coalesces with M3, producing a double singular point on the invariant parabola. Thus, the
finite singularities of systems (3.19) have the following coordinates:

x1 =

√
1 − g2

2
, y1 =

1 − g2

4
; x2 = −

√
1 − g2

2
, y2 =

1 − g2

4
;

x3 = x4 =
1 − g

2
, y3 = y4 =

(1 − g)2

4
.

We note that in this case β3 = 2g(g − 1), and it is necessary to determine, in an invariant way,
the signs of the expressions 1 − g2 and g(g − 1). For systems (3.19) with n = (g2 − 1)/4, we
calculate:

ξ2 =
1
2
(1 − g2)3g4, ξ9 = 44718505920(g − 1)g9(1 + g)4.

We observe that sign (ξ2) = sign (1 − g2) and sign (ξ9) = sign (g(g − 1)).
Thus, in the case α3 = 0 which implies D = 0 (and the existence of a double real singularity

on the invariant parabola), we obtain the following configurations:
ξ2 < 0 ⇒ M1 and M2 are complex ⇒ Config.P .21;
ξ2 > 0, ξ9 < 0 ⇒ (x3 − x1)(x3 − x2) < 0 ⇒ Config.P .22;
ξ2 > 0, ξ9 > 0 ⇒ (x3 − x1) > 0, (x3 − x2) > 0 ⇒ Config.P .23.

2.1.3.2: The possibility ξ9 = 0. This implies β3 = 0, and hence we get n = −(g − 1)2/4.
We observe that in this case, considering (3.21), we obtain:

x1 =
1
2

√
(g − 1)2, y1 =

(g − 1)2

4
; x2 = −1

2

√
(g − 1)2, y2 =

(g − 1)2

4
;

x3 =
1 − g

2
, y3 =

(g − 1)2

4
; x4 =

(g − 1)2

2(1 + g)
, y4 =

(g − 1)3

4(1 + g)
.

We observe that the singular point M3 either coincides with M1 or with M2. Since x1 is
positive and x2 is negative, we conclude that M3 coalesces with M1 if 1 − g > 0, and with M2

if 1 − g < 0.
On the other hand, for systems (3.19) with n = −(g − 1)2/4, we have:

ξ10 = 12705209326080(g − 1)g6(1 + g)4,

and hence we obtain sign (ξ10) = sign (g − 1). Therefore, it is not difficult to determine that
we obtain the configuration Config.P .24 if ξ10 < 0, and Config.P .25 if ξ10 > 0.

2.2: The case B2 = 0. Since ξ4 ̸= 0 (i.e., g(1 + 4n) ̸= 0), considering (3.20), this condition
implies (1 + g)2 + 4n = 0.

Then we get n = −(1 + g)2/4, which leads to the family of systems:

ẋ = −1
8
(1 + g − 2x)(−1 + g2 + 4gx + 4y), ẏ = −1

4
(1 + 2g + g2 − 4y)(−x + gx + 2y), (3.23)

which possess the following three invariant affine lines:

1 + g − 2x = 0, 1 + 2g + g2 − 4y = 0, 1 − g2 − 4x + 4y = 0.
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For these systems, we have B2 = B3 = 0, and we see that they possess invariant lines in three
distinct directions. However, parallel invariant lines may appear, and by Lemma 2.4, for this
to occur, it is necessary that θ = 0. Thus, we discuss two subcases: θ ̸= 0 and θ = 0.

2.2.1: The subcase θ ̸= 0. For the above systems, we calculate the coordinates of the finite
singularities Mi(xi, yi) (i = 1, 2, 3, 4):

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 = −1 + g

2
, y2 =

(1 + g)2

4
;

x3 =
1 − g

2
, y3 =

(1 − g)2

4
; x4 =

1 + g
2

, y4 =
1 − g2

4
.

We observe that the singular point M1 is the intersection point of all three invariant lines,
as well as lying on the invariant parabola. Since this point, together with M4, lies on the
vertical invariant line 1 + g − 2x = 0, the relative positions of these two points are crucial for
determining the configurations of systems (3.23). Thus, we calculate:

y4 − y1 = − g(g + 1)
2

⇒ sign (y4 − y1) = −sign
(

g(g + 1)
)
.

We also point out that the position of the vertical invariant line x = (g + 1)/2 is important,
and we must consider sign (g + 1).

On the other hand, for systems (3.23), we calculate: ζ2 = 4g(1+ g), and then we determine
the following configurations:

ζ2 < 0 (i.e., −1 < g < 0) ⇒ x1 > 0, y4 > y1 ⇒ Config.P .26;
ζ2 > 0 and g < −1 ⇒ x1 < 0, y4 < y1 ⇒ Config.P .27;
ζ2 > 0 and g > 0 ⇒ x1 > 0, y4 < y1 ⇒ ≃Config.P .27.

2.2.2: The subcase θ = 0. This condition implies (g − 1)(g + 2) = 0.
If g = 1, we arrive at the system:

ẋ = (x − 1)(x + y), ẏ = 2(y − 1)y, (3.24)

which possesses four invariant affine lines: x = 1, y = 0, y = 1, and y = x. Therefore, it is
easy to determine that this system corresponds to the configuration Config.P .28.

Assuming g = −2, we arrive at the system:

ẋ =
1
8
(1 + 2x)(3 − 8x + 4y), ẏ = −1

4
(4y − 1)(3x − 2y),

which, via the transformation x1 = −x + 1/2, y1 = −x + y + 1/4, can be brought to the
system (3.24), thus also corresponding to configuration Config.P .28.

The subcase ξ4 = 0. Considering (3.13) and the condition ζ4 ̸= 0, we obtain that the
condition ξ4 = 0 implies:

m(g + 8m + 4n) = 0.

On the other hand, according to Lemma 3.1, it is sufficient to examine the condition m = 0
because the condition g + 8m + 4n = 0 can be brought to m = 0 via an affine transformation.

Thus, setting m = 0, we arrive at the family of systems:

ẋ = nx − 1
2
(1 + g)y + gx2 + xy, ẏ = y(2n − x + gx + 2y), (3.25)
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which possess the invariant line y = 0 and the invariant parabola Φ(x, y) = x2 − y = 0. It is
clear that the invariant line y = 0 is tangent to the invariant parabola at the origin.

We determine that for the above systems, the condition ζ1ζ2ζ4R1 ̸= 0 implies:

g(1 + g)(g − 2)(3 + g)(1 + 3g)(1 + 4g + 3g2 + 2n) ̸= 0. (3.26)

For systems (3.25), we calculate:

B2 = −81
2
(1 + g)2(1 + g + 2n)(g + g2 + 2n)(g + 4n)y4,

θ = −8(g − 1)(2 + g).
(3.27)

We now consider two possibilities: B2 ̸= 0 and B2 = 0.

1: The possibility B2 ̸= 0. Then, besides the invariant line y = 0, systems (3.25) cannot possess
invariant lines in other directions. However, there could exist an invariant line parallel to
y = 0, and by Lemma 2.4, a necessary condition for this is θ = 0. Therefore, we discuss two
cases: θ ̸= 0 and θ = 0.

1.1: The case θ ̸= 0. The systems (3.25) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4)
with coordinates:

x1 = 0, y1 = 0;

x2 = −n
g

, y2 = 0;

x3,4 =
1
4
(
1 − g ±

√
Z3

)
, y3,4 =

1
8
[
(1 − g)2 − 8n ± (1 − g)

√
Z3

]
,

Z3 = (1 − g)2 − 16n.

(3.28)

We observe that Φ(x3, y3) = Φ(x4, y4) = 0, meaning that the singular points M3 and M4

lie on the invariant parabola. Moreover, the singularity M2 lies on the invariant line y = 0 and
coalesces with M1 if and only if n = 0.

The singularities M3 and M4 are complex (respectively, real) if Z3 < 0 (respectively, Z3 >

0), and they coincide (producing a multiple singular point) when Z3 = 0.
On the other hand, for systems (3.25), we have:

D = 48(1 + g)4n6(−1 + 2g − g2 + 16n) = −48(1 + g)4n6Z3,

and we proceed to discuss three subcases: D < 0, D > 0, and D = 0.

1.1.1: The subcase D < 0. Then Z3 > 0, and therefore the finite singularities M3 and M4

are real and distinct [1, Proposition 5.1]. To determine their positions on the parabola with
respect to the singularity M1, we calculate:

(x3 − x1)(x4 − x1) = n, (x3 − x1) + (x4 − x1) = (1 − g)/2;

sign
(
(x3 − x1)(x4 − x1)

)
= sign (n), sign

(
(x3 − x1) + (x4 − x1)

)
= sign (1 − g).

(3.29)

We point out that g − 1 ̸= 0 (due to θ ̸= 0), and the sign of 1 − g is only relevant when n > 0
(i.e., when (x3 − x1)(x4 − x1) > 0).

Furthermore:

x2 − x1 = −n/g ⇒ sign (x2 − x1) = −sign (gn).
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For systems (3.25), calculations yield:

ξ11 = −95982880gn(g − 2)2(1 + g)2(3 + g)2(1 + 3g)2(1 + 4g + 3g2 + 2n)2,

ξ28 = 3244620(1 + g)2(3 + g)2(1 + 3g)2(1 + 4g + 3g2 + 2n)2(g + 4n),

ξ29 = 1700495253(g − 1)g(1 + g)2(3 + g)(1 + 3g)(1 + 4g + 3g2 + 2n)2(g + 4n)/16.

Remark 3.2. We observe that due to the condition (3.26), we have ξ11 ̸= 0, with sign (ξ11) =

−sign (gn). If ξ11 < 0 (i.e., gn > 0), then sign (ξ28) = sign (g + 4n). Moreover, in the case
g > 0 and n > 0, we also have sign (ξ29) = sign (g − 1).

Thus, considering the above relations in the case D < 0, we obtain the following configu-
rations:

ξ11 < 0, n < 0 (then g < 0) ⇒ (x3 − x1)(x4 − x1) < 0, x2 < x1 ⇒ Config.P .29;
ξ11 < 0, n > 0 (then g > 0), g < 1 ⇒ x3 > x1, x4 > x1, x2 < x1 ⇒ Config.P .30;
ξ11 < 0, n > 0 (then g > 0), g > 1 ⇒ x3 < x1, x4 < x1, x2 < x1 ⇒ Config.P .31;
ξ11 > 0, n < 0 (then g > 0) ⇒ (x3 − x1)(x4 − x1) < 0, x2 > x1 ⇒ Config.P .32;
ξ11 > 0, n > 0 (then g < 0) ⇒ x3 > x1, x4 > x1, x2 > x1 ⇒ Config.P .33.
Taking into account Remark 3.2, we obtain the following invariant conditions:

ξ11 < 0, ξ28 < 0 ⇒ Config.P .29;
ξ11 < 0, ξ28 > 0, ξ29 < 0 ⇒ Config.P .30;
ξ11 < 0, ξ28 > 0, ξ29 > 0 ⇒ Config.P .31;

ξ11 > 0 ⇒
{

Config.P .32, or
Config.P .33.

1.1.2: The subcase D > 0. Then Z3 < 0, and hence the finite singularities M3 and M4 are
complex. This condition also implies n > 0, meaning that the singular point M2(−n/g, 0)
cannot coalesce with M1(0, 0). Moreover, its position relative to M1 depends on the sign of
the parameter g.

Since n > 0, we have:

sign (ξ11) = −sign (gn) = −sign (g).

Therefore, we obtain Config.P .34 if ξ11 < 0, and Config.P .35 if ξ11 > 0.

1.1.3: The subcase D = 0. Considering (3.26), we deduce that D = 0 implies nZ3 = 0. For
systems (3.25), we calculate:

ξ1 = 3(g − 2)(1 + g)2(3 + g)(1 + 3g)n2(1 + 4g + 3g2 + 2n)/8.

By (3.26), the condition n = 0 is equivalent to ξ1 = 0. Thus, we examine two possibilities:
ξ1 ̸= 0 and ξ1 = 0.

1.1.3.1: The possibility ξ1 ̸= 0. Then D = 0 implies Z3 = 0. From (3.28), we get n =

(1 − g)2/16 ̸= 0, and thus:

x1 = 0, y1 = 0; x2 = − (1 − g)2

16g
, y2 = 0;

x3 = x4 =
1 − g

4
, y3 = y4 =

(1 − g)2

16
;

sign (x2 − x1) = −sign (g), sign (x3 − x1) = sign (1 − g).
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Therefore, there is a double singular point on the invariant parabola. For the parameter g, the
bifurcation values are g ∈ {0, 1}.

For systems (3.25) with n = (1 − g)2/16 (i.e., Z3 = 0), we compute:

ξ11 = −2999465
32

(g − 2)2(g − 1)2g(1 + g)2(3 + g)2(1 + 3g)2(3 + 5g)4, θ = −8(g − 1)(2 + g),

ζ2 = 4g(1 + g), ζ4 = (g − 2)(3 + g)(1 + 3g)(3 + 5g)2/128, ξ12 = g(g − 1)3ψ1(g)/256,

where ψ1(g) = 1105 + 1774g + 961g2. Observing that Discrim [ψ1(g), g] = −1100544 < 0, we
note that ψ1(g) does not vanish for real g.

Considering the condition ζ4θ ̸= 0, we conclude:

sign (ξ11) = −sign (g), sign (ξ12) = sign (g(g − 1)).

Thus, we determine the following configurations:

ξ12 < 0 ⇒ x2 < x1, x3 > x1 ⇒ Config.P .36;
ξ12 > 0, ξ11 < 0 ⇒ x2 < x1, x3 > x1 ⇒ Config.P .37;
ξ12 > 0, ξ11 > 0 ⇒ x2 > x1, x3 > x1 ⇒ Config.P .38.

1.1.3.2: The possibility ξ1 = 0. In this case, n = 0, and the singular point M2(−n/g, 0)
coalesces with M1(0, 0). Moreover, one of the singularities M3 or M4 also coalesces with M1,
resulting in a triple finite singularity at M1(0, 0). There could still remain a distinct simple
singularity (M3 or M4), whose position depends on sign (1 − g) (see (3.29)).

For n = 0, systems (3.25) satisfy:

ξ10 = 24814861965(g − 1)g2(1 + g)6(1 + 3g)4/2,

so that: sign (ξ10) = sign (g − 1). Therefore:
ξ10 < 0 ⇒ Config.P .39;
ξ10 > 0 ⇒ Config.P .40.

1.2: The case θ = 0. This condition implies (g − 1)(g + 2) = 0. For systems (3.25), we
calculate:

ξ1 = 3(g − 2)(1 + g)2(3 + g)(1 + 3g)n2(1 + 4g + 3g2 + 2n)/8,

ξ5 = −21875(g − 1)(1 + g)(g − 2)(3 + g)(1 + 3g)n(1 + g + 2n)(1 + 4g + 3g2 + 2n)/8.
(3.30)

We now discuss two subcases: ξ1 ̸= 0 and ξ1 = 0.

1.2.1: The subcase ξ1 ̸= 0. This implies n ̸= 0, and considering (3.26) and B2 ̸= 0 (i.e.,
1 + g + 2n ̸= 0), we conclude that the condition g = 1 is equivalent to ξ5 = 0. Thus, we
analyze two possibilities: ξ5 ̸= 0 and ξ5 = 0.

1.2.1.1: The possibility ξ5 ̸= 0. Then g − 1 ̸= 0, and the condition θ = 0 implies g = −2.
Straightforward calculations show that for g = −2, the systems (3.25) do not possess any
invariant line parallel to y = 0.

For g = −2, the systems (3.25) yield:

D = 48n6(16n − 9),

ξ11 = 76786304000n(5 + 2n)2,

ζ4 = 5(5 + 2n)/4.
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Thus, sign (ξ11) = sign (n), and sign (D) = sign (16n− 9). Moreover, since n ̸= 0, we conclude
that D = 0 corresponds to 16n − 9 = 0.

Therefore, considering that g = −2 < 0 and applying the previous analysis for systems
(3.25), we determine the following configurations:

D < 0, ξ11 < 0 ⇒ Config.P .29;
D < 0, ξ11 > 0 ⇒ Config.P .33;
D > 0 ⇒ Config.P .35;
D = 0 ⇒ Config.P .38.

1.2.1.2: The possibility ξ5 = 0. Then g = 1, leading to the family of systems:

ẋ = nx − y + x2 + xy, ẏ = 2y(n + y), (3.31)

which possess the additional invariant line y + n = 0.
From (3.28), we find:

x1 = 0, y1 = 0;

x2 = −n, y2 = 0;

x3,4 = ±
√
−n, y3 = y4 = −n.

We observe that the invariant line y = −n intersects the invariant parabola Φ(x, y) = x2 − y =

0 at two points M3,4(±
√
−n,−n), which are distinct due to ξ1 ̸= 0 (i.e., n ̸= 0). These points

are real if n < 0 and complex if n > 0.
Calculating the invariant D = 12288n7, we get sign (D) = sign (n). Therefore:

D < 0 ⇒ Config.P .41;
D > 0 ⇒ Config.P .42.

1.2.2: The subcase ξ1 = 0. This implies n = 0, and for systems (3.25) we obtain:

B2 = −81g2(1 + g)4y4/2, ξ9 = 5589813240(g − 1)2g6(1 + g)6.

Therefore, since B2 ̸= 0, we conclude that the condition ξ9 = 0 is equivalent to g − 1 = 0.
Thus, we discuss two cases: ξ9 ̸= 0 and ξ9 = 0.

1.2.2.1: The case ξ9 ̸= 0. Then, θ = 0 implies g = −2, and we obtain the system:

ẋ =
y
2
− 2x2 + xy, ẏ = −y(3y − 2x).

This system belongs to the family (3.25) with n = 0 (i.e., ξ1 = 0) and g = −2. As previously
shown (see point 1.1.3.2 on page 41), in the case n = 0, the singular point M2(−n/g, 0)
coalesces with M1(0, 0). Moreover, one of the singular points M3 or M4 also coalesces with
M1(0, 0), yielding a triple finite singularity at M1(0, 0).

On the other hand, since sign (ξ10) = sign (g − 1), for g = −2 we get ξ10 < 0. Therefore,
the system has the configuration Config.P .39.

1.2.2.2: The case ξ9 = 0. Then g = 1, and we obtain the systems (3.31). For n = 0, the
invariant line y = −n coalesces with y = 0, producing a double invariant line. Moreover, all
finite singular points coalesce, generating a quadruple singularity at M1(0, 0). As a result, the
system has the configuration Config.P .43.

2: The possibility B2 = 0. We first make a remark.
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Remark 3.3. The condition B2 = 0 implies n ̸= 0 for systems (3.25). Indeed, in the case n = 0,
for systems (3.25), we obtain:

B2 = −81g2(1 + g)4y4/2 ̸= 0

due to the condition ζ2 ̸= 0 (i.e., g(g + 1) ̸= 0).

Thus, n ̸= 0, and since g + 1 ̸= 0, considering (3.27), we get the condition:

(1 + g + 2n)(g + g2 + 2n)(g + 4n) = 0.

Considering (3.30), we examine two cases: ξ5 ̸= 0 and ξ5 = 0.

2.1: The case ξ5 ̸= 0. Then, by (3.30), we get 1 + g + 2n ̸= 0, and hence the condition B2 = 0
implies: (g + g2 + 2n)(g + 4n) = 0.

On the other hand, for systems (3.25), we calculate:

ξ13 = 27(1 + g)2(3 + g)(1 + 3g)n2(g + 4n)/4,

and considering Remark 3.3 and the condition (3.26), we conclude that ξ13 = 0 is equivalent
to g + 4n = 0.

2.1.1: The subcase ξ13 ̸= 0. Then g + 4n ̸= 0, and therefore B2 = 0 implies g + g2 + 2n = 0.
In this case, we get n = −g(g + 1)/2, and we arrive at the following family of systems:

ẋ = (2x − 1 − g)(gx + y)/2, ẏ = −y(g + g2 + x − gx − 2y), (3.32)

which possess the invariant lines y = 0 and x = (g + 1)/2.
Considering Lemma 2.3, for these systems we calculate:

B3 = −3(g − 1)g(1 + g)2(1 + 2g)x2y2/4, θ = −8(g − 1)(g + 2),

ξ5 = −21875(g − 2)(g − 1)2g(1 + g)4(3 + g)(1 + 2g)(1 + 3g)/16.

We observe that B3 ̸= 0 due to ξ5 ̸= 0, and hence by Lemma 2.3, the above systems cannot
have any invariant line in the third direction.

However, according to Lemma 2.4, we could have parallel invariant lines if θ = 0. Due to
B3 ̸= 0 (i.e., g − 1 ̸= 0), the condition θ = 0 is equivalent to g + 2 = 0. It is straightforward
to check that for g = −2, systems (3.32) do not have any invariant line parallel to y = 0 or to
x = (g + 1)/2.

The systems (3.32) possess the following finite singularities Mi(xi, yi), (i = 1, 2, 3, 4), with
coordinates:

x1 = 0, y1 = 0; x2 =
1 + g

2
, y2 = 0; x3 = −g, y3 = g2; x4 =

1 + g
2

, y4 =
(1 + g)2

4
.

We observe that the invariant line x = (g + 1)/2 intersects the invariant parabola at point M4

and the invariant line y = 0 at singularity M2. Furthermore, the invariant line y = 0 is tangent
to the parabola at M1.

To determine the relative positions of the line x = (g + 1)/2 and the singularities, we
calculate:

x2 − x1 =
1 + g

2
, x3 − x1 = −g, x3 − x4 = −1 + 3g

2
,

sign (x2 − x1) = sign (1 + g), sign (x3 − x1) = −sign (g), sign (x3 − x4) = −sign (1 + 3g).
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Thus, for the parameter g, we have the following possible bifurcation values: g∈{−1,−1/3, 0}.
On the other hand, for systems (3.32), we calculate:

ζ2 = 4g(g + 1), ξ7 = 1174627500g4(1 + g)7(1 + 2g)2(1 + 3g),

ξ11 = 47991440(g − 2)2g2(1 + g)5(3 + g)2(1 + 2g)2(1 + 3g)2

and we observe that:

sign (ζ2) = sign (g(g + 1)), sign (ξ7) = sign ((g + 1)(1 + 3g)), sign (ξ11) = sign (g + 1).

Moreover, in the case ζ2 < 0, we have −1 < g < 0 (i.e., g + 1 > 0), and then:

sign (ξ7) = sign (1 + 3g).

Thus, considering the above relations, we obtain the following configurations:

ζ2 < 0, ξ7 < 0 (i.e., −1 < g < −1/3) ⇒ x2 > x1, x3 > x1, x3 > x4 ⇒ Config.P .44;
ζ2 < 0, ξ7 > 0 (i.e., −1/3 < g < 0) ⇒ x2 > x1, x1 < x3 < x4 ⇒ Config.P .45;
ζ2 > 0, ξ11 < 0 (i.e., g < −1) ⇒ x2 < x1, x3 > x1 ⇒ Config.P .46;
ζ2 > 0, ξ11 > 0 (i.e., g > 0) ⇒ x2 > x1, x3 < x1 ⇒ Config.P .47.

2.1.2: The subcase ξ13 = 0. This implies g + 4n = 0 (i.e., n = −g/4) and we arrive at the
family of systems

ẋ = −g(1 + g)x/2 − (1 + g)y/2 + gx2 + xy, ẏ = −y(g + g2 + x − gx − 2y), (3.33)

possessing the invariant lines y = 0 and y = x − 1/4. For these systems we have

ξ5 = 21875(g − 2)g(1 + g)(g − 1)(2 + g)(3 + g)(1 + 2g)(1 + 3g)(2 + 3g)/128,

B3 = 3g(1 + g)(1 + 2g)(x − y)2y2/8, θ = −8(g − 1)(2 + g),

and since ξ5 ̸= 0, we obtain B3θ ̸= 0. So, by Lemmas 2.3 and 2.4, we conclude that the above
systems could not have a third invariant line.

The systems (3.33) possess the finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with coordinates

x1 = 0, y1 = 0; x2 = 1/4, y2 = 0; x3 = 1/2, y3 = 1/4; x4 = −g/2, y4 = g2/4;

sign (x4 − x1) = −sign (g), x4 − x3 = −(g + 1)/2 ⇒ sign (x4 − x3) = −sign (g + 1).

It could be checked directly that the invariant line y = x − 1/4 is tangent to the invariant
parabola at the singular point M3(1/2, 1/4). Therefore, considering the above relations, we
obtain the following configurations:

ζ2 < 0 (i.e., −1 < g < 0) ⇒ x4 > x1, x4 < x3 ⇒ Config.P .48;
ζ2 > 0 and g < −1 ⇒ x4 > x1, x4 > x3 ⇒ Config.P .49;
ζ2 > 0 and g > 0 ⇒ x4 < x1, x4 < x3 ⇒ ≃Config.P .49.

2.2: The case ξ5 = 0. Considering (3.30), the conditions (3.26) and Remark 3.3 imply (g −
1)(1 + g + 2n) = 0, and we examine two subcases: θ ̸= 0 and θ = 0.

2.2.1: The subcase θ ̸= 0. Then g − 1 ̸= 0, and we get 1 + g + 2n = 0. Therefore, n =

−(1 + g)/2 ̸= 0, and we arrive at the family of systems

ẋ = −(1 + g)(x + y)/2 + gx2 + xy, ẏ = −y(1 + g + x − gx − 2y), (3.34)
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possessing the invariant lines y = 0 and y = x, and the finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with the coordinates:

x1 = 0, y1 = 0; x2 =
1 + g

2g
, y2 = 0; x3 = 1, y3 = 1; x4 = −1 + g

2
, y4 =

(1 + g)2

4
.

On the other hand, considering Lemma 2.3, we calculate B3 and we have:

B3 = 3(g − 1)(1 + g)2(x − y)2y2/4 ̸= 0,

due to the conditions (3.26) and θ ̸= 0. Then, by Lemma 2.3, we could not have any invariant
line in the third direction. Moreover, by Lemma 2.4, we could not have parallel invariant lines
due to θ ̸= 0.

Next, considering the coordinates of the finite singularities of these systems, it follows
immediately:

sign (x4 − x1) = −sign (1 + g), sign (x2 − x1) = sign
(

g(1 + g)
)
,

x4 − x3 = −(g + 3)/2 ⇒ sign (x4 − x3) = −sign (g + 3).

We remark that g(g + 1)(g + 3) ̸= 0 due to the condition (3.26), and hence for the parameter
g we have the following possible bifurcation values: g ∈ {−3,−1, 0}.

On the other hand, for systems (3.34), we calculate:

ζ2 = 4g(1 + g), ξ9 = 5589813240(g − 1)2g2(1 + g)9(3 + g),

ξ10 = −223333757685(g − 1)2g2(1 + g)6(2 + g)(1 + 3g)2/2,

and hence we have

sign (ζ2) = sign
(

g(1 + g)
)
, sign (ξ9) = sign

(
(1 + g)(3 + g)

)
, sign (ξ10) = −sign (2 + g).

Remark 3.4. We observe that the conditions ζ2 > 0 and ξ9 > 0 imply either g > 0 or g < −3. In
order to distinguish these two possibilities, we use the invariant ξ10 even though this invariant
does not vanish in the bifurcation values of g.

Considering the above remark, we arrive at the following configurations:

ζ2 < 0 (i.e., −1 < g < 0) ⇒ x2 < x1, x4 < x1 ⇒ Config.P .50;
ζ2 > 0, ξ9 < 0 (i.e., −3 < g < −1) ⇒ x2 > x1, x1 < x4 < x3 ⇒ Config.P .51;
ζ2 > 0, ξ9 > 0, ξ10 < 0 (i.e., g > 0) ⇒ x2 > x1, x3 < x1 ⇒ Config.P .52;
ζ2 > 0, ξ9 > 0, ξ10 > 0 (i.e., g < −3) ⇒ x2 > x1, x4 > x3 ⇒ Config.P .53.

2.2.2: The subcase θ = 0. This implies (g − 1)(g + 2) = 0, and we discuss two possibilities:
B3 ̸= 0 and B3 = 0.

2.2.2.1: The possibility B3 ̸= 0. We claim that in this case we get the same configuration
either if g = 1 or if g = −2.

Indeed, assume first g = −2. Then, calculations yield

ξ5 = −328125 n(2n − 1)(5 + 2n)/2, B2 = −162(1 + n)(2n − 1)2y4,

B3 = 3y2[n(4n − 5)x2 + 2(1 + n)xy − (1 + n)y2]/2,
(3.35)

and the condition ξ5 = B2 = 0 gives us n = 1/2. This leads to the system

ẋ = (x + y)/2 − 2x2 + xy, ẏ = y(1 − 3x + 2y), (3.36)
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possessing three invariant affine lines: y = 0, y = x and y = x − 1/4. Then, this system has
the configuration equivalent to Config.P .54.

Suppose now g = 1. Then, we have

ξ5 = 0, B2 = −648(1 + n)2(1 + 4n)y4, B3 = −3(1 + n)y2(4nx2 + 2xy − y2),

and due to B3 ̸= 0, the condition B2 = 0 implies n = −1/4. In this case, we arrive at the
system

ẋ = −x/4 − y + x2 + xy, ẏ = y(4y − 1)/2,

which via the affine transformation x1 = −x + 1/2, y1 = −x + y + 1/4 could be brought to
system (3.36). Thus, our claim is proved and we get the configuration Config.P .54.

2.2.2.2: The possibility B3 = 0. Considering (3.35), we conclude that the condition g = −2
implies B3 ̸= 0, and hence the condition θ = 0 gives us g = 1. In this case, we arrive at the
system

ẋ = (x − 1)(x + y), ẏ = 2(y − 1)y,

possessing four invariant affine lines: x = 1, y = 0, y = 1 and y = x. Therefore, it is easy to
determine that this system possesses the configuration equivalent to Config.P .28.

3.1.2 The statement (A∗
2 )

According to the statement (A∗
2 ) of Proposition 2.7∗, for systems (3.1) the condition ζ4 = 0

must hold. Considering (3.2), we obtain

(g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m + 2n + 6gn) = 0,

and since (g − 2)(3 + g) ̸= 0 (due to ζ1 ̸= 0), we get

m =
1
4
(1 + 3g) (1 + 4g + 3g2 + 2n).

Then, we arrive at the two-parameter family of systems

ẋ =
1
4
(1 + 3g) (1 + 4g + 3g2 + 2n) + nx − 1

2
(1 + g) y + gx2 + xy,

ẏ =
1
2
(1 + 3g) (1 + 4g + 3g2 + 2n) x + 2ny + (g − 1) xy + 2y2

(3.37)

possessing the following two invariant parabolas: Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = − (1 + 4g + 3g2 + 2n)(1 + 4g + 3g2 + 4n) + 2(1 + g)(1 + 4g + 3g2 + 4n)x

+ 4g(1 + g)x2 − 2(1 + 6g + 5g2 + 4n)y = 0.
(3.38)

Following the statement (A∗
2 ), for the above systems we calculate

ζ1 = 2(g − 2)(3 + g), ζ2 = 4g(1 + g), ζ4 = 0,

ζ5 = 19(g − 2) (3 + g)(1 + 4g + 3g2 + 4n)2/4,

R2 = − (g − 2)(3 + g)(8 + 27g + 27g2)(1 + 6g + 5g2 + 4n)/16,

B1 = g(1 + g)(1 + 2g)(1 + 3g)(2 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 5g2 + 4n)

× (1 + 6g + 6g2 + 4n)(1 + 6g + 9g2 + 4n)(5 + 14g + 9g2 + 4n)/32.

(3.39)

According to Lemma 2.3, for the existence of an invariant line of systems (3.37), the condition
B1 = 0 is necessary.
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The case B1 ̸= 0. Then we could not have any invariant line. The systems (3.37) possess four
finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = −1 + 3g
2

, y1 =
(1 + 3g)2

4
; x2 = − (1 + g) (1 + 3g)2 + 4(1 + 2g) n

2g(1 + g)
,

y2 =
(1 + 3g) (1 + 4g + 3g2 + 2n)

2(1 + g)
; x3,4 =

1
2
(
1 + g ±

√
Z4

)
,

y3,4 = −1
2
(
2g + 2g2 + 2n ∓ (g + 1)

√
Z4

)
, Z4 = −(1 + 6g + 5g2 + 4n).

(3.40)

In order to determine the position of the finite singularities with respect to the parabolas
Φ1(x, y) = 0 and Φ2(x, y) = 0, we calculate

Φ1(x1, y1) = Φ1(x3, y3) = Φ1(x4, y4) = 0; Φ2(x2, y2) = Φ2(x3, y3) = Φ2(x4, y4) = 0. (3.41)

Therefore, the singularities M3 and M4 are the finite intersection points of these two in-
variant parabolas. We observe that the points of intersection of the invariant parabolas are
complex if Z4 < 0 and they are real if Z4 > 0.

On the other hand, for systems (3.37) we calculate:

D = −3Z4(1 + 4g + 3g2 + 4n)2 α2
4 β2

4/4, (3.42)

where

α4 = 5 + 22g + 21g2 + 4n, β4 = (1 + g)(1 + 3g)(1 + 6g + 7g2) + 4(1 + 2g)2n. (3.43)

So if D ̸= 0, then sign (D) = −sign (Z4) and we discuss three possibilities: D < 0, D > 0
and D = 0.

1: The possibility D < 0. Then Z4 > 0 and systems (3.37) possess four real singularities and it
is necessary to know the positions of the singularities M3,4 with respect to M1 and M2. We
calculate

(x1 − x3)(x1 − x4) =
α4

4
, (x1 − x3) + (x1 − x4) = −2(1 + 2g),

(x2 − x3)(x2 − x4) = − Z4 β4

4g2(1 + g)2 , (x2 − x3) + (x2 − x4) = − (1 + 2g) Z4

g(1 + g)
.

Therefore, considering the condition Z4 > 0, we obtain

sign
(
(x1 − x3)(x1 − x4)

)
= sign(α4), sign

(
(x1 − x3) + (x1 − x4)

)
=−sign(1 + 2g) if α4 > 0;

sign
(
(x2 − x3)(x2 − x4)

)
= −sign(β4),

sign
(
(x2 − x3) + (x2 − x4)

)
= −sign

(
g(1 + g)(1 + 2g)

)
if β4 < 0,

where 1 + 2g ̸= 0 due to B1 ̸= 0.
We need invariant polynomials governing the signs of α4 and β4. For systems (3.37), we

calculate:

ξ14 = 1235α4β4/2, ξ30 = 1235
[
Z4 β4 − g2(1 + g)2 α4

]
/4, ζ2 = 4g(1 + g),

and we have
sign (ξ14) = sign (α4β4), sign (ζ2) = sign

(
g(1 + g)

)
.
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Moreover, in the case ξ14 < 0 (i.e. α4β4 < 0) and D < 0 (i.e. Z4 > 0), we obtain

sign (ξ30) = sign
(
Z4β4 − g2(1 + g)2α4

)
= sign (β4).

On the other hand, considering the form of the invariant parabola Φ2(x, y) = 0, we have

y = − 1
Z4

[
(1 + g)(1 + 4g + 3g2 + 4n)x − 1

2
(1 + 4g + 3g2 + 2n)(1 + 4g + 3g2 + 4n)

]
− 2g(1 + g)

Z4
x2.

(3.44)

Therefore, since Z4 > 0, we deduce that the invariant parabolas Φ1(x, y)= 0 and Φ2(x, y)=
0 have the same point at infinity on the Poincaré disk if ζ2 < 0, and opposite points at infinity
if ζ2 > 0. So we consider these two cases separately.

1.1: The case ζ2 < 0. Then g(g + 1) < 0 and considering the above relations, in this case we
obtain the following configurations:

ξ14 < 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 > 0, −1 < g < −1/2) ⇒
x2 − x3 > 0, x2 − x4 > 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ Config.P .55;

ξ14 < 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 > 0, −1/2 < g < 0) ⇒
x2 − x3 < 0, x2 − x4 < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P .55;

ξ14 < 0, β4 > 0 (i.e. β4 > 0, α4 < 0, −1 < g < 0) ⇒
(x2 − x3)(x2 − x4) < 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P .56;

ξ14 > 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 < 0, −1 < g < −1/2) ⇒
x2 − x3 > 0, x2 − x4 > 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P .57;

ξ14 > 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 < 0, −1/2 < g < 0) ⇒
x2 − x3 < 0, x2 − x4 < 0, (x1 − x3)(x1 − x4) < 0 ⇒ ≃ Config.P .57;

ξ14 > 0, β4 > 0, 2g + 1 < 0 (i.e. β4 > 0, α4 > 0, −1 < g < −1/2) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ ≃ Config.P .57;

ξ14 > 0, β4 > 0, 2g + 1 > 0 (i.e. β4 > 0, α4 > 0, −1/2 < g < 0) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P .57.

1.2: The case ζ2 > 0. Then g(g + 1) > 0 and we obtain the following configurations:
ξ14 < 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 > 0, g < −1) ⇒

x2 − x3 < 0, x2 − x4 < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ Config.P .58;
ξ14 < 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 > 0, g > 0) ⇒

x2 − x3 > 0, x2 − x4 > 0,x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P .58;
ξ14 > 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 < 0, g < −1) ⇒

x2 − x3 < 0, x2 − x4 < 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P .59;
ξ14 > 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 < 0, g > 0) ⇒

x2 − x3 > 0, x2 − x4 > 0, (x1 − x3)(x1 − x4) < 0 ⇒ ≃ Config.P .59;
ξ14 > 0, β4 > 0, 2g + 1 < 0 (i.e. β4 > 0, α4 > 0, g < −1) ⇒

(x2 − x3)(x2 − x4) < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ ≃ Config.P .59;
ξ14 > 0, β4 > 0, 2g + 1 > 0 (i.e. β4 > 0, α4 > 0, g < −1) ⇒

(x2 − x3)(x2 − x4) < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P .59.
Applying the Mathematica function “FindInstance” (or “Reduce”) we detect that the con-

ditions D < 0, ζ2 > 0, ξ14 < 0, and β4 > 0 (i.e. Z4 > 0, g(g + 1) > 0, α4 < 0, and β4 > 0) are
incompatible.

We observe that in both cases (i.e. ζ2 < 0 and ζ2 > 0) the configurations do not depend on
the sign (1 + 2g). As a result we obtain the following lemma.
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Lemma 3.5. Assume that for the systems (3.37) the condition D < 0 holds. Then, these systems
exhibit the following configurations if and only if the respective conditions are satisfied:

ζ2 < 0, ξ14 < 0, ξ30 < 0 ⇔ Config.P .55;
ζ2 < 0, ξ14 < 0, ξ30 > 0 ⇔ Config.P .56;
ζ2 < 0, ξ14 > 0 ⇔ Config.P .57;
ζ2 > 0, ξ14 < 0 ⇔ Config.P .58;
ζ2 > 0, ξ14 > 0 ⇔ Config.P .59.

2: The possibility D > 0. Then Z4 < 0 and the systems (3.37) possess only two real singularities:
M1 (located on the parabola Φ1(x, y) = 0) and M2 (located on the parabola Φ2(x, y) = 0).
As mentioned earlier, the direction of the second invariant parabola depends on the sign of
g(1 + g) (see (3.44)).

Thus, considering the condition D > 0 (i.e., Z4 < 0), we have the configuration Config.P .60
if ζ2 < 0 (i.e., g(g + 1) < 0) and Config.P .61 if ζ2 > 0 (i.e., g(g + 1) > 0).

3: The possibility D = 0. From (3.42), (3.39), and the condition ζ5R2 ̸= 0 (i.e., Z4(1+ 4g + 3g2 +

4n) ̸= 0), it follows that D = 0 implies α4β4 = 0. This yields the next lemma.

Lemma 3.6. For systems (3.37), the condition β4 = 0 can be transformed by an affine change of
variables into the condition α4 = 0.

Proof. Apply to the systems (3.37) the transformation

x1 = δx − (1 + g)(1 + 4g + 3g2 + 4n)
2Z4

, y1 = δy − (1 + g)(1 + 3g)(1 + 4g + 3g2 + 4n)
4Z4

,

t1 =
1
δ

, δ = −2g(1 + g)
Z4

.

(3.45)
Define

n1 = − (1 + g)(1 + 11g + 31g2 + 21g3 + 4n + 20gn)
4(1 + 6g + 5g2 + 4n)

⇒

n = − (1 + g)(1 + 11g + 31g2 + 21g3 + 4n1 + 20gn1)

4(1 + 6g + 5g2 + 4n1)
.

(3.46)

Then we arrive at the family

ẋ1 =
1
4
(1 + 3g)(1 + 4g + 3g2 + 2n1) + n1x1 −

1
2
(1 + g)y1 + gx2

1 + x1y1,

ẏ1 =
1
2
(1 + 3g)(1 + 4g + 3g2 + 2n1)x1 + 2n1y1 + (g − 1)x1y1 + 2y2

1.
(3.47)

Observe that this family coincides with (3.37) up to notation of variables and parameters.
Calculating for the above system, we get:

β4(g, n1) = (1 + g)(1 + 3g)(1 + 6g + 7g2) + 4(1 + 2g)2n1

=
g2(1 + g)2(5 + 22g + 21g2 + 4n)

1 + 6g + 5g2 + 4n
= − g2(1 + g)2α4(g, n)

Z4
,

α4(g, n1) = 5 + 22g + 21g2 + 4n1

=
4(1 + 10g + 34g2 + 46g3 + 21g4 + 4n + 16gn + 16g2n)

1 + 6g + 5g2 + 4n
= −4β4(g, n)

Z4
.
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Since g(g+ 1)Z4 ̸= 0, the condition β4(g, n1) = 0 (respectively α4(g, n1) = 0) for systems (3.47)
implies α4(g, n) = 0 (respectively β4(g, n) = 0) for the original systems (3.37). This completes
the proof.

Thus, in what follows, we assume that the condition

α4 = 5 + 22g + 21g2 + 4n = 0

holds, which implies

n = − (1 + 3g)(5 + 7g)
4

.

We then obtain the following family of systems:

ẋ = − 1
8
(1 + 3g)2(3 + 5g)− 1

4
(1 + 3g)(5 + 7g)x − 1

2
(1 + g)y + gx2 + xy,

ẏ = − 1
4
(1 + 3g)2(3 + 5g)x − 1

2
(1 + 3g)(5 + 7g)y + (g − 1)xy + 2y2,

(3.48)

possessing the two invariant parabolas Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = − (1 + 3g)2(2 + 3g)(3 + 5g)− 4(1 + g)(1 + 3g)(2 + 3g)x

+ 4g(1 + g)x2 + 8(1 + 2g)2y = 0.

Considering the coordinates of the finite singularities (3.40), we observe that for α4 = 0,
the singular point M4 coalesces with M1, producing a double finite singularity. Thus, systems
(3.48) possess three finite singularities Mi(xi, yi), i = 1, 2, 3 (with M1 being double), with
coordinates

x1 = −1 + 3g
2

, y1 =
(1 + 3g)2

4
; x2 =

(1 + 3g)(4 + 13g + 11g2)

2g(1 + g)
,

y2 = − (1 + 3g)2(3 + 5g)
4(1 + g)

; x3 =
3 + 5g

2
, y3 =

(3 + 5g)2

4
.

Using (3.41), we see that the singular points M1(≡ M4) and M3 are the intersection points
of the invariant parabolas, while M2 lies on the parabola Φ2(x, y) = 0. We calculate

(x2 − x1)(x2 − x3) =
(1 + 2g)2(1 + 3g)(2 + 3g)(2 + 7g + 7g2)

g2(1 + g)2 ,

(x2 − x1) + (x2 − x3) =
4(1 + 2g)3

g(1 + g)
̸= 0 if (x2 − x1)(x2 − x3) > 0.

Since the discriminant Discrim [2 + 7g + 7g2, g] = −7 < 0, it follows that

sign
(
(x2 − x1)(x2 − x3)

)
= sign

(
(1 + 3g)(2 + 3g)

)
,

sign
(
(x2 − x1) + (x2 − x3)

)
= sign

(
g(1 + g)(1 + 2g)

)
.

Note that sign (1 + 2g) is only relevant if (1 + 3g)(2 + 3g) > 0.
On the other hand, for systems (3.48) we have

ζ2 = 4g(1 + g), ζ5 = 19(g − 2)(3 + g)(1 + 3g)2(2 + 3g)2,

ξ3 = 217993032 g(1 + g)(1 + 3g)3(2 + 3g)3(2 + 7g + 7g2)2,
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and since ζ2ζ5 ̸= 0, it follows that

sign (ξ3) = sign
(

g(1 + g)(1 + 3g)(2 + 3g)
)
, sign (ζ2) = sign (g(1 + g)).

We claim that ζ2 > 0 implies ξ3 > 0. Indeed, suppose ζ2 > 0 but ξ3 < 0. This implies
(1 + 3g)(2 + 3g) < 0, i.e., −2/3 < g < −1/3. Hence, −1 < g < 0, which contradicts ζ2 > 0.
This proves the claim.

Therefore, considering the above relations, for systems (3.48) we obtain the following con-
figurations:

ζ2 < 0, ξ3 < 0, 2g+ 1 < 0 (i.e. −1 < g < −2/3) ⇒ x2 − x1 > 0, x2 − x3 > 0 ⇒ Config.P .62;
ζ2 < 0, ξ3 < 0, 2g + 1 > 0 (i.e. −1/3 < g < 0) ⇒ x2 − x1 < 0, x2 − x3 < 0 ⇒ ≃Config.P .62;
ζ2 < 0, ξ3 > 0 (i.e. −2/3 < g < −1/3) ⇒ (x2 − x1)(x2 − x3) < 0 ⇒ Config.P .63.
ζ2 > 0, 2g + 1 < 0 (i.e. g < −1) ⇒ x2 − x1 < 0, x2 − x3 < 0 ⇒ Config.P .64;
ζ2 > 0, 2g + 1 > 0 (i.e. g > 0) ⇒ x2 − x1 > 0, x2 − x3 > 0 ⇒ ≃Config.P .64.

We observe that these configurations do not depend on the sign of 2g + 1. Hence, we
arrive at the following lemma.

Lemma 3.7. Assume that for systems (3.37) the condition D = 0 holds. Then these systems possess
the following configurations if and only if the corresponding conditions are satisfied:

ζ2 < 0, ξ3 < 0 ⇔ Config.P .62;
ζ2 < 0, ξ3 > 0 ⇔ Config.P .63;
ζ2 > 0 ⇔ Config.P .64.

The case B1 = 0. Considering (3.39) and the condition ζ2R2 ̸= 0 (i.e., g(g+ 1)(1+ 6g+ 5g2 +

4n) ̸= 0), we conclude that the condition B1 = 0 is equivalent to

(1 + 2g)(1 + 3g)(2 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 6g2 + 4n)

× (1 + 6g + 9g2 + 4n)(5 + 14g + 9g2 + 4n) = 0.
(3.49)

However, through suitable transformations, we can reduce the number of cases arising from
the condition B1 = 0. This is stated in the following lemma.

Lemma 3.8. The condition (3.49) can be transformed, via affine transformations and time rescaling,
into the simpler condition

(1 + 2g)(1 + 3g)(1 + 4g + 3g2 + 2n) = 0. (3.50)

Proof. We prove this lemma in two steps: (i) by applying a transformation that replaces the
line y = 0 with y = x while preserving the invariant parabola Φ1(x, y) = x2 − y = 0; and (ii)
by applying a transformation that maps the invariant parabola Φ2(x, y) = 0 (see (3.38)) to the
parabola Φ1(x, y) = x2 − y = 0.

Step (i): Applying to systems (3.37) the change of variables

x1 = −x + 1/2, y1 = −x + y + 1/4,

we obtain the transformed system

ẋ1 = − 1
8
(2 + 3g)(1 + 6g + 6g2 + 4n) +

1
4
(1 + 2g + 4n)x1 +

g
2

y1 − (1 + g)x2
1 + x1y1,

ẏ1 = − 1
4
(2 + 3g)(1 + 6g + 6g2 + 4n)x1 +

1
2
(1 + 2g + 4n)y1 − (g + 2)x1y1 + 2y2

1.
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Setting new parameters

n1 =
1
4
(1 + 2g + 4n), g1 = −(1 + g), ⇒

n =
1
4
(1 + 2g1 + 4n1), g = −(1 + g1),

(3.51)

the system becomes

ẋ1 =
1
4
(1 + 3g1)(1 + 4g1 + 3g2

1 + 2n1) + n1x1 −
1 + g1

2
y1 + g1x2

1 + x1y1,

ẏ1 =
1
2
(1 + 3g1)(1 + 4g1 + 3g2

1 + 2n1)x1 + 2n1y1 + (g1 − 1)x1y1 + 2y2
1,

which has the same form as (3.37).
Moreover, calculations show that

2 + 3g = −(1 + 3g1), 1 + 6g + 6g2 + 4n = 2(1 + 4g1 + 3g2
1 + 2n1),

5 + 14g + 9g2 + 4n = 1 + 6g1 + 9g2
1 + 4n1,

thus reducing the condition (3.49) to

(1 + 2g)(1 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 9g2 + 4n) = 0.

Step (ii): As shown in the proof of Lemma 3.6, via the transformation (3.45), systems (3.37)
can be brought to the canonical form (3.47) but with a new parameter n1 given by (3.46).
Calculations give

1 + 6g + 9g2 + 4n1 =
8g2(1 + 4g + 3g2 + 2n)
4(1 + 6g + 5g2 + 4n)

.

Since g ̸= 0, the condition 1+ 6g+ 9g2 + 4n = 0 can be transformed into 1+ 4g+ 3g2 + 2n = 0.
Consequently, we arrive at the condition (3.50), completing the proof of Lemma 3.8.

For systems (3.37), we compute

ζ3 = 8(1 + 2g)2, ξ15 = 2(1 + 3g)(2 + 3g),

and distinguish two subcases: ζ3 ̸= 0 and ζ3 = 0.

1: The subcase ζ3 ̸= 0. Then 1 + 2g ̸= 0, and considering (3.50) together with Lemma 3.8, to
satisfy the condition B1 = 0 it is sufficient to consider (1+ 3g)(1+ 4g+ 3g2 + 2n) = 0. Clearly,
we must distinguish two possibilities: ξ15 ̸= 0 and ξ15 = 0.

1.1: The possibility ξ15 ̸= 0. Then 1+ 3g ̸= 0, and in this case we obtain 1+ 4g+ 3g2 + 2n = 0,
i.e., n = −(1 + g)(1 + 3g)/2. This leads to the following one-parameter family of systems:

ẋ =− 1
2
(1 + g)(1 + 3g) x − 1

2
(1 + g) y + gx2 + xy,

ẏ =− y
(
1 + 4g + 3g2 + x − gx − 2y

)
,

(3.52)

which, besides the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = (1 + g)(1 + 3g) x − 2gx2 − (1 + g) y = 0,
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also possess the invariant line y = 0.
Using Lemmas 2.3 and 2.4, we compute:

θ = −8(g − 1)(2 + g), B2 =
243
2

g(1 + g)4(1 + 2g)2(2 + 3g) y4. (3.53)

Thus, we need to consider the cases B2 ̸= 0 and B2 = 0.

1.1.1: The case B2 ̸= 0. Then, by Lemma 2.3, the system cannot have invariant lines in
directions other than y = 0. However, by Lemma 2.4, parallel invariant lines could exist if
θ = 0.

1.1.1.1: The subcase θ ̸= 0. The systems (3.52) possess four finite singularities Mi(xi, yi)

for i = 1, 2, 3, 4, with coordinates:

x1 = 0, y1 = 0; x2 =
(1 + g)(1 + 3g)

2g
, y2 = 0;

x3 = 1 + g, y3 = (1 + g)2; x4 = −1 + 3g
2

, y4 =
(1 + 3g)2

4
.

From the conditions stated in the statement (A∗
2 ), for systems (3.52) we have:

ζ1ζ2ζ5R2 ̸= 0 ⇔ g(1 + g)(g − 2)(3 + g)(1 + 3g)(8 + 27g + 27g2) ̸= 0. (3.54)

We observe that the invariant parabolas intersect at two points: M1 and M3. Moreover, the
invariant line y = 0 has a contact point at M1 with the parabola Φ1(x, y) = 0 and two
intersection points, M1 and M2, with the parabola Φ2(x, y) = 0.

Thus, three finite singularities are fixed by the intersections of the invariant curves, with
their positions determined by the value of the parameter g.

On the other hand, the singular point M4 lies on the invariant parabola Φ1(x, y) = 0 and
is a floating singularity. Therefore, we must determine its position relative to the other two
singularities on the same invariant curve. To this end, we calculate:

(x4 − x1)(x4 − x3) =
1
4
(1 + 3g)(3 + 5g), (x4 − x1) + (x4 − x3) = −2(1 + 2g).

Therefore, we obtain:

sign
(
(x4 − x1)(x4 − x3)

)
= sign

(
(1 + 3g)(3 + 5g)

)
,

sign
(
(x4 − x1) + (x4 − x3)

)
= −sign (1 + 2g).

We observe that the direction of the second invariant parabola depends on sign (g(g + 1)).
Furthermore, for systems (3.52), calculations yield:

ζ2 = 4g(g + 1), ξ16 =
3705

2
g2(1 + g)2(1 + 3g)(3 + 5g),

ξ17 =
3705

4
(1 + g)2(1 + 2g)(1 + 3g)(3 + 5g).

Thus, we have:

sign (ζ2) = sign
(

g(g + 1)
)
, sign (ξ16) = sign

(
(1 + 3g)(3 + 5g)

)
,

sign (ξ17) = sign
(
(1 + 2g)(1 + 3g)(3 + 5g)

)
.
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Therefore, we establish the following configurations:
ζ2 < 0, ξ16 < 0 (i.e. −3/5 < g < −1/3) ⇒ (x4 − x1)(x4 − x3) < 0 ⇒ Config.P .65;
ζ2 < 0, ξ16 > 0, ξ17 < 0 (i.e. −1 < g < −3/5) ⇒ x4 > x1, x4 > x3 ⇒ Config.P .66;
ζ2 < 0, ξ16 > 0, ξ17 > 0 (i.e. −1/3 < g < 0) ⇒ x4 < x1, x4 < x3 ⇒ Config.P .67;
ζ2 > 0, ξ17 < 0 (i.e. g < −1) ⇒ x4 > x1, x4 > x3 ⇒ Config.P .68;
ζ2 > 0, ξ17 > 0 (i.e. g > 0) ⇒ x4 < x1, x4 < x3 ⇒ Config.P .69.

1.1.1.2: The subcase θ = 0. This condition implies (g − 1)(g + 2) = 0, and since for
systems (3.52) we have

ζ6 =
(g − 1)(1 + g)(2 + 5g + 5g2)

8
,

we consider two possibilities: ζ6 ̸= 0 and ζ6 = 0.

1.1.1.2.1: The possibility ζ6 ̸= 0. In this case, the condition θ = 0 implies g = −2. We
then obtain the system:

ẋ = −5x
2

+
y
2
− 2x2 + xy, ẏ = −y (5 + 3x − 2y) ,

which, besides the invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 5x + 4x2 + y = 0,

possesses only one invariant line: y = 0. This means that the condition g = −2 does not imply
the appearance of any additional parallel invariant line.

Since g = −2 < −1, we conclude that this case corresponds to configuration Config.P .68
(as detected earlier).

1.1.1.2.2: The possibility ζ6 = 0. Then θ = 0 implies g = 1, and we arrive at the system:

ẋ = −4x − y + x2 + xy, ẏ = 2y(y − 4),

which possesses the invariant lines y = 0 and y = 4, as well as the invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = −4x + x2 + y = 0.

In this case, we obtain configuration Config.P .70.

1.1.2: The case B2 = 0. Considering (3.53) and (3.54), the condition B2 = 0 implies g =

−2/3, and we arrive at the system:

ẋ =
x
6
− y

6
− 2x2

3
+ xy, ẏ =

1
3

y(1 − 5x + 6y), (3.55)

which possesses the invariant lines y = 0 and y = x − 1/4, as well as the invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x − 4x2 + y = 0.

We observe that the invariant line y = x − 1/4 is tangent to the invariant parabola Φ1(x, y) =
0 at the point M4(1/2, 1/4) and also tangent to the parabola Φ2(x, y) = 0 at the point
M2(1/4, 0). Therefore, in this case, we obtain configuration Config.P .71.

Thus, we have proved the following lemma.



Quadratic systems with three infinite singularities and parabolas 55

Lemma 3.9. Assume that for systems (3.37) the conditions B1 = 0 and ζ3ξ15 ̸= 0 hold. Then these
systems possess the following configurations, provided the corresponding conditions are satisfied:

B2 ̸= 0, θ ̸= 0, ζ2 < 0, ξ16 < 0 ⇒ Config.P .65;
B2 ̸= 0, θ ̸= 0, ζ2 < 0, ξ16 > 0, ξ17 < 0 ⇒ Config.P .66;
B2 ̸= 0, θ ̸= 0, ζ2 < 0, ξ16 > 0, ξ17 > 0 ⇒ Config.P .67;
B2 ̸= 0, θ ̸= 0, ζ2 > 0, ξ17 < 0 ⇒ Config.P .68;
B2 ̸= 0, θ ̸= 0, ζ2 > 0, ξ17 > 0 ⇒ Config.P .69;
B2 ̸= 0, θ = 0, ζ6 ̸= 0 ⇒ Config.P .68;
B2 ̸= 0, θ = 0, ζ6 = 0 ⇒ Config.P .70;
B2 = 0 ⇒ Config.P .71.

1.2: The possibility ξ15 = 0. Then, considering the proof of Lemma 3.8, we may assume
1 + 3g = 0. This yields g = −1/3, leading to the following one-parameter family of systems:

ẋ = nx − y
3
− x2

3
+ xy, ẏ =

2
3

y (3n − 2x + 3y) , (3.56)

which, besides the invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 9n2 − 6nx + x2 + (9n − 1)y = 0,

also possesses the invariant line y = 0.
Considering Lemmas 2.3 and 2.4, we compute:

B2 = −8(1 + 3n)(9n − 1)(12n − 1)y4/9, D = 4096n6(9n − 1)/243,

θ = 160/9 ̸= 0, ζ5 = −4256n2/9, R2 = 28(9n − 1)/81.

Thus, we discuss the cases B2 ̸= 0 and B2 = 0.

1.2.1: The case B2 ̸= 0. By Lemmas 2.3 and 2.4, no additional invariant line can exist.
Moreover, considering (3.40), the systems (3.56) possess four finite singularities Mi(xi, yi)

for i = 1, 2, 3, 4, with coordinates:

x1 = 0, y1 = 0; x2 = 3n, y2 = 0; x3,4 =
1
3

(
1 ±

√
1 − 9n

)
, y3,4 =

1
9

(
2 − 9n ± 2

√
1 − 9n

)
.

We observe that in this case n(1 − 9n) ̸= 0 due to ζ5R2 ̸= 0, ensuring all finite singularities
are distinct. Moreover, the invariant line y = 0 is tangent to the parabola Φ1(x, y) = 0 at the
singular point M1(0, 0) and tangent to Φ2(x, y) = 0 at M2(3n, 0).

Since D ̸= 0 and sign (1 − 9n) = −sign (D), we examine two subcases: D < 0 and D > 0.

1.2.1.1: The subcase D < 0. Then 1− 9n > 0 (i.e., n < 1/9), and we arrive at configuration
Config.P .72, independent of the relative position of the singularity M2(3n, 0) with respect to
M1(0, 0).

1.2.1.2: The subcase D > 0. This implies 1 − 9n < 0, so the singularities M3 and M4

become complex. In this case, we arrive at configuration Config.P .73.

1.2.2: The case B2 = 0. Since 9n − 1 ̸= 0 due to R2 ̸= 0, the condition B2 = 0 implies:

(1 + 3n)(12n − 1) = 0.
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1.2.2.1: The subcase 1 + 3n = 0. Then n = −1/3, leading to the system:

ẋ = −1
3

x − 1
3

y − 1
3

x2 + xy, ẏ =
2
3

y(−1 − 2x + 3y).

Applying the transformation x1 = (1 − x)/4, y1 = (y − x)/4, and t1 = 4t, we recover system
(3.55), corresponding to configuration Config.P .71.

1.2.2.2: The subcase 12n − 1 = 0. This implies n = 1/12, and we arrive at the system:

ẋ =
1
12

x − 1
3

y − 1
3

x2 + xy, ẏ =
1
6

y(1 − 8x + 12y).

Applying the affine transformation x1 = −x + 1/2, y1 = y − x + 1/4, the system is brought to
the form (3.55), again corresponding to configuration Config.P .71.

2: The subcase ζ3 = 0. Then g = −1/2, which implies B1 = 0. This leads to the following
one-parameter family of systems:

ẋ = (4x − 1) (8n − 1 − 4x + 8y) /32, ẏ = (x − 8nx + 32ny − 24xy + 32y2)/16, (3.57)

which possess the following two invariant parabolas: Φ1(x, y) = x2 − y = 0, and

Φ2(x, y) = (8n − 1)(16n − 1)− 4(16n − 1)x + 16x2 + 8(16n − 3)y = 0,

as well as the invariant line x = 1/4.
For the above systems, we calculate:

ζ5 = −475(16n − 1)2/256, R2 = 125(16n − 3)/1024,

and according to the conditions given by statement (A∗
2 ), we require ζ5R2 ̸= 0. This implies

(16n − 1)(16n − 3) ̸= 0, and by Proposition 2.7∗, the invariant parabolas Φ1(x, y) = 0 and
Φ2(x, y) = 0 are distinct.

For these systems, we compute:

B1 = 0, B2 = − 81
2048

(8n − 1)2(1 + 16n)2x4, θ = 18 ̸= 0, (3.58)

and since θ ̸= 0, by Lemma 2.4, these systems cannot possess an invariant line parallel to
x = 1/4.

On the other hand, according to Lemma 2.3, the existence of an invariant line in another
direction would require B2 = 0. Thus, we consider the possibilities B2 ̸= 0 and B2 = 0.

2.1: The possibility B2 ̸= 0. The systems (3.57) possess four finite singularities Mi(xi, yi)

(i = 1, 2, 3, 4) with coordinates:

x1 =
1
4

, y1 =
1
16

; x2 =
1
4

, y2 =
1 − 8n

8
;

x3,4 =
1
4

(
1 ±

√
3 − 16n

)
, y3,4 =

1
8

(
2 − 8n ±

√
3 − 16n

)
.

(3.59)

We observe that the invariant parabolas intersect at two points: M3 and M4. The invariant
line x = 1/4 intersects the parabola Φ1(x, y) = 0 at M1 and the parabola Φ2(x, y) = 0 at M2.

Thus, all four finite singularities are located at the intersections of invariant curves, and
their positions are determined by the parameter n. Furthermore, the singularities M3 and M4

are real if 3 − 16n > 0, and complex if 3 − 16n < 0.



Quadratic systems with three infinite singularities and parabolas 57

For systems (3.57), we compute:

D = 3(16n − 3)3(16n − 1)2/1048576 ̸= 0,

due to ζ5R2 ̸= 0. Therefore, sign (D) = sign (16n − 3).
Thus, for B2 ̸= 0, we conclude: if D < 0, the system corresponds to configuration Con-

fig.P .74, and if D > 0, it corresponds to configuration Config.P .75.

2.2: The possibility B2 = 0. From (3.58), this condition implies (8n − 1)(1 + 16n) = 0. We
analyze two cases: (1 + 16n) ̸= 0 and (1 + 16n) = 0.

If 8n − 1 = 0, i.e., n = 1/8, we obtain the system:

ẋ = −(4x − 1)(x − 2y)/8, ẏ = y(1 − 6x + 8y)/4, (3.60)

which possesses the following five invariant curves (two parabolas and three invariant lines):

Φ1(x, y) = x2 − y, Φ2(x, y) = −x + 4x2 − 2y, x = 1/4, y = 0, y = x − 1/4.

For this system, we obtain configuration Config.P .76.
In the case 1 + 16n = 0, we get n = −1/16, leading to the system:

ẋ = −(4x − 1)(3 + 8x − 16y)/64, ẏ = −(16y − 1)(3x − 4y)/32,

which can be brought to system (3.60) via the affine transformation and time rescaling:

x1 = x/2 + 1/8, y1 = y/2 − 1/32, t1 = 2t.

Thus, in this case, we again obtain configuration Config.P .76.

3.1.3 The statement (A∗
3 )

In this case, the conditions ζ4 = ζ5 = 0, together with (3.39) and the assumption ζ1 ̸= 0 (i.e.,
(g − 2)(g + 3) ̸= 0), yield the condition 1 + 4g + 3g2 + 4n = 0, which implies:

n = −1
4
(1 + g)(1 + 3g).

This leads to the following family of systems:

ẋ =
1
8
(1 + g)(1 + 3g)2 − 1

4
(1 + g)(1 + 3g)x − 1

2
(1 + g)y + gx2 + xy,

ẏ =
1
4
(1 + g)(1 + 3g)2x − 1

2
(1 + g)(1 + 3g)y + (g − 1)xy + 2y2,

(3.61)

which possess the invariant parabola Φ(x, y) = x2 − y = 0 with multiplicity 2.
Following statement (A∗

3 ), for the above systems we calculate:

ζ1 = 2(g − 2)(g + 3), ζ2 = 4g(1 + g), ζ4 = ζ5 = 0,

R2 = −
g(1 + g)(g − 2)(g + 3)

(
8 + 27g + 27g2)

8
,

B1 =
g4(1 + g)4(1 + 2g)(1 + 3g)3(2 + 3g)3

8
.

(3.62)

Since the quadratic polynomial 8 + 27g + 27g2 has a negative discriminant, for systems (3.61)
we have:

ζ1ζ2R2 ̸= 0 ⇒ g(1 + g)(g − 2)(g + 3) ̸= 0. (3.63)

According to Lemma 2.3, the existence of an invariant line for systems (3.61) requires the
condition B1 = 0. Thus, we analyze two cases: B1 ̸= 0 and B1 = 0.
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The case B1 ̸= 0. Then, no invariant line can exist. The systems (3.61) possess three finite
singularities Mi(xi, yi), for i = 1, 2, 3, with coordinates:

x1 = −1 + 3g
2

, y1 =
(1 + 3g)2

4
;

x2,3 =
1
2
(
1 + g ±

√
−2g(1 + g)

)
, y2,3 =

g + 1
4

(
1 − g ± 2

√
−2g(1 + g)

)
.

(3.64)

We point out that M1 is a multiple singularity of systems (3.61). Indeed, by applying the
corresponding translation, M1 can be placed at the origin, yielding the transformed system:

ẋ = − 1
2

g(3g + 1)x − (2g + 1)y + gx2 + xy,

ẏ =
1
2

g(3g + 1)2x + (2g + 1)(3g + 1)y + (g − 1)xy + 2y2,

where M0(0, 0) is the singularity corresponding to M1.
Following [1], we compute the corresponding invariant polynomials at M0: µ4 = µ3 = 0,

and

µ2 =
1
2

g(g + 1)(3g + 1)(3g + 2)
[
g(1 + 3g)x2 + 4gxy + 2y2] ̸= 0,

due to B1 ̸= 0. By [1, Lemma 5.2, statement (ii)], the point M0 has multiplicity exactly 2.
We also observe that:

Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0,

meaning that all three singularities lie on the invariant parabola.
The nature (real or complex) of M2 and M3 depends on the sign of g(g + 1) ̸= 0 (since

ζ2 ̸= 0). Given that ζ2 = 4g(g + 1), we analyze two subcases: ζ2 < 0 and ζ2 > 0.

1: The subcase ζ2 < 0. This implies g(g + 1) < 0, i.e., −1 < g < 0. In this case, all three
singularities on the invariant parabola are real. We need to determine the relative position of
the double singularity M1 with respect to the simple singularities M2 and M3.

From (3.64), we calculate:

(x2 − x1)(x3 − x1) = (1+ 3g)(2+ 3g)/2 ⇒ sign
(
(x2 − x1)(x3 − x1)

)
= sign

(
(1+ 3g)(2+ 3g)

)
.

On the other hand, for systems (3.61) we obtain:

ξ15 = 2(1 + 3g)(2 + 3g) ̸= 0,

due to B1 ̸= 0.
Therefore, if ξ15 < 0, the double point M1 lies between the singularities M2 and M3, yield-

ing configuration Config.P .77, and if ξ15 > 0, the double point M1 lies outside the curvilinear
interval (M2, M3), yielding configuration Config.P .78.

2: The subcase ζ2 > 0. Then g(g + 1) > 0, so the singularities M2 and M3 are complex. In this
case, we get only configuration Config.P .79.
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The case B1 = 0. Considering (3.62) together with the condition (3.63), we conclude that
B1 = 0 is equivalent to the condition (1 + 2g)(1 + 3g)(2 + 3g) = 0. For systems (3.61), we also
have ζ3 = 8(1 + 2g)2, so we consider two subcases: ζ3 ̸= 0 and ζ3 = 0.

1: The subcase ζ3 ̸= 0. Then 1 + 2g ̸= 0, and the condition B1 = 0 implies (1 + 3g)(2 + 3g) = 0.
If g = −1/3, we arrive at the system:

ẋ = −(y + x2 − 3xy)/3, ẏ = −2y(2x − 3y)/3, (3.65)

which possesses the invariant line y = 0, tangent to the double invariant parabola at the
singular point M1(0, 0). In this case, the singular point M3 has coalesced with M1, producing
a triple singularity. Therefore, we obtain configuration Config.P .80.

Now, consider g = −2/3. Then, the system becomes:

ẋ = (1 + 2x − 4y − 16x2 + 24xy)/24, ẏ = (x + 2y − 20xy + 24y2)/12,

which, via the affine transformation x1 = −x + 1/2, y1 = y − x + 1/4, can be brought to
system (3.65), also possessing configuration Config.P .80.

2: The subcase ζ3 = 0. Then g = −1/2, and we arrive at the system:

ẋ = −(4x − 1)(1 + 8x − 16y)/64, ẏ = (x + 4y − 48xy + 64y2)/32,

which possesses the invariant line x = 1/4 and the double invariant parabola Φ1(x, y) = x2 −
y = 0. In this case, the singular points M1 and M2 have coalesced, and it is straightforward to
verify that this yields configuration Config.P .81.

Thus, we have proved the following lemma.

Lemma 3.10. Assume that for a quadratic system the conditions (A∗
3 ) are satisfied. Then, the system

possesses one of the following configurations, if and only if the corresponding conditions below hold:
B1 ̸= 0, ζ2 < 0, ξ15 < 0 ⇒ Config.P .77;
B1 ̸= 0, ζ2 < 0, ξ15 > 0 ⇒ Config.P .78;
B1 ̸= 0, ζ2 > 0 ⇒ Config.P .79;
B1 = 0, ζ3 ̸= 0 ⇒ Config.P .80;
B1 = 0, ζ3 = 0 ⇒ Config.P .81.

3.1.4 The statement (A∗
4 )

In this case, the conditions ζ4 = R2 = 0 hold. Considering (3.39) and the condition ζ1 ̸= 0
(i.e., (g − 2)(g + 3) ̸= 0), we get:

(8 + 27g + 27g2)(1 + 6g + 5g2 + 4n) = 0.

However, the discriminant of the quadratic polynomial 8 + 27g + 27g2 equals −135 < 0, so
this factor cannot vanish. Thus, we obtain:

1 + 6g + 5g2 + 4n = 0 ⇒ n = −1
4
(1 + g)(1 + 5g).

This leads to the following family of systems:

ẋ =
1
8
(1 + g − 2x)(1 + 4g + 3g2 − 4gx − 4y),

ẏ =
1
4
(1 + g)2(1 + 3g) x − 1

2
(1 + g)(1 + 5g)y + (g − 1)xy + 2y2,

(3.66)
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which possess the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line x = (g +

1)/2.
For the above systems, following the statement (A∗

4 ), we calculate:

ζ1 = 2(g − 2)(3 + g), ζ2 = 4g(1 + g),

ζ4 = 0 = R2, ζ5 = 19(g − 2)g2(1 + g)2(3 + g),

B1 = 0, B2 = −648g5(1 + g)5(1 + 3g)(2 + 3g)x4.

(3.67)

Therefore, for systems (3.61), we have:

ζ1ζ2ζ5 ̸= 0 ⇒ g(1 + g)(g − 2)(3 + g) ̸= 0. (3.68)

We now discuss two possibilities: B2 ̸= 0 and B2 = 0.

1: The case B2 ̸= 0. In this situation, by Lemma 2.3, systems (3.66) cannot possess any invariant
line in other direction than x = (g + 1)/2.

On the other hand, by Lemma 2.4, these systems could possess an invariant line parallel
to the existing one if θ = (g − 1)(g + 2) = 0. However, a straightforward computation shows
that neither g = 1 nor g = −2 leads to the appearance of an additional parallel invariant line.

Systems (3.66) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with coordinates:

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 =

1 + g
2

, y2 =
1
4
(1 + g)(1 + 3g);

x3 = −1 + 3g
2

, y3 =
(1 + 3g)2

4
.

We observe that the invariant line x = (g + 1)/2 intersects the invariant parabola at the
singular point M1, and we claim that M1 is a multiple singularity of systems (3.66). Indeed,
applying the corresponding translation, we can place M1 at the origin of coordinates, resulting
in the system:

ẋ = gx2 + xy, ẏ = g(1 + g)2x − g(1 + g)y + (g − 1)xy + 2y2,

where M0(0, 0) is the singularity corresponding to M1.
Following [1], we compute the invariant polynomials: µ4 = µ3 = 0, and:

µ2 = g2(1 + g)2(1 + 2g)x(gx + y).

Due to condition (3.68), we have that µ2 = 0 if and only if 1 + 2g = 0. By [1, Lemma
5.2, statement (ii)], the point M0 has multiplicity exactly 2 if 1 + 2g ̸= 0, and it is triple if
g = −1/2.

For systems (3.66), we have ζ3 = 8(1 + 2g)2, so we now consider two cases: ζ3 ̸= 0 and
ζ3 = 0.

1.1: The subcase ζ3 ̸= 0. Then 1 + 2g ̸= 0, and therefore M1 is a double singular point of the
system, with all three singularities distinct.

Moreover, the singularity M2 lies on the invariant line, while M3 lies on the invariant
parabola. To determine the relative positions of these points with respect to the double singu-
larity M1, we compute:

y2 − y1 = g(1 + g)/2 ⇒ sign (y2 − y1) = sign
(

g(g + 1)
)
,

x3 − x1 = −(1 + 2g) ⇒ sign (x3 − x1) = −sign (1 + 2g),
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and we observe that for systems (3.66), we have ζ2 = 4g(g + 1), hence sign (ζ2) = sign
(

g(g +

1)
)
.
Thus, we arrive at the following configurations:

ζ2 < 0, 2g + 1 < 0 (i.e., −1 < g < −1/2) ⇒ y2 < y1, x3 > x1 ⇒ Config.P .82;
ζ2 < 0, 2g + 1 > 0 (i.e., −1/2 < g < 0) ⇒ y2 < y1, x3 < x1 ⇒ ≃ Config.P .82;
ζ2 > 0, 2g + 1 < 0 (i.e., g < −1) ⇒ y2 > y1, x3 > x1 ⇒ Config.P .83;
ζ2 > 0, 2g + 1 > 0 (i.e., g > 0) ⇒ y2 > y1, x3 < x1 ⇒ ≃ Config.P .83.

1.2: The subcase ζ3 = 0. Then g = −1/2, leading to the system:

ẋ = −(4x − 1)(−1 + 8x − 16y)/64, ẏ = (−x + 12y − 48xy + 64y2)/32,

which possesses the invariant line x = 1/4 and the invariant parabola Φ1(x, y) = x2 − y = 0.
In this case, the singular points M1 and M3 coalesce, resulting in the configuration Config.P .84.

2: The case B2 = 0. Considering (3.67) and the condition (3.68), we conclude that B2 = 0 is
equivalent to (1 + 3g)(2 + 3g) = 0.

If g = −1/3, we arrive at the system:

ẋ = −(3x − 1)(x − 3y)/9, ẏ = 2y(1 − 6x + 9y)/9, (3.69)

which possesses the additional invariant line y = 0, tangent to the invariant parabola at
the singular point M3(0, 0) and intersecting the invariant line x = 1/3 at the singular point
M2(1/3, 0). Therefore, we obtain the configuration Config.P .85.

Assume now g = −2/3. This leads to the system:

ẋ = −(6x − 1)(8x − 1 − 12y)/72, ẏ = (−x + 14y − 60xy + 72y2)/36,

which, via the affine transformation x1 = −x + 1/2, y1 = −x + y + 1/4, can be brought to
system (3.69), also corresponding to configuration Config.P .85.

Thus, we have proved the following lemma.

Lemma 3.11. Assume that for a quadratic system the conditions (A∗
4 ) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,
respectively:

B2 ̸= 0, ζ3 ̸= 0, ζ2 < 0 ⇒ Config.P .82;
B2 ̸= 0, ζ3 ̸= 0, ζ2 > 0 ⇒ Config.P .83;
B2 ̸= 0, ζ3 = 0 ⇒ Config.P .84;
B2 = 0 ⇒ Config.P .85.

3.1.5 The statement (A∗
5 )

According to Proposition 2.7∗, the condition ζ2 = 0 holds. Considering (3.2), we obtain
g(g + 1) = 0.

Following the proof of Lemma 3.1, we conclude that the condition g + 1 = 0 can be
reduced, via an affine transformation (see formulas (3.12)), to the condition g = 0.

Therefore, it suffices to study only the case g = 0. In this case, we arrive at the following
two-parameter family of systems:

ẋ = m + nx − y/2 + xy, ẏ = 2mx + 2ny − xy + 2y2, (3.70)
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which possesses the invariant parabola Φ(x, y) = x2 − y = 0.
Considering the statement (A∗

5 ) for these systems, we calculate:

ζ1 = − 12, ζ2 = 0, ζ6 = (2m + n)/2, R1 = 0, R2 = 6(2m + n),

B1 = 2m(4m − 1 − 2n)(2m + n)3.
(3.71)

Remark 3.12. Following [1, Lemma 5.2], for systems (3.70), we compute:

µ0 = 0, µ1 = −2(2m + n)y ̸= 0,

due to the condition ζ6 ̸= 0. Therefore, according to [1, Lemma 5.2, statement (i)], we conclude
that one of the singular points of systems (3.70) has gone to infinity and has coalesced with
the infinite singularity N[1 : 0 : 0], producing an infinite singularity of multiplicity (1, 1) (see
Remark 2.5).

The case B1 ̸= 0. We observe that the family of systems (3.70) is a subfamily of (3.1) defined
by the condition g = 0. Considering the finite singularities of (3.1) given in (3.4), we remark
that in the case g = 0, the singular point M1(x1, y1) with coordinates

x1 = −2m + n + gn
g(1 + g)

, y1 =
2m

1 + g
,

has moved to infinity. According to Remark 3.12, this singularity coalesced with the infinite
singularity N[1 : 0 : 0], producing an infinite singularity of multiplicity (1, 1).

Therefore, systems (3.70) possess three finite singularities Mi(x̃i, ỹi) for i = 2, 3, 4, where,
from (3.4), we have

x̃i = xi
∣∣

g=0, ỹi = yi
∣∣

g=0, i = 2, 3, 4.

Taking into consideration [1, Proposition 5.1], for systems (3.70), we compute:

µ0 = 0, D = 48(2m + n)4(108m2 − 2m + 36mn − n2 + 16n3), R = 12(2m + n)2y2.

We observe that R ̸= 0 due to ζ6 ̸= 0, and by [1, Proposition 5.1], we have three distinct real
finite singularities if D < 0, and one real and two complex if D > 0. Considering the point at
infinity of multiplicity (1, 1), we arrive at Config.P .86 if D < 0, and Config.P .87 if D > 0.

Now assume that for systems (3.70), the condition D = 48(F′
1)

2F′
2 = 0 holds, where, from

(3.3), we have:

F′
1 = −(2m + n)2, F′

2 = −2m + 108m2 + 36mn − n2 + 16n3.

Since F′
1 ̸= 0 (due to ζ6 ̸= 0), we conclude that the condition D = 0 is equivalent to F′

2 = 0.
Introducing a new parameter v, as in the generic case (see page 29), we obtain n = (1 −

v2)/12, m = (1 + v)2(2v − 1)/216, and we arrive at the following one-parameter family of
systems:

ẋ =
(1 + v)2(2v − 1)

216
− v2 − 1

12
x − 1

2
y + xy,

ẏ =
(1 + v)2(2v − 1)

108
x − v2 − 1

6
y − xy + 2y2,

(3.72)

which is a subfamily of (3.8) defined by g = 0.
The systems (3.5) possess three finite singularities given in (3.7), and M1 is a multiple

singularity (of multiplicity at least two). We observe that for g = 0, the singular point M3
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has gone to infinity and, according to Remark 3.12, this singularity coalesced with the infinite
singularity N[1 : 0 : 0], producing an infinite singularity of multiplicity (1, 1).

Thus, the systems (3.72) possess at most two different finite singularities M1(x̃1, ỹ1) (mul-
tiple) and M2(x̃2, ỹ2), where, from (3.7), we have:

x̃1 =
1 + v

6
, ỹ1 =

(1 + v)2

36
; x̃2 =

1 − 2v
6

, ỹ2 =
(1 − 2v)2

36
.

We observe that M2 coalesces with the double point M1 if and only if v = 0.
Considering that B1 ̸= 0 (i.e., systems (3.72) do not possess any invariant line), we conclude

that the configuration is Config.P .88 if v ̸= 0, and Config.P .89 if v = 0.
Moreover, for systems (3.72), we compute:

ξ2 =
1

209952
v2(v − 2)6(1 + v)2, ζ6 =

1
108

(v − 2)2(1 + v),

and due to ζ6 ̸= 0, we conclude that the condition v ̸= 0 is equivalent to ξ2 ̸= 0. Therefore,
we obtain configuration Config.P .88 if ξ2 ̸= 0, and Config.P .89 if ξ2 = 0.

The case B1 = 0. Considering (3.71) and the condition ζ6 ̸= 0 (i.e., 2m + n ̸= 0), we deduce
that the condition B1 = 0 is equivalent to m(4m − 1 − 2n) = 0.

On the other hand, for systems (3.70), we calculate:

ξ1 = 9(4m − 1 − 2n)(2m + n)2/4

and, due to ζ6 ̸= 0, we conclude that the condition 4m − 1 − 2n = 0 is equivalent to ξ1 = 0.
Thus, we discuss two subcases: ξ1 ̸= 0 and ξ1 = 0.

1: The subcase ξ1 ̸= 0. In this case, the condition B1 = 0 yields m = 0, which leads to the
one-parameter family of systems:

ẋ =
1
2
(2nx − y + 2xy), ẏ = y(2n − x + 2y), (3.73)

possessing the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line y = 0. Calcula-
tions yield:

B2 = −324n2(1 + 2n)y4

and, according to Lemma 2.3, we discuss two possibilities: B2 ̸= 0 and B2 = 0.

1.1: The possibility B2 ̸= 0. We determine that systems (3.73) possess three finite singulari-
ties Mi(xi, yi) (i = 1, 2, 3) with coordinates:

x1 = 0, y1 = 0; x2,3 =
1
4

(
1 ±

√
1 − 16n

)
, y2,3 =

1
8

(
1 − 8n ±

√
1 − 16n

)
. (3.74)

According to Remark 3.12, the fourth finite singularity has coalesced with an infinite one,
resulting in a singular point of multiplicity (1, 1).

We observe that M1 is the tangency point between y = 0 and the invariant parabola, and
that M2 and M3 are either real, complex, or coincident, depending on the value of 1 − 16n.

To determine the relative position of the real singularities M2 and M3 with respect to M1,
we calculate:

(x2 − x1)(x3 − x1) = n, (x2 − x1) + (x3 − x1) = 1/2 > 0.
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On the other hand, for systems (3.73), we calculate:

D = −48n6(1 − 16n), R2 = 6n,

and therefore, due to R2 ̸= 0, we have sign (R2) = sign (n) and sign (D) = −sign (1 − 16n).
Thus, in the case B2 ̸= 0, we arrive at the following four configurations:

D < 0, R2 < 0 ⇒ Config.P .90;
D < 0, R2 > 0 ⇒ Config.P .91;
D > 0 ⇒ Config.P .92;
D = 0 ⇒ Config.P .93.

1.2: The possibility B2 = 0. This implies that (1 + 2n)n = 0, and since n ̸= 0 (due to
ζ6 = n/2 ̸= 0), we get 1 + 2n = 0. Thus, n = −1/2, and we obtain the system:

ẋ =
1
2
(−x − y + 2xy), ẏ = y(−1 − x + 2y), (3.75)

possessing two invariant lines: y = 0 and y = x. Considering (3.74), we get three real finite
singularities, leading to configuration Config.P .94.

2: The subcase ξ1 = 0. This implies m = (1 + 2n)/4, and we arrive at the one-parameter family
of systems:

ẋ =
1
4
(1 + 2n + 4nx − 2y + 4xy), ẏ =

1
2
(x + 2nx + 4ny − 2xy + 4y2), (3.76)

possessing the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line y = x − (2n +

1)/2. Calculations yield:
B2 = −81(1 + 2n)(1 + 4n)2(x − y)4

and, considering Lemma 2.3, we examine two possibilities: B2 ̸= 0 and B2 = 0.

2.1: The possibility B2 ̸= 0. The above systems possess three finite singularities Mi(xi, yi)

(i = 1, 2, 3) with coordinates:

x1 = −1
2

, y1 =
1
4

; x2,3 =
1
2

(
1 ±

√
−(1 + 4n)

)
, y2,3 =

1
2

(
−2n ±

√
−(1 + 4n)

)
.

The singularities M2 and M3 are the intersection points between the invariant line y = x −
(2n + 1)/2 and the invariant parabola, and they are real (respectively, complex or coincident)
if 1 + 4n < 0 (respectively, 1 + 4n > 0, 1 + 4n = 0).

Again, in the case of real singularities, we calculate:

(x2 − x1)(x3 − x1) = (5 + 4n)/4, (x2 − x1) + (x3 − x1) = 2 > 0.

Moreover, for systems (3.76), calculations give:

D = 3(1 + 4n)5(5 + 4n)2/4, ξ3 = 8164197(1 + 4n)3(5 + 4n)/2,

and therefore, for D ̸= 0, we have sign (D) = sign (1 + 4n) and sign (ξ3) = sign
(
(1 + 4n)(5 +

4n)
)
.

Thus, in the case B2 ̸= 0 and D ̸= 0, we arrive at the following configurations:

D < 0, ξ3 < 0 ⇒ Config.P .95;
D < 0, ξ3 > 0 ⇒ Config.P .96;
D > 0 ⇒ Config.P .97.
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Now, assume that D = 0. This implies (1 + 4n)(5 + 4n) = 0. Since ζ6 = (1 + 4n)/4 ̸= 0,
we get 5 + 4n = 0, meaning that one of the singularities M2 or M3 coalesces with M1. Thus,
we arrive at configuration Config.P .98.

2.2: The possibility B2 = 0. This implies (1 + 2n)(1 + 4n) = 0, and since 1 + 4n ̸= 0 (due to
ζ6 ̸= 0), we get 1 + 2n = 0. Thus, n = −1/2, and we arrive again at system (3.75), possessing
configuration Config.P .94.

Thus, we have proved the following lemma.

Lemma 3.13. Assume that for a quadratic system the conditions (A∗
5 ) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,
respectively:

B1 ̸= 0, D < 0 ⇒ Config.P .86;
B1 ̸= 0, D > 0 ⇒ Config.P .87;
B1 ̸= 0, D = 0, ξ2 ̸= 0 ⇒ Config.P .88;
B1 ̸= 0, D = 0, ξ2 = 0 ⇒ Config.P .89;
B1 = 0, ξ1 ̸= 0, B2 ̸= 0, D < 0, R2 < 0 ⇒ Config.P .90;
B1 = 0, ξ1 ̸= 0, B2 ̸= 0, D < 0, R2 > 0 ⇒ Config.P .91;
B1 = 0, ξ1 ̸= 0, B2 ̸= 0, D > 0 ⇒ Config.P .92;
B1 = 0, ξ1 ̸= 0, B2 ̸= 0, D = 0 ⇒ Config.P .93;
B1 = 0, ξ1 ̸= 0, B2 = 0 ⇒ Config.P .94;
B1 = 0, ξ1 = 0, B2 ̸= 0, D < 0, ξ3 < 0 ⇒ Config.P .95;
B1 = 0, ξ1 = 0, B2 ̸= 0, D < 0, ξ3 > 0 ⇒ Config.P .96;
B1 = 0, ξ1 = 0, B2 ̸= 0, D > 0 ⇒ Config.P .97;
B1 = 0, ξ1 = 0, B2 ̸= 0, D = 0 ⇒ Config.P .98;
B1 = 0, ξ1 = 0, B2 = 0 ⇒ Config.P .94.

Since all the statements provided by Proposition 2.7∗ have been considered, this proposi-
tion is proved.

3.2 Systems in QSP(η>0) with the condition ζ1 = 0

In what follows, we examine each of the statements (B1) to (B7) given by Proposition 2.8.
According to this proposition, a system satisfying the conditions provided by one of the

statements (B1) to (B7) can be brought to the form:

ẋ = m + nx − 3y
2

+ 2x2 + xy, ẏ = 2mx + 2ny + xy + 2y2, (3.77)

and this system possesses the invariant parabola Φ1(x, y) = x2 − y = 0.

3.2.1 The statement (B1)

According to this statement, for systems (3.77) we calculate χ3 = 0 and

χ4 = 61875 U1 U3, ζ7 = −52875
2

U1 U2 U3, R3 = 3850561006875 U1 U2 U3, (3.78)

where
U1 = 1 + 4m + 2n, U2 = 4m − 147 − 14n,

U3 = 18m + 1372m2 − 84mn + 27n2 + 144n3.
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On the other hand, following Lemma 2.3, we calculate:

B1 = m(2m − n)(2m + 3n + 9)(4m − 6n − 9)(1 + 4m + 2n) (3.79)

and, considering Lemma 2.3, we discuss two cases: B1 ̸= 0 and B1 = 0.

The case B1 ̸= 0. We observe that the family of systems (3.77) is a subfamily of (3.1) defined
by the condition g = 2. Therefore, it is clear that systems (3.77) possess four finite singularities
Mi(x̃i, ỹi) (i = 1, 2, 3, 4), where, considering (3.4), we have:

x̃i = xi
∣∣
{g=2}, ỹi = yi

∣∣
{g=2}, i = 1, 2, 3, 4.

On the other hand, for systems (3.77), we have:

D = 48F̃2
1 F̃2, F̃1 = F1

∣∣
{g=2}, F̃2 = F2

∣∣
{g=2},

where F1 and F2 are given in (3.3).
As it was proved for the family (3.1), in the case D ̸= 0, these systems possess only two

distinct configurations: Config.P .1 if D < 0, and Config.P .2 if D > 0. We obtain the same
two configurations in the particular case g = 2, because this value of the parameter g is not a
bifurcation value for these two configurations.

Assume now that D = 0. This implies F̃1F̃2 = 0, and we have to distinguish which factor
vanishes. We point out that the invariant polynomial ξ1, which governed the condition F1 = 0
for systems (3.1) in the generic case (i.e., g ̸= 2), vanishes for g = 2. Therefore, we must use
another invariant polynomial, and for systems (3.77) we calculate:

ξ18 = 17969284698750 U2 U3 F̃1.

Therefore, due to the condition ζ7 ̸= 0, we obtain that the condition F̃1 = 0 is equivalent to
ξ18 = 0. Thus, we examine two possibilities: ξ18 ̸= 0 and ξ18 = 0.

1: The possibility ξ18 ̸= 0. Then F̃1 ̸= 0 and hence the condition D = 0 implies F̃2 = 0.
Following the investigation of the family of systems (3.1) in the particular case g = 2, we
arrive at the systems (3.5), which for g = 2 become:

ẋ =
1

216
(2v + 1)(v − 1)2 − 1

12
(v2 − 1)x − 3y

2
+ 2x2 + xy,

ẏ =
1

108
(2v + 1)(v − 1)2x − 1

6
(v2 − 1)y + xy + 2y2.

(3.80)

For the above systems, we calculate:

ξ2 = 2−53−8(v − 4)2(v − 1)2v2(v2 − 20v − 8)2,

ξ18 = 998293594375(v − 10)(v − 4)4(v − 1)4(20 + v)2(4 + 5v)2(v2 − 20v − 8)/3188646,

and we observe that, due to ξ18 ̸= 0, the condition ξ2 = 0 is equivalent to v = 0.
Therefore, following the examination of the two-parameter family of systems (3.1), we

conclude that the one-parameter family of systems (3.80), in the case B1ξ18 ̸= 0, possesses the
configuration Config.P .3 if ξ2 ̸= 0 and Config.P .4 if ξ2 = 0.
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2: The possibility ξ18 = 0. Then we have F̃1 = 0, which implies D = 0. Following the
investigation of the family of systems (3.1) in the particular case g = 2, we arrive at the
systems (3.8), which for g = 2 become:

ẋ =
3
8
(u − 2)2 − 1

4
(u2 − 4)x − 3y

2
+ 2x2 + xy,

ẏ =
3
4
(u − 2)2x − 1

2
(u2 − 4)y + xy + 2y2.

(3.81)

For the above systems, we calculate:

χ4 = −556875(u − 3)5(u − 2)2(13 + u)/4, ξ2 = 9(u − 3)2(u − 2)2Z̃1/2,

ξ3 = 490484322 α̃3
1 Z̃1, Z̃1 = Z1

∣∣
{g=2}, α̃1 = α1

∣∣
{g=2},

where Z1 and α1 are the polynomials defined for systems (3.8) (see (3.10) and (3.11)).
We observe that, due to the condition χ4 ̸= 0, we have:

sign (ξ2) = sign (Z̃1), sign (ξ3) = sign (Z̃1α̃1),

and, following the examination of the two-parameter family of systems (3.8), we conclude
that the one-parameter family of systems (3.81), in the case B1 ̸= 0, possesses the following
configurations if and only if the corresponding conditions are satisfied:

ξ2 < 0 ⇔ Config.P .5;
ξ2 > 0, ξ3 < 0 ⇔ Config.P .6;
ξ2 > 0, ξ3 > 0 ⇔ Config.P .7;
ξ2 = 0 ⇔ Config.P .8.

The case B1 = 0. Considering (3.79) and the condition χ4 ̸= 0 (i.e., 4m + 2n + 1 ̸= 0), we
observe that the condition B1 = 0 is equivalent to:

m(2m − n)(2m + 3n + 9)(4m − 6n − 9) = 0.

For systems (3.77), calculations yield:

ξ19 = −12870000 m (2m − n) (2m + 3n + 9),

ξ20 = −540 m (2m − n)U1 U3, ξ21 = −110106 mU1 U2 U3,
(3.82)

and we consider two subcases: ξ19 ̸= 0 and ξ19 = 0.

The subcase ξ19 ̸= 0. Then m(2m − n)(2m + 3n + 9) ̸= 0, and therefore the condition
B1 = 0 yields 4m − 6n − 9 = 0. This implies m = 3(3+2n)

4 , and we arrive at the one-parameter
family of systems:

ẋ = (9 + 6n + 4nx + 8x2 − 6y + 4xy)/4,

ẏ = (9x + 6nx + 4ny + 2xy + 4y2)/2,
(3.83)

which possesses the invariant line y = x − 3+2n
2 and four finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with coordinates:

x1 = −3
2

, y1 =
9
4

; x2 = −3 + 4n
4

, y2 =
3 + 2n

4
;

x3,4 =
1
2

(
1 ±

√
−(5 + 4n)

)
, y3,4 =

1
2

(
−2 − 2n ±

√
−(5 + 4n)

)
.
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We determine that the singularities M1, M3, and M4 lie on the invariant parabola. Moreover,
M3 and M4 are the points of intersection of the invariant line y = x − (3 + 2n)/2 with the
invariant parabola Φ1(x, y) = x2 − y = 0. We calculate:

Φ1(x2, y2) =
1

16
(4n − 3)(5 + 4n),

and we conclude that M2 lies on the parabola if and only if 4n − 3 = 0, because for systems
(3.83), we have:

χ4ζ7R3 ̸= 0 ⇔ (5 + 4n)(9 + 4n)(69 + 4n) ̸= 0. (3.84)

In order to determine the position of the singularity M1 with respect to M3 and M4 (when
they are real), we calculate:

(x1 − x3)(x1 − x4) = (21 + 4n)/4 ⇒ sign
(
(x1 − x3)(x1 − x4)

)
= sign (21 + 4n),

(x1 − x3) + (x1 − x4) = −4 < 0.

Thus, we observe that for the parameter n, the following possible bifurcation values arise: n ∈
{−21/4,−5/4, 3/4}. Moreover, we point out that due to the condition (3.84), the inequality
5+ 4n ̸= 0 must hold (i.e., n ̸= −5/4), and hence the singularities M3 and M4 cannot coincide.

On the other hand, according to Lemma 2.3, for the existence of an invariant line in a
direction different from y = x, the condition B2 = 0 is necessary. For systems (3.83), we
calculate:

B2 = −729(3 + 2n)(9 + 4n)2(x − y)4, D = 243(4n − 3)2(5 + 4n)3(21 + 4n)2/4,

ξ9 = 16299895407840(9 + 4n)2(21 + 4n),

and in the case D ̸= 0, we have:

sign (D) = sign (5 + 4n), sign (ξ9) = sign (21 + 4n).

Considering Lemma 2.3, we examine two possibilities: B2 ̸= 0 and B2 = 0.

1: The possibility B2 ̸= 0. We discuss two cases: D ̸= 0 and D = 0.

1.1: The case D ̸= 0. In this case, all four finite singular points of systems (3.83) are distinct.
Considering the bifurcation values of the parameter n mentioned above, for systems (3.83) we
obtain the following configurations (depending on the parameter n):

D < 0, ξ9 < 0 (i.e., n < −21/4) ⇒ ≃ Config.P .17;
D < 0, ξ9 > 0 (i.e., −21/4 < n < −5/4) ⇒ ≃ Config.P .19;
D > 0 (i.e., n > −5/4) ⇒ ≃ Config.P .20.

1.2: The case D = 0. Then, due to the condition (3.84), we get (4n − 3)(21 + 4n) = 0, and we
observe that the condition 21 + 4n = 0 is governed by the invariant polynomial ξ9. Therefore,
we arrive at the configuration Config.P .21 if ξ9 ̸= 0 and Config.P .25 if ξ9 = 0.

2: The possibility B2 = 0. Considering the condition (3.84), we get n = −3/2, which leads to
the system:

ẋ =
1
2
(−3x + 4x2 − 3y + 2xy), ẏ = y(−3 + x + 2y),

possessing two invariant lines y = x and y = 0, in addition to the invariant parabola. There-
fore, in this case, we obtain an equivalent configuration to Config.P .52.
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The subcase ξ19 = 0. Then m(2m − n)(2m + 3n + 9) = 0, and we examine two possibili-
ties: ξ20 ̸= 0 and ξ20 = 0.

1: The possibility ξ20 ̸= 0. In this case, considering (3.82), we obtain m(2m − n) ̸= 0, and
therefore 2m + 3n + 9 = 0. This implies m = −3(3+ n)/2, and we arrive at the one-parameter
family of systems:

ẋ =
1
2
(2x − 3)(3 + n + 2x + y), ẏ = −3(3 + n)x + 2ny + xy + 2y2, (3.85)

which is a subfamily of (3.14) defined by the condition g = 2. The family (3.14) was inves-
tigated earlier, and considering (3.15), (3.16) and (3.17) for g = 2 (i.e., for systems (3.85)), we
have:

Z2 = −4(2 + n), α2 = 21 + 4n, β2 = 33 + 4n,

B2 = −5832(3 + n)(9 + 4n)2(17 + 4n)x4, D = −972Z2α2
2β2

2,

B3 = −9(9 + 4n)x2(12x2 + 4nx2 − 24xy − 8nxy − 5y2)/2,

ξ7 = 1057164750000Z2α2
2β2, ξ8 = 55640250000Z2α2β2

2,

ξ18 = −7277560302993750(6 + n)(9 + 4n)(57 + 4n)α2β2.

We observe that for the parameter n, the following possible bifurcation values arise: n ∈
{−33/4,−21/4,−2}. Considering (3.78) for systems (3.85), we obtain:

χ4ζ7R3 ̸= 0 ⇔ (6 + n)(9 + 4n)(17 + 4n)(57 + 4n)β2 ̸= 0, (3.86)

and therefore β2B3 ̸= 0. Moreover, from the above condition we deduce that ξ18 = 0 if and
only if α2 = 0.

Thus, in the case B2 ̸= 0, and following the investigation of the family (3.14) for g = 2, we
get the following configurations (depending on the parameter n):

D < 0, ξ7 < 0 (i.e., n < −33/4) ⇒ Config.P .9;
D < 0, ξ7 > 0, ξ8 < 0 (i.e., −33/4 < n < −21/4) ⇒ Config.P .11;
D < 0, ξ7 > 0, ξ8 > 0 (i.e., −21/4 < n < −2) ⇒ Config.P .12;
D > 0 (i.e., n > −2) ⇒ Config.P .13;
D = 0, ξ18 ̸= 0 (i.e., n = −2) ⇒ Config.P .14;
D = 0, ξ18 = 0 (i.e., n = −21/4) ⇒ Config.P .16.

Assuming B2 = 0, and considering the condition (3.86), we get n = −3 and arrive at the
system:

ẋ =
1
2
(2x − 3)(2x + y), ẏ = y(−6 + x + 2y),

which possesses two invariant lines x = 3/2 and y = 0, in addition to the invariant parabola.
Therefore, for this system, we obtain the configuration Config.P .47.

2: The possibility ξ20 = 0. Then, from (3.82), we obtain m(2m − n) = 0, and we discuss two
cases: ξ21 ̸= 0 and ξ21 = 0.

2.1: The case ξ21 ̸= 0. Then m ̸= 0, and we obtain m = n/2. This leads to the following
one-parameter family of systems:

ẋ =
n
2
+ nx − 3y

2
+ 2x2 + xy, ẏ = (n + y)(x + 2y), (3.87)
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which is a subfamily of (3.19) defined by the condition g = 2. The family (3.19) was investi-
gated earlier, and considering (3.21) for g = 2 (i.e., for systems (3.87)), we conclude that these
systems possess four singularities Mi(xi, yi) (i = 1, 2, 3, 4) with coordinates:

x1 =
√
−n, y1 = −n; x2 = −

√
−n, y2 = −n;

x3 = −1
2

, y3 =
1
4

; x4 = −2n
3

, y4 =
n
3

.

For these systems, we calculate:

θ = −32 ̸= 0, B2 = −162(1 + 4n)(9 + 4n)2y4, χ4 = 61875n(1 + 4n)(9 + 4n)(1 + 36n),

and therefore B2 ̸= 0 due to χ4 ̸= 0. Following the examination of the configurations of
systems (3.19) for g = 2, we obtain:

α3 = 4n − 3, β3 = 1 + 4n, D = 768n3α2
3β2

3, ξ9 = 3219732426240(9 + 4n)2β3,

and due to χ4 ̸= 0, in the case D ̸= 0, we have:

sign (D) = sign (n), sign (ξ9) = sign (β3),

and the condition α3 = 0 is equivalent to D = 0.
Thus, we arrive at the following configurations (depending on the parameter n):

D < 0, ξ9 < 0 (i.e., n < −1/4) ⇒ Config.P .17;
D < 0, ξ9 > 0 (i.e., −1/4 < n < 0) ⇒ Config.P .19;
D > 0 (i.e., n > 0, n ̸= 3/4) ⇒ Config.P .20;
D = 0 (i.e., n = 3/4) ⇒ Config.P .21.

2.2: The case ξ21 = 0. Then m = 0, and we obtain the one-parameter family of systems:

ẋ = nx − 3y
2

+ 2x2 + xy, ẏ = y(2n + x + 2y), (3.88)

which is a subfamily of (3.25) defined by the condition g = 2. The family (3.25) was investi-
gated earlier, and considering (3.28) for g = 2 (i.e., for systems (3.88)), we have:

Z3 = 1 − 16n, B2 = −1458(3 + n)(1 + 2n)(3 + 2n)y4, θ = −32 ̸= 0,

B3 = −9n(7 + 4n)x2y2/2 − 9(3 + n)xy3 + 9(3 + n)y4/2 ̸= 0,

D = −3888n6Z3, ξ22 = 1050n, χ4 = 556875n2(1 + 2n)(3 + 16n).

So, due to the condition χ4 ̸= 0, in the case D ̸= 0, we have:

sign (D) = −sign (Z3), sign (ξ22) = sign (n).

Thus, in the case B2 ̸= 0, and following the investigation of the family (3.25) for g = 2, we
get the following configurations (depending on the parameter n):

D < 0, ξ22 < 0 (i.e., n < 0) ⇒ Config.P .32;
D < 0, ξ22 > 0 (i.e., 0 < n < 1/16) ⇒ Config.P .31;
D > 0 (i.e., n > 1/16) ⇒ Config.P .34;
D = 0 (i.e., n = 1/16) ⇒ Config.P .37.

Assume now B2 = 0. The condition χ4 ̸= 0 implies 1 + 2n ̸= 0, and we get (3 + 2n)(3 +

n) = 0. Since for systems (3.88) we have ξ23 = −225(3 + n)/4, we arrive at configuration
Config.P .52 in the case ξ23 ̸= 0 (i.e., n = −3/2), and Config.P .47 in the case ξ23 = 0 (i.e.,
n = −3).
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3.2.2 The statements (B2), (B3), and (B4)

According to Proposition 2.8, all these three statements share the common condition ζ7 = 0.
Considering (3.78) and the requirement χ4 ̸= 0, we must impose the condition U2 = 4m −
147 − 14n = 0, leading to m = 7(21 + 2n)/4. This gives rise to the following one-parameter
family:

ẋ = (147 + 14n + 4nx + 8x2 − 6y + 4xy)/4,

ẏ = (147x + 14nx + 4ny + 2xy + 4y2)/2,
(3.89)

for which we calculate:

χ4 = 61875(37 + 4n)(69 + 4n)(357 + 4n)(301 + 36n),

ζ8 = 5(21 + 4n)2/4, R4 = 19500(33 + 4n).
(3.90)

Thus, following Proposition 2.8, we distinguish three possibilities: ζ8R4 ̸= 0 (statement
(B2)), ζ8 = 0 (statement (B3)), and R4 = 0 (statement (B4)). We examine each possibility in
turn.

The possibility ζ8R4 ̸= 0. Then 33 + 4n ̸= 0, and systems (3.89) possess the following two
invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) =−(21+2n)(21+4n)+6(21+4n)x+24x2−2(33+4n)y = 0.

We observe that systems (3.89) form a subfamily of (3.37) defined by the condition g = 2.
The family (3.37) was investigated earlier, and considering (3.40) and (3.43) for g = 2 (i.e., for
systems (3.89)), we have:

Z4 = −(33 + 4n), α4 = 133 + 4n, β4 = 861 + 100n, θ = −32 ̸= 0,

D = −3(21 + 4n)2Z4α2
4β2

4/4, ζ2 = 24 > 0, ξ14 = 1235 α4β4/2,

B1 = 105(21 + 2n)(33 + 4n)(37 + 4n)(49 + 4n)(69 + 4n)/2.

We observe that due to ζ8R4 ̸= 0, we have Z4(21+ 4n) ̸= 0, and, in the case D ̸= 0, we obtain:

sign (D) = −sign (Z4), sign (ξ14) = sign (α4β4).

Moreover, the direction of the invariant parabola Φ2(x, y) = 0 depends on sign (33 + 4n).
According to Lemma 2.3, the existence of an invariant line in systems (3.89) requires B1 =

0. Thus, we consider two cases: B1 ̸= 0 and B1 = 0.

The case B1 ̸= 0. Then no invariant line exists. For the parameter n, we have three
possible bifurcation values: n ∈ {−133/4,−861/100,−33/4}. However, due to R4 ̸= 0, we
must have Z4 ̸= 0, i.e., n ̸= −33/4.

Considering these possible bifurcation values, in the case B1 ̸= 0, systems (3.89) lead to
the following configurations (depending on the parameter n):

D < 0, ξ14 < 0 (i.e., −133/4 < n < −861/100) ⇒ Config.P .58;
D < 0, ξ14 > 0, β4 < 0 (i.e., n < −133/4) ⇒ Config.P .59;
D < 0, ξ14 > 0, β4 > 0 (i.e., −861/100 < n < −33/4) ⇒ Config.P .59;
D > 0 (i.e., n > −33/4) ⇒ Config.P .61;
D = 0, β4 ̸= 0 (i.e., n = −133/4) ⇒ Config.P .64;
D = 0, β4 = 0 (i.e., n = −861/100) ⇒ Config.P .64.
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We may summarize the above as:

D < 0, ξ14 < 0 ⇒ Config.P .58;
D < 0, ξ14 > 0 ⇒ Config.P .59;
D > 0 ⇒ Config.P .61;
D = 0 ⇒ Config.P .64.

The case B1 = 0. Considering (3.90) and the condition χ4ζ8R4 ̸= 0, the condition B1 = 0
is equivalent to 49 + 4n = 0, i.e., n = −49/4. The corresponding system (3.89) possesses the
invariant line y = 49/4, leading to a configuration equivalent to Config.P .69.

The possibility ζ8 = 0. From (3.90), this condition implies n = −21/4, and we arrive at the
system:

ẋ =(147 − 42x − 12y + 16x2 + 8xy)/8,

ẏ =(147x − 42y + 4xy + 8y2)/4.
(3.91)

For n = −21/4, we find:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 24(x2 − y) = 0,

i.e., the system has a double invariant parabola. Moreover, in this case, there is one real
singular point M1(x1, y1) and two complex singularities M2,3(x2,3, y2,3), with:

x1 = −7
2

, y1 =
49
4

; x2,3 =
3
2
± i

√
3, y2,3 = −3

4
± 3i

√
3.

We point out that M1 is a double singularity of system (3.91), located on the double invariant
parabola Φ1(x, y) = x2 − y = 0. Therefore, we arrive at configuration Config.P .79.

The possibility R4 = 0. From (3.90), this condition implies n = −33/4, and we obtain the
system:

ẋ = (2x − 3)(−21 + 8x + 4y)/8, ẏ = (63x − 66y + 4xy + 8y2)/4.

For n = −33/4, the second invariant parabola becomes the reducible conic Φ2(x, y) = 6(2x −
3)2 = 0. Thus, the system possesses the invariant line x = 3/2 and the invariant parabola
Φ1(x, y) = x2 − y = 0, yielding a configuration equivalent to Config.P .83.

3.2.3 The statement (B5)

According to Proposition 2.8, we must have the condition χ4 = 0 and ζ5ζ9 ̸= 0. Thus, for
systems (3.77) we compute:

χ4 = 61875(1 + 4m + 2n)V , ξ24 = 140625(4m − 14n − 147)V/16,

ζ5 = 25(196m − 46n − 3)(4m − 14n − 147)/16,

ζ9 = −2970000(4m − 14n − 147)W ,

(3.92)

where

V = 18m + 1372m2 − 84mn + 27n2 + 144n3, W = 10m + 196m2 − 88mn + 15n2.

We consider two cases: ξ24 ̸= 0 and ξ24 = 0.
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The case ξ24 ̸= 0. Then V ̸= 0 and the condition 1 + 4m + 2n = 0 implies m = −(1 + 2n)/4.
This leads to the one-parameter family of systems

ẋ = −1
4
(2n + 1) + nx − 3y

2
+ 2x2 + xy, ẏ = −1

2
(2n + 1)x + 2ny + xy + 2y2, (3.93)

which possess the invariant line y = x − 1
4 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = −1 − 2n + 2(1 + 4n)x − 2(−1 + 4n)y − 8y2 = 0.

For these systems, we have

ζ5 = 25(37 + 4n)(13 + 36n), ξ24 = −140625(5 + 4n)2(37 + 4n)(13 + 36n)/16,

ζ9 = 11 · 304(1 + 4n)(37 + 4n)(13 + 36n), B1 = 0, θ = −32 ̸= 0,

B2 = −81(1 + 2n)(1 + 4n)(17 + 4n)(x − y)4, D = 3(1 + 4n)(5 + 4n)6/4.

(3.94)

Following Lemma 2.3, we consider two subcases: B2 ̸= 0 and B2 = 0.

1: The subcase B2 ̸= 0. Then, by Lemmas 2.3 and 2.4 (since θ ̸= 0), we conclude that sys-
tems (3.93) can have only one invariant line (namely, y = x − 1/4).

Systems (3.93) have four finite singularities Mi(xi, yi), i = 1, . . . , 4, with coordinates

x1 =
1
2

, y1 =
1
4

; x2 =
1 − 4n

12
, y2 = −1 + 2n

6
;

x3,4 = −1
2

(
1 ±

√
−1 − 4n

)
, y3,4 =

1
2

(
−2n ±

√
−1 − 4n

)
.

Note that the invariant parabolas intersect at three points: M1, M3, and M4. The singularities
M3 and M4 may be real or complex depending on 1 + 4n ̸= 0 (due to ζ9 ̸= 0). Moreover, the
direction of the parabola Φ2(x, y) = 0 also depends on 1 + 4n.

It is easy to verify that the invariant line y = x − 1/4 is tangent to both invariant parabolas
at M1. The singularity M2 lies on this invariant line, and

Φ1(x2, y2) =
1

144
(5 + 4n)2 ̸= 0, Φ2(x2, y2) = − 1

18
(5 + 4n)2 ̸= 0,

due to ξ24 ̸= 0. Considering (3.94), D ̸= 0 since ζ9ξ24 ̸= 0 and sign (D) = sign (5 + 4n).
To understand the position of M2 relative to M1, we compute

x2 − x1 =
1 − 4n

12
− 1

2
= −5 + 4n

12
⇒ sign (x2 − x1) = −sign (5 + 4n).

Hence, all finite singularities except M2 are fixed as intersection points of the invariant
curves, and their positions depend on n. In the case B2 ̸= 0, the possible bifurcation values
for n are −5/4 and −1/4.

Thus, for B2 ̸= 0 in systems (3.93) we have the following configurations:

D < 0 and n < −5/4 ⇒ Config.P .99;
D < 0 and n > −5/4 ⇒ ≃ Config.P .99;
D > 0 (i.e., n > −1/4) ⇒ Config.P .100.

So, Config.P .99 occurs if D < 0, and Config.P .100 if D > 0.

2: The subcase B2 = 0. From ζ9 ̸= 0, we get (1 + 2n)(17 + 4n) = 0.
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If 1 + 2n = 0, then n = −1/2, yielding the system

ẋ = (−x + 4x2 − 3y + 2xy)/2, ẏ = y(−1 + x + 2y),

which has four invariant curves (two parabolas and two lines):

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x − 3y + 4y2 = 0, y = x − 1/4, y = 0.

This corresponds to configuration Config.P .101.
If n = −17/4, we get

ẋ = (−3 + 2x)(−5 + 8x + 4y)/8, ẏ = (15x − 34y + 4xy + 8y2)/4,

which has invariant lines y = x − 1/4 and x = 3/2, and invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 15 − 64x + 72y − 16y2 = 0.

The line x = 3/2 is tangent to Φ2(x, y) = 0 at M4(3/2, 9/4). Thus, in this case, we get a
configuration equivalent to Config.P .101.

The case ξ24 = 0. This implies V = 0 and we calculate

Discrim [V , m] = 36(1 − 28n)(3 + 28n)2 ≡ γ(n).

Since m, n ∈ R, the condition γ(n) ≥ 0 is necessary.
We claim that ζ5 ̸= 0 implies 3 + 28n ̸= 0. Indeed, setting n = −3/28 we get

V =
(2744m + 27)2

5488
= 0 ⇒ m = − 27

2744
,

which implies ζ5 = 0. Thus, the claim is proved.
Therefore, the condition 1 − 28n ≥ 0 is necessary for V to have real roots. Setting a new

parameter u as 1 − 28n = u2 ≥ 0, we have n = (1 − u2)/28 and

V =
1

5488
(15 + 2744m + 24u + 3u2 − 6u3)(15 + 2744m − 24u + 3u2 + 6u3) = 0.

By symmetry (u 7→ −u), we may assume the second factor vanishes, yielding

m = −3(u − 1)2(5 + 2u)/2744.

This leads to the one-parameter family of systems

ẋ = −3(u − 1)2(5 + 2u)
2744

− u2 − 1
28

x − 3
2

y + 2x2 + xy,

ẏ = −3(u − 1)2(5 + 2u)
1372

x − u2 − 1
14

y + xy + 2y2,
(3.95)

which possess two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3(u − 1)4 + 112(u − 1)3x + 1176(u − 1)2y − 38416y2 = 0.
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For these systems,

ζ5 = 25(u − 50)(u − 22)(u2 − 4)(3u − 10)(3u + 46)/38416,

ζ9 = 2227500(u − 50)(u − 22)(u2 − 4)(u − 1)3(3u − 10)(3u + 46)/823543,

ζ10 = −15(354160 + 48u − 1336u2 + 64u3 + 27u4 − 19u5 + 3u6)/38416,

D = −357−18(u − 1)6(6 + u)8(34 + u)2(2 + 5u)2.

(3.96)

Also, for (3.95) we have

B1 = −332−57−15(u − 22)(u − 8)3(u − 1)3(6 + u)3(13 + u)(20 + u)(5 + 2u)(3u − 10)(4 + 3u).
(3.97)

Following Lemma 2.3, we consider two subcases: B1 ̸= 0 and B1 = 0.

1: The subcase B1 ̸= 0. Then, by Lemma 2.3, systems (3.95) cannot possess any invariant line.
The systems (3.95) have four finite singularities Mi(xi, yi), i = 1, 2, 3, 4, with coordinates

x1 = −5 + 2u
14

, y1 =
(5 + 2u)2

196
; x2 =

(u − 1)(22 + 26u + u2)

1372
, y2 = − (u − 1)2(5 + 2u)

1372
;

x3 =
1 − u

14
, y3 =

(1 − u)2

196
; x4 =

3(u − 1)
14

, y4 =
9(u − 1)2

196
.

(3.98)
The invariant parabolas intersect at points M3 and M4. The singularities M1 and M2 lie on
Φ1 = 0 and Φ2 = 0, respectively. The direction of Φ2 = 0 depends on u − 1, and since ζ9 ̸= 0,
we have u ̸= 1.

Because D = 0 indicates a multiple singularity, we consider the possibilities D ̸= 0 and
D = 0.

1.1: The possibility D ̸= 0. Then all singularities are distinct. To determine the relative
positions of M1 and M2 with respect to M3 and M4 (intersection points of the parabolas), we
compute:

x3 − x1 =
6 + u

14
, x3 − x2 = − (u − 1)(6 + u)(20 + u)

1372
,

x4 − x1 =
2 + 5u

14
, x4 − x2 = − (u − 8)(u − 1)(34 + u)

1372
.

Moreover, the singular point M2, which lies on the parabola Φ2(x, y) = 0, can be located either
above or below its axis y = yv, where yv is the ordinate of the vertex of this parabola. For
Φ2(x, y) = 0, we have yv = 3(u − 1)2/196 and then we calculate

y2 − yv = −(u − 1)2(13 + u)/686 ⇒ sign (y2 − yv) = −sign (13 + u).

Additionally,

Φ1(x2, y2) =
(u − 1)2(6 + u)3(34 + u)

1882384
, Φ2(x1, y1) = −(6 + u)3(2 + 5u).

Possible bifurcation values for u are {−34,−20,−13,−6,− 2
5 , 1, 8}. Since ζ5ζ9B1D ̸= 0, we

have:
(u − 8)(u − 1)(u + 20)(u + 13)(u + 6)(u + 34)(2 + 5u) ̸= 0.

Thus, in the case B1 ̸= 0 and D ̸= 0, systems (3.95) yield the following configurations:
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u < −34 ⇒ x3 > x4, x1 > x3, x2 < x4, y2 > yv ⇒ Config.P .102;
−34 < u < −20 ⇒ x3 > x4, x1 > x3, x4 < x2 < x3,y2 > yv ⇒ Config.P .103;
−20 < u < −13 ⇒ x3 > x4, x1 > x3, x4 < x3 < x2, y2 > yv ⇒ ≃ Config.P .103;
−13 < u < −6 ⇒ x3 > x4, x1 > x3, x4 < x3 < x2, y2 < yv ⇒ ≃ Config.P .103;
−6 < u < −2/5 ⇒ x3 > x4, x4 < x1 < x3, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P .103;
−2/5 < u < 1 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P .102;

1 < u < 8 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ Config.P .104;
u > 8 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P .104.

We can summarize these as
Config.P .103 ⇔ (u + 34)(5u + 2) < 0;
Config.P .102 ⇔ (u + 34)(5u + 2) > 0 and u − 1 < 0;
Config.P .104 ⇔ (u + 34)(5u + 2) > 0 and u − 1 > 0.

On the other hand, for systems (3.95) we have

ξ25 = 2−37−95913(u − 1)3(6 + u)4(34 + u)(2 + 5u),

ζ5ζ9 = 2−27−11345611(u − 1)3(−50 + u)2(−22 + u)2(−2 + u)2(2 + u)2(−10 + 3u)2(46 + 3u)2,

and due to Dζ5ζ9 ̸= 0 we have

ξ25 ̸= 0, sign (ξ25) = sign
(
(u − 1)(34 + u)(2 + 5u)

)
, sign (ζ5ζ9) = sign (u − 1).

This leads to the following invariant conditions:
ξ25 < 0 ⇔ Config.P .102;
ξ25 > 0, ζ5ζ9 < 0 ⇔ Config.P .103;
ξ25 > 0, ζ5ζ9 > 0 ⇔ Config.P .104.

1.2: The possibility D = 0. Considering the condition B1 ̸= 0, this implies (34 + u)(2 + 5u) =
0. Taking into consideration the position of the invariant parabolas and the coordinates (3.98)
of the singularities of systems (3.95), we obtain:

u = −34 ⇒ x3 > x4, x1 > x3, x2 = x4, y2 > yv ⇒ Config.P .105;
u = −2/5 ⇒ x3 > x4, x1 = x4, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P .105.

So, we deduce that in the case B1 ̸= 0 and D = 0 we get the unique configuration Con-
fig.P .105.

2: The subcase B1 = 0. Considering (3.97) and (3.96), we conclude that due to ζ9 ̸= 0 the
condition B1 = 0 is equivalent to

(u − 8)(6 + u)(13 + u)(20 + u)(5 + 2u)(4 + 3u) = 0.

However, we could decrease the number of factors.

Remark 3.14. We remark that in the case u − 1 ̸= 0 (i.e., when the second parabola exists),
applying the transformation

x1 =
343

(u − 1)3 y − 21
4(u − 1)

, y1 =
343

(u − 1)3 x +
147

4(u − 1)2 , t1 =
(u − 1)3

343
t,

we arrive at a family of systems of the same form (3.95):

ẋ1 = −3(u1 − 1)2(5 + 2u1)

2744
− u2

1 − 1
28

x1 −
3y1

2
+ 2x2

1 + x1y1,

ẏ1 = −3(u1 − 1)2(5 + 2u1)

1372
x1 −

u2
1 − 1

4
y1 + x1y1 + 2y2

1,

with the new parameter u1 = (48 + u)/(u − 1) (then u = (48 + u1)/(u1 − 1)).
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Considering Remark 3.14 and the relation u = (48 + u1)/(u1 − 1), we calculate

u + 13 =
7(5 + 2u1)

u1 − 1
, u + 20 =

7(3u1 + 4)
u1 − 1

.

So, to determine the configurations given by the condition B1 = 0, it is sufficient to consider
the conditions provided by the equality

(u − 8)(6 + u)(5 + 2u)(4 + 3u) = 0.

2.1: The possibility u = −4/3. This leads to the system

ẋ = (−1 − 2x + 144x2 − 108y + 72xy)/72, ẏ = (x + 2y)(−1 + 36y)/36,

possessing the invariant line y = 1/36 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 1 − 16x + 72y − 432y2.

We determine that the configuration of the above system corresponds to Config.P .106.

2.2: The possibility u = 8. This leads to the system

ẋ = (2x − 3)(3 + 8x + 4y)/8, ẏ = (x + 2y)(4y − 9)/4,

possessing three invariant lines y = 9/4, y = x + 3/4 and x = 3/2 and two invariant parabo-
las:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3 + 16x + 24y − 16y2.

We observe that all five invariant curves intersect at the singular point M4(3/2, 9/4). So we
get the configuration Config.P .107.

2.3: The possibility u = −5/2. In this case we arrive at the system

ẋ = (−3x + 32x2 − 24y + 16xy)/16, ẏ = y(−3 + 8x + 16y)/4,

possessing the invariant line y = 0 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3 − 32x + 96y − 256y2.

We observe that the invariant line y = 0 is tangent to the parabola Φ1(x, y) = 0 at the point
M1(0, 0) and intersects the second parabola at M2(3/32, 0). In this case, we have the configu-
ration Config.P .108.

2.4: The possibility u = −6. In this case we get the system

ẋ = (3 − 10x + 16x2 − 12y + 8xy)/8, ẏ = (3x − 10y + 4xy + 8y2)/4,

possessing the invariant line y = x − 1/4 and the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3 − 16x + 24y − 16y2 = 0.

Considering the coordinates (3.98) of the singularities of systems (3.95), we observe that for
u = −6 the singular points M2, M3 and M1 coalesce producing a triple singular point. More-
over, this triple singularity is a point of tangency of the invariant line y = x − 1/4 with both
parabolas. As a result, we get the configuration Config.P .109.
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On the other hand, for systems (3.95) we have

ζ9 =
2227500
823543

(u − 50)(u − 22)(u2 − 4)(u − 1)3(3u − 10)(3u + 46),

ζ6 = − 3
1372

(6 + u)(292 − 52u + 5u2), Discrim [292 − 52u + 5u2] = −3136 < 0,

ξ26 =
3

941192
(u − 50)(u2 − 4)(u − 1)(3u + 46)(6 + u)(13 + u)(5 + 2u),

ξ27 =
1

2744
(u − 8)(380 + 52u + 9u2), Discrim [380 + 52u + 9u2] = −10976 < 0.

We observe that, due to ζ9 ̸= 0, the condition ξ26 ̸= 0 is equivalent to (6 + u)(13 + u)(5 +

2u) ̸= 0. Moreover, considering Remark 3.14, we conclude that for ξ26 = 0 we may assume
(6 + u)(5 + 2u) = 0 because the condition 13 + u = 0 could be brought to 5 + 2u = 0 via an
affine transformation and time rescaling.

Thus, in the case B1 = 0, systems (3.95) possess the following configurations if and only if
the corresponding conditions are satisfied:

ξ26 ̸= 0, ξ27 ̸= 0 (then u = −4/3) ⇔ Config.P .106;
ξ26 ̸= 0, ξ27 = 0 (then u = 8) ⇔ Config.P .107;
ξ26 = 0, ζ6 ̸= 0 (then u = −5/2) ⇔ Config.P .108;
ξ26 = 0, ζ6 = 0 (then u = −6) ⇔ Config.P .109.

3.2.4 The statement (B6)

In this case the condition χ4 = ζ9 = 0 must be fulfilled. Considering (3.92), due to the
condition ζ5 ̸= 0, we obtain that ζ9 = 0 is equivalent to W = 0. Straightforward calculations
give us that the systems of equations χ4 = 0 and W = 0 could have only the following
solutions Si = (mi, ni) (i = 1, 2, 3, 4):

S1 = (0, 0), S2 =

(
−1

8
,−1

4

)
, S3 =

(
− 5

72
,−13

36

)
, S4 =

(
− 27

2944
,−3

8

)
.

However, we have

χ4(Si) = ζ9(Si) = 0, i = 1, 2, 3, 4,

ζ5(S1) ̸= 0, ζ5(S2) ̸= 0, ζ5(S3) = ζ5(S4) = 0,

and hence only the solutions S1 and S2 satisfy the conditions of statement (B6). Therefore,
we examine only these two solutions.

We observe that each one of them gives us a concrete system (without parameters), and
it remains to construct the corresponding system having a single fixed configuration of the
invariant parabolas and lines.

For systems (3.77), we calculate:

ξ9 = 3617252510
[
65536m4 − 32m3(6131 + 3252n)− 16m2(−32110 − 7953n + 484n2)

+ 6m(10221 − 53292n + 5540n2 + 4336n3)

− 9(−2304 − 7857n − 12140n2 + 836n3 + 240n4)
]
.

We obtain that ξ9(S2) = 0 and ξ9(S1) ̸= 0, and then we examine two cases: ξ9 ̸= 0 and ξ9 = 0.
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The case ξ9 ̸= 0. Then we consider the solution S1, i.e., m = n = 0. In this case, we arrive at
the system

ẋ = −3y
2

+ 2x2 + xy, ẏ = y(x + 2y), (3.99)

possessing the invariant line y = 0 and the invariant parabola Φ(x, y) = x2 − y = 0.
This system possesses the following two singular points: M1(0, 0) and M2(−1/2, 1/4). We

observe that the point M1 is the point of tangency of the invariant line with the parabola.
Moreover, this point is a triple singularity of system (3.99), because we have

µ4 = µ3 = µ2 = 0, µ1 = −3(x + 2y) ̸= 0,

and, by [1, Lemma 5.2, statement (ii)], the point M1 is of multiplicity exactly 3. As a result, we
get the configuration Config.P .40.

The case ξ9 = 0. In this case we get the solution S2, i.e., m = −1/8 and n = −1/4. Then, we
arrive at the system

ẋ = −1
8
− x

4
− 3y

2
+ 2x2 + xy, ẏ =

1
4
(4y − 1)(x + 2y),

possessing the invariant lines y = 1/4 and y = x − 1/4 and the invariant parabola Φ(x, y) =
x2 − y = 0.

As a result, we get the configuration Config.P .110.

3.2.5 The statement (B7)

In this case, the condition χ4 = ζ5 = 0 and ζ6 ̸= 0 must be fulfilled. Straightforward calcula-
tions give us that the systems of equations χ4 = 0 and ζ5 = 0 could have only the following
solutions S̃i = (mi, ni) (i = 1, . . . , 6):

S̃1 =

(
− 27

2744
,− 3

28

)
, S̃2 =

(
−2205

8
,−357

4

)
, S̃3 =

(
539
72

,−301
36

)
,

S̃4 =

(
35
8

,−37
4

)
, S̃5 =

(
− 5

72
,−13

36

)
, S̃6 =

(
−189

8
,−69

4

)
.

We split these solutions into two sets:

G1 = {S̃1, S̃2, S̃3}, G2 = {S̃4, S̃5, S̃6}.

Lemma 3.15. Assume that the conditions of statement (B7) are satisfied and then the system of
equations χ4 = ζ5 = 0 generates six solutions S̃i = (mi, ni) (i = 1, . . . , 6) given above. In this case,
the invariant polynomial ξ6 distinguishes the set G1 from the set G2.

Proof. To prove this lemma it is sufficient to evaluate ξ6 for the elements of each one of the
sets. For systems (3.77), we calculate:

ξ6 = 29342877985m(1 + 4m + 2n)(−147 + 50m + 61n + 8n2),

and we obtain
ξ6(S̃i) ̸= 0, i = 1, 2, 3, ξ6(S̃j) = 0, j = 4, 5, 6,

and we complete the proof of the lemma.

According to the above lemma, we discuss two cases: ξ6 ̸= 0 and ξ6 = 0.
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The case ξ6 ̸= 0. Then we have to examine the elements of the first set G1.

1: The subcase S̃1. Then we have m = −27/2744 and n = −3/28, and we get the system

ẋ = 2x2 + xy − 3x
28

− 3y
2

− 27
2744

, ẏ = xy − 27x
1372

+ 2y2 − 3y
14

, (3.100)

possessing the following three invariant parabolas: Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = 3+ 112x+ 1176y− 38416y2= 0, Φ3(x, y) = −243+ 3024x− 10584y+ 38416y2= 0.

We observe that the singular point M1(3/14, 9/196) is the point of intersection of all three
invariant parabolas. So we get the configuration Config.P .111.

Next, we prove that the systems generated by S̃2 and S̃3 could be brought to system (3.100)
via an affine transformation and a time rescaling.

Consider first the solution S̃2, i.e., m = −2205/8 and n = −357/4. This leads to the system

ẋ = 2x2 + xy − 357x
4

− 3y
2

− 2205
8

, ẏ = xy − 2205x
4

+ 2y2 − 357y
2

,

which via the transformation

x1 = − 3
28

+
y

343
, y1 =

3
196

+
x

343
, t1 = 343t,

is brought to the system (3.100).
Analogously, taking the solution S̃3, i.e., m = 539/72 and n = −301/36, we arrive at the

system

ẋ = 2x2 + xy − 301x
36

− 3y
2

+
539
72

, ẏ = xy +
539x

36
+ 2y2 − 301y

18
,

which via the transformation

x1 =
9

28
− 27y

343
, y1 =

27
196

− 27x
343

, t1 = −343t
27

,

is brought to the system (3.100).

The case ξ6 = 0. Then we have to examine the elements of the second set G2.

1: The subcase S̃4. Then we have m = 35/8 and n = −37/4, and we get the system

ẋ = 2x2 + xy − 37x
4

− 3y
2

+
35
8

, ẏ = xy +
35x

4
+ 2y2 − 37y

2
, (3.101)

possessing the invariant line y = x − 1/4 and three invariant parabolas: Φ1(x, y) = x2 − y = 0
and

Φ2(x, y) = 5 − 12x + 3x2 + y = 0, Φ3(x, y) = −35 + 144x − 152y + 16y2 = 0.

We observe that the singular point M1(1/2, 1/4) is the point of intersection of all four invariant
curves. So we get the configuration Config.P .112.

Next, we prove that the systems generated by S̃5 and S̃6 could be brought to system (3.101)
via an affine transformation and a time rescaling.

Consider first the solution S̃5, i.e., m = −5/72 and n = −13/36. This leads to the system

ẋ = 2x2 + xy − 13x
36

− 3y
2

− 5
72

, ẏ = −5x
36

− 13y
18

+ xy + 2y2,
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which via the transformation

x1 =
11
4

− 9y, y1 =
19
4

− 9x, t1 = − t
9

,

is brought to the system (3.101).
Analogously, taking the solution S̃6, i.e., m = −189/8 and n = −69/4, we arrive at the

system

ẋ = 2x2 + xy − 69x
4

− 3y
2

− 189
8

, ẏ = xy − 189x
4

+ 2y2 − 69y
2

,

which via the transformation

x1 = 2 − x
3

, y1 = 7 − y
3

, t1 = −3t,

is brought to the system (3.101).

3.3 Configurations of systems in QSP(η<0)

In what follows, we examine the configurations of the systems in QSP(η<0) for each of the
cases provided by Proposition 2.9. According to this proposition, we consider the canonical
form (2.5), i.e., the systems

ẋ = m + (2n − 1)x/2 + gx2 − gy/2 − xy, ẏ = 2mx − x2 + 2ny + gxy − 2y2, (3.102)

with C2 = x(x2 + y2), possessing the invariant parabola Φ(x, y) = x2 − y = 0.

3.3.1 The statement (E1)

For systems (3.102), we calculate

ζ4 = (25 + g2)(3g + 9g3 − 4m − 6gn)/16,

R1 = 15(1 + g2)(25 + g2)(3g + 9g3 − 4m − 6gn)/2.
(3.103)

The case B1 ̸= 0. Then, according to Lemma 2.3, systems (3.102) cannot possess any invariant
line.

Let us examine the finite singularities of these systems. Following [1, Proposition 5.1], we
calculate the invariant polynomial D = 12F′

1
2F′

2, where

F′
1 = −2gm − 2g3m + 4m2 − n − g2n − 4gmn + g2n2,

F′
2 = 8 − g2 − 72gm + 8g3m + 432m2 − 48n + 4g2n + 144gmn + 96n2 − 4g2n2 − 64n3,

(3.104)

and we discuss two subcases: D ̸= 0 and D = 0.
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The subcase D ̸= 0. The systems (3.102) possess four finite singularities Mi(xi, yi), (i =
1, 2, 3, 4), with coordinates

x1 =− gn − 2m
g2 + 1

, y1 =
2gm + n

g2 + 1
; x2 =

1
6Y1/3

[
Y2/3 + Y1/3g − 3g2 + 2Z

]
,

y2 =
1

6
(

3
√
W (2Z − 3g2) + 4gW2/3 +W

)[3√3F′
2Z + 3W2/3 (g3 + 10gn − 5g + 12m

)
+W1/3Z

(
2Z − 3g2)+ 3

(
g
(

g4 + 22g2n − 11g2 + 84n2 − 84n + 21
)
+ 36mZ

)
+ gW4/3];

x3 =
1

12Y1/3

[ (
−1 + i

√
3
)
Y2/3 + 2gY1/3 −

(
1 + i

√
3
) (

2Z − 3g2) ],
y3 =

1

−48gY2/3 + 6
(

1+ i
√

3
)
Y1/3 (2Z−3g2)+6

(
1− i

√
3
)
Y

[
− 6Y2/3(g3+10gn−5g+12m

)
+

(
1 + i

√
3
)
Y4/3g +

(
1 + i

√
3
)
Y1/3Z

(
2Z − 3g2)

+
(

1 − i
√

3
)
YZ +

(
1 − i

√
3
)

g
(
2Z − 3g2)2 ]

;

x4 =
1

12Y1/3

[ (
−1 − i

√
3
)
Y2/3 + 2gY1/3 −

(
1 − i

√
3
) (

2Z − 3g2) ],
y4 =

1

−48gY2/3+6
(

1− i
√

3
)
Y1/3 (2Z−3g2)+6

(
1+ i

√
3
)
Y

[
− 6Y2/3(g3+10gn−5g+12m

)
+

(
1 − i

√
3
)
Y4/3g +

(
1 − i

√
3
)
Y1/3Z

(
2Z − 3g2)

+
(

1 + i
√

3
)
YZ +

(
1 + i

√
3
)

g
(
2Z − 3g2)2

]
.

In the above expressions for the singularities, we use the following notations:

Y = g3 + 18gn − 9g + 108m + 3
√
X , Z = −3 + 2g2 + 6n,

W = −9g + g3 + 108m + 18gn + 3
√

3F′
2,

where

X = 24− 3g2 − 216gm + 24g3m + 1296m2 − 144n + 12g2n + 432gmn + 288n2 − 12g2n2 − 192n3.

Calculations yield:

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) =
F′

1
(1 + g2)2 ,

and therefore the three singularities M2, M3, and M4 of systems (3.102) lie on the invariant
parabola. Moreover, M1 is located outside the parabola and would belong to the parabola if
and only if the condition F′

1 = 0 holds, where F′
1 is given in (3.104). However, we have D =

12F′2
1F′

2 ̸= 0, and hence there are always exactly three simple singularities on the parabola.
On the other hand, according to [1, Proposition 5.1], if D > 0, systems (3.102) possess two

real and two complex finite singularities. For D < 0, we could have either four real or four
complex finite singularities. However, since M1 is a real singular point for these systems, we
conclude that in the case D < 0, we must have four real finite distinct singularities.

Thus, since the real singularity M1 is outside the invariant parabola and all three finite
singularities on the parabola (whether real or complex) are distinct, and furthermore we can-
not have any invariant line, we arrive at the configuration Config.P .113 if D < 0, and at
Config.P .114 if D > 0.
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The subcase D = 0. This implies that F′
1F′

2 = 0, and we calculate:

ξ1 = −6ζ4F′
1.

Therefore, we deduce that, due to ζ4 ̸= 0, the condition F′
1 = 0 is equivalent to ξ1 = 0. Thus,

we examine two possibilities: ξ1 ̸= 0 and ξ1 = 0.

1: The possibility ξ1 ̸= 0. In this case, the condition D = 0 implies F′
2 = 0. Since this polynomial

is quadratic in the parameter m, we calculate

Discrim [F′
2, m] = 64(g2 + 12n − 6)3.

Therefore, as the parameters m, n, and g of systems (3.102) must be real, the condition g2 +

12n − 6 ≥ 0 must hold. Introducing a new parameter v such that g2 + 12n − 6 = v2 ≥ 0, we
get n = (6 − g2 + v2)/12. Then, we compute

F′
2 =

1
108

[
216m − (g + v)2(g − 2v)

] [
216m − (g − v)2(g + 2v)

]
= 0,

and, due to the symmetry under the change v 7→ −v, we may assume the first factor vanishes.
This yields:

m = (g − 2v)(g + v)2/216.

Considering the expressions for the parameters m and n, we arrive at the following two-
parameter family of systems:

ẋ =
(g − 2v)(g + v)2

216
− g2 − v2

12
x − g

2
y + gx2 − xy,

ẏ =
(g − 2v)(g + v)2

108
x +

6 − g2 + v2

6
y + gxy − 2y2,

(3.105)

possessing the invariant parabola Φ(x, y) = x2 − y = 0.
We observe that for the above systems, the following conditions on the parameters g and

v hold:

ξ1 ̸= 0 ⇔ (8g − v)2(4g + v)
(
2g2 − 8gv − v2 + 18

) (
g2 + 2gv + v2 + 9

)
̸= 0;

B1 ̸= 0 ⇔ (2g − v)(4g + v)(36 + 4g2 − 4gv + v2)(g2 + 2gv + v2 + 9)

× (g2 − 4gv + 4v2 + 9) ̸= 0.

(3.106)

We determine that systems (3.105) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with
coordinates:

x1 =
−27g + 5g3 − 6gv2 − v3

54(1 + g2)
, y1 =

54 − 9g2 + g4 + 9v2 − 3g2v2 − 2gv3

108(1 + g2)
,

x2 =
g − 2v

6
, y2 =

(g − 2v)2

36
, x3 =

g + v
6

, y3 =
(g + v)2

36
.

We calculate:

Φ(x2, y2) = Φ(x3, y3) = 0, Φ(x1, y1) = −
(
2g2 − 8gv − v2 + 18

) (
g2 + 2gv + v2 + 9

)2

2916(1 + g2)2 ,

and conclude that the singular points M2 and M3 lie on the invariant parabola, while M1 lies
outside the parabola due to the conditions (3.106).
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We claim that M3 is a multiple singularity of systems (3.105). Indeed, applying the corre-
sponding translation, we can place M3 at the origin, arriving at the systems:

ẋ =
1
18

(g + v)(4g + v)x − 1
6
(4g + v)y + gx2 − xy,

ẏ =
1
54

(g + v)
(
2g2 + gv − v2 − 18

)
x +

1
18

(
v2 − 2g2 − gv + 18

)
y + gxy − x2 − 2y2,

where M0(0, 0) corresponds to the singularity M3.
Following [1], we calculate the following invariant polynomials: µ4 = µ3 = 0, and

µ2 =
1

324
v
[
(g + v)2 + 9

]
[(v − 2g)x + 6y]

[
(3 − g2 − gv)x + (4g + v)y

]
.

By [1, Lemma 5.2, statement (ii)], the point M0 has multiplicity at least 2. We observe that,
due to the condition B1 ̸= 0, we have µ2 = 0 if and only if v = 0. In this case, we calculate:

µ2 = 0, µ1 = − 1
27

[
(5g4 + 27)x − 32g3y

]
̸= 0.

Thus, according to [1, Lemma 5.2, statement (ii)], we have a double point if v ̸= 0 and a triple
point if v = 0.

On the other hand, for systems (3.105), we calculate:

ξ2 =
1

209952
v2 (18 + 2g2 − 8gv − v2)2 (

9 + g2 + 2gv + v2)2
,

and due to (3.106), we conclude that the condition v = 0 is equivalent to ξ2 = 0.
Thus, for systems (3.105), we obtain configuration Config.P .115 if ξ2 ̸= 0 and Config.P .116

if ξ2 = 0.

2: The possibility ξ1 = 0. We obtain F′
1 = 0, and since this polynomial is quadratic in the

parameter m, we calculate:

Discrim [F′
1, m] = 4(1 + g2)2(g2 + 4n).

It is clear that for the existence of real solutions of the equation F′
1 = 0, the condition g2 + 4n ≥

0 must hold.
Thus, we introduce a new parameter u such that g2 + 4n = u2 ≥ 0, leading to n =

(u2 − g2)/4. Then, calculations yield:

F′
1 = − 1

16
[
8m − (g − u)(2 + g2 − gu)

] [
8m − (g + u)(2 + g2 + gu)

]
= 0,

and, due to symmetry under u 7→ −u, we may assume the first factor vanishes. This gives:

m = (g − u)(2 + g2 − gu)/8.

Considering the expressions for m and n, we arrive at the following two-parameter family of
systems:

ẋ =
(g − u)(2 + g2 − gu)

8
+

u2 − g2 − 2
4

x − g
2

y + gx2 − xy,

ẏ =
(g − u)(2 + g2 − gu)

4
x − g2 − u2

2
y + gxy − 2y2,

(3.107)
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possessing the invariant parabola Φ(x, y) = x2 − y = 0.
The systems (3.107) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with coordi-

nates:

x1 =
g − u

2
, y1 =

(g − u)2

4
;

x2,3 =
1
4

(
u ±

√
Y1

)
, y2,3 =

1
8

[
u2 + 2gu − 2g2 − 4 ± u

√
Y1

]
,

Y1 = u2 + 4gu − 4g2 − 8.

We calculate:
Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0,

and therefore all three singularities are located on the invariant parabola.
Moreover, we point out that M1 is a singularity of systems (3.107) with multiplicity at least

2. Indeed, applying a translation that places M1 at the origin, we arrive at the system:

ẋ =
1
2
(g2 − gu − 1)x +

1
2
(u − 2g)y + gx2 − xy,

ẏ =
1
2
(g − u)(g2 − gu − 1)x +

1
2
(g − u)(2g − u)y − x2 + gxy − 2y2,

where M0(0, 0) is the singularity corresponding to M1.
Following [1], we calculate the following invariant polynomials: µ4 = µ3 = 0, and:

µ2 =
1
2
(g2 + 1)

[
(g − u)2 + 1

] [
(g2 − gu + 1)x2 + (u − 2g)xy + 2y2] .

We observe that µ2 ̸= 0, and by [1, Lemma 5.2, statement (ii)], the point M0 has multiplicity
exactly 2.

On the other hand, the singularities M2 and M3 may be either real or complex, depending
on the value of Y1. To determine the position of the double singularity M1 relative to M2 and
M3 when they are real (i.e., Y1 > 0), we calculate:

(x2 − x1)(x3 − x1) =
(g − u)2 + 1

2
> 0.

Therefore, in the case Y1 > 0, both singularities M2 and M3 lie on the same side of the double
point M1.

It is clear that for Y1 = 0, the points M2 and M3 coalesce, and we obtain two double points
located on the invariant parabola.

For systems (3.107), calculations yield:

ξ2 =
1
8
(1 + g2)2 [1 + (g − u)2]2

Y1,

and hence sign (ξ2) = sign (Y1) whenever ξ2 ̸= 0.
Thus, we conclude that systems (3.107) possess configuration Config.P .117 if ξ2 < 0, Con-

fig.P .118 if ξ2 > 0, and Config.P .119 if ξ2 = 0.

The case B1 = 0. For systems (3.102), we calculate:

B1 = − 1
64

[
g + g3 + 4m − 2gn

] [
(g − 8m)2 + (1 − 4n)2] Ψ(g, m, n),
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where
Ψ(g, m, n) = 16m2 + 8gm(3 + 2n) + (4 + g2)(1 + g2 + 4n + 4n2).

On the other hand, we calculate:

ξ4 =
13125

2
(25 + g2)

(
3g + 9g3 − 4m − 6gn

) [
(g − 8m)2 + (1 − 4n)2] ,

ζ4 =
(25 + g2)

(
3g + 9g3 − 4m − 6gn

)
16

,

and, due to ζ4 ̸= 0, we deduce that ξ4 = 0 is equivalent to (g − 8m)2 + (1 − 4n)2 = 0.
Thus, we examine two subcases: ξ4 ̸= 0 and ξ4 = 0.

The subcase ξ4 ̸= 0. Then, the condition B1 = 0 implies either:

g + g3 + 4m − 2gn = 0, or Ψ(g, m, n) = 0.

We state the following lemma.

Lemma 3.16. For systems (3.102), if ξ4 ̸= 0, then the condition B1 = B2 = 0 is equivalent to
Ψ(g, m, n) = 0.

Proof. Assume first that the condition Ψ(g, m, n) = 0 holds. We calculate the discriminant of
Ψ with respect to m:

Discrim [Ψ, m] = −64(g2 − 4n − 2)2 ≤ 0.

Thus, for real solutions in m, the necessary condition is g2 − 4n − 2 = 0, which gives n =

(g2 − 2)/4. Substituting back, we obtain:

Ψ(g, m) =
1
4
(
4g + g3 + 8m

)2
, B2 =

(
4g + g3 + 8m

)2
ϕ(g, m, x, y),

where ϕ(g, m, x, y) is a quartic polynomial in x and y. Thus, clearly, Ψ(g, m, n) = 0 implies
B2 = 0.

Conversely, assume now that for systems (3.102), the conditions B1 = B2 = 0 and ξ4 ̸= 0
hold, but suppose (for contradiction) that Ψ(g, m, n) ̸= 0. Then, the condition B1 = 0 yields
g + g3 + 4m − 2gn = 0, and solving for m, we get m = −g(g2 − 2n + 1)/4.

Next, we calculate:

Ψ(g, n) = (1 + g2)
(

g2 − 4n − 2
)2

,

B2 = −81
2
(1 + g2)2 (g2 − 4n − 2

)2
[
4g4 + g2(8 − 16n) + (1 − 4n)2

]
x4,

Discrim
[
4g4 + g2(8 − 16n) + (1 − 4n)2, n

]
= −256g2 < 0,

where the last inequality holds because ζ4 = g(g2 + 25)(5g2 − 4n + 2)/8 ̸= 0. Therefore, for
B2 = 0, it must follow that Ψ(g, n) = 0, leading to a contradiction with our assumption that
Ψ(g, m, n) ̸= 0. This completes the proof of Lemma 3.16.

Therefore, in what follows we discuss two possibilities: B2 ̸= 0 and B2 = 0.
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1: The possibility B2 ̸= 0. Then, by Lemma 3.16, we have Ψ(g, m, n) ̸= 0, and the condition
B1 = 0 implies g + g3 + 4m − 2gn = 0. Solving for m, we obtain m = −g(g2 − 2n + 1)/4,
leading to the two-parameter family of systems:

ẋ =− 1
4

g(g2 − 2n + 1) +
1
2
(2n − 1)x − g

2
y + gx2 − xy,

ẏ =− 1
2

g(g2 − 2n + 1)x + 2ny − x2 + gxy − 2y2,
(3.108)

possessing the invariant line L1(x, y) = 2x + g = 0, in addition to the invariant parabola
Φ(x, y) = x2 − y = 0.

For these systems, we calculate:

ζ4 =
g(g2 + 25)(5g2 − 4n + 2)

8
, θ = −8(g2 + 9).

Since θ ̸= 0, by Lemma 2.4, systems (3.108) cannot have an invariant line parallel to 2x+ g = 0.
Moreover, by Lemma 2.3, there cannot be invariant lines in other directions because B2 ̸= 0.

The systems (3.108) possess four finite singularities Mi(xi, yi), i = 1, 2, 3, 4, with coordi-
nates:

x1 = − g
2

, y1 =
g2

4
; x2 = − g

2
, y2 =

2n − g2

2
;

x3,4 =
1
2

(
g ±

√
Y2

)
, y3,4 =

1
2

(
2n − 1 ± g

√
Y2

)
, Y2 = 4n − g2 − 2.

We compute:

Φ(x1, y1) = Φ(x3, y3) = Φ(x4, y4) = L1(x1, y1) = L1(x2, y2) = 0,

Φ(x2, y2) = (3g2 − 4n)/4,

therefore, M1 is the intersection point of the invariant line with the invariant parabola. More-
over, M2 lies on the invariant line and belongs to the invariant parabola if and only if
3g2 − 4n = 0. Finally, M3 and M4 may be real, complex, or coinciding, depending on the
value of Y2, and they always lie on the invariant parabola.

To determine the relative positions of the finite singularities, we calculate:

(x3 − x1)(x4 − x1) = (5g2 − 4n + 2)/4 = γ1/4, y2 − y1 = (4n − 3g2)/4 = δ1/4.

Thus, when Y2 > 0, M2 and M3 lie on the same side (respectively, on opposite sides) of M1 if
γ1 > 0 (respectively, γ1 < 0). Notice that γ1 ̸= 0 due to ζ4 ̸= 0.

Also, y2 > y1 if δ1 > 0, y2 < y1 if δ1 < 0, and y2 = y1 if δ1 = 0, in which case the
intersection point of the invariant line and the parabola is a double singular point of systems
(3.108).

We compute the invariant polynomial D responsible for the existence of multiple finite
singularities:

D = −3(g2 + 1)4Y2γ2
1δ2

1/4, ζ4 = g(25 + g2)γ1/8,

ξ7 = 4698510000 g2(1 + g2)2Y2γ1δ2
1 , ξ8 = −247290000 g2(1 + g2)2Y2δ1γ2

1.

Thus, since ζ4 ̸= 0, in the case D ̸= 0 we have:

sign (D) = −sign (Y2), sign (ξ7) = sign (Y2γ1), sign (ξ8) = −sign (Y2δ1),

and we examine two cases: D ̸= 0 and D = 0.

1.1: The case D ̸= 0. Then Y2 ̸= 0, and systems (3.108) have four distinct finite singularities.
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Remark 3.17. We observe that γ1 + δ1 = 2(g2 + 1) > 0. Therefore, the conditions γ1 < 0 and
δ1 < 0 are incompatible.

Considering Remark 3.17, in the case D ̸= 0, systems (3.108) exhibit the following config-
urations:

D < 0, ξ7 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 > y1 ⇒ Config.P .120;
D < 0, ξ7 > 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 > y1 ⇒ Config.P .121;
D < 0, ξ7 > 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 < y1 ⇒ Config.P .122;
D > 0, ξ8 < 0 ⇒ y2 < y1 ⇒ Config.P .123;
D > 0, ξ8 > 0 ⇒ y2 > y1 ⇒ Config.P .124.

1.2: The case D = 0. Since γ1 ̸= 0 (due to ζ4 ̸= 0), this condition implies Y2δ1 = 0, and we
calculate:

ξ1 = −3g(1 + g2)2(25 + g2)γ1δ1/16.

Thus, since γ1 ̸= 0, the condition δ1 = 0 is equivalent to ξ1 = 0. We consider two subcases:
ξ1 ̸= 0 and ξ1 = 0.

1.2.1: The subcase ξ1 ̸= 0. Then Y2 = 0 (i.e., n = (g2 + 2)/4), so M3 and M4 coalesce into a
double singular point on the parabola. Moreover, the position of M2 is determined by δ1. For
these systems, with n = (g2 + 2)/4, we calculate:

ξ1ζ8 = −3g4(1 + g2)3(25 + g2)δ1/2, ζ4 = g3(25 + g2)/2.

Since ζ4 ̸= 0, we have sign (ξ1ζ8) = −sign (δ1). Therefore, in the case D = 0 and ξ1 ̸= 0, we
have configuration Config.P .125 if ξ1ζ8 < 0, and Config.P .126 if ξ1ζ8 > 0.

1.2.2: The subcase ξ1 = 0. This condition implies n = (3g2)/4, where M2 and M1 coalesce.
Note that in this case, γ1 = 2(g2 + 1) > 0.

For n = 3g2/4, we have:

Y2 = 2(g2 − 1), ξ2 = (g2 − 1)(1 + g2)4,

and clearly, ξ2 = 0 if and only if Y2 = 0, which corresponds to M3 and M4 also coalescing,
yielding two double singularities on the invariant parabola.

Thus, for D = ξ1 = 0, we get Config.P .127 if ξ2 ̸= 0, and Config.P .128 if ξ2 = 0.

2: The possibility B2 = 0. Thus, B1 = B2 = 0, and by Lemma 3.16, the condition Ψ(g, m, n) = 0
holds. Referring to the proof of Lemma 3.16, we get:

g2 − 4n − 2 = 0 ⇒ n = (g2 − 2)/4, 4g + g3 + 8m = 0 ⇒ m = −g(g2 + 4)/8.

This leads to the one-parameter family of systems:

ẋ =− 1
8

g(g2 + 4) +
1
4
(g2 − 4)x − g

2
y + gx2 − xy,

ẏ =− 1
4

g(g2 + 4)x +
1
2
(g2 − 2)y − x2 + gxy − 2y2,

(3.109)

possessing three invariant lines:

L1(x, y) = 2x + g = 0, L2,3(x, y) = 4(y ± ix)− g(g ∓ 2i) = 0,

besides the invariant parabola.
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We find that systems (3.109) possess four finite singularities Mi(xi, yi), i = 1, 2, 3, 4, with
coordinates:

x1 = − g
2

, y1 =
g2

4
; x2 = − g

2
, y2 = − g2 + 2

4
;

x3,4 =
1
2
(g ± 2i) , y3,4 =

1
4
(g ± 2i)2 .

We calculate:

Φ(x1, y1) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x2, y2) = (g2 + 1)/2,

L1(x1, y1) = L1(x2, y2) = L2(x1, y1) = L2(x3, y3) = L3(x4, y4) = 0.

Thus, M1 is the intersection point of all three invariant lines with the invariant parabola.
Additionally, M2 lies on the invariant line but not on the parabola, since g2 + 1 ̸= 0. Moreover,
since y2 − y1 = −(g2 + 1)/2 < 0, M2 lies below M1 along the vertical line L1 = 0.

Hence, systems (3.109) possess the unique configuration Config.P .129.

The subcase ξ4 = 0. This condition implies (g − 8m)2 + (1 − 4n)2 = 0, yielding m = g/8
and n = 1/4. Thus, we obtain the following one-parameter family of systems:

ẋ =
g
8
− x

4
− gy

2
+ gx2 − xy,

ẏ =
gx
4

+
y
2
− x2 + gxy − 2y2,

(3.110)

which, in addition to the invariant parabola Φ(x, y) = x2 − y = 0, possess two complex
invariant lines given by L1,2(x, y) = 4(y ± ix)− 1 = 0.

For these systems, we calculate:

ζ4 = g(25 + g2)(1 + 9g2)/16, B3 = −3g(1 + g2)(x2 + y2)2/4,

and since ζ4 ̸= 0 (i.e., g ̸= 0), we have B3 ̸= 0. Thus, according to Lemma 2.3, these systems
cannot have an invariant line in the third (real) direction.

The systems (3.110) possess four finite singularities Mi(xi, yi), i = 1, 2, 3, 4, with coordi-
nates:

x1 = 0, y1 =
1
4

; x2 =
g
2

, y2 =
g2

4
; x3,4 = ± i

2
, y3,4 = −1

4
.

We compute:

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) = −1
4

,

and observe that the real singularity M1 is the intersection point of the two complex invariant
lines and lies outside the invariant parabola. The second real singular point M2 lies on the
parabola, and its position depends on the real parameter g ̸= 0.

As a result, we arrive at a single configuration: Config.P .130.

3.3.2 The statement (E2)

According to Proposition 2.9, in this case the conditions ζ4 = 0 and R7ζ5 ̸= 0 must hold.
From (3.103), the condition ζ4 = 0 implies:

3g + 9g3 − 4m − 6gn = 0 ⇒ m = 3g(3g2 − 2n + 1)/4,
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which leads to the following family of systems:

ẋ =
3
4

g
(
3g2 − 2n + 1

)
+

1
2
(2n − 1)x − gy

2
+ gx2 − xy,

ẏ =
3
2

g
(
3g2 − 2n + 1

)
x + 2ny − x2 + gxy − 2y2,

(3.111)

possessing two invariant parabolas: the canonical one, Φ1(x, y) = x2 − y = 0, and a second
parabola,

Φ2(x, y) = (3g2 − 4n)(1 + 3g2 − 2n) + 2g(3g2 − 4n)x − 4(1 + g2)x2 + 2(2 + 5g2 − 4n)y = 0.

For the systems (3.111), we calculate:

ζ5 =
19
4
(g2 + 25)(3g2 − 4n)2, R7 = 16120(3g2 + 1)(5g2 − 4n + 2),

θ = −8(g2 + 9), B1 = −g(g2 + 1)(9g2 + 1)(5g2 − 4n + 2)Ψ2Ψ3/32,
(3.112)

where

Ψ2(g, n) = 81g4 + g2(28 − 72n) + 4(1 + 2n)2, Ψ3(g, n) = 36g4 + g2(16 − 48n) + (1 − 4n)2.

According to Lemma 2.3, systems (3.111) may possess at least one invariant line only if
B1 = 0. Thus, we proceed to examine two possibilities: B1 ̸= 0 and B1 = 0.

The possibility B1 ̸= 0. The systems (3.111) possess four finite singularities Mi(xi, yi) (i =
1, 2, 3, 4) with coordinates:

x1 =
3g
2

, y1 =
9g2

4
;

x2 =
g(3 + 9g2 − 8n)

2(1 + g2)
, y2 =

9g4 + g2(3 − 6n) + 2n
2(1 + g2)

;

x3,4 =
1
2

(
−g ±

√
Y3

)
, y3,4 =

1
2

(
2n − 1 − 2g2 ∓ g

√
Y3

)
,

Y3 = 4n − 5g2 − 2.

(3.113)

We calculate:

Φ1(x1, y1) = Φ1(x3, y3) = Φ1(x4, y4) = 0, Φ2(x2, y2) = Φ2(x3, y3) = Φ2(x4, y4) = 0,

therefore, the singularities M3 and M4 are the points of intersection of both invariant parabo-
las. Moreover, the point M1 lies on the parabola Φ1 = 0, while M2 lies on Φ2 = 0.

To determine the relative positions of M1 and M2 with respect to M3 and M4 (when
Y3 > 0), we calculate:

(x3 − x1)(x4 − x1) = (2 + 21g2 − 4n)/4 = γ2/4,

(x3 − x2)(x4 − x2) = − Y3

4(1 + g2)2

[
21g4 + 2g2(5 − 8n) + 1

]
= − Y3

4(1 + g2)2 δ2,

(x3 − x1) + (x4 − x1) = −4g, (x3 − x2) + (x4 − x2) =
2gY3

1 + g2 .
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We observe the following sign relations:

sign
(
(x3 − x1) + (x4 − x1)

)
= −sign (g), sign

(
(x3 − x2) + (x4 − x2)

)
= sign (gY3). (3.114)

Thus, we deduce that the point M1 (respectively M2) lies on the invariant parabola Φ1 = 0
(respectively Φ2 = 0) between M3 and M4 if and only if γ2 < 0 (respectively Y3δ2 > 0).

From these relations, we state the following remark.

Remark 3.18. Assume that, for the singularities given in (3.113), the following conditions hold:

(x3 − x1)(x4 − x1) > 0, (x3 − x2)(x4 − x2) > 0.

Then, when Y3 > 0, the condition[
(x3 − x1) + (x4 − x1)

][
(x3 − x2) + (x4 − x2)

]
> 0

is impossible.

This follows directly from the sign relations in (3.114).
For systems (3.111), we also calculate:

D = −3(3g2 − 4n)2Y3γ2
2δ2

2/4, ξ14 = 1235γ2δ2/2, ξ30 = 1235
[
Y3δ2 − (1 + g2)2γ2

]
/2.
(3.115)

We observe that, when D ̸= 0,

sign (D) = −sign (Y3), sign (ξ14) = sign (γ2δ2).

Moreover, in the case where ξ14 < 0 (i.e., γ2δ2 < 0) and D < 0 (i.e., Y3 > 0), we find:

sign (ξ30) = sign
[
Y3δ2 − (1 + g2)2γ2

]
= sign (δ2).

Thus, we proceed to analyze two cases: D ̸= 0 and D = 0.

The case D ̸= 0. We observe that, in the case D > 0, the singular points M3 and M4

are complex, and therefore in this situation it is not necessary to distinguish the signs of the
polynomials γ2 and δ2.

Thus, taking into account Remark 3.18 and the information discussed above, we detect
that in the case D ̸= 0 the systems admit the following configurations:

D < 0, γ2 < 0, δ2 > 0 ⇒ (x3 − x1)(x4 − x1) < 0, (x3 − x2)(x4 − x2) < 0 ⇒ Config.P .132;
D < 0, γ2 > 0, δ2 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, (x3 − x2)(x4 − x2) > 0 ⇒ Config.P .131;
D < 0, γ2 < 0, δ2 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, (x3 − x2)(x4 − x2) > 0 ⇒ Config.P .133;
D < 0, γ2 > 0, δ2 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, (x3 − x2)(x4 − x2) < 0 ⇒ ≃Config.P .133;
D > 0 ⇒ ⇒ Config.P .134.

Note that in the case γ2δ2 > 0, both conditions lead to equivalent configurations to Con-
fig.P .133. Thus, we deduce that for D ̸= 0, the systems (3.111) realize the following configu-
rations if and only if the corresponding invariant conditions hold:

D < 0, ξ14 < 0, ξ30 < 0 ⇒ Config.P .131;
D < 0, ξ14 < 0, ξ30 > 0 ⇒ Config.P .132;
D < 0, ξ14 > 0 ⇒ Config.P .133;
D > 0 ⇒ Config.P .134.
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The case D = 0. Considering the values of the invariant polynomials obtained above
and the conditions ζ5 ̸= 0 (i.e., 3g2 − 4n ̸= 0) and R7 ̸= 0 (i.e., Y3 ̸= 0), we deduce that the
condition D = 0 implies γ2δ2 = 0. From (3.115), this is equivalent to ξ14 = 0.

We claim that, in the case ξ14 = 0, the systems (3.111) exhibit configuration Config.P .135 if
ξ30 < 0, configuration Config.P .136 if ξ30 > 0, and configuration Config.P .137 if ξ30 = 0.

Indeed, assume ξ14 = 0, that is, γ2δ2 = 0. To prove our claim, we examine both possible
subcases.

1: The subcase δ2 = 0. This condition implies:

n =
1 + 10g2 + 21g4

16g2 , γ2 =
(7g2 − 1)(9g2 + 1)

4g2 .

We determine that, under this condition, the singular point M2 coalesces with M4. If in
addition γ2 = 0, then M1 coalesces with M3, producing two double singularities on the
parabola.

Thus, for systems (3.111), if γ2 > 0, they realize Config.P .135, if γ2 < 0, they realize
Config.P .136, and if γ2 = 0, they realize Config.P .137.

Considering (3.115), for δ2 = 0 we observe that sign (ξ30) = −sign (γ2), which confirms
the claim for this subcase.

2: The subcase γ2 = 0. This implies n = (2 + 21g2)/4, and under this condition, the singular
point M1 coalesces with M3. We calculate:

δ2 = (1 − 7g2)(1 + 9g2).

It is straightforward to verify that, in this case, if δ2 < 0, the configuration is Config.P .135, if
δ2 > 0, the configuration is Config.P .136, and if δ2 = 0, the configuration is Config.P .137.

Finally, from (3.115), for γ2 = 0 we find Y3 = 16g2 > 0, so sign (ξ30) = sign (δ2), which
completes the proof of our claim.

The possibility B1 = 0. From (3.112), this condition implies g(5g2 − 4n + 2)Ψ2Ψ3 = 0. We
claim that, due to the condition R7 ̸= 0, the equality B1 = 0 is equivalent to g = 0.

Indeed, assuming g ̸= 0, we compute:

Discrim [Ψ2, n] = −4096g2 < 0, Discrim [Ψ3, n] = −256g2 < 0,

and hence the equations Ψ2 = 0 and Ψ3 = 0 cannot have real solutions with respect to the
parameter n. This completes the proof of our claim.

Thus, we conclude g = 0 and arrive at the following one-parameter family of systems:

ẋ =
1
2

x (2n − 2y − 1), ẏ = −x2 + 2n y − 2y2, (3.116)

which possess the invariant line x = 0 and the invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x2 + (2n − 1)y − n(2n − 1) = 0.

For these systems, we calculate:

ζ5 = 1900n2, R7 = −32240(2n − 1), B2 = −162(2n + 1)2(4n − 1)2x4.

We now discuss two cases: B2 ̸= 0 and B2 = 0.
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The case B2 ̸= 0. By Lemma 2.3, in this case the system cannot possess invariant lines
in any other direction. Considering the condition g = 0 in (3.113), we find that the systems
(3.116) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with coordinates:

x1 = 0, y1 = 0; x2 = 0, y2 = n;

x3,4 =
1
2
(
±

√
Y3

)
, y3,4 =

1
2
(2n − 1), Y3 = 2(2n − 1).

We observe that the invariant line x = 0 intersects the invariant parabola Φ1 = 0 at point M1,
and intersects the parabola Φ2 = 0 at point M2.

For these systems we have:

D = −12n2Y3
3 ⇒ sign (D) = −sign (Y3).

Since all singular points are fixed as intersection points of invariant curves, and D ̸= 0 (due
to ζ5R7 ̸= 0), we conclude that these systems realize configuration Config.P .138 if D < 0, and
configuration Config.P .139 if D > 0.

The case B2 = 0. This condition implies (2n + 1)(4n − 1) = 0.
Assume first 4n − 1 = 0, that is, n = 1/4. Then, we arrive at the system:

ẋ =− 1
4

x(4y + 1), ẏ =
1
2
(
−2x2 − 4y2 + y

)
, (3.117)

which possesses three invariant lines: L1(x, y) = x = 0 and L2,3(x, y) = y± ix− 1/4 = 0, along
with the invariant parabolas Φ1(x, y) = x2 − y = 0 and Φ2(x, y) = −4x2 + 2y − 1/2 = 0.

We observe that the point M2(0, 1/4) corresponds to the intersection of the above complex
lines. As a result, this system exhibits the configuration Config.P .140.

Now, if 2n + 1 = 0 (i.e., n = −1/2), we arrive at the system:

ẋ =− x(1 + y), ẏ = −x2 − y − 2y2,

which can be transformed into system (3.117) via the affine transformation and time rescaling:

x1 = x/2, y1 = y/2 + 1/4, t1 = 2t,

and hence also realizes Config.P .140.

3.3.3 The statement (E3)

According to Proposition 2.9, in this case the conditions ζ4 = ζ5 = 0 and R7 ̸= 0 hold.
Considering (3.112), the condition ζ5 = 0 implies:

3g2 − 4n = 0 ⇒ n =
3g2

4
,

and we obtain the following one-parameter family of systems:

ẋ =
3
8

g (3g2 + 2) +
1
4
(3g2 − 2)x − g y

2
+ g x2 − x y,

ẏ =
3
4

g (3g2 + 2)x +
3g2

2
y − x2 + g x y − 2y2,

(3.118)
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which, according to Proposition 2.9, possess Φ(x, y) = x2 − y = 0 as a double invariant
parabola.

For these systems we compute:

ζ4 = ζ5 = 0, R7 = 32240(1 + g2)(1 + 3g2) ̸= 0,

θ = −8(g2 + 9) ̸= 0, B1 = − g (1 + g2)4 (1 + 9g2)3

4
.

According to Lemma 2.3, systems (3.118) can possess at least one invariant line only if
B1 = 0. Thus, we discuss two cases: B1 ̸= 0 and B1 = 0.

The case B1 ̸= 0. Systems (3.118) possess the following three finite singularities Mi(xi, yi)

(i = 1, 2, 3) with coordinates:

x1 =
3g
2

, y1 =
9g2

4
;

x2,3 = −1
2

[
g ± i

√
2(1 + g2)

]
, y2,3 =

1
4

[
−2 − g2 ± 2gi

√
2(1 + g2)

]
.

(3.119)

It is clear that the real singular point M1 is a double point, as it lies on the double invariant
parabola. This fact can be checked directly.

Moreover, the complex singular points M2 and M3 also lie on the invariant parabola,
though this is not relevant for the classification of the configuration. We deduce that in the
case B1 ̸= 0, systems (3.118) realize a single configuration: Config.P .141.

The case B1 = 0. This condition implies g = 0. Thus, system (3.118) with g = 0 possesses an
additional invariant line: x = 0. Considering the singularities (3.119) evaluated at g = 0, we
arrive at the unique configuration Config.P .142.

3.3.4 The statement (E4)

According to Proposition 2.9, in this case the conditions ζ4 = R7 = 0 and ζ5 ̸= 0 hold.
Considering (3.112), the condition R7 = 0 implies:

5g2 − 4n + 2 = 0 ⇒ n =
2 + 5g2

4
.

Thus, we arrive at the following one-parameter family of systems:

ẋ =
1
8
(g + 2x)

(
3g2 + 4g x − 4y

)
,

ẏ =
3g3x

4
+

1
2
(5g2 + 2)y − x2 + g x y − 2y2,

(3.120)

which possess the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line 2x + g = 0.
For these systems we calculate:

B2 = −648(1 + g2)5(1 + 9g2)x4 ̸= 0,

and by Lemma 2.3, no additional invariant lines can exist.
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Systems (3.120) have three finite singularities Mi(xi, yi) (i = 1, 2, 3) with coordinates:

x1 = − g
2

, y1 =
g2

4
; x2 = − g

2
, y2 =

1
4
(3g2 + 2); x3 =

3g
2

, y3 =
9g2

2
.

We claim that the singular point M1 is a multiple singularity of systems (3.120). Indeed,
applying a suitable translation to place M1 at the origin, we arrive at the system:

ẋ = x(gx − y),

ẏ = g(1 + g2)x − x2 + (1 + g2)y + g x y − 2y2,

where M0(0, 0) corresponds to the singularity M1.
Following [1], we compute the following invariant polynomials:

µ4 = µ3 = 0, µ2 = 2g(1 + g2)2x(gx − y),

µ1 = −(1 + g2)(x + 5g2x − 4gy),

and by [1, Lemma 5.2, statement (ii)], the point M0 has multiplicity at least 2. Notice that
µ2 = 0 if and only if g = 0, but in this case µ1 ̸= 0. Therefore, according to [1, Lemma 5.2,
statement (ii)], M1 is a double point if g ̸= 0 and a triple point if g = 0. This classification is
governed by the invariant polynomial ζ3 = 32g2.

We also note that the multiple singularity M1 is the intersection point between the invariant
line 2x + g = 0 and the invariant parabola. Moreover, the singularity M3 lies on the same
invariant parabola, and M3 coalesces with M1 when g = 0, producing a triple finite singularity
in systems (3.120).

On the other hand, the singularity M2 lies on the invariant line above the point M1, since
y2 − y1 = (g2 + 1)/2 > 0. Therefore, we conclude that systems (3.120) realize configuration
Config.P .143 if ζ3 ̸= 0, and Config.P .144 if ζ3 = 0.

As all the cases have now been examined, we conclude that statement (B) of the Main
Theorem is fully proved.

3.4 Geometric invariants and the proof of the statement (C)

In this subsection, we complete the proof of the Main Theorem by showing that all 144 configu-
rations of invariant parabolas and invariant lines that we have constructed are non-equivalent
according to Definition 1.3. To achieve this, we define the invariants that distinguish the con-
figurations within the family QSP(η ̸=0) into 144 distinct cases. We believe that these invariants
are among the most suitable for describing the geometric phenomena specific to this class.

The basic algebraic-geometric notions that we will use here include the concept of an
integer-valued r-cycle and its type:

Definition 3.19. Let V be an irreducible algebraic variety of dimension n over a field K. A
cycle of dimension r, or an r-cycle, on V is a formal sum

∑
W

m(W)W,

where each W is a subvariety of V of dimension r that is not contained in the singular locus
of V, m(W) ∈ Z, and only finitely many of the coefficients m(W) are nonzero. The degree of
an r-cycle is the sum ∑W m(W). An (n − 1)-cycle is called a divisor.
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Definition 3.20. The type of an r-cycle is the set of all ordered pairs (n1, n2), where n1 is a
coefficient appearing in the r-cycle (i.e., n1 = m(W) for some W), and n2 is the number of
subvarieties W in the cycle for which m(W) = n1.

Definition 3.21. We define a set of numerical and geometric invariants that allow us to distin-
guish the obtained configurations:

(a) (MP , mL) = (total multiplicity of invariant parabolas, total multiplicity of invariant affine
lines);

(b) τ
f
P = the type of the divisor of the multiplicities of finite singularities of the system located

on the parabolas;

(c) t f
P∩L = the type of the divisor of the intersection multiplicities (in the finite plane) between
P and L;

(d) τ∞
s = the type of the divisor of the multiplicities of singularities on the line at infinity;

(e) Mn
L∩P = the maximum number of real finite intersection points between an invariant line

and a parabola;

(f) Mm
P = the maximum multiplicity among the invariant parabolas;

(g) Consider the finite segment of a parabola delimited by two singularities s1 and s2 of
the system, having inside another singularity s0. Let m(s0) denote the multiplicity of s0.
We define the invariant I(s0) for this configuration, assigning it the value 1 if s0 is an
intersection point between the parabola and a line, and 0 otherwise;

(h) m f (P ∩ L
)

= the multiplicity of the intersection point (considered as a singularity of the
system) between the parabola and an affine line;

(i) Consider an invariant line passing through the infinite point of the parabola. This line
has another finite intersection point with the parabola, splitting it into two branches. We
introduce the invariant {n1

P , n2
P}, where ni

P denotes the number of singularities of the
system located on each open branch of the parabola;

(j) mR
s (P) = the total multiplicity of real singularities of the system located on the parabola;

(k) ns
in(P) = the total number of real singularities located inside the union of all domains

delimited by the parabolas;

(l) If an invariant line intersects a parabola at two distinct real finite points, we obtain a do-
main D f

P∩L bounded by the line segment and the arc of the parabola not passing through
its infinite point. We denote by τ

(
D f

P∩L
)

the type of the divisor of the of the multiplicities

of singularities of the system located on the boundary of D f
P∩L;

(m) n f
s (F ): the number of finite singular points of the curve

F : P(X, Y, Z) · L1(X, Y, Z) · L2(X, Y, Z) = 0

that have multiplicity at least 2.



Quadratic systems with three infinite singularities and parabolas 97

(n) Suppose an affine line intersects the parabola x2 − y = 0 at two finite points or has a point
of tangency with it. Let ∆b denote the curvilinear triangle on the Poincaré disk, with vertex
at the infinite point of the parabola, bounded by the closed branch of the parabola, the
adjacent segment of the invariant line, and the open arc a∞ containing a singular point at
infinity in its interior. We denote by n(∆b) (respectively, m(∆b)) the number (respectively,
the total multiplicity) of singularities located on ∆b;

(o) Assume we have a real system possessing two real invariant parabolas. In this case, two
distinct possibilities occur in the real projective plane:

(1) The points at infinity of the two parabolas are distinct,

(2) The points at infinity coincide.

Clearly, the positions of the points at infinity (P∞
1 , P∞

2 ) separate these two cases. If P∞
1 ̸=

P∞
2 , we are in case (1). If P∞

1 = P∞
2 , we are in case (2), which further splits into two

subcases on the Poincaré disk (PD):

(i) The two points at infinity coincide on PD,

(ii) The two points are opposite on PD.

We define the invariant J(P∞
1 , P∞

2 ) of the group acting on the systems viewed on the
Poincaré disk, assigning the value 0 to case (1), the value 1 to case (2.i), and the value 2 to
case (2.ii);

(p) If two invariant parabolas intersect at two distinct finite points, we obtain a finite do-
main D f

P1∩P2
delimited by the closed branches of the parabolas. We denote by τ

(
D f

P1∩P2

)
the type of the divisor of the multiplicities of singularities of the system located on the
boundary of D f

P1∩P2
;

(q) Assume that two real invariant parabolas have two distinct points at infinity, P∞
1 and P∞

2 ,
which are not opposite on PD. Let a∞

1 and a∞
2 denote the open arcs on the circumference

of PD determined by P∞
1 and P∞

2 . Assume that within the interior of arc a∞
1 (respectively,

a∞
2 ), there are n1 (respectively, n2) singularities at infinity. We define a new invariant:

m(P∞
1 ,P∞

2 ) = min{n1, n2}.

The set of numerical and geometric invariants introduced in Definition 3.21 provides the
necessary criteria to distinguish all 144 non-equivalent configurations of systems in the family
QSP. Each invariant encodes specific geometric information regarding the arrangement of
invariant parabolas, affine lines, and singularities, both finite and at infinity.

Figures 3.1 and 3.2 illustrate the complete bifurcation diagram associated with the Main
Theorem. The diagrams are organized according to the sign of the parameter η, with Fig-
ure 3.1 representing the case η > 0 and Figure 3.2 corresponding to η < 0.

Each branch in these diagrams reflects a bifurcation step governed by one or more of the
invariants from Definition 3.21, capturing the sequence of geometric changes that distinguish
one configuration from another. Together, the invariants and the diagrams provide a complete
and systematic classification of all phase portraits in the family QSP.



98 R. D. S. Oliveira, A. C. Rezende, D. Schlomiuk and N. Vulpe

Diagram 3.1: Non-equivalent configurations of systems in QSP (the case η > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the
case η > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the
case η > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the
case η > 0).
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Diagram 3.2: Non-equivalent configurations of systems in QSP (the case η < 0).
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