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Abstract. Denote by QS the class of all non-degenerate planar quadratic differential
systems and by QSP the subclass of QS of all systems possessing at least one invariant
parabola. In this paper we consider the subfamily of QSP defined by the condition
1 # 0, which means the presence of three distinct infinite singularities real or complex.
We denote this subfamily by QSP(, ). We investigate all possible configurations of
invariant parabolas and invariant straight lines which systems in QSP, () could pos-
sess and their geometric properties encoded in such configurations. The classification
presented here is taken modulo the action of the group of real affine transformations
and time rescaling and it is given in terms of affine invariant polynomials. It yields a
total of 144 distinct configurations. The obtained classification is an algorithm which
makes it possible for any given real quadratic differential system in QSP, o) to specify
its configuration of invariant parabolas and straight lines. This work will prove helpful
in studying the integrability of the systems in QSP, ).

Keywords: quadratic differential systems, algebraic solution, configuration of algebraic
solutions, invariant parabolas, affine invariant polynomials, group action.
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1 Introduction and statement of main results

For every planar differential system of the form

dx dy

i P(x,y), i Qx,y), (1.1)
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where P,Q € R|x,y|, that is, P and Q are polynomials in x and y with real coefficients, we
associate the vector field

d d
X = P(x,y)a + Q(x,y)@.

The degree of such a system is defined as the integer m = max(degP,deg Q). In particular,
system (1.1) is called a quadratic differential system when m = 2; here, QS denotes the entire
class of real quadratic differential systems. From now on, we assume that P and Q are coprime
polynomials. Otherwise, by an appropriate rescaling of time, system (1.1) can be reduced to a
linear or constant system. Quadratic differential systems satisfying this coprimality condition
are referred to as non-degenerate quadratic systems.

Quadratic systems appear in various research fields including models of population dy-
namics [6], fluid dynamics [9], control systems [11] and even quantum dynamics [2]. They are
also of theoretical interest because we have open problems on these systems stated more than
a century ago; see for example [1] for a bibliographical survey.

Given f € C[x,y], we say that the algebraic curve f(x,y) = 0 is an invariant algebraic curve
of systems (1.1) if there exists K € Cl[x,y] (it is called cofactor of the invariant curve f = 0)
such that

of  9f _
Pae T Q3 — Kf.

Quadratic systems with invariant algebraic curves have been studied extensively by many
authors. For example, Druzhkova [10] (1968) presented necessary and sufficient conditions on
the coefficients of a quadratic system, as well as on the coefficients of a conic, for the conic to be
an invariant curve of the system. Christopher [7] (1989) provided a normal form for quadratic
systems possessing invariant parabolas. Qin Yuan-xum [18] (1996) investigated quadratic sys-
tems having an ellipse as a limit cycle. Cair6 and Llibre [5] (2002) studied quadratic systems
with invariant algebraic conics in the context of Darboux integrability. Schlomiuk and Vulpe
[19,21] (2004, 2008) classified quadratic systems with invariant straight lines of total multi-
plicity at least four, according to their geometric configurations. Many other works have also
contributed to this topic.

The primary objective of this research is to study non-degenerate quadratic systems that
possess invariant conics. Irreducible affine conics over the real field R include hyperbolas,
ellipses, and parabolas. These conics can be distinguished by analyzing their behavior at
infinity. Specifically, a hyperbola is a real irreducible affine conic with two distinct real points
at infinity. A parabola, in contrast, has a single real point at infinity, where the conic meets
the line at infinity with multiplicity two. An ellipse, on the other hand, has two complex
conjugate points at infinity.

The classifications of QS with invariant hyperbolas [14, 15] and with invariant ellipses
[13,16] were obtained in previous works. In this study, we focus on the class QSP of non-
degenerate quadratic differential systems that possess an invariant parabola. The novel con-
tribution of this work lies in adopting a global approach, employing global tools such as the
theory of invariant polynomials for differential systems.

The group of real affine transformations combined with time rescaling acts on the class
QS. Consequently, modulo this group action, quadratic systems in this class depend on five
essential parameters. The same group also acts on the subclass QSP, and, modulo the group
action, systems in QSP depend on at most three parameters. To ensure our study is intrinsic
and independent of any particular normal form representation, we employ invariant polyno-
mials and geometric invariants to carry out the desired classification.
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In the paper [24], the necessary and sufficient conditions for a non-degenerate quadratic
system in QS to have invariant parabolas are established. Moreover, [24] presents invariant
criteria that determine the number, position, and multiplicity of such parabolas.

The present paper is a continuation of [24]. More precisely, using the conditions from
that work, we classify all possible configurations of invariant parabolas and invariant lines
that a system in QSP, ;) may possess. The investigation of configurations within the family
QSP;, ) is currently in progress.

A key concept in this study is the notion of a configuration of algebraic invariant curves for
a polynomial differential system. This concept was first introduced in [22], with an earlier
version focusing solely on invariant lines presented in [19]. Following Darboux’s definition,
an algebraic solution of a polynomial differential system is an algebraic invariant curve defined
by an irreducible polynomial over C.

Definition 1.1. A configuration of invariant algebraic curves of a real polynomial differential
system is defined as a finite set of algebraic invariant curves of the system, each endowed
with its multiplicity, together with the real singularities, whether finite or infinite, located on
these curves, each also endowed with its multiplicity.

It is worth noting that [8] introduces various notions of multiplicity for an algebraic in-
variant curve, including infinitesimal, integrable, algebraic, geometric, and holonomic multi-
plicities. In this work, we adopt the concept of geometric multiplicity, defined via perturbations
within the family QS as follows.

Definition 1.2. An invariant conic
P(x,y)=p —i—qx—i—ry—i—sxz —|—20xy+uy2 =0,

with (s,v,u) # (0,0,0) and parameters (p,q,7,s,v,u) € C, for a quadratic vector field X,
is said to have multiplicity m if there exists a sequence of real quadratic vector fields { X}
converging to X (under the topology induced by their coefficients on the sphere S'!) such that
each Xy admits m distinct (complex) invariant conics

ol =0, .., d"=0,

all converging to ® = 0 as k — oo (under the topology induced by their coefficients on
the sphere S°). Moreover, this property does not hold for m + 1. When an invariant conic
®(x,y) = 0 has multiplicity one, it is called simple.

We note that two non-equivalent systems, modulo the group action, may have the “same
configuration” of invariant parabolas and straight lines. Therefore, it is necessary to define
when two configurations are considered “the same” or equivalent.

Definition 1.3. Suppose we have two systems (51) and (S;) in QSP, each with a finite number
of singularities (finite or infinite), a finite set of invariant parabolas

Pi:gi(x,y) =0, i=1,...,k

of (51) (respectively
Pligilx,y) =0, i=1,...k

of (S2)), and a finite set (possibly empty) of invariant straight lines

Li:filx,y)=0, j=1,... K,
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of (S1) (respectively

E;-:f]-’(x,y) =0, j=1,...,K,

of (S2)). We say that the configurations C; and C, of parabolas and lines of these systems are
equivalent if there exist one-to-one correspondences

¢p: {Pi} = {Pi} and ¢ :{L;} = {L]}

such that:

(i)

(ii)

(iii)

¢p and ¢; preserve multiplicities of parabolas and lines, and map real invariant curves
to real invariant curves, and complex invariant curves to complex invariant curves;

for each parabola P : g(x,y) = 0 in C; (respectively each line £ : f(x,y) = 0), there is a
one-to-one correspondence between the real singularities on P (respectively on £) and
the real singularities on ¢,(P) (respectively on ¢;(L)), preserving both their multiplici-
ties and locations;

furthermore, consider the total curves

F: | |Gi(X,Y,Z)-HFj(X,Y,Z) -Z =0,
i j
and

F HG;(X,Y,Z) -HF]-’(X,Y,Z) - Z=0,
L J

where G;(X,Y,Z) = 0and F;(X,Y, Z) = 0 (respectively G;(X,Y,Z) = 0and F/(X,Y, Z) =
0) are the projective completions of P; and L; (respectively P/ and E}). Then there is a
correspondence ¢ between the singularities of 7 and F’, preserving their multiplicities
as singularities of the total curves.

Our main results are summarized in the following theorem.

Main Theorem.  Consider the class QSP (o) of all non-degenerate quadratic differential sys-
tems (1.1) possessing an invariant parabola and three distinct infinite singularities (real or complex).

A)

(B)

©

This family is classified according to the configurations of invariant parabolas and invariant
straight lines, resulting in 144 distinct configurations. Among these, 112 configurations belong
to the subclass QSP(,~qy and 32 to the subclass QSP(, o). This geometric classification is
illustrated in Figures 1.1 and 1.2, and is characterized by necessary and sufficient invariant
conditions presented in Diagrams 1.1, 1.2, and 1.3.

Using 70 invariant polynomials, we derive the bifurcation diagram in the space R'? of the coeffi-
cients of systems in QSP, o). These diagrams, shown in Diagrams 1.1, 1.2, and 1.3, classify the
systems according to their configurations of invariant parabolas and straight lines. Furthermore,
the diagrams provide an algorithmic procedure to compute the configuration of any quadratic
differential system with an invariant parabola, irrespective of its chosen normal form.

Figures 1.1 and 1.2 present all possible configurations for systems in the subclasses QSP
and QSP , ), respectively. We prove that all 144 configurations are realizable within QSP, ),
and that these configurations are topologically distinct. This proof, based on geometric invariants,
is provided in Subsection 3.4 and is illustrated in Diagrams 3.1 and 3.2.
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Figure 1.1: Configurations of systems in QSP in the case 77 > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case # > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case 17 > 0.
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Figure 1.1 (continued): Configurations of systems in QSP in the case 7 > 0.
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17 589 >0 Config. P. 10
D=0

§24=0 —»Config. P.105
Eog 75()M>Conﬁg. P.106

B —0 &21=0, Config. P. 107

£06=0 MConﬁg. P.108

AT 6 =0, Config. P. 109
(BG) ——>»Conjfig. 7.

[£9=0 Config. P.110

(B) 670 Config. P.111
CG;()pConﬁg.P.]Z,?

Diagram 1.2 (continued): Conditions for the configurations of systems in QSP in
the case 7 > 0, {1 = 0.
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D <0, config.P.113

M»Conﬁg.P.lM
By #£0

€40 %Conﬁg. P.115
£2=0 , Config. P.116
%szﬁg.?.]l’/
§=018>0, config. P.118
€2=0 | Config. P.119

§&r<0
—» Config. P.120

D <0
(£) >0 58;OpConﬁg.P.],Ql
1

M»Conﬁg. P.122

D0 <0 Config. P.123

By#0 58;ObC'onﬁg.P.],%

m—<0>00nﬁg.77,125
$16>0, Config. P. 126
£1=0 270 config. P.127

B =0 220, Config. P. 128

[B2=0y Config. P. 129

&;()b Config. P.130

§1#0

§47#0 D=0

€14<0 MConﬁg. P.131
D<0pH

n<0 MConﬁg. P.132

—vo— >0
ch ;20 0 fl4—>Conﬁg.73.133
! B1#0[{D>0

»Config. P.134

£20<0, Config. P.135

(£5) D=0[50>0_ 0. P. 156

$30=0, Config. P. 157

D
By £0 D<0, config. P.138
B,=0 M»Conﬁg.?lé’g

MConﬁg.P.M()

(&3) Bl—#obConﬁg. P.141
1B1 =0, Config. P.142
(£2) S70 Config. P. 143
[$8=0, Config. P.144

Diagram 1.3: Conditions for the configurations of systems in QSP in the case
n <0.
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Remark 1.4. Every branch of the graphs in Diagrams 1.1, 1.2, and 1.3 terminates at a unique
configuration Config. P.1 through Config. P.144, with a single exception. Specifically, in Di-
agram 1.1 (page 11), there is a branch that leads to an indeterminacy between two config-
urations: either Config. P.32 or Config. P.33. We are convinced that there exists an invariant
polynomial capable of distinguishing between these two configurations, although we have not
yet identified it. The determination of such an invariant remains an open problem.

2 Preliminaries

Consider real quadratic systems of the form:

dx
a5 = Potpi(ny) +p2(ny) = Plx,y),

d
% ={qo + q’l(x,y) + QZ(x;]/> = Q(x'y>’

where p; and ¢q; (i = 0,1, 2) are homogeneous polynomials of degree i in x and y:

po=a0, pi(x,y) =awx+any,  pa(x,y) = axnx* + 2a11xy + any?,
go = boo, q1(x,y) = biox + bory, q2(x,y) = box? + 2b11xy + booy>.
Such a system (2.1) can be identified with a point in R!2. Let

a = (aoo, a10, 401, 320, 211, 402, boo, b10, bo1, b2o, b11, boz),

and consider the polynomial ring R{aqy, . . ., 402, boo, - - -, b2, X, y], which we denote by R[4, x, y|.

It is known that the group Aff (2, R) of affine transformations of the plane acts on the set
QS of all quadratic differential systems (2.1) (cf. [20]). For every subgroup G C Aff(2,R),
there is an induced action of G on QS.

We can identify the set QS with a subset of R'? via the map QS — R'?, which associates
to each system (2.1) the 12-tuple @ = (aq, . .., boz) of its coefficients.

To study this group action, we associate to the systems certain polynomials in x, y and the
system parameters that transform in a controlled way under the action. These are known as
GL-comitants, T-comitants, and CT-comitants. For detailed definitions and constructions of
these comitants, we refer the reader to [20] (see also [1]).

2.1 The main invariant polynomials associated to invariant parabolas

We single out the following five polynomials, which serve as basic ingredients in constructing
invariant polynomials for systems (2.1):

Ci(@,x,y) = ypi(x,y) = xqi(x,y), (i=0,1,2),
e _ api aqi . (2-2)
D(a,x,y) = B + 3y’ (i=1,2).
As shown in [23], these polynomials, which are linear in the coefficients of systems (2.1), are
GL-comitants of these systems.

For f, ¢ € R[d, x,y|, we define the transvectant of index k of (f,g) by

k k akf ak
(k) — Y (1) 238
(f.8) hZ::O( 1) <h> axk—hayh axhayk—h‘

The resulting polynomial ( f,¢)®) belongs to R, x, y] (cf. [12,17]).
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Proposition 2.1 (see [25]). Any GL-comitant of systems (2.1) can be constructed from the ele-
k)

ments (2.2) by using the operations +, —, x, and by applying the differential operation (%, ).
Remark 2.2. We point out that the elements (2.2) generate the entire set of GL-comitants, and
consequently also the full set of affine comitants and T-comitants, since any affine comitant
and any T-comitant can be constructed from GL-comitants using the same operations: +, —,
x, and (x,%)®),

We construct the following GL-comitants of second degree with respect to the coefficients
of the initial systems:
T =(C, )", T=(C,C)", T3=(Co,D)",
L=, T=(C)", To=(C,0)?, (23)
T;=(C,D)", Ty=(C, )%, To=(CyDy)".
Using these GL-comitants, together with the polynomials defined in (2.2), we construct
additional invariant polynomials. To enable the direct computation of the required invariant

polynomials for each canonical system, we now define a family of T-comitants expressed in
terms of the polynomials C; (i = 0,1,2) and D; (j = 1,2):

A= (G, Ts—2To + D3)? /144,
D= [2 — 8Ty — 2D3) + C1(6T7 — Tg — (C1, T5)™") + 6Dy (C1 D5 — Ts) — 9D%Cz} /36,
E= [Dl 2Ty — Tg) — 3 (C1, To)V) — Do (3T + DlDz)} /72,
— [6D}(D3 — 4Ty) + 4Dy Dy(Ty + 6T;) +48C (Dy, To)") — 9D3T,4-288D, E
—24 (CZ,D)( ' $120 (D2,15>( ' 36C4 (Da, T;)V+8D; (Dy, Ts) } /144,
K = (Tg + 4Ty 4 4D3) /72,
H = (8Ty — Ty +2D3)/72,

B= {16D1 (Dy, Ts)W (3C1 Dy — 2CoD; + 4Ty) + 32C; (Dy, To) Y (3D1 Dy — 5T, + 9Ty)
+2(Dy, o) (27C, Ty — 18C1 D3 —32D1 T, 432 (Co, T5) ™)
+6(Da, Ty)W [8Cy(Ts — 12To) — 12C1 (D1 D; + Ty)
+ Dy (26C,Dy + 32Ts) +Co(9T4 + 96T3)]
+6(Dy, Te) Y [382Co Ty — C1(12T7 + 52D, D) —32C,D3] + 48D, (Dy, Th)Y) (2D3 — Ty)
—32D1Tg (D2, To)"V + 9D3Ty (Ts — 2T7) — 16D; (Cy, Ts) ) (D3 + 4T3)
+12D; (Cy, Ts) @ (C1Dy — 2C3Dy) + 6Dy Dy Ty (Tg — 7D3 — 42Ts)
+12D; (Cy, Ts)V (Ty + 2D1Dy) + 96D3 [Dl (C1, Te)Y + D, (Co, Té)“)} -
—16D1D>Ts (2D 4 3Tg) — 4D3D; (D3 + 3Ts + 6To) + 6D1D3 (7T + 2T7)
—252D1 D, TyTo} /(283%),

These polynomials, together with those defined in (2.2) and (2.3), will serve as fundamental
building blocks for constructing affine invariant polynomials for systems (2.1).



Quadratic systems with three infinite singularities and parabolas 19

The following 42 affine invariants, labeled Aj,..., A4, constitute a minimal polynomial
basis of affine invariants up to degree 12. This result was established in [4], where the invari-
ants Ay, ..., Agp were explicitly constructed using the aforementioned building blocks:

A=A,

Ay = (C,D)® /12,

Ay = [Co, Dz)(l),DQ)(l) Dz)(l)/48,
As = (H,H)?,

As = (H,K)? /2,

As = (E,H)? /2,

A7 = |, E)(Z),Dz)(l)/&

As = [D,1)®,D,)" /8,

Ag = [D,Dy)V, D,)Y, Dy) Y /a8,
Ay = [D, 12)(2),132)(1)/8,

An = (F,K)® /4,

®)
N
I\
o)t
SN—
—
i
=
<
T
N
P
=
=
-]
N
SN—
i
-
=
<
T
N
N
P
=
=
-]
N
SN—
i
-
=
~
—
—_
Ul
N
J
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In the above list, the bracket “[” is used as a typographical device to avoid writing up to five
consecutive parentheses “(” in some of the expressions.

Using the elements of the minimal polynomial basis listed above, we construct two groups
of affine invariant polynomials. The first group contains invariant polynomials associated
with the existence of an invariant parabola for a quadratic system, and they are:

X1 = 32A3 +45A, — 160As;

Xo = 32Ag(14Ag — 48Ag + 37 A1 +24A11) + 16A5(76 A1y + 74A18 + 313A19 — 80 Axg
—167A51) + A4(160A% + 368 A15 — 3363 A1 + 736 Ay + 2109 A1) + 32(17A3,
+27A10A1 +24A%, —48A9g A1 +51A10A1p 4+ 24A11 A1 + 288AsA1s — 96A7A);

X3 = 6520480 A20(407 A1g — 2253 As1) + 24A15(1057715458 A1g + 5944853225 A1 )
+28800A14(1872476 Aps — 122259 Aog) + 144A15 (3620283092 Ang — 1554910481 A3)

+ 1440 A15(107225339 A5 — 19561440 A2) — 72A11(8198511476 Azg — 2965514443 A3))
4 652048(4544 A%, + 125A3%, — 8955A,A4) — 9(264364688 A%y + 39417454842 A19 Ay
— 54474141921 A3, ) + 3448898760 A 19 Aog;

X1 = 62713 A3 + 45787 A19A11 — 157928 A%, + 81202A19 A1 + A19353474A11 A1y — 145848 A3,
+ 64320A7A15 + 28600A5A17;

71 = 13A4 — 24A5;

(o= — Ay

{3 = 16As — 17 Ay;

(4 =9A1A4 —7A1A5 — 2A16;

{5 = 166Ag + 384 A9 — 1120A19 — 512A11 — 62A1;

C6 = As;

77 = 40(71436 A7 Ayy — 640883 A; A1 + 1008622A1 Azy) + 12A15(3585035A14 + 14919259 A15)
— 5(8092193 A1 + 15970731 A11) A4 — (129780821 A1 + 269944167 A1) A1s;

(g = A;
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Jo = 1040(2256 A7 A5 + 143A3 A1) — 264(162941 A1 + 315202A11) A1,

+3A11(25887132 A1 + 24385177 A11) + 20603609 A%, 4 24896016 A3,;

T10 = 250A% 4+ 34A; — 41A1;

R1 = 531A,A4 — 1472 A5 As — 8352 A1 Ag + 320 A2 — 3216 Aps + 1488 Ayy;

Ry = 15A19 — 10Ag — 6Ag;

R3 = 4800(6650951968 A14A15 — 2382132830A2, — 9860550485A25) + 1600(4765089473 A1
— 7838161089 A15) Ao + 640(15664652914A1; — 50944340271 A1) A1g
— 6(20392663986679 A1 + 34357804389813 A1, — 739275727012 A1) Ay
+ 3(46944212550227 A1 + 83455057317969 A11 — 22899810934956 A15) A1o;

Ry = 251A% +25A1,;

Ry = 62250A2 + 8956 Ag — 46223 A1 — 50129 A1 + 14766 A1s.

The invariant polynomials from the second group are responsible for the classification of
the configurations of invariant parabolas and lines. They are:

&1 = B342A2A; + Ax(35A10 — 15Ag — 16Ag + 97 A1, — 83A15) — 48A1(4A14 +3A15)
+16(2A3; + Asz — 3A3,) +90As3;;

G = — A

& = 12(49836514A3% — 40804544 Ag Ag — 63384469 Ag A1g — 4515985A3 + 93824435A3A 11
— 23552547 A19A1q + 51595312A2, + 202411827 A2 A1) — 7631763154, Asy
— 16(30603408 Ag A1, + 10917387 A7 A14 + 14011860A7 A5 — 75865539 A5 A1y
— 115398446 A5 A1g — 54568383 A5 A1) — 4(86656770 A A14 + 404823654 A¢ A1s
— 68396637 A5 A19 + 25391678 A5 Asg) — 6A12(154041735A5 + 47473233 A1g
— 170661233 A11 4 202411827 A1,);

&y = 800(175A2A5A; — 336A1 A3 Ag — 16500A13A14 — 9300A13A15 — 47001 A6 Ao
+39861A7 A3 — 3150A6 Aoy — 10242 A7 Asy + 168792 A5 A2g) + 240(173478 Ag A1
+ 128774 A10A16 + 151602A11 Aqg + 134102A12 A1 + 8799A4Ayy — 134102 A5 A57)
— 1879552(3A9g A1 — A7An) + 75(50400A¢ Aoz — 646151 A4 An);

&5 = 2000(802A13A14 +315A5 A — 210AgAzy) + 320(28A1A3A1 — 13757 Ag A1
— 11282A15A16 + 3336 A7 Any + 11282 A5A57) + 80(16038A13A15 — 30398 A10A16
— 36154A11 A1 + 46738 A Axy — 45142 A7 Aoz — 162339 A5 A2s) + 151552(3Ag A1
— A7A) — 15A4(28392 A7 — 313721 Ang);

& = 1536(16671538A7 A1y — 5655800A%, — 5655800A11 A1o — 134975925A4 A1
+ 14236220 A7 A15) + 128(42330182Ag Ag + 279065017 Ag A1 — 857954 AgA1n
+ 138313062 A9 A1, — 633595086 A¢ A4 — 35417298 AsAy0) + 64(171565045A3
4 343921603 A5A17) — 32(1111806317 Ag A1g + 256225409 A%, + 874265715A19A1;
+ 2536914399 A19A12 — 936841383 A5A13) — 16A5(2168875001 A9 + 1048355233 A1)
+ A4(26458433203 A9 — 4734012269 A7, );

&7 = — A4[3200A15(14657 Ag — 1615148 A + 318175A11) — 640(388968 A3 — 7748782 A%,
—592379A9A1,) — 160(13079737 Ag A1g — 27509045 Ag A1, — 63353923 Ag A1y
—16215395A19A11 — 36662125A7,) + 4121433952 A9 A1 ;
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— A4 [512A9(1275434 A1 + 2193137 Aq1 — 170333A1,) — 1280(30087 A3 + 424036 A%,
+ 1052798 A19A11 + 48550A%, 4 61603AgA12) — 640(608587 AgA1g + 248041 Ag A1,

+ 430261 A19 A1 + 525475A11 A12) |;

— A4[48(675908847 Ag Ag + 1141726617 Ag A1a + 7216376855 A19 A1z

— 4015621128 Ag Aq4 + 3915909450 A7 A15) — 12(16745223889 A3 + 5997051735 A5 A1y
— 26372062499 A19A11 + 2601951027 Ag A1 — 7916516650A7 A1 — 30105649725 A6 A1s5
+ 20512413539 A5 A7 — 1497206278 Ay A1 — 4791714129 A4 Ay1) + 2(220220676003 Ag A1
4 58687175103 A3, + 14685562719 A%, + 9716839839 A1 A1, — 219193688911 A5 A8

— 4467110471 A5 Ax) + 3As5(36033875127 A19 — 37652431103 A1) |;
A4[48(568199091031 As Ag — 248186616391 Ag Aqg + 314207594667 Ag A1y

+ 5804879973 Ag A1, — 3905825755777 A19A1n — 2095407390920 A A14

— 546799764750A7A15) + 12(6550908482493 A2 — 3402501855145 Ag A1,

— 3448022811579 A19A11 + 2284925158471 Ag A1y + 2482932379806 A7 A14

— 11017448610465 A4 A15 + 5894909506479 A5 A17) — 2(131290745988327 Ag A1

— 17334476527245 A3, — 11980168965 A3, + 21428060568795 A1 A1

— 62352140313275A5A1g + 3924064256285 A5 Asg) — 3(2258722903315A5A 19

+ 9533558573843 A4 Ay — 10218122423819A5 A1) ];

0102C6;

1288A2 + 117 A0 + 351A1; — 352A1;

61A2 —20A17 — 8A1g +24A19 — 28A50 + 12A,1;

9854 A11 — 3005Ag — 3296 Ag + 13578 A1g — 991 A1y;

8As —9Ay;

(525Ag — 4448 Ag + 10554 A 19 — 1378 A1y + 8087 A12);

10005Ag + 9856 Ag — 38348 A9 — 27404 A11 + 8371 A12;

2240(15452233775A2, + 742923092360 A4 A15 — 145263086200.A2;

+ 10151798384 A11 A1g — 68919094926 A1, A1s — 14663220305 A11 Az

+ 7194838365 A12Ang) + 16 A19(88266907919051 Ag + 12824946044853 A1,

+ 119819326860153A15) — 7 A (138073671324637 A1 + 258358507987439 A1,

— 32813284182036A1,);

429 A9(629A10 + 1275A11 — 900A1;) + 100(2145A5 A1, — 1595A5A1; — 2970 A5 A5

+ 2886 A3 Az — 559A2A4);

4A,(47A3 — 468 A5 + 3478 A19 +9Az) — 9189 A2 Ay + 12(—682A1 Aoz + 2592A1 Agg
+395A35 + 35A39);

24(675906 A9 — 672409 Az + 6578 Ag1 + 110106 Ay,) — 73404 A5 (74A15 + Asp)

+ 4(99911 A3 — 2048846 Asg) — 15133791 A, A,1;

84A1, —68A1) — 141A14;

5Ag — 3Ay;

625A,(12AA3 — 775A1 Ag) — 62(13500A2 + 275Ag — 276 Ag) Ag + 10A3(2561 A7
+3240A15 + 2550A19);
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&5 = — (46A13 +537A19 + 134Ay);
Cre = 41A1A2 +16A14 — 18A15;
Gy = Ag;

Zos = 64(72137434664A% + 3322490880.A% — 58216412276 A2, — 217656099219 A1 A1y
— 6309823638942, — 250756327503 A19 A1, — 71858710389 A11 A1n + 96 Ag (449920640 A1,
+ 1009660963 A15) + 6As (21795888048 Ag — 66020231422 A1) — 21118997424 A1,
+ 2573485725A1,) ) — 384 (62739943233 A A14 — 27065693406 A7 Ar4 + 7592410800 A¢ A1s
— 10442342780 A7 A15) + A4 (2998959134256 A1 + 4635359414448 A1 + 1132776129074 A9
— 1187818900002 A9 — 5542617623395 An1 ) + 32A3(19078937382 A2 + 81853956367 A1 );
Zrg = 497213324620A% — 1001736600522A3, — 870653569536 A9 A11 + 337754949134 A2,
+ Ag(2170429037822 A1y — 1858453397512 Ag + 2112595332132 A1 — 304022217484 A15)
— 987799827976 Ag A1y + 949933240214A11 A1p 4+ A1o(—648979472052A1;
+ 956487534504A1,) — 4(125652578829 Ag Ar4 + 240347919318 A7 A 14
— 775425835368 Ag A1s + 405563103412 A7 A15) — A4(197626785161 Az
+ 1540932760870 A1 ) + As(1910970964424 A17 + 2668708281714 A1s + 182967974851 A1
+ 280452031438 A, + 2136843181298 A1 );
T30 = 3512A10 — 1695Ag — 544 Ag + 4576 A11 — 3329 A1s.

2.2 Results involving the use of polynomial invariants

A few more definitions and results, which play an important role in the proof of part (A) of
the Main Theorem, are needed. We do not prove these results here but indicate where they
can be found.

Consider the differential operator £ = x - L, — y - L1, introduced in [3], acting on R[4, x, y],
where the operators L1 and L, are given by

d d 1 0 0 0 1 ]
Ly ZQOQT + a1 g=— 020 + 2a01 a1 + 2bop=— T + big=—— T + 2b01 Wn,

d d 1 8 d J 1 d
L, 2110087 +aps— - + 217110a + booabol + bmﬁ02 + Eblo%-

Using the differential operator £ introduced above and the affine invariant

Resy (p2(a,%,y),92(d, %, y))
vl

Ho =

7

we construct the following family of polynomials:

1 . .
wi(d, x,y) = Eﬁ(’)(yg), i=1,...,4,
where the iterated operator £ is defined recursively by

L9 (o) = L(L5D (o)),  with £ (o) = po.

These polynomials y; are GL(2,R)-comitants of the quadratic systems (2.1), as established
in [3]. Their geometric interpretation is detailed in Lemma 5.2 of [1].
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From these invariant polynomials, one constructs the affine invariant polynomials D and
R, which characterize the existence of multiple finite singularities in quadratic differential
systems:

1

D= T [3((V3z VS)@),ﬂz)(Z) — (6‘140;44 — 3u1us + y%, ;44) , R= 3;4% — 8uota,

(4)}
where (x, *)(k) denotes the bilinear operation transvectant.

Next, we construct the following T-comitants (for the definition of T-comitants, see [20]),
which play a fundamental role in characterizing the existence of invariant straight lines for
systems (2.1):

Bs(d,x,y) = (Cy, D)W =Jacob(Cy, D),

By(@,x,y) = (Bs, B3)'® — 6B5(Cy, D)),
Resx(Cz,f))
Y

The following result, whose proof can be found in [19], provides a necessary condition for
the existence of invariant straight lines in quadratic differential systems.

By (d) = —279378(B,, B)W.

Lemma 2.3 (see [19]). For system (2.1) to possess invariant straight lines in one, two, or three distinct
directions in the affine plane, it is necessary that the following conditions hold, respectively:

Bi=0, B,=0, B3=0.

In order to detect the presence of parallel invariant straight lines, we require the following
invariant polynomials:

N(a,x,y) = D3 + Tg — 2Ty = 9N,
0(7) =2As — Ay, (= Discriminant (N(4,x,y))/1296) .

With these definitions, the following necessary condition holds.

Lemma 2.4 (see [19]). A necessary condition for the existence of one couple (respectively two couples)
of parallel invariant straight lines in system (2.1), corresponding to a parameter vector i € R'?, is that
6(d) = 0 (respectively N(d,x,y) = 0).

Next, we introduce some important GL-comitants relevant to the study of invariant conics.
Let us consider

Ca(d,x,y) =y p2(d,x,y) — xq2(d, %, y),

which defines a cubic binary form in x and y. Using this form, we define the following
polynomials:
1 = Discrim|[Cy], M = Hessian[C;].

It is worth noting (see [23]) that the invariant polynomials C;, 77, and M are responsible for
controlling the number of infinite singularities (real or complex) of system (2.1).

Remark 2.5. In order to describe the various kinds of multiplicities for infinite singularities,
we use the concepts and notations introduced in [19]. Thus, we denote by (4, ) the maximum
number a (respectively, b) of infinite (respectively, finite) singularities that can be obtained by
perturbation of a multiple infinite singularity. In this case, we say that an infinite singular
point has multiplicity (a, b).
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In this paper, we consider only the case 7 # 0, that is, 7 > 0 or 7 < 0. In the first case,
according to [23], a quadratic system possesses at infinity three real distinct singularities,
whereas in the second case, it possesses one real and two complex singularities.

In [24], necessary and sufficient conditions for a system to belong to the family QSP of
quadratic systems possessing at least one invariant parabola, in terms of invariant polynomi-
als, are determined.

We extract from [24] only the information related to the case 77 # 0, and for this, we need
some notations.

Definition 2.6. By the direction of an invariant parabola of a quadratic system (S), we mean
the direction of its axis of symmetry, which intersects the invariant line Z = 0 at an infinite
singular point of (S).

In order to distinguish the invariant parabolas that a quadratic system could have, we use
the following notations:

e U for a simple invariant parabola;

W for two simple invariant parabolas in the same direction (they could intersect);

UC for two simple invariant parabolas in different directions;

U2 for one double invariant parabola;

W C for three simple invariant parabolas: two in one direction and one in another
direction.

The proof of the next proposition can be found in [24].

Proposition 2.7. Assume that for a non-degenerate arbitrary quadratic system, the conditions 1 > 0
and {1 # 0 are satisfied. Then, this system could possess invariant parabolas only in one direction.
More exactly, it could only possess one of the following sets of invariant parabolas: U, U and U2,
Moreover, this system has one of the above sets of parabolas if and only if x1 = x> = 0 and one of the
following sets of conditions are satisfied, correspondingly:

(A1) 02#0,03#0,04#0,R1#0 = U
(A2) 5#03B#0,4L=0R#0#0 =U;
(A3) 52750/€37£01€4:0/R27£0/€5:0 :>U2/'
(A1) 0#0,5B#0,4L=0R=0#0 =,
(As) 02#0,03=0,04#0,R1#0 = U;
(As) 02#0033=00L=0R#05#0 =U;
(A7) 2#0,03=001=0Ra#0,{s=0 =U%
(As) 02#0,53=0,01=0R=0,#0 =
(Ag) €2:0, €67£0,721:O,R2750 :>U
Furthermore, in the case of the existence of an invariant parabola, a system with 7 > 0 and {; # 0
could be brought via an affine transformation and time rescaling to the following canonical form:

1
X =m+nx— 5(1 +Qy+ gt +xy, y=2mx+2ny+ (g —1)xy + 2y (2.4)

possessing the invariant parabola ®(x,y) = x> —y = 0.
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However, examining the conditions (.A1)—(.Ag), we detect that some of the sets of these
conditions could be joined. More exactly, we observe that (\4;) and (.As) contain the same
conditions except for the condition involving (3. Therefore, by eliminating the conditions
involving only (3, we obtain a new set of conditions which we denote by ((Af): {» #0, (4 #
0, Ri#0.

We perform the analogous operation on (\A;) and (As) (respectively (Az) and (A7);
(Ay) and (As)), resulting in the new conditions (\A}) (respectively (A3); (\A})).

Thus, we can replace the first part of Proposition 2.7 obtaining the following one:

Proposition 2.7*. Assume that for a non-degenerate arbitrary quadratic system, the conditions 1 > 0
and {1 # O are satisfied. Then, this system could possess invariant parabolas only in one direction.
More exactly, it could only possess one of the following sets of invariant parabolas: U, U and U2,
Moreover, this system has one of the above sets of parabolas if and only if x1 = x2 = 0 and one of the
following sets of conditions are satisfied, correspondingly:

(A7) 02#0,04#0,R1 #0 = U:
(A}) 0#0,04=0R2#0,#0 =U;
(AY) 0#0,04=0,R2#0,5=0 = U?
(A}) 02#003=0Ry=0,33#0 =U;
(Af) =0, 0#0,R1=0,R,#0 = U.

The proof of the next two propositions could also be found in [24].

Proposition 2.8. Assume that for a non-degenerate arbitrary quadratic system, the conditions 1 > 0
and (1 = 0 are satisfied. Then, this system could possess invariant parabolas in one or two directions.
More exactly, it could only possess one of the following sets of invariant parabolas: U, U, U2, UC and
WC. Moreover, this system has one of the above sets of invariant parabolas if and only if x1 = x3 = 0
and one of the following sets of conditions are satisfied, correspondingly:

(B1) x4#0,07#0,R3#0 = U;
(BZ) X47£0,§7=0,R47£0,€87é0 :>LUJ;
(Bs) xa#0,07=0,Rs4#0,i3=0 = U?%

(Bs) xa#0,07=0,R4=0 = U;
(Bs) x4=0,05#0,00#0 = UG,
(BG) X4:0/€5#0/€9:01§107é0 :>U;
(B7) xa=0,05=0,06#0 = UC.

Furthermore, in the case of the existence of an invariant parabola, a system with 7 > 0and {1 =0
could be brought via an affine transformation and time rescaling to the systems (2.4) with g = 2.

Proposition 2.9. Assume that for a non-degenerate arbitrary quadratic system, the conditions 1 < 0
is satisfied. Then, this system could only possess one of the following sets of invariant parabolas:
U, U and U2, Moreover, this system has one of the above sets of invariant parabolas if and only if
X1 = X2 = 0and {1 # 0 and one of the following sets of conditions are satisfied, correspondingly:

(81) 54 75 0, Rl 75 0 = U,’
(&2) G4=0R;#0,:#0 =U;
(83) (1=0,R;#0,05=0 @UZ;
(Ed) Gu=0R;=0#0 =U.
Furthermore, in the case of the existence of an invariant parabola, a system with y < 0 could be
brought via an affine transformation and time rescaling to the following canonical form:

Xx=m+ (2n—1)x/2+gx* —gqy/2 —xy, y=_2mx —x>+2ny+gxy —2y*, (2.5
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with C; = x(x? + y?), possessing the invariant parabola ®(x,y) = x* —y = 0.

3 The proof of the Main Theorem

The statement (B) follows directly from the form of the conditions given in Diagrams 1.1, 1.2,
and 1.3. These conditions can be evaluated for any point a € R'? corresponding to a quadratic
system satisfying 1 # 0.

In order to prove the statement (A) of the Main Theorem, we must examine the sets of
conditions provided by each one of Propositions 2.7%, 2.8, and 2.9.

3.1 Systems in QSP, ) with the condition {1 # 0

In what follows, we examine the configurations of the systems in QSP(,~¢) in each one of the
cases provided by Proposition 2.7*. According to Proposition 2.7, we consider the canonical
form (2.4), i.e., the systems:

1
X =m+nx— 5(1 +9)y+gx?+xy, y=2mx+2ny+(g—1)xy+2v? 3.1)

possessing the invariant parabola ®(x,y) = x> —y = 0.

3.1.1 The statement (.A})

For systems (3.1), we calculate:

61=2(g-2)3+g), G2=4g(1+3)
0s=(g—2)(3+g)(1+7g+15¢> +9g°> — 4m + 2n + 6gn) /16,
Ri= —15¢(1+¢)(g—2)(3+¢)(1 +7g+15¢> +9¢° — 4m + 2n + 6gn) /2, (3.2)
By = m(g + 8m +4n)(gn —2m —n) (1 +2g + g* — 4m + 2n + 2gn)
x (g +2¢>+ ¢ +4m +2n+2gn) /4.

We consider two cases: By # 0 and B; = 0.

The case B; # 0. Then, according to Lemma 2.3, systems (3.1) could not possess any invari-
ant line.

We examine the finite singularities of these systems. Following [1, Proposition 5.1], we
calculate the invariant polynomial D = 48F2F,, where

Fi = —4m* 4+ 2(g + 1)m(g* —2n) — (g +1)%n?,
F, = 108m? +2(g — 1)m (1 — 2g + g% — 18n) + n?(16n — 1 +2g — g2).

Thus, we discuss two subcases: D # 0 and D = 0.
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The subcase D # 0. We determine that systems (3.1) possess four finite singularities
M;(x;,yi) (i =1,2,3,4) with the coordinates

X1 = —W, ylzlzfg; Xy = 621/3 (V+(1-g)2V3 4 223,

Yo = 3612[ (V+4n)Z + Y222 —2(g—1) Y23 —2(g —1)2*° 4 2°/5;

0= o[- (VB +2(1- ) 2 - (1- iv3) 227,

ys = — %[—6(3’—1—471)2—}— (1-iV3)Y? 2P —2(14+iV3) (g —1)VZ*° (34
—2(1-iV3)(g - 1)2*° + (1+iV3)2°7];

t= oo (1 VY +2(1 - )2V - (141v3) 22,

ya= = oz [ 6V +4)Z + (1+1V3)Y2 217 —2(1-iV3)(g - 1)Y2*°

—2(1+iV3)(g—1)2*% + (1 - iV3) 253,
where
Z=1-3g+3¢%>—¢>—108m —18n+18¢gn + 6V3VF, Y= (1-g)*>—12n.
Calculations yield:

A
g2 (1+8)*

and therefore we deduce that three singularities M, M3 and My of systems (3.1) are located
on the invariant parabola. Moreover, M; is located outside the parabola and could belong
to it if and only if the condition F; = 0 holds, where F; is given in (3.3). However, we have
D = 48F?F, # 0, and hence on the parabola we always have exactly three distinct singularities.

On the other hand, according to [1, Proposition 5.1], if D > 0, systems (3.1) possess two
real and two complex finite singularities. For D < 0, we could either have four real or four
complex finite singularities. However, since M; is a real singular point for these systems, we
conclude that in the case D < 0 we have four real finite distinct singularities.

Thus, since the real singularity M; is outside the invariant parabola and all other three
finite singularities on the parabola (real or complex) are distinct and furthermore we could
not have any invariant line, we arrive at the configuration Config. P.1 if D < 0 and Config. P.2
it D > 0.

D(x2,y2) = P(x3,y3) = P(xg,ya) =0, DP(x1,y1) = —

The subcase D = 0. This implies F;F, = 0, and for systems (3.1), we calculate:
1=—-604Fp = FF=0 & {1 =0.

So we examine two possibilities: §; # 0 and ¢; = 0.

1: The possibility ¢; # 0. Then F; # 0, and therefore the condition D = 0 implies F, = 0.
We observe that the polynomial F, is quadratic with respect to the parameter m, and we
calculate
Discrim [F, m] = 4(1 — 2¢ + g* — 12n)°.
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Therefore, since the parameters m, n, and g of systems (3.1) must be real, we conclude that
the condition 1 — 2¢ + g% — 12n > 0 has to be fulfilled. Setting a new parameter v by 1 —2g +
¢>—12n =v* >0, we get n = [(g — 1)? — v?] /12, and then we calculate

1

B = 5 [216m — (1= g +0)*(g =14 20)] [216m — (1 - g = 0)*(g — 1~ 20)] =0

and due to the change v — —v, we may force the first factor to vanish. Then we obtain

(1-g¢g+0)%(g—1+20)
216 !

and considering the expressions for the parameters m and n, we arrive at the two-parameter
family of systems

) 1—¢+0)2%(¢—1+20 —1)2 —¢? 1
S )21(6g 4 8 1)2 PR AR SR 35
(1-g+0)%(g—1+20) | (g—1)2—? (02

x+

_ v _ 2
y= 108 y+ (g =Dy +2y,

possessing the invariant parabola ®(x,y) = x> —y = 0. We observe that for the above systems,
we have the following conditions on the parameters ¢ and v:

0102041 #0 = g(g=2)(1+8)(3+¢)(2+4g —v)(4+8g+0) #0;
G1#0 & (§-2)3+8)(g—1-0)(2+8-0)(2+48—0)(4+83+0)

x (4 —2¢—2¢* —4v —8gv +v?) £ 0; (3.6)
Bi#0 & (§—1-0)2+g—v)(2+4¢—0)(2g—2+0)(1+2¢ +v)(4+2¢ +0)

X (g—1+20)(2+g+20v) #0.

We determine that systems (3.5) possess three finite singularities M;(x;,y;) (i = 1,2,3) with
the coordinates

1—g+ 1-— 2 1—-¢-2 1—g—20)?
xlzii v, ylzi( §6+U) ; x2=786 Uz yzz—( %6 0) ;
3.7)
- (1-g+o)(5¢°—4—g+4o+55v—2°) ~ (1-g+v)*(g—1+20)
3 54g(1+ ) s 108(1+g) '

We calculate

D(x1,y1) = ®(x2,42) =0,
(§—1-0)%(2+g—v)?(4 —2¢ —2¢* — 4v — 890 + v?)
2916¢%(1+ g)? ’

D(x3,y3) =

and we conclude that the singular points M; and M, are located on the invariant parabola.
On the other hand, considering the conditions (3.6), we obtain that M3 will be located on
®(x,y) = 0 if and only if

a=4-2¢(1+g)—4v—8gv+0v*=0.

However, considering (3.6), we conclude that & # 0 (due to ¢; # 0), and hence the singularity
M3 is not located on the invariant parabola in the considered case.
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We claim that M; is a multiple singularity of systems (3.5). Indeed, applying the corre-
sponding translation, we could place M; at the origin of coordinates and arrive at the systems

J'c:—(g_v_1)1(§8_0+2)x—4g_6v+2y+gx2+xy,
—v—1)2(2g+0 -2 ~v—1)(2g+0—2
jo 820 )Sigw ) oy 8=V )1(88+v )yt (g — 1)y + 202,

where My (0,0) is a singularity of the above systems corresponding to the singularity M.
Considering [1, Lemma 5.2], we calculate the following invariant polynomials: py = 3 =
0, and

o= — (g — 0~ 1)(g ~ 0 +2)[(2g + 0~ 2)x + 6y] [s(g — 0~ D) + (2 43~ 0)y].

Therefore, by [1, Lemma 5.2, statement (ii)], the point My is of multiplicity at least 2. We
observe that due to the condition §; # 0, we have yp = 0 if and only if v = 0. In this case, we
calculate

=0, = (g -1 +2)[glg— Dx+20g+1)y] £0,

due to &; # 0. According to [1, Lemma 5.2, statement (ii)], My (0,0) is a double point if v # 0,
and it is a triple one if v = 0.
On the other hand, for systems (3.5), we have

1
209952

& (§—1-0v)*2+g—0)*%?
and due to the conditions (3.6), we conclude that the condition v = 0 is equivalent to ¢, = 0.
Thus, for systems (3.5), we have the configuration Config. P.3 if ¢, # 0 and Config. P .4 if

G2 =0.

2: The possibility ¢; = 0. This implies F; = 0, and since the polynomial F; is quadratic with
respect to the parameter m, we calculate

Discrim [Fy, m] = 4¢%(1 + g)%(g% — 4n).

Since g(g+ 1) # 0 (due to {» # 0), we must have g> —4n > 0. So we set a new parameter u
as follows: ¢ — 4n = u? > 0, and we get n = (¢*> — u?) /4. Then, calculation yields

1
Fi=—g[8m—(1+g)(g+ u)?][8m — (1+g)(g —u)*] =0,
and due to the change u — —u, we may force the second factor to vanish. In this case, we
obtain

o (1+8)(g—u)’
5 ,

and considering the expression for the parameters m and n, we arrive at the two-parameter
family of systems

1 _ 2 2 _ 2 1
i = +g)ég w8 4” x— 5 (1+g)y+ 82" +xv,
(3.8)
1+g)g—u)?  &g—u

v = 1 x+ Sy (g - Dy + 2,
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possessing the invariant parabola ®(x,y) = x> —y = 0. We observe that for the above systems,
we have the following condition on the parameters g and u:

010204R1 #0 & (§—2)8(1+8)(3+8)(1+2g +u)(1+5g + 5% — u — 2gu) # 0;

Bi#0 & ¢g(14+g)(g—u)(1+g—u)(1+2g—u)(—1+u)(14+u) #0. (39)

We determine that systems (3.8) possess three finite singularities M;(x;,y;) (i = 1,2,3) with
the coordinates

2

u— u —
= 2g,y1:( 4g)

1
; x2,3:1(1—ui\/z>1),

[1-2¢—2¢%+2gu+u>F (u—1)\/Z1], Z1 = —4g* +4g(—1+u) + (1 +u)*
(3.10)

|

Y23 =

We calculate
D(x1,y1) = P(xp,12) = ©(x3,3) =0,

and therefore all three singularities are located on the invariant parabola.

We point out that M; is a multiple singularity of systems (3.8). Indeed, applying the
corresponding translation, we could place M; at the origin of coordinates and arrive at the
systems

1 1
X = —Eg(g—u)x—l—E(u—Zg—l)y—l—gx2+xy,

1 1
v =58(g —u)’x + 528 —u+1)(g —wy + (g = xy + 2%,

where M(0,0) is a singularity of the above systems corresponding to the singularity M;.
Considering [1], we calculate the invariant polynomials 4, s, p2, and we obtain ps =
pusz =0, and

2 = 285+ 1)(g — w)(g — u+ [g(g — 12 + (25 — 1~ w)xy +27] 0,

due to the conditions (3.9). By [1, Lemma 5.2, statement (ii)], the point My is of multiplicity
exactly 2.

On the other hand, it is clear that the singularities M, and M3 could be complex (re-
spectively real; coinciding) if Z; < 0 (respectively Z; > 0; Z; = 0). We observe that for
systems (3.8), we have:

G=g(1+8) (g~ w1 +g—ul’Zy,
and due to the conditions (3.9), we conclude that the sign of Z; is governed by the invariant
polynomial ¢,. So we discuss three cases: ¢> < 0, 2 > 0, and &> = 0.

2.1: The case ¢, < 0. This implies Z; < 0, and then systems (3.5) possess only one real
singular point M; (which is double), and evidently we get the configuration Config. P.5.

2.2: The case ¢, > 0. Then Z; > 0, and this implies the existence of three real singularities,
and we have to determine the position of the double point with respect to the simple ones. So
we calculate

(g—uw(l+g—u)
2 2

—_

(3 —x1)(x2—x1) = , sign ((x3 — x1)(x2 — x1)) = sign (xq), (B.11)

where &1 # 0 due to By # 0. This means that the singularity M; could not coalesce with one
of the singularities M, or M3.
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On the other hand, for systems (3.5), calculations yield:

27249129
5= PP 201 4 gyt

So, due to the conditions (3.9), we deduce that sign (3) = sign («1Z1).

Therefore, in the case {3 < 0, the double singular point M; is located on the parabola
between M, and M3, and we arrive at the configuration Config. P.6. If {3 > 0, we evidently
get the configuration Config. P.7.

2.3: The case ¢ = 0. Then Z; = 0, which implies the coalescence of the singularities M,
and Mj3. Therefore, systems (3.5) possess two double singularities located on the invariant
parabola. So we obtain the configuration Config. P.8.

It remains to mention that the case u = 0 (i.e.,, when the discriminant of F; vanishes) is
included in the previous examination because the condition 1 # 0 was not necessary. So, in
this case, we obtain the same configurations for the corresponding conditions, respectively.

The case By = 0. Considering (3.2), we observe that the condition B; = 0 splits into five
conditions at the coefficient level. However, due to an affine transformation, we can reduce
this number. More precisely, we have the following lemma.

Lemma 3.1. The condition (g + 8m +4n)(1 + 2¢ + g* — 4m + 2n + 2gn) = 0 for systems (3.1) can
be transformed into the condition m(gn — 2m — n) = 0 via an affine transformation.

Proof. Applying to systems (3.1) the transformation

1 1
xl——x+§, yl——x+y+1,

we obtain the systems

1 1
X =— g(g+8m—|—4n) + 1(1 +29+4n)x, + %yl — (1+g)x% + x1y1,

1 1
1 == (8 +8mF4n)xy + 2 (1+2g +4n)y1 — (g +2)x1y1 +2y7.

So, setting the new parameters

1 1
my = —=(g+8m+4n), n = —(142g+4n), g=—(1+g =
8 4 (3.12)

1 1
m=—c(g+8m +dn),  n= (142 +4m),  g=-(1+g),
we obtain the family of systems

14+ &1

5 Y1+ glx% +x1y1, Y1 = 2mix1 + 2711]/1 + (gl — 1)x1y1 + 2]/%.

J'Cl = m1 +nmxy —

which has the same form as (3.1).
Then, considering (3.12), calculations yield:

g+8m+dn = —8my, 1+2g9+¢*—4m+2n+2gn =2(2my +ny —g1m1),

and this completes the proof of the lemma. O
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Thus, by Lemma 3.1, in order to examine the condition B; = 0, it is sufficient to consider
the condition

m(gn —2m —n)(g +2¢> + g +4m + 2n + 2gn) = 0.

In order to determine the invariant conditions that distinguish the three possibilities pro-
vided by the above equality, for systems (3.1) we calculate:

&y = 21-255%n(g + 8m + 4n)ly,

5 2 (3.13)

Cs=—14-5(gn —2m —n)(1 + 29+ g~ — 4m + 2n +2gn){4.
Hence, due to {4 # 0, the condition ¢4 = 0 is equivalent to m (g + 8m + 4n) = 0 (which implies
By = 0), whereas the condition ¢5 = 0 is equivalent to (gn —2m —n)(1+2g+ g*> —4m +2n +
2gn) = 0 (which also implies B; = 0).

The subcase {4 # 0. Then m(g+ 8m +4n) # 0, and we consider two possibilities: {5 # 0
and ¢5 = 0.

1: The possibility &5 # 0. In this case, we have (gn —2m —n)(1+2g + g> —4m +2n +2gn) # 0,
and therefore the condition B; = 0 implies g +2¢> + ¢° + 4m + 2n + 2gn = 0. This yields
m=—(1+g)(g+g>+2n)/4, and we get the family of systems

1
J'c:—1(1+g—2x)(g+g2+2n+2gx+2y),

1 242
_ +g)(g;g + n)x+2ny-|-(g—1)xy+2y2

(3.14)

possessing the invariant line x = (¢ + 1) /2. For these systems, we calculate

By = —81g*(1+¢)*(g + g +2n) (1 +4g +2¢% +4n) (1 +2g + &> + 4n)*x*,
&y = 13125¢(14+¢) (g — 2) (3 + ) (1+29) (g + §* +2n) (1+ 4g + 2¢* + 4n) (14 6g + 5¢* + 4n),
&5 = —21875(g — 2)g(1+ )3+ ) (1 +29) (1 + 2 + §* + 4n)>(1 + 69 + 5¢° + 4n) /16,

and we observe that the condition {45 # 0 implies B, # 0.

Then, by Lemma 2.3, besides the invariant line x = (¢ + 1)/2, systems (3.14) could not
possess invariant lines in other directions. However, they could have a parallel invariant
line, and by Lemma 2.4, for this to occur it is necessary that 6 = 0. This condition implies
(§—1)(g+2) = 0. A straightforward calculation shows that neither of the conditions ¢ = 1
nor ¢ = —2 could imply the appearance of an additional parallel invariant line.

Next, we determine that systems (3.14) possess four finite singularities M;(x;,y;) (i =
1,2,3,4) with the coordinates

1+ 1+g)? 1+ + g%+ 2n 1 =
x1:Tg/ ylz( 4g)l xZZTg/ yzz_%/ x3,4:§(_g:l: ZZ)/
1
y3/4:§(—g—2nq:g\/Z2), Zzz—(2g+g2+4n)

(3.15)
We determine that the singularities M;, M3, and M, are located on the invariant parabola. At
the same time, M; and M, are located on the invariant line x = (¢ +1)/2, and M; is the point
of intersection of this invariant line with the parabola.
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In order to determine the relative position of the singularities M; and M, on the vertical
invariant line, we calculate

1449 +3¢%2+4n « . )
Yo—Yy1=— g 1 g _Zz = sign(y2 —y1) = —sign (a). (3.16)

Since the singularities M3 and My are either complex, real, or coinciding depending on the
value of Z,, we need to distinguish these conditions using affine invariant polynomials. For
systems (3.14), we calculate:

G = (g —2)(3+8)(1+29)(1+ 63+ 58> +4n) = = (g —2) (3+8) (1 +28)Ba,
16 le (3.17)

3
D= — 8" (1+8)*f3n3Zs, La=43(1+3),

and due to {204 # 0, we conclude that D = 0 is equivalent to a;Z, = 0. Moreover, if D # 0,
then sign (D) = —sign (Z;). Thus, we discuss three cases: D < 0, D > 0, and D = 0.

1.1: The case D < 0. This implies Z, > 0, and systems (3.14) possess four real singularities.
Clearly, it is necessary to know the position of the real singularities M3 4 with respect to M;,
all located on the invariant parabola. We calculate:

(=)~ 1) = B2 (o =) 4+ (- m) = ~(1429),

sign ((x3 — x1) (x4 — x1)) =sign (B2), sign ((x1 — x3) + (x1 — x4)) = —sign (1 +2g).
We observe that B, # 0 due to the condition (4 # 0, and moreover a; # 0 due to D # 0.

On the other hand, we need the invariant polynomials that govern the signs of B, and a».
Thus, for systems (3.14), we calculate:

& = 1174627500 ¢*(1 4 )% (1 +29)%a3B2Zs, & = 618225008°(1 + ¢)*(1 + 2¢)*a2B3Zs.

Due to the conditions {4 # 0 and D < 0, which imply g(1+ g)(1+ 2g)a2B2 # 0 and Z; > 0
(also ensuring ¢7C¢s # 0), we have the following relations:

sign (B2) = sign (¢7), sign (az) = sign (s).

Thus, considering the above relations, in the case D < 0 we detect the following configu-
rations:
$7<0,83<0 = (x3—x1)(xa—x1) <0, y2>1y1 = Config.P.9;
$7<0,88>0 = (x3—x1)(xa—x1) <0,y2<y1 = Config. P.10;
(?7 >0, ‘:8 <0 = (X3—X1)(X4—X]) >0, Yo >Yr = COTZﬁg.P.Il,‘
&7>0,83>0 = (x3—x1)(xa—x1) >0, <y; = Config. P.12.

1.2: The case D > 0. Then Z; < 0, and we claim that this condition implies a, > 0. Indeed,
supposing the contrary (i.e., x; < 0), we must have Z, + x> < 0. However, calculations yield:
Zy+ay=—(2g+g*+4n)+ (1+4¢+3¢%+4n) = (1+¢)>+¢* > 0. (3.18)
The contradiction obtained proves our claim.
Therefore, since M3 and M, are complex, we arrive at the configuration Config. P.13.

1.3: The case D = 0. Considering (3.17), we deduce that, due to (24 # 0, the condition
D = 0 implies apZ, = 0.
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On the other hand, for systems (3.14), we calculate:

61 = 5 (198~ 2) 3 +9)(1+ 29y

Thus, due to {204 # 0 (i.e., g(1+9)(g—2)(83+g)(1+2g)B2 # 0), we obtain that the condition
ay = 0 is equivalent to §; = 0. Therefore, we discuss two subcases: ¢; # 0 and ¢; = 0.

1.3.1: The subcase ¢1 # 0. In this case, we have ay # 0, and the condition D = 0 implies

Z> = 0. Then M3 and M4 coalesce, producing a double point located on the invariant parabola.
Considering (3.18), we deduce that the condition Z; = 0 implies a, > 0.

Thus, it is not difficult to determine that, in this case, we arrive at the configuration Con-

fig. P.14.

1.3.2: The subcase ¢; = 0. This implies & = 0, and, as we have mentioned earlier (see
formulas (3.16)), in this case, we get y» = y;, and hence the intersection point M; of the
invariant line x = (g + 1) /2 with the parabola becomes a double singularity of systems (3.14).
Moreover, the position of the real singularities M3 and My with respect to M; depends on the
sign of Bo.

Thus, the condition ay = 0 implies n = —(1 + g)(1+ 3g) /4, and then we obtain

B2 =28(1+g), {p=4g(1+g) = sign(Ba) = sign({2)-

Therefore, in the case a; = 0 (i.e., 1 = 0), we obtain the following two configurations:

(<0 = (x3—x1)(xa—x1) <0, y2=y1 = Config. P.15;
02>0 = (x3—x1)(xa—x1)>0,y2o=y1 = Config. P.16.

2: The possibility {5 = 0. Considering (3.13) and the condition {4 # 0, we obtain that the
condition ¢5 = 0 implies

(gn —2m —n)(1+2g + ¢*> — 4m +2n +2gn) = 0.

On the other hand, according to Lemma 3.1, it is sufficient to examine the condition given
by the first factor, because the condition defined by the second factor can be brought to the
first one via an affine transformation.

Thus, in what follows, we assume that for systems (3.1), the condition gn —2m —n =0
holds. Then m = n(g — 1) /2, and we arrive at the family of systems

-1 1
X = n(gz) +nx — 5(1 + oyt e +xy, y=(n+y)(gx —x+2y), (3.19)
which possess the invariant line y = —n and the invariant parabola ®(x,y) = x> —y = 0. For
these systems, we calculate

B, = —81g%(1 +4n) [(1+g)% +4n]’y*/2,

(3.20)
& =26250(g — 1)g(1+ ) (g —2)(3+ g)n(1+4n)(1+ 6g +9¢° + 4n),

and we consider two cases: B, # 0 and B, = 0.

2.1: The case B, # 0. In this case, by Lemma 2.3, systems (3.19) cannot possess invariant lines
in other directions than the invariant line y = —n. However, by Lemma 2.4, these systems
could possess an invariant line parallel to the existing one if 6 = —8(g — 1)(2 + g) = 0. Thus,
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due to ¢4 # 0, this condition implies § = —2. However, in this case, systems (3.19) do not
have any invariant line parallel to y = —n.

Next, we determine that systems (3.19) possess the finite singularities M;(x;,y;) (i =
1,2,3,4) with coordinates

1— 1—g)?
X1=Vv—n y1=—n X2=—V—1 2= N x3=Tg, ]/3=( 4g);
(3.21)
— 2n ~n(g—1)
* 1+g 7 T1+g

We observe that the singular points M;, My, and M3 lie on the invariant parabola ®(x,y) =
x?> —y = 0. Moreover, M; and M, are the points of intersection between the parabola and the
invariant line y = —n, and since 1 # 0 (due to ¢4 # 0), they are either complex (for n > 0) or
real (for n < 0).

On the other hand, for systems (3.19), calculations yield:

D = 48¢*n3(1 — ¢% +4n)?(1 — 2¢ + ¢* + 4n)? = 48¢*n3 a2 B2,

and it is clear that, in the case D # 0, we have sign (D) = sign (n).

To determine the position of the singular point My, we calculate

nos
(x4, Ya) = 7oy
RN (o

and since n # 0 (due to ¢4 # 0), we deduce that the singular point My lies on the invariant
parabola if and only if a3 = 0.

To examine the configurations of the systems, we consider three subcases: D < 0, D > 0,
and D = 0.

2.1.1: The subcase D < 0. Then n < 0, and the singular points M; and M, are real. In
order to determine the position of the singularity M3 with respect to the real singularities M;
and M,, we calculate

[(1 —9)? +4n] =63, (3—x1)+(3—x)=1-g;
sign ((x3 — x1)(x3 — x2)) =sign (B3), sign ((x3 —x1) + (x3 —x2)) =sign (1 —g).

I

(x5 —x1)(x3 —x2) =

We observe that a3B3 # 0 due to D # 0, and we need to determine the invariant polyno-
mials responsible for the signs of B3 and ¢ — 1. Calculations yield:

&9 = 22359252960 g°(1 + ¢)2(1 +2g + g2 + 4n)?B3,

3.22
E10 = 24814861965 (g — 1)g%(1 + ¢)*(1 +2g + % + 4n)*(1 + 6g + 9¢* + 4n)? /2. (5-22)

Taking into account the condition 4B, # 0 and from (3.20), we deduce that sign (B3) =
sign ({9) and sign (g — 1) = sign (1p)-
Thus, considering the above relations, in the case D < 0, we arrive at the following config-
urations:
9 <0 = (x3—x1)(x3—x2) <0 = Config. P.17;
9>0,810<0 = (x3—x1)>0,(x3—x2) >0 = Config.P.18;
9>0,810>0 = (x3—x1) <0, (x3—x2) <0 = Config.P.19.

2.1.2: The subcase D > 0. Then n > 0, and the singular points M; and M, are complex.
Therefore, due to the condition a3 # 0, we arrive at the configuration Config. P.20.
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2.1.3: The subcase D = 0. Since n # 0 (due to ¢4 # 0), this implies a3 f3 = 0, and we have
to distinguish two cases: B3 # 0 and B3 = 0. From (3.22) we observe that, due to 4By # 0, the
condition 9 = 0 is equivalent to B3 = 0.

2.1.3.1: The possibility {9 # 0. Then B3 # 0, and the condition D = 0 implies a3 = 0,
yielding n = (¢> — 1)/4. Considering (3.21), we observe that in this case the singular point
My, coalesces with M3, producing a double singular point on the invariant parabola. Thus, the
finite singularities of systems (3.19) have the following coordinates:

1—g? 1-¢ B 1—¢? 1-g%
?/ yl—T/ Xy = T’ Y2 = z

1— 1-g)?

We note that in this case f3 = 2¢(g — 1), and it is necessary to determine, in an invariant way,
the signs of the expressions 1 — ¢? and g(g — 1). For systems (3.19) with n = (¢g?> — 1)/4, we
calculate:

X1 =

G2 = %(1 —8°)%8",  Go = 44718505920(g — 1)g”(1 + )"

We observe that sign (&;) = sign (1 — ¢?) and sign (&) = sign (¢(g — 1)).
Thus, in the case a3 = 0 which implies D = 0 (and the existence of a double real singularity
on the invariant parabola), we obtain the following configurations:

G2 <0 = M; and M, are complex = Config. P.21;
(f,z >0, (:9 <0 = (X3 — xl)(X3 — x2) <0 = COI’lﬁg. P.22;
&>0,80>0 = (x3—x1)>0,(x3—x2) >0 = Config. P.23.
2.1.3.2: The possibility & = 0. This implies B3 = 0, and hence we get n = —(g — 1)?/4.
We observe that in this case, considering (3.21), we obtain:

1 —1)? 1 —1)2
x=54/(g-1)% ylz(g4); X =—5y/(g-1)% yzz(g4);
_1-g (-1 (g—1)? (g1

We observe that the singular point M3 either coincides with M; or with M,. Since x; is
positive and x; is negative, we conclude that M3 coalesces with M; if 1 — ¢ > 0, and with M,
ifl1—g<0.

On the other hand, for systems (3.19) with n = — (g — 1)2/4, we have:

&0 = 12705209326080(g — 1)g°(1 4 g)*,
and hence we obtain sign (§19) = sign (g — 1). Therefore, it is not difficult to determine that
we obtain the configuration Config. P.24 if 10 < 0, and Config. P.25 if 19 > 0.

2.2: The case B = 0. Since ¢4 # 0 (i.e., g(1+4n) # 0), considering (3.20), this condition
implies (1 + g)? +4n = 0.
Then we get n = —(1 + ¢)?/4, which leads to the family of systems:
1
8

which possess the following three invariant affine lines:

1
X = (14+g—2x)(—1 +g2+4gx+4y), y= —Z(l —i—2g—|—g2 —4y)(—x + gx+2y), (3.23)

14+g-2x=0, 14+29+¢*—4y=0, 1-¢*>—4x+4y=0.
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For these systems, we have B, = Bz = 0, and we see that they possess invariant lines in three
distinct directions. However, parallel invariant lines may appear, and by Lemma 2.4, for this
to occur, it is necessary that 6 = 0. Thus, we discuss two subcases: 6 # 0 and 6 = 0.

2.2.1: The subcase 6 # 0. For the above systems, we calculate the coordinates of the finite
singularities M;(x;,y;) (i =1,2,3,4):

_1+g _(1+9? _ _1+g _ 1+
X]— 2 7 ]/1— 4 7 xz_ 2 7 yz_ 4 7
1- 1-g)? 1+ 1- g2
X3 = Zgr Y3 = ( 4g) ’ X4 = Zg/ Yq = 4g .

We observe that the singular point M; is the intersection point of all three invariant lines,
as well as lying on the invariant parabola. Since this point, together with My, lies on the
vertical invariant line 1 + ¢ — 2x = 0, the relative positions of these two points are crucial for
determining the configurations of systems (3.23). Thus, we calculate:

+1 . .
Ya— = —g(gz) = sign(ya—y1) = —sign (g(g +1)).

We also point out that the position of the vertical invariant line x = (¢ + 1)/2 is important,
and we must consider sign (g +1).
On the other hand, for systems (3.23), we calculate: {» = 4¢(1 + g), and then we determine
the following configurations:
(rp<0(e,-1<g<0) = x1>0,ys>1y1 = Config.P.26;
(»>0and g < —1 = x1<0,ya<y1 = Config.P.27;
(»>0and g >0 = x1>0,ys<y1 = ~Config.P.27.

2.2.2: The subcase 6 = 0. This condition implies (g —1)(g+2) = 0.
If ¢ =1, we arrive at the system:

x=(x-1x+y), y=2H—-1y, (3.24)

which possesses four invariant affine lines: x =1, y = 0, y = 1, and y = x. Therefore, it is
easy to determine that this system corresponds to the configuration Config. P.28.
Assuming ¢ = —2, we arrive at the system:

1 1
X = §(1 +2x)(3—8x+4y), y= —1(4y— 1)(3x —2y),

which, via the transformation x; = —x+1/2, y1 = —x +y + 1/4, can be brought to the
system (3.24), thus also corresponding to configuration Config. P.28.

The subcase ¢4 = 0. Considering (3.13) and the condition (4 # 0, we obtain that the
condition ¢4 = 0 implies:
m(g+8m +4n) = 0.

On the other hand, according to Lemma 3.1, it is sufficient to examine the condition m = 0
because the condition g + 8m + 4n = 0 can be brought to m = 0 via an affine transformation.
Thus, setting m = 0, we arrive at the family of systems:

1
x:nx—i(l +Qy+gx?+xy, y=y2n—x+gx+2y), (3.25)
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which possess the invariant line y = 0 and the invariant parabola ®(x,y) = x> —y = 0. It is
clear that the invariant line y = 0 is tangent to the invariant parabola at the origin.
We determine that for the above systems, the condition {1{>4R1 # 0 implies:

g(1+¢)(g—2)(3+¢)(1+3¢)(1+4g+3¢>+2n) #0. (3.26)

For systems (3.25), we calculate:

81
By = —— (1+¢)*(1+ g +2n)(g + ¢ +2n)(g +4n)y,
0

2
=-8(¢g—1)(2+9).

We now consider two possibilities: By # 0 and B, = 0.

(3.27)

1: The possibility By # 0. Then, besides the invariant line y = 0, systems (3.25) cannot possess
invariant lines in other directions. However, there could exist an invariant line parallel to
y = 0, and by Lemma 2.4, a necessary condition for this is § = 0. Therefore, we discuss two
cases: 8 # 0and 6 = 0.

1.1: The case 6 # 0. The systems (3.25) possess four finite singularities M;(x;, y;) (i=1,2,3,4)
with coordinates:

(3.28)

voa= 3 (1-g+ V7). ysa=g[-g)—8nt(1-g)VZ],

Z3 = (1—g)*—16n.

We observe that ®(x3,y3) = ®(x4,y4) = 0, meaning that the singular points M3 and My
lie on the invariant parabola. Moreover, the singularity M lies on the invariant line y = 0 and
coalesces with M; if and only if n = 0.

The singularities M3 and My are complex (respectively, real) if Z3 < 0 (respectively, Z3 >
0), and they coincide (producing a multiple singular point) when Z3 = 0.

On the other hand, for systems (3.25), we have:

D = 48(1+ ¢)*n®(—1+2¢ — ¢* +16n) = —48(1 + ¢)*n°Z;,

and we proceed to discuss three subcases: D < 0, D >0, and D = 0.

1.1.1: The subcase D < 0. Then Z3 > 0, and therefore the finite singularities M3 and My
are real and distinct [1, Proposition 5.1]. To determine their positions on the parabola with
respect to the singularity M;, we calculate:

(x3—x1)(xg—x1) =n, (x3—x1)+ (xa—x1) =(1-¢)/2;

sign ((X3 —x1)(x4 — xl)) =sign (n), sign ((x3 —x1) + (g — xl)) — sign (1— g). (3.29)

We point out that ¢ — 1 # 0 (due to 6 # 0), and the sign of 1 — g is only relevant when n > 0
(i.e., when (x3 — x1) (x4 — x1) > 0).
Furthermore:

Xp—x1=-n/g = sign(xp—x1) = —sign(gn).
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For systems (3.25), calculations yield:

&1 = —95982880g71(g — 2)*(1 + g)*(3 + )*(1 +39)*(1 +4g +3¢> +2n)?,

Eag = 3244620(1 + )*(3 + g)*(1 +39)%(1 + 4¢ + 3¢* + 2n)?(g + 4n),

&9 = 1700495253(g — 1)g(1 + £)*(3 + g) (1 +3¢) (1 + 4¢ + 3¢ + 2n)*(g + 4n) /16.
Remark 3.2. We observe that due to the condition (3.26), we have §1; # 0, with sign (¢11) =

—sign (gn). If &1 < 0 (i.e, gn > 0), then sign (&3) = sign (g + 4n). Moreover, in the case
g > 0and n > 0, we also have sign (x9) = sign (g — 1).

Thus, considering the above relations in the case D < 0, we obtain the following configu-
rations:

¢11 <0,n <0 (then g <0) = (x3—x1)(x2 —x1) <0,x2 <x3 = Config. P.29;
€11 <0,n>0(theng>0),3g<1 = x3>x1,x4>x1,x2<x] = Config. P.30;
€11 <0,n>0(theng>0),g>1 = x3<x1,x<x1,x <X = Config. P.31;
¢11 >0, n <0 (then g > 0) = (x3—x1)(xa —x1) <0,x2 >x; = Config. P.32;
¢11 > 0,n > 0 (then g < 0) = X3 > X1, X4 > X1, X2 > X1 = Config. P.33.
Taking into account Remark 3.2, we obtain the following invariant conditions:

611 <0, 528 <0 = COTlﬁg. P.29;

¢11 < 0,828 >0,820 <0 = Config. P.30;
€11 < 0,828 >0,820 >0 = Config. P.31;

Config.’P.32, or
6u >0 {Conﬁg.P.33.

1.1.2: The subcase D > 0. Then Z3 < 0, and hence the finite singularities M3 and My are
complex. This condition also implies n > 0, meaning that the singular point M,(—n/g,0)
cannot coalesce with M;(0,0). Moreover, its position relative to M; depends on the sign of
the parameter g.

Since n > 0, we have:

sign ($11) = —sign (gn) = —sign (g)-
Therefore, we obtain Config. P.34 if {11 < 0, and Config. P.35 if {11 > 0.
1.1.3: The subcase D = 0. Considering (3.26), we deduce that D = 0 implies nZ3 = 0. For
systems (3.25), we calculate:
& =3(g—2)(1+8)*(3+8)(1+3g)n*(1+4g+ 38> +2n)/8.
By (3.26), the condition n = 0 is equivalent to ¢; = 0. Thus, we examine two possibilities:
{:-;{1 #Oandé‘l =0.

1.1.3.1: The possibility ¢; # 0. Then D = 0 implies Z3 = 0. From (3.28), we get n =
(1—g)?/16 # 0, and thus:

1— 2
x1=0, y1=0; xz:_(16§)' y2=0;
1-— 1—¢)?
x3:x4=74g, y3:y4=( 16g);

sign (xp — x1) = —sign (g), sign(x3 —x1) =sign(1—g).
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Therefore, there is a double singular point on the invariant parabola. For the parameter g, the
bifurcation values are g € {0,1}.
For systems (3.25) with n = (1 — ¢)?/16 (i.e., Z3 = 0), we compute:

fn =~ (g~ 225~ 1V5(1+ B+ (143 B +59)%, 6= 8(g~1)(2+),

To=48(14+8), Ta=1(8—2)(3+8)(1+38)(3+5¢)°/128, &1 =g(g—1)*p1(g)/256,

where 1 (g) = 1105 + 1774g + 961¢%. Observing that Discrim [¢1(g),g] = —1100544 < 0, we
note that ¢;(g) does not vanish for real g.
Considering the condition (46 # 0, we conclude:

sign (G11) = —sign (g), sign (C12) = sign (g(g —1)).

Thus, we determine the following configurations:

€12 <0 = x3 < x1,x3 >x1 = Config. P.36;
Z2>0,811<0 = xp<x,x3>x = Config. P.37;
€12>0,611>0 = x2>x,x3>x7 = Config. P.38.

1.1.3.2: The possibility {1 = 0. In this case, n = 0, and the singular point M(—n/g,0)
coalesces with M;(0,0). Moreover, one of the singularities M3 or My also coalesces with M,
resulting in a triple finite singularity at M;(0,0). There could still remain a distinct simple
singularity (M3 or My), whose position depends on sign (1 — g) (see (3.29)).
For n = 0, systems (3.25) satisfy:

E1o = 24814861965(g — 1)g%(1 + 9)°(1 +39)*/2,

so that: sign (¢19) = sign (g — 1). Therefore:
G0 <0 = Config. P.39;
¢io >0 = Config. P.40.

1.2: The case & = 0. This condition implies (§ —1)(g+2) = 0. For systems (3.25), we
calculate:

E1=3(g—-2)(1+¢)*(3+¢)(1+3¢)n*(1+4g +3¢> +2n)/8,

G5 = —21875(g — 1)(1+¢)(g —2)(3+g) (1 +3g)n(1+ g +2n)(1 + 4g +3g” +2n) /8. (3.3

We now discuss two subcases: ¢; # 0 and ¢; = 0.

1.2.1: The subcase ¢ # 0. This implies n # 0, and considering (3.26) and B, # 0 (i.e.,
1+ g+ 2n # 0), we conclude that the condition ¢ = 1 is equivalent to 5 = 0. Thus, we
analyze two possibilities: ¢5 # 0 and {5 = 0.

1.2.1.1: The possibility ¢5 # 0. Then g — 1 # 0, and the condition 6 = 0 implies g = —2.
Straightforward calculations show that for ¢ = —2, the systems (3.25) do not possess any
invariant line parallel to y = 0.

For ¢ = —2, the systems (3.25) yield:

D = 48n%(16n —9),

&11 = 767863040001 (5 + 2n)?,
Cs =5(5+2n) /4.
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Thus, sign (&11) = sign (1), and sign (D) = sign (161 —9). Moreover, since n # 0, we conclude
that D = 0 corresponds to 16n —9 = 0.

Therefore, considering that ¢ = —2 < 0 and applying the previous analysis for systems
(3.25), we determine the following configurations:

D <0,¢11 <0 = Config. P.29;
D <0, 611 >0 = Conﬁg. P.33;
D>0 = Config. P.35;
D=0 = Config. P.38.

1.2.1.2: The possibility {5 = 0. Then ¢ = 1, leading to the family of systems:
x=nx—y+x>+xy, y=2yn+ty), (3.31)

which possess the additional invariant line y +n = 0.
From (3.28), we find:
x1=0, =0

Xo=-n, Y2=0;
X34 = V-1, Y3=ys=—n.
We observe that the invariant line y = —n intersects the invariant parabola ®(x,y) = x> —y =

0 at two points M3 4(++/—n, —n), which are distinct due to &; # 0 (i.e., n # 0). These points
are real if n < 0 and complex if n > 0.
Calculating the invariant D = 1228817, we get sign (D) = sign (1). Therefore:
D <0 = Config. P.41;
D >0 = Config. P.42.

1.2.2: The subcase ¢1 = 0. This implies n = 0, and for systems (3.25) we obtain:
By = —81¢%(1+ 9)*y*/2, & = 5589813240(g —1)%¢°(1 + ¢)°.

Therefore, since B, # 0, we conclude that the condition {9 = 0 is equivalent to g —1 = 0.
Thus, we discuss two cases: 9 # 0 and 9 = 0.

1.2.2.1: The case G9 # 0. Then, 8 = 0 implies g = —2, and we obtain the system:

i = % —2%+xy, 7= —y(By—2x).
This system belongs to the family (3.25) with n = 0 (i.e.,, {1 = 0) and ¢ = —2. As previously
shown (see point 1.1.3.2 on page 41), in the case n = 0, the singular point My(—n/g,0)
coalesces with M;(0,0). Moreover, one of the singular points M3z or My also coalesces with
M;(0,0), yielding a triple finite singularity at M;(0,0).
On the other hand, since sign (§10) = sign (g — 1), for g = —2 we get {10 < 0. Therefore,
the system has the configuration Config. P.39.

1.2.2.2: The case {9 = 0. Then ¢ = 1, and we obtain the systems (3.31). For n = 0, the
invariant line y = —n coalesces with y = 0, producing a double invariant line. Moreover, all
finite singular points coalesce, generating a quadruple singularity at M;(0,0). As a result, the
system has the configuration Config. P.43.

2: The possibility By = 0. We first make a remark.
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Remark 3.3. The condition B, = 0 implies n # 0 for systems (3.25). Indeed, in the case n =0,
for systems (3.25), we obtain:

By = —81g%(1+ ¢)*y*/2 £ 0
due to the condition {» # 0 (i.e., g(g+1) # 0).

Thus, n # 0, and since g + 1 # 0, considering (3.27), we get the condition:
(1+g+2n)(g+g*+2n)(g+4n) = 0.

Considering (3.30), we examine two cases: ¢5 # 0 and ¢5 = 0.

2.1: The case {5 # 0. Then, by (3.30), we get 1 + ¢ + 2n # 0, and hence the condition B, = 0
implies: (g + ¢+ 2n)(g+4n) = 0.
On the other hand, for systems (3.25), we calculate:

813 =27(1+8)*(3+ g) (1 +3g)n*(g +4n) /4,

and considering Remark 3.3 and the condition (3.26), we conclude that {;3 = 0 is equivalent
tog+4n=0.

2.1.1: The subcase &13 # 0. Then ¢ + 4n # 0, and therefore B, = 0 implies ¢ + g* + 2n = 0.
In this case, we get n = —g(g + 1) /2, and we arrive at the following family of systems:

t=2x—-1-¢)(gx+y)/2, y=-y(g+g +x—gx—2y), (3.32)

which possess the invariant lines y = 0 and x = (g +1)/2.
Considering Lemma 2.3, for these systems we calculate:

By = —3(g—1)g(1+g)*(1+2g)x*y*/4, 0= —-8(g—1)(g+2),
& = —21875(g —2)(g — 1)%¢(1+ g)*(3 + g)(1 +2¢)(1 +3g) /16.

We observe that B3 # 0 due to {5 # 0, and hence by Lemma 2.3, the above systems cannot
have any invariant line in the third direction.

However, according to Lemma 2.4, we could have parallel invariant lines if 8 = 0. Due to
B3 # 0 (i.e,, g —1 # 0), the condition # = 0 is equivalent to g +2 = 0. It is straightforward
to check that for ¢ = —2, systems (3.32) do not have any invariant line parallel to y = 0 or to
x=(g+1)/2

The systems (3.32) possess the following finite singularities M;(x;,y;), (i = 1,2,3,4), with
coordinates:

1+g 1+g (1+¢)?

n=0, p=0x="3% p=0x=-g y3=g2;x4=T, Ya =

We observe that the invariant line x = (g + 1)/2 intersects the invariant parabola at point My
and the invariant line y = 0 at singularity M,. Furthermore, the invariant line y = 0 is tangent
to the parabola at M;.

To determine the relative positions of the line x = (g + 1)/2 and the singularities, we
calculate:
1+ 1+3¢

8 e — g — —
y X3 X1 g, X3 X4 > ’

sign (xp — x1) = sign (1 + g), sign (x3 — x1) = —sign (g), sign (x3 — x4) = —sign (1 + 3g).

Xy — X1 =
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Thus, for the parameter g, we have the following possible bifurcation values: g€ {—1,—1/3,0}.
On the other hand, for systems (3.32), we calculate:

0r =4g(g+1), & = 1174627500 (14 g)7(1 4+ 2¢)*(1 + 3g),
&1 = 47991440(g — 2)%¢*(1 + )° (3 + ¢)*(1 + 2¢)*(1 + 3g)?

and we observe that:

sign ({2) = sign (g(g +1)), sign(¢7) = sign ((g+1)(1+3g)), sign(¢n1) = sign (g +1).

Moreover, in the case {» < 0, we have —1 < ¢ < 0 (i.e,, g+ 1 > 0), and then:

sign (§7) = sign (1 + 3g).

Thus, considering the above relations, we obtain the following configurations:

(2<0,87<0(@e, -1<g<—-1/3) = x2>x1,x3>x1,x3> x4 = Config. P.44;
(»<0,87>0(e, -1/3<g<0) = X2 > x1, X1 < x3 < x4 = Config. P.45;

gz >0, 511 <0 (i.e., g < —1) = X2 < X1,X3> X1 = COTlﬁg. P.46;
{p>0,¢11 >0 (e, g>0) = x> x1, x3 < x1 = Config. P.47.

2.1.2: The subcase §13 = 0. This implies g +4n = 0 (i.e., n = —g/4) and we arrive at the
family of systems

t=—g(l+g)x/2—(1+8)y/2+g +xy, y=-y(g+g+x—gx—2y), (333
possessing the invariant lines y = 0 and y = x — 1/4. For these systems we have

g5 =21875(g —2)g(1+¢)(g —1)(2+¢)(3+¢)(1+2¢)(1+3g)(2+3g)/128,
B3 =3g(14+¢)(1+28)(x —y)*y*/8, 6 =-8(g—1)(2+3),

and since ¢5 # 0, we obtain B3f # 0. So, by Lemmas 2.3 and 2.4, we conclude that the above
systems could not have a third invariant line.
The systems (3.33) possess the finite singularities M;(x;,y;) (i = 1,2,3,4) with coordinates

x1=0,y1=0; x2=1/4,12=0; x3=1/2, y3=1/4 x4=—g/2, ya = g*/4
sign (x4 —x1) = —sign(g), xa—x3=—(g+1)/2 = sign (x4 —x3) = —sign(g+1).

It could be checked directly that the invariant line y = x — 1/4 is tangent to the invariant
parabola at the singular point M3(1/2,1/4). Therefore, considering the above relations, we
obtain the following configurations:

(r<0(e,-1<g<0) = x4>x,x4<x3 = Config. P.48;

{p»>0and g < —1 = X4 > X1, X4 >x3 = Config. P.49;

(p>0and g >0 = x4 < x1, x4 <x3 = ~Config.P.49.

2.2: The case ¢5 = 0. Considering (3.30), the conditions (3.26) and Remark 3.3 imply (g —
1)(1+ g+ 2n) = 0, and we examine two subcases: 8 # 0 and 6 = 0.

2.2.1: The subcase @ # 0. Then g —1 # 0, and we get 1 + ¢ + 2n = 0. Therefore, n =
—(1+4g)/2 # 0, and we arrive at the family of systems

x=—(1+g)(x+y)/2+g*+xy, y=—-y(l+g+x—gx—2y), (3.34)
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possessing the invariant lines y = 0 and y = x, and the finite singularities M;(x;,y;) (i =
1,2,3,4) with the coordinates:
1+g (1+9)?

= M :1 :1‘ = - = —
, 12=0, x3=1, y3=1, x4 L 1

_1+g
=0

On the other hand, considering Lemma 2.3, we calculate B3 and we have:

By =3(g —1)(1+¢)*(x — )’ /4 #0,

due to the conditions (3.26) and 6 # 0. Then, by Lemma 2.3, we could not have any invariant
line in the third direction. Moreover, by Lemma 2.4, we could not have parallel invariant lines
due to 6 # 0.

Next, considering the coordinates of the finite singularities of these systems, it follows
immediately:

x1=0, y1=0, x

sign (x4 —x1) = —sign(1+g), sign(x» —x1) =sign(g(1+g)),
x4 —x3=—(g+3)/2 = sign (x4 —x3) = —sign (g + 3).

We remark that g(g+1)(g + 3) # 0 due to the condition (3.26), and hence for the parameter
¢ we have the following possible bifurcation values: g € {—3,—1,0}.
On the other hand, for systems (3.34), we calculate:

0 =4g(1+g), & =5589813240(g —1)*¢*(1+¢)°(3+g),
&0 = —223333757685(g — 1)%¢*(1+ ¢)%(2 + ¢)(1 +3¢)?/2,

and hence we have
sign ({2) = sign (g(1+g)), sign (o) =sign ((1+¢)(3+g)), sign(Gi0) = —sign(2+g).

Remark 3.4. We observe that the conditions {» > 0 and {9 > 0 imply either ¢ > 0org < —3. In
order to distinguish these two possibilities, we use the invariant ¢ even though this invariant
does not vanish in the bifurcation values of g.

Considering the above remark, we arrive at the following configurations:

(r»<0(e,-1<g<0) = X < xq, x4 < X1 = Config. P.50;
(»>0,89<0(e, -3<g<-1) = X2 > x1, X < x4 <x3 = Config.P.51;
(2»>0,89>0,810<0(.e,g>0) = X2 > x1, X3 < X1 = Config. P.52;
gz >0, 69 >0, 610 >0 (i.e., g< —3) = X2 > X1, X4 > X3 = COTlﬁg. P.53.

2.2.2: The subcase 6 = 0. This implies (¢ —1)(g +2) = 0, and we discuss two possibilities:
B; # 0 and B; = 0.

2.2.2.1: The possibility Bz # 0. We claim that in this case we get the same configuration
eitherif g =1orif g = —2.
Indeed, assume first ¢ = —2. Then, calculations yield
&5 = —328125n(2n —1)(5+42n)/2, Bo = —162(1+n)(2n —1)*4, (335)
By =3y [n(4n — 5)x* + 2(1 +n)xy — (1 +n)y?*] /2, '

and the condition {5 = B, = 0 gives us n = 1/2. This leads to the system

¥=(x+y)/2-2x*+xy, y=y(1l-3x+2y), (3.36)
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possessing three invariant affine lines: y = 0, y = x and y = x — 1/4. Then, this system has
the configuration equivalent to Config. P.54.
Suppose now g = 1. Then, we have

&5=0, By=—648(1+n)*(1+4n)y*, Bz = —3(1+n)y*(4nx* +2xy —y*),

and due to Bz # 0, the condition B, = 0 implies n = —1/4. In this case, we arrive at the
system

¥=—x/d—y+x*+txy, y=yldy—1)/2,
which via the affine transformation x; = —x+1/2, y; = —x +y + 1/4 could be brought to
system (3.36). Thus, our claim is proved and we get the configuration Config. P.54.

2.2.2.2: The possibility Bs = 0. Considering (3.35), we conclude that the condition g = —2
implies Bz # 0, and hence the condition 6 = 0 gives us ¢ = 1. In this case, we arrive at the
system

t=-Dx+y), 7=2H-1y
possessing four invariant affine lines: x =1, y = 0, y = 1 and y = x. Therefore, it is easy to
determine that this system possesses the configuration equivalent to Config. P.28.

3.1.2 The statement (.A})

According to the statement (\A3) of Proposition 2.7*, for systems (3.1) the condition {4 = 0
must hold. Considering (3.2), we obtain

(§—2)(3+¢)(1 +7g+15¢* +9¢° — 4m + 2n + 6gn) =0,
and since (g —2)(3+ g) # 0 (due to {1 # 0), we get

1
m=(1+3g)(1 +4g +3¢% +2n).
Then, we arrive at the two-parameter family of systems

1
Xx=—(1+39)(1+4¢+3¢>+2n)+nx — -~ (1+¢)y+gx> +xy,

2 (3.37)
Y= 2(1+3g) (1—|—4g+3g2—|—2n)x—|—2n]/+(g—l)xy—l—Zy2

IR Ny

possessing the following two invariant parabolas: ®1(x,y) = x> —y = 0 and

Dy (x,y) = — (1+4g+3¢>+2n)(1+4g +3¢% +4n) +2(1 + g)(1 + 4g + 3¢* + 4n)x

3.38
+4¢(1+ g)x* — 2(1 + 6g +5¢* + 4n)y = 0. (3.38)

Following the statement (.A}), for the above systems we calculate

1=2(g-2)(3+g), La=48(1+g), {4=0,
05 =19(g—2) (3+g)(1+4g +3¢* +4n)?/4,
Ro= —(g—2)(3+g)(8+27¢ +27¢*) (1 + 63 + 59> +4n) /16, (3.39)
By = g(14+)(1+2¢)(1+3¢)(2+3¢)(1+4g +3g> +2n)(1+ 69 + 5¢% + 4n)
x (14 6g +6¢* +4n)(1 + 6g + 9> + 4n) (5 + 14g + 9> + 4n) /32.

According to Lemma 2.3, for the existence of an invariant line of systems (3.37), the condition
By = 0 is necessary.
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The case B; # 0. Then we could not have any invariant line. The systems (3.37) possess four
finite singularities M;(x;,y;) (i = 1,2,3,4) with the coordinates

oo 1H3g (143 (148)(1+38)° +4(1+2g)n
_ (1+3g) (1+4¢+3¢*+2n) _1 (3.40)
Y2 = 2(1+3) ; X3,4—2(1+gi\/Z4),

1
Yau = —5(2g+2g2+2n$(g+1)ﬁ), Zy = —(1+ 69+ 5% +4n).

In order to determine the position of the finite singularities with respect to the parabolas
®;(x,y) = 0and Oy(x,y) = 0, we calculate

D1 (x1,y1) = P1(x3,y3) = P1(xa,y4) = 0;  Pa(x2,y2) = Po(x3,y3) = Po(x4,y4) = 0. (3.41)

Therefore, the singularities M3 and My are the finite intersection points of these two in-
variant parabolas. We observe that the points of intersection of the invariant parabolas are
complex if Z4 < 0 and they are real if Z4 > 0.

On the other hand, for systems (3.37) we calculate:

D = —3Z4(1+4g+3¢>+4n)* a3 B3/4, (3.42)
where
ag =5+22g+21g% +4n, Ba=(1+¢)(1+3g)(1+69+7¢%) +4(1+2¢)*n.  (3.43)

So if D # 0, then sign (D) = —sign (Z4) and we discuss three possibilities: D < 0, D > 0
and D = 0.

1: The possibility D < 0. Then Z; > 0 and systems (3.37) possess four real singularities and it
is necessary to know the positions of the singularities M34 with respect to M; and M,;. We
calculate

(1 —x)(x—x) =, (a—x)+ (x—x) = —2(1+29),
(02 —x3)(x2 — x4) = _4.g7~fff—4g)2’ (X2 —x3) + (22 — x4) = —m.

Therefore, considering the condition Z4 > 0, we obtain

sign((x1 — x3)(x1 — x4)) = sign(ag), sign((x1 —x3) + (%1 — x4)) = —sign(1+2g) if ag > 0;
sign((JQ —x3)(x2 — X4)) = —sign(pB4),
sign((x2 — x3) + (x2 —x4)) = —sign(g(1+¢)(1+2g)) if B4 <O,
where 1+ 2g # 0 due to By # 0.

We need invariant polynomials governing the signs of a4 and 4. For systems (3.37), we
calculate:

C1a = 123504B4/2, &30 = 1235[Z4Bs— g (1 + g)* aa] /4, (2 =4g(1+g),

and we have

sign (G14) = sign (afa), sign (G2) = sign (g(1+g)).
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Moreover, in the case 14 < 0 (i.e. a4 < 0) and D < 0 (i.e. Z4 > 0), we obtain
sign (&30) = sign (ZaBs — §(1 + g)%as) = sign (Ba).
On the other hand, considering the form of the invariant parabola ®,(x,y) = 0, we have
1 1
y=— |1+ +4g +3¢% +4n)x — 51 +4g +3g% +2n) (1 +4g + 3¢* + 4n)
4

~2g(1+g)
Zy

(3.44)
x2.

Therefore, since Z4 > 0, we deduce that the invariant parabolas ®1(x,y) = 0 and ®,(x, y) =
0 have the same point at infinity on the Poincaré disk if {, < 0, and opposite points at infinity
if {» > 0. So we consider these two cases separately.

1.1: The case {» < 0. Then g(g + 1) < 0 and considering the above relations, in this case we
obtain the following configurations:

C1a<0,B4<0,29+1<0(@e s<0,a4>0-1<g<~-1/2) =

Xp—x3>0,x%—x4>0,x1—x3>0,x1 —x4 >0 = Config. P.55;
€14<0,B4<0,2¢+1>0(e Bs<0,a4>0 -1/2<g<0) =

Xp—x3< 0,00 —x4<0,x1—x3<0,x1 —x4<0 = =~ Config. P.55;
F14<0,Bs>0(e By>0,a,<0,—1<g<0) =

(x2 —x3)(x2—x4) <0, (x1 —x3)(x1 —x1) <O = Config. P.56;
C1a>0,B1<0,2¢+1<0(e fs<0ms<0,-1<g<—-1/2) =

xp—x3>0,x—2x4 >0, (x7 —x3)(x1 —x4) <O = Config. P.57;

F1a>0,By<0,2¢4+1>0(e By <0,a4<0,-1/2<g<0) =

xp—x3 <0,x—2x4 <0, (x1 —x3)(x1 —x4) <0 = ~ Config. P.57;
Z14>0,B1>0,2¢+1<0 (e fy>0,04 >0 -1<g<—-1/2) =

(o —x3) (22 —2x4) <0, x1 —x3>0,x1—x4 >0 = =~ Config. P.57;
C1a>0,Bs>0,29+1>0(e s>0,a4>0-1/2<g<0) =

(o —x3)(x2—2x4) <0, x1 —x3<0,x1—x4<0 = ~ Config. P.57.

1.2: The case {» > 0. Then g(g + 1) > 0 and we obtain the following configurations:

F14<0,By4<0,2¢+1<0(e Bs<0,a4>0,¢g<—1) =

X2 —x3<0,x0—x4<0,x1—x3>0,x;—x4 >0 = Config. P.58;
€14 <0,B4<0,2¢+1>0(.e Bs<0,a4>0,¢>0) =

X2—x3>0,x0—x4>0x1 —x3<0,x1—x4 <0 = =~ Config. P.58;
E14>0,8,<0,2¢+1<0(e By <0,a3<0,¢g<—1) =

xp—x3<0,x—2x4 <0, (x1 —x3)(x1 —x4) <0 = Config. P.59;
C1a>0,64<0,2¢+1>0(e Bs<0,a4<0,8g>0) =

xp—x3>0,x0—x4 >0, (x7 —x3)(x1 —x4) <0 = =~ Config. P.59;
E1a>0,8,>0,2¢+1<0 (e By>0a,>0¢<—1) =

(o —x3)(x2—2x4) <0, x1 —x3>0,x1—x4 >0 = =~ Config. P.59;
C1a>0,B4>0,2¢+1>0(@Ge Bs>0,a4>0,9<-1) =

(xg—x3)(xa—x4) <0,x1—x3<0,x1—x4<0 = =~ Config. P.59.

Applying the Mathematica function “FindInstance” (or “Reduce”) we detect that the con-
ditions D < 0, {» >0, &14 < 0, and B4 > 0 (i.e. Z4 >0, ¢(¢+1) >0, ay <0, and B4 > 0) are
incompatible.

We observe that in both cases (i.e. > < 0 and , > 0) the configurations do not depend on
the sign (1 4 2g). As a result we obtain the following lemma.
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Lemma 3.5. Assume that for the systems (3.37) the condition D < 0 holds. Then, these systems
exhibit the following configurations if and only if the respective conditions are satisfied:

(0 <0,814<0,830<0 & Conﬁg. P.55;

52 <0, 614 <0, 630 >0 & COTlﬁg. P.56;

02 <0,614>0 & Config. P.57;
(»>0,814<0 & Config. P.58;
€2 >0, 614 >0 <~ Conﬁg. P.59.

2: The possibility D > 0. Then Z4 < 0 and the systems (3.37) possess only two real singularities:
M; (located on the parabola ®1(x,y) = 0) and M, (located on the parabola ®;(x,y) = 0).
As mentioned earlier, the direction of the second invariant parabola depends on the sign of

2(1+ g) (see (3.44)).
Thus, considering the condition D > 0 (i.e., Z4 < 0), we have the configuration Config. P.60

if {» <0 (i.e, g(g+1) <0) and Config. P.61 if {» > 0 (i.e., g(g+1) > 0).

3: The possibility D = 0. From (3.42), (3.39), and the condition {5R, # 0 (i.e., Z4(1 +4g + 3¢* +
4n) # 0), it follows that D = 0 implies a4f4 = 0. This yields the next lemma.

Lemma 3.6. For systems (3.37), the condition By = 0 can be transformed by an affine change of
variables into the condition ag = 0.

Proof. Apply to the systems (3.37) the transformation

(14 ¢)(1+3g)(1 +4g +3¢> + 4n)
47, ’

(14 ¢)(1 +4g +3¢% +4n)
27,4 ’
1 5— 28(1+g)

b=,
1= 74

X1 = 0x — Y1 =0y —

(3.45)

Define
(1+¢)(1411g + 31g> + 21¢° + 4n + 20gn)

4(1+ 6g +5¢2 +4n)
(1+g)(1+4 11g +31g> +21¢° + 4ny + 20gn4)
4(1+6g+ 582 +4n1)

ny = —
(3.46)

Then we arrive at the family

1 1
d1 = 4 (14 3g) (144 +3¢° +2m) +mxy — 5 (1+g)yr + g3 + 1y,
(3.47)
1
J1 = 5(1+38)(1+4g +3g" +2m)x1 + 2myr + (g — Dy + 2471

Observe that this family coincides with (3.37) up to notation of variables and parameters.
Calculating for the above system, we get:

Ba(g,m) = (14 8)(1+38)(1 + 68+ 78%) + 4(1 +28)°m
$*(1+¢)2(5+22g+21g% +4n)  g*(1+ g)%as(g n)

1+6g+582+4n Zy ’
ag(g,m) =5+ 22¢ +21¢% + 4dny
_ 4(1410g +34g* +46g° +21g* +4n + 16gn +16g°n)  4B4(g, 1)

1+6g+ 582 +4n Z4
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Since g(g+1)Z4 # 0, the condition B4(g,n1) = 0 (respectively a4(g, n1) = 0) for systems (3.47)
implies a4(g, 1) = 0 (respectively B4(g,n) = 0) for the original systems (3.37). This completes
the proof. O

Thus, in what follows, we assume that the condition
ay =5+22¢+21g* +4n =0

holds, which implies
(14+3¢)(5+7%)
4

We then obtain the following family of systems:

1 1 1
t= -2 +3¢)%(3+5g¢) — 1(1+38)(5+7g)x - 5(1 +9)y + gx* + xy,

(3.48)
. 1 1
y=—7(1+38)2CB+5g)x = S(1+3g)(5+7g)y + (g — D)y + 207,

possessing the two invariant parabolas ®;(x,y) = x> —y = 0 and

Dy(x,y) = — (143g)*(2+3¢)(3+58) —4(1+¢)(1+3¢)(2+3g)x
+4¢(1+g)x* +8(1+2¢)%y = 0.

Considering the coordinates of the finite singularities (3.40), we observe that for a4y = 0,
the singular point My coalesces with M;, producing a double finite singularity. Thus, systems
(3.48) possess three finite singularities M;(x;,y;), i = 1,2,3 (with M; being double), with
coordinates

1+ 3¢ (14 3¢)? (1+3¢)(4+13g + 11¢?)
X| = ———F=—, NN=-—"—— X2= ,
2 4 2¢(1+¢)
_ (1+39)(3+5g) . _3+58 _ (3+5g)?
Yo = 4(1 +g) s 3 = 5 ’ Y3 = 4 .

Using (3.41), we see that the singular points M; (= M) and M3 are the intersection points
of the invariant parabolas, while M lies on the parabola ®;(x,y) = 0. We calculate

(142¢)%(1+3¢)(2+3¢)(2+7g +7¢%)
g2 (1+g)?

(x2 = x1)(x2 —x3) =

7

4(1+2g)° .
Xp —X1) + (X2 — X3 :7#0 if (xp —x1)(x2 — x3) > 0.
( )+ ( )= l+g) ( )( )
Since the discriminant Discrim [2 + 7¢ + 7¢%, ¢] = —7 < 0, it follows that

sign ((x2 — x1)(x2 — x3)) = sign ((143¢)(2+3g)),
sign ((x2 — x1) + (x2 — x3)) = sign (g(1+8)(1+2g)).

Note that sign (1 + 2g) is only relevant if (1 + 3g)(2+ 3g) > 0.
On the other hand, for systems (3.48) we have

Gr=4g(1+g), §5=19(g—-2)(3+¢)(1+3¢)*(2+3g)%
& = 217993032 ¢(1+ ¢)(1+3¢)°(2+3¢)% (2 + 7g + 7¢%)?,
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and since ({5 # 0, it follows that

sign (§3) = sign (g(1+¢)(1+3¢)(2+3g)), sign({2) = sign (g(1+g))-

We claim that {; > 0 implies {3 > 0. Indeed, suppose {» > 0 but {3 < 0. This implies
(1+3¢9)(2+3g) <0,ie, —2/3 < g < —1/3. Hence, —1 < g < 0, which contradicts {» > 0.
This proves the claim.

Therefore, considering the above relations, for systems (3.48) we obtain the following con-
figurations:

(2<0,03<0,2¢+1<0(@e —1<g<—-2/3)=x—x1>0,x—x3>0 = Config. P.62;
(2<0,03<0,2¢+1>0(@e —1/3<g<0) =x—x1<0,x—x3 <0 = ~Config. P.62;

(»<0,83>0(.e —2/3<g<—1/3) = (x2 —x1)(x2 —x3) <0 = Config. P.63.
(2>0,2¢9+1<0(@Ge g<—-1) = x2 —x1 <0, x2 —x3 <0 = Config. P.64;
(»>0,2¢+1>0 (e g>0) = X2 —x1 >0, x0 —x3 > 0 = ~Config. P.64.

We observe that these configurations do not depend on the sign of 2¢ + 1. Hence, we
arrive at the following lemma.

Lemma 3.7. Assume that for systems (3.37) the condition D = 0 holds. Then these systems possess
the following configurations if and only if the corresponding conditions are satisfied:

(2 <0,83<0 <« Config.P.62;
(2<0,63>0 < Config. P.63;
(»>0 & Config. P.64.

The case B; = 0. Considering (3.39) and the condition (R, # 0 (i.e., g(g+1)(1+ 6¢ + 5¢* +

4n) # 0), we conclude that the condition By = 0 is equivalent to
(1+2¢)(1+32)(2+3g)(1+4g +3¢* +2n)(1 + 6g + 6> + 4n) (3.49)

x (1+6g +9¢* +4n)(5+ 14g + 9¢* + 4n) = 0. '

However, through suitable transformations, we can reduce the number of cases arising from
the condition By = 0. This is stated in the following lemma.

Lemma 3.8. The condition (3.49) can be transformed, via affine transformations and time rescaling,
into the simpler condition

(142¢)(1+3¢)(1+4g+3¢> +2n) = 0. (3.50)

Proof. We prove this lemma in two steps: (i) by applying a transformation that replaces the
line y = 0 with y = x while preserving the invariant parabola ®(x,y) = x> —y = 0; and (ii)
by applying a transformation that maps the invariant parabola ®;(x,y) = 0 (see (3.38)) to the
parabola ®;(x,y) = x> —y = 0.

Step (i): Applying to systems (3.37) the change of variables

xp=—-x+1/2, yn=—-x+y+1/4,
we obtain the transformed system

1 1
£ = — 2(243g) (1463 +6g2 +4n) + (1 +2g +4n)x; + §y1 — (14 9)22 + 111,

1 1
= - 1(2 +3¢) (1 + 6g + 68 + 4n)x1 + 5(1 +2g +4n)y; — (g +2)x1y1 +2v3.
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Setting new parameters

1
n1:1(1—|—2g+4n), a=—(1+g), =
. (3.51)

n= 1(1+2g1 +4n1), ¢=—-(1+%),

the system becomes

14+&1
2

1
Y1 = 5(1 +3g1) (14481 + 387 + 2n1)x1 + 2my1 + (g1 — 1)xiys +2u7,

. 1
X1 = 1(1 +391)(1+4g1 + 3g% +2n1) + nyxg — 1 +g1x% + x1y1,

which has the same form as (3.37).
Moreover, calculations show that

2+3¢=—(1+3g1), 1+6g+6g8>+4n=2(1+4g1+3g] +2m),
5+ 148 +9¢% +4n = 1+ 6g1 + 987 +4ny,

thus reducing the condition (3.49) to

(142¢)(1+3¢)(1+4g +3¢* +2n)(1 + 6g + 9¢* + 4n) = 0.

Step (ii): As shown in the proof of Lemma 3.6, via the transformation (3.45), systems (3.37)
can be brought to the canonical form (3.47) but with a new parameter n; given by (3.46).
Calculations give
8¢%(1 +4g +3¢> +2n)

4(1+6g+5¢2+4n)

1+6g+9g%+4n; =

Since ¢ # 0, the condition 1+ 6g +9¢? +4n = 0 can be transformed into 1+ 4g + 3¢ +2n = 0.
Consequently, we arrive at the condition (3.50), completing the proof of Lemma 3.8. O

For systems (3.37), we compute
G5 =8(1+2g)% Gis =2(1+3g)(2+3g),

and distinguish two subcases: {3 # 0 and {3 = 0.

1: The subcase {3 # 0. Then 1+ 2g¢ # 0, and considering (3.50) together with Lemma 3.8, to
satisfy the condition By = 0 it is sufficient to consider (1 + 3¢)(1+ 4g + 3g> +2n) = 0. Clearly,
we must distinguish two possibilities: ¢15 # 0 and &5 = 0.

1.1: The possibility &5 # 0. Then 1+ 3g # 0, and in this case we obtain 1+ 4¢ + 3g? +2n = 0,
ie, n=—(14g)(1+3g)/2. This leads to the following one-parameter family of systems:

1 1
— 5 (1+8)(1+3g)x = S(1+g)y +gx* +xy,

y:—y(1+4g+3g2+x—gx—2y),

r= (3.52)

which, besides the invariant parabolas

Di(x,y) =2~y =0, D(x,y) = (1+g)(1+3¢)x—2gx* —(1+¢)y =0,
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also possess the invariant line y = 0.
Using Lemmas 2.3 and 2.4, we compute:

0=-8g—1)2+g), B = ?g(l +9)*(14+2¢9)%(2 +39) y*. (3.53)

Thus, we need to consider the cases By # 0 and B, = 0.

1.1.1: The case B, # 0. Then, by Lemma 2.3, the system cannot have invariant lines in
directions other than y = 0. However, by Lemma 2.4, parallel invariant lines could exist if
6 =0.

1.1.1.1: The subcase 6 # 0. The systems (3.52) possess four finite singularities M;(x;, y;)
fori=1,2,3,4, with coordinates:

1+¢)(143
8
1+3 1+ 3g)?
=14g y=1+9% x=——31%, yy = 1F38)° 4g)‘

From the conditions stated in the statement (.A}), for systems (3.52) we have:

000Ry #0 < g(1+¢)(g—2)(3+¢)(1+3g)(8+27g +27¢%) # 0. (3.54)

We observe that the invariant parabolas intersect at two points: M; and M3z. Moreover, the
invariant line y = 0 has a contact point at M; with the parabola ®;(x,y) = 0 and two
intersection points, M; and M, with the parabola ®,(x,y) = 0.

Thus, three finite singularities are fixed by the intersections of the invariant curves, with
their positions determined by the value of the parameter g.

On the other hand, the singular point My lies on the invariant parabola ®(x,y) = 0 and
is a floating singularity. Therefore, we must determine its position relative to the other two
singularities on the same invariant curve. To this end, we calculate:

(x4 —x1) (x4 — x3) = i(l +3¢)(3+5¢), (xa—x1)+ (x4 —x3) = —2(1+29).
Therefore, we obtain:
sign ((xa — x1)(xs — x3)) = sign ((1+3g)(3+5g¢)),
sign (x4 — x1) + (x4 — x3)) = —sign (1+2g).

We observe that the direction of the second invariant parabola depends on sign (g(g + 1)).
Furthermore, for systems (3.52), calculations yield:

lo=148(g+1), &= @gz(l +8)*(1438)(3+53),

Gir = 22 (1+ 921+ 29)(1+ 3g)(3 4 5g).

Thus, we have:

sign ({2) = sign (g(g +1)), sign (&16) = sign ((1+3g)(3 +5g)),
sign (§17) = sign ((1+2¢)(1+3¢)(3 +5g)).
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Therefore, we establish the following configurations:

gz <0, 616 <0 (1e -3/5< g< —1/3) = (JC4 — xl)(x4 — X3) <0= COTlﬁg. P.65;
0 <0,86>0,87<0(ie. =1 <g<—3/5) = x4 >x1, X4 > X3 = Config. P.66;
00<0,86>0,817>0(Ge —1/3<g<0) = x4 <x,x4 <23 = Config. P.67;
(2>0,817<0(ie. g <—1) = Xg4 > X1, Xq4 > X3 = Config. P.68§;
(2> 0,817 >0(.e g>0) = xy < X1, X4 < X3 = Config. P.69.

1.1.1.2: The subcase & = 0. This condition implies (¢ —1)(g +2) = 0, and since for
systems (3.52) we have

[ — 8~ DA+8)(2+58+55°)
6 8 ’

we consider two possibilities: (¢ # 0 and ¢ = 0.

1.1.1.2.1: The possibility (¢ # 0. In this case, the condition § = 0 implies g = —2. We
then obtain the system:

5y
272

= —2x%+xy, y=—y(5+3x—2y),

which, besides the invariant parabolas:

Oi(x,y) =x>—y =0, Do(x,y) =5x+4x>+y=0,

possesses only one invariant line: y = 0. This means that the condition § = —2 does not imply
the appearance of any additional parallel invariant line.
Since § = —2 < —1, we conclude that this case corresponds to configuration Config. P.68

(as detected earlier).

1.1.1.2.2: The possibility (s = 0. Then 6 = 0 implies ¢ = 1, and we arrive at the system:
¥=—dx—y+x*+xy, y=2yly—4),
which possesses the invariant lines y = 0 and y = 4, as well as the invariant parabolas:
O1(x,y) =x*—y=0, Dy(x,y)=—4x+x*>+y=0.

In this case, we obtain configuration Config. P.70.

1.1.2: The case B, = 0. Considering (3.53) and (3.54), the condition B, = 0 implies g =
—2/3, and we arrive at the system:

2
t=2 -2 ———tay, y=y(1-5x+oy), (3.55)
which possesses the invariant lines y = 0 and y = x — 1/4, as well as the invariant parabolas:
D(x,y) =x*—y =0, Dy(x,y) =x—4x*+y=0.

We observe that the invariant line y = x — 1/4 is tangent to the invariant parabola ®;(x,y) =
0 at the point M4(1/2,1/4) and also tangent to the parabola ®,(x,y) = 0 at the point
M>(1/4,0). Therefore, in this case, we obtain configuration Config. P.71.

Thus, we have proved the following lemma.
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Lemma 3.9. Assume that for systems (3.37) the conditions By = 0 and {315 # 0 hold. Then these
systems possess the following configurations, provided the corresponding conditions are satisfied:

By #0,0 #0,02<0,816<0 = Config. P.65;

By #0,0 #0,02<0,816 > 0,617 <0 = Config. P.66;

B, 75 0,0 75 0, gz <0, (:16 >0, 517 >0 = Conﬁg. P.67;

By #0,06#0,0,>0,817<0 = Config. P.68;
By #0,06#0,0,>0,87>0 = Config. P.69;
By #0,0=0,06 #0 = Config. P.68;
B, #0,0=0,04=0 = Config. P.70;
B, =0 = Config. P.71.

1.2: The possibility ¢15 = 0. Then, considering the proof of Lemma 3.8, we may assume
1+ 3¢ = 0. This yields ¢ = —1/3, leading to the following one-parameter family of systems:

2
x:nx—g—%—kxy, y’z%y(Bn—Zx—k?)y), (3.56)

which, besides the invariant parabolas:
Oi(x,y) =x*—y =0, Dy(x,y) =9n*—6nx+x*+9n—1)y =0,

also possesses the invariant line y = 0.
Considering Lemmas 2.3 and 2.4, we compute:

By = —8(1+3n)(9n —1)(12n — 1)y*/9, D = 4096n°(9n — 1)/243,
0 =160/9 #0, (5= —4256n%/9, Ry =28(9n—1)/81.

Thus, we discuss the cases B, # 0 and B, = 0.

1.2.1: The case By # 0. By Lemmas 2.3 and 2.4, no additional invariant line can exist.
Moreover, considering (3.40), the systems (3.56) possess four finite singularities M;(x;, y;)
fori=1,2,3,4, with coordinates:

1 1
x1=0,y1=0; ¥ =3n =0 ¥4=3 (1i\/1—9n>, vas = (2—9ni2\/1—9n) .
We observe that in this case n(1 —9n) # 0 due to {5R» # 0, ensuring all finite singularities
are distinct. Moreover, the invariant line y = 0 is tangent to the parabola ®;(x,y) = 0 at the
singular point M; (0,0) and tangent to ®,(x,y) = 0 at Mp(3n,0).

Since D # 0 and sign (1 — 9n) = —sign (D), we examine two subcases: D < 0 and D > 0.

1.2.1.1: The subcase D < 0. Then1 —9n > 0 (i.e., n < 1/9), and we arrive at configuration
Config. P.72, independent of the relative position of the singularity M;(3#n,0) with respect to
M;(0,0).

1.2.1.2: The subcase D > 0. This implies 1 —9n < 0, so the singularities M3 and My
become complex. In this case, we arrive at configuration Config. P.73.

1.2.2: The case B, = 0. Since 9n — 1 # 0 due to R, # 0, the condition B, = 0 implies:

(143n)(12n—1) =0.
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1.2.2.1: The subcase 1 + 3n = 0. Then n = —1/3, leading to the system:

S DV DU 2
= —gx =gy gxt y—3y( 1—2x+3y).

Applying the transformation x1 = (1 —x)/4, y1 = (y — x)/4, and t; = 4t, we recover system
(3.55), corresponding to configuration Config. P.71.

1.2.2.2: The subcase 12n — 1 = 0. This implies n = 1/12, and we arrive at the system:

! ! 1x2+xy, y:%y(1—8x+12y).

f=pF3¥ 3

Applying the affine transformation x; = —x +1/2, y; = y — x + 1/4, the system is brought to
the form (3.55), again corresponding to configuration Config. P.71.

2: The subcase {3 = 0. Then ¢ = —1/2, which implies B; = 0. This leads to the following
one-parameter family of systems:

X = (4x—1)(8n—1—4x+8y) /32, y= (x—8nx+32ny —24xy +32y%)/16,  (3.57)
which possess the following two invariant parabolas: ®;(x,y) = x> —y = 0, and
Dy (x,y) = (8n —1)(16n — 1) — 4(16n — 1)x + 16x> + 8(161n — 3)y = 0,

as well as the invariant line x = 1/4.
For the above systems, we calculate:

05 = —475(16n — 1)2/256, R, = 125(16n — 3)/1024,

and according to the conditions given by statement (.A5), we require {5R, # 0. This implies
(16n — 1)(16n — 3) # 0, and by Proposition 2.7%, the invariant parabolas ®1(x,y) = 0 and
®,(x,y) = 0 are distinct.
For these systems, we compute:
_ _ 8 2 2.4 _

B1=0, By= 2048(871 1)%(1+16n)"x*, 6=18#0, (3.58)
and since 6 # 0, by Lemma 2.4, these systems cannot possess an invariant line parallel to
x=1/4.

On the other hand, according to Lemma 2.3, the existence of an invariant line in another
direction would require B, = 0. Thus, we consider the possibilities B, # 0 and B, = 0.

2.1: The possibility B, # 0. The systems (3.57) possess four finite singularities M;(x;, y;)
(i =1,2,3,4) with coordinates:

oot 1. 1 1-8n
1 — 4/ = 161 2 — 4/ Y2 = 8 ’ (359)
1 1 .
X34 = 5 (1i\/3—16n), Yas = 3 (Z—Sni\/3—16n>.

We observe that the invariant parabolas intersect at two points: M3 and My. The invariant
line x = 1/4 intersects the parabola ®;(x,y) = 0 at M; and the parabola ®,(x,y) = 0 at Mo.

Thus, all four finite singularities are located at the intersections of invariant curves, and
their positions are determined by the parameter n. Furthermore, the singularities M3 and My
are real if 3 — 161 > 0, and complex if 3 — 16n < 0.
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For systems (3.57), we compute:
D = 3(16n — 3)3(16n — 1)?/1048576 # 0,

due to {5R, # 0. Therefore, sign (D) = sign (161 — 3).
Thus, for B, # 0, we conclude: if D < 0, the system corresponds to configuration Con-
fig. P.74, and if D > 0, it corresponds to configuration Config. P.75.

2.2: The possibility B, = 0. From (3.58), this condition implies (8n —1)(1 + 16n) = 0. We
analyze two cases: (1+ 16n) # 0 and (1 + 16n) = 0.
If 81 —1 =0, i.e.,, n = 1/8, we obtain the system:

¥x=—M4x—-1)(x—2y)/8, y=y(1—6x+8y)/4, (3.60)
which possesses the following five invariant curves (two parabolas and three invariant lines):
Pi(x,y) = ¥ — y, DPo(x,y) = —x +4x% — 2y, x=1/4, y=0, y=x-1/4.

For this system, we obtain configuration Config. P.76.
In the case 1 4 161 = 0, we get n = —1/16, leading to the system:

¥=—(4x—-1)(3+8x—16y)/64, y=—(16y —1)(3x —4y)/32,
which can be brought to system (3.60) via the affine transformation and time rescaling:
x1=x/2+1/8, y1=y/2-1/32, t; =2t

Thus, in this case, we again obtain configuration Config. P.76.

3.1.3 The statement (.A})

In this case, the conditions {4 = {5 = 0, together with (3.39) and the assumption ; # 0 (i.e.,
(g —2)(g+3) #0), yield the condition 1 + 4g + 3¢* + 4n = 0, which implies:

n= —31(1 +9)(1+39).

This leads to the following family of systems:

1 1 1
= 2(1+8)(1+38)° — 7 (1+8)(1+38)x — S(1+g)y +gx* +xy,
(3.61)
.1 1
y=7(1+8)(1+3g)x = 5(1+8)(1+3g)y + (g — Dy + 27,
which possess the invariant parabola ®(x,y) = x*> — y = 0 with multiplicity 2.
Following statement (.Aj}), for the above systems we calculate:

C1=2(8-2)(g+3), GL2=48(1+g), L4=0=0,

no_  801+8)(g=2)(g+3) (8+278+27¢%)

g, — £(1+8) (1 +28)(1+3¢)°(2 +3g)°

3 .

Since the quadratic polynomial 8 + 27¢ + 27¢? has a negative discriminant, for systems (3.61)
we have:
GiR2 #0 = g(1+g)(g—2)(g+3) #0. (3.63)
According to Lemma 2.3, the existence of an invariant line for systems (3.61) requires the
condition B; = 0. Thus, we analyze two cases: B; # 0 and B; = 0.
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The case B; # 0. Then, no invariant line can exist. The systems (3.61) possess three finite
singularities M;(x;,y;), for i = 1,2,3, with coordinates:

g ( g) .
1=, yl = —;

(1+8+4/-28(1+8)), w2s= %(1—gi2\/—2g(1 +8))-

We point out that M; is a multiple singularity of systems (3.61). Indeed, by applying the
corresponding translation, M; can be placed at the origin, yielding the transformed system:

N[ =

X23 =

1
¥= — Eg(3g+ 1)x — (2g + 1)y + gx* + xy,

1
¥ =580Bg + 1%+ 28+ 1)(3g + Ly + (g — Dy + 207,

where M (0,0) is the singularity corresponding to M;.
Following [1], we compute the corresponding invariant polynomials at Mo: ps = u3 =0,
and

1
2 =58(8+1)(3g+1)(3g +2) [g(1 +3g)x* + 4gxy + 2%] #0,

due to B; # 0. By [1, Lemma 5.2, statement (ii)], the point My has multiplicity exactly 2.
We also observe that:

D(x1,y1) = P(x2,12) = D(x3,y3) =0,

meaning that all three singularities lie on the invariant parabola.
The nature (real or complex) of M, and M3 depends on the sign of g(g+ 1) # 0 (since
{2 # 0). Given that {, = 4¢(g + 1), we analyze two subcases: {, < 0 and {, > 0.

1: The subcase {, < 0. This implies g(g+1) < 0, ie, =1 < g < 0. In this case, all three
singularities on the invariant parabola are real. We need to determine the relative position of
the double singularity M; with respect to the simple singularities M, and Ms3.

From (3.64), we calculate:

(x2 —x1)(x3 —x1) = (1438)(2+3g)/2 = sign((x2 —x1)(x3 —x1)) = sign((1+3g)(2+3g)).
On the other hand, for systems (3.61) we obtain:

G15 =2(1+38)(2+3g) # 0,

due to By # 0.

Therefore, if {15 < 0, the double point M; lies between the singularities M, and M3, yield-
ing configuration Config. P.77, and if {15 > 0, the double point M lies outside the curvilinear
interval (M, M3), yielding configuration Config. P.78.

2: The subcase {p > 0. Then g(g+1) > 0, so the singularities M, and M3 are complex. In this
case, we get only configuration Config. P.79.
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The case By = 0. Considering (3.62) together with the condition (3.63), we conclude that
B; = 0 is equivalent to the condition (1 +2g)(1 +3¢)(2 + 3g) = 0. For systems (3.61), we also
have {3 = 8(1 + 2¢)?, so we consider two subcases: {3 # 0 and {3 = 0.

1: The subcase {3 # 0. Then 1+ 2¢ # 0, and the condition B; = 0 implies (1 +3g)(2+3g) = 0.
If ¢ = —1/3, we arrive at the system:

x=—-(y+ x? — 3xy)/3, y=—-2y(2x—3y)/3, (3.65)

which possesses the invariant line y = 0, tangent to the double invariant parabola at the
singular point M;(0,0). In this case, the singular point M3 has coalesced with M;, producing
a triple singularity. Therefore, we obtain configuration Config. P.80.

Now, consider g = —2/3. Then, the system becomes:

%= (1+2x — 4y — 16x> +24xy) /24, v = (x +2y — 20xy + 24y%) /12,

which, via the affine transformation x; = —x+1/2, y1 = y — x 4+ 1/4, can be brought to
system (3.65), also possessing configuration Config. P.80.

2: The subcase (3 = 0. Then ¢ = —1/2, and we arrive at the system:
¥ =—(4x —1)(1+8x —16y)/64, v = (x+ 4y — 48xy + 64y°)/32,

which possesses the invariant line x = 1/4 and the double invariant parabola ®1(x,y) = x* —

y = 0. In this case, the singular points M; and M, have coalesced, and it is straightforward to
verify that this yields configuration Config. P.81.
Thus, we have proved the following lemma.

Lemma 3.10. Assume that for a quadratic system the conditions (A}) are satisfied. Then, the system
possesses one of the following configurations, if and only if the corresponding conditions below hold:

B1#0, (<0, ¢5<0 = COi’lﬁg. P.77;

By 75 0, gz <0, 5715 >0 = Conﬁg. P.78;
B1#0, (o >0 = Config. P.79;
B =0, {3#0 = Config. P.80;
By =0, {3=0 = Config. P.81.

3.1.4 The statement (\A})

In this case, the conditions {4 = R = 0 hold. Considering (3.39) and the condition {; # 0
(ie., (§—2)(g+3) #0), we get:

(8 +27¢ +27¢*)(1+ 6g + 5¢° + 4n) = 0.

However, the discriminant of the quadratic polynomial 8 + 27¢ + 27¢? equals —135 < 0, so
this factor cannot vanish. Thus, we obtain:

1
14+69+5¢°+4n=0 = n= —5(1+8)(1+5g).
This leads to the following family of systems:

1
¥=gl+g—29)(1 +4g +3¢% — 4gx — 4y),
(3.66)

1 1
=71+ (1+3g)x = 5(1+8)(1+58)y + (g — Dy + 27,
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which possess the invariant parabola ®(x,y) = x> —y = 0 and the invariant line x = (g +
1)/2.

For the above systems, following the statement (\Aj}), we calculate:

L1=2(8-2)3+g), L2=48(1+g),
la=0=Ra, {5=19(g-2)g*(1+8)*3+3), (3.67)
B; =0, By=—648¢°(1+¢)°(1+3¢)(2+3g)x™

Therefore, for systems (3.61), we have:

010205 #0 = g(1+¢)(g—2)(3+g) #0. (3.68)

We now discuss two possibilities: By # 0 and B, = 0.

1: The case By # 0. In this situation, by Lemma 2.3, systems (3.66) cannot possess any invariant
line in other direction than x = (g +1)/2.

On the other hand, by Lemma 2.4, these systems could possess an invariant line parallel
to the existing one if 0 = (g — 1)(g +2) = 0. However, a straightforward computation shows
that neither ¢ = 1 nor ¢ = —2 leads to the appearance of an additional parallel invariant line.

Systems (3.66) possess three finite singularities M;(x;,y;) (i = 1,2, 3) with coordinates:

1+ 1+g)° 1+ 1
xlzTg/ ]/1:( 4g); XZZTg/ yz=1(1+8)(1+38)?

1+3 1+3g)?

e

We observe that the invariant line x = (g + 1)/2 intersects the invariant parabola at the
singular point M;, and we claim that M; is a multiple singularity of systems (3.66). Indeed,
applying the corresponding translation, we can place M; at the origin of coordinates, resulting
in the system:

x=gx%+xy, y=g(1+g)*x—g(l+g)y+ (g—1)xy+2y°

where M (0,0) is the singularity corresponding to M;.
Following [1], we compute the invariant polynomials: y4 = p3 = 0, and:

w2 =g (1+¢)*(1+28)x(gx +y).

Due to condition (3.68), we have that yp = 0 if and only if 1 +2¢ = 0. By [1, Lemma
5.2, statement (ii)], the point My has multiplicity exactly 2 if 1 +2g # 0, and it is triple if
g=-1/2

For systems (3.66), we have {3 = 8(1 + 2¢)?, so we now consider two cases: {3 # 0 and
g3 =0.

1.1: The subcase (3 # 0. Then 1 4 2g # 0, and therefore M; is a double singular point of the
system, with all three singularities distinct.
Moreover, the singularity M, lies on the invariant line, while M3 lies on the invariant
parabola. To determine the relative positions of these points with respect to the double singu-
larity M, we compute:

y2 =y =g(1+g)/2 = sign(y2 —y1) = sign (g(g +1)),
x3—x1 = —(142¢) = sign(x3 —x1) = —sign (1+2g),
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and we observe that for systems (3.66), we have {, = 4g(g + 1), hence sign ({») = sign (g(g +
1)).
Thus, we arrive at the following configurations:
(2<0,2¢94+1<0 (le, -1<g<—-1/2) =y2<y1,x3>x1 = Config. P.82;
(2<0,2¢+1>0 (ie, -1/2< g <0) =12 <y, x3<x; = =~ Config. P.82;
(»>0,2¢+1<0 (ie, g < —1) =12 >y, x3>x1 = Config. P.83;
(2>0,2¢+1>0 (ie,g>0) =12 >y, x3<x3 = =~ Config. P.83.

1.2: The subcase {3 = 0. Then ¢ = —1/2, leading to the system:
Xx=—(4x —1)(—1+8x —16y)/64, y= (—x+ 12y —48xy + 64y°)/32,

which possesses the invariant line x = 1/4 and the invariant parabola ®(x,y) = x> —y = 0.
In this case, the singular points M; and M3 coalesce, resulting in the configuration Config. P.84.

2: The case B = 0. Considering (3.67) and the condition (3.68), we conclude that B, = 0 is
equivalent to (1+3¢)(2+3g) = 0.
If g = —1/3, we arrive at the system:

t=—0Bx—1)(x—3y)/9, 7 =2y(1—6x+9y)/9, (3.69)

which possesses the additional invariant line y = 0, tangent to the invariant parabola at
the singular point M3(0,0) and intersecting the invariant line x = 1/3 at the singular point
M3(1/3,0). Therefore, we obtain the configuration Config. P.85.

Assume now g = —2/3. This leads to the system:

x=—(6x—1)(8x —1—12y)/72, vy = (—x+ 14y — 60xy + 72y*)/36,

which, via the affine transformation x; = —x +1/2, y1 = —x + y 4+ 1/4, can be brought to
system (3.69), also corresponding to configuration Config. P.85.

Thus, we have proved the following lemma.

Lemma 3.11. Assume that for a quadratic system the conditions (A} ) are satisfied. Then this system
possesses one of the following configurations if and only if the corresponding conditions are satisfied,
respectively:

B, 7é 0, €3 7é 0, gz <0 = COTlﬁg. P.82;
By #0,03#0,02 >0 = Config. P.83;
B, #0,03 =0 = Config. P.84;
B, =0 = Config. P.85.

3.1.5 The statement (.A})

According to Proposition 2.7%, the condition {, = 0 holds. Considering (3.2), we obtain
g(g+1)=0.

Following the proof of Lemma 3.1, we conclude that the condition ¢ +1 = 0 can be
reduced, via an affine transformation (see formulas (3.12)), to the condition g = 0.

Therefore, it suffices to study only the case ¢ = 0. In this case, we arrive at the following
two-parameter family of systems:

X=m+nx—y/2+xy, y=2mx+2ny—xy+2y> (3.70)
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which possesses the invariant parabola ®(x,y) = x> —y = 0.
Considering the statement (\AZ) for these systems, we calculate:

(1= —-12, (=0, (g=02m+n)/2, R =0, Ry =602m+n),

By = 2m(4m — 1 —2n)(2m +n)>. (3.71)

Remark 3.12. Following [1, Lemma 5.2], for systems (3.70), we compute:

po=0, w1 =-22m+n)y #0,

due to the condition (s # 0. Therefore, according to [1, Lemma 5.2, statement (i)], we conclude
that one of the singular points of systems (3.70) has gone to infinity and has coalesced with
the infinite singularity N[1 : 0 : 0], producing an infinite singularity of multiplicity (1,1) (see
Remark 2.5).

The case B; # 0. We observe that the family of systems (3.70) is a subfamily of (3.1) defined
by the condition ¢ = 0. Considering the finite singularities of (3.1) given in (3.4), we remark
that in the case ¢ = 0, the singular point M (x1,y1) with coordinates

2m+n+gn _ 2m
si+g T Iw

has moved to infinity. According to Remark 3.12, this singularity coalesced with the infinite
singularity N[1: 0 : 0], producing an infinite singularity of multiplicity (1,1).

Therefore, systems (3.70) possess three finite singularities M;(%;, ;) for i = 2,3,4, where,
from (3.4), we have

X1 =

Y=l Ti=VYil,y =234
Taking into consideration [1, Proposition 5.1], for systems (3.70), we compute:
uo =0, D =48(2m + n)*(108m?* —2m + 36mn — n* +16n>), R =12(2m+n)*y*.

We observe that R # 0 due to s # 0, and by [1, Proposition 5.1], we have three distinct real
finite singularities if D < 0, and one real and two complex if D > 0. Considering the point at
infinity of multiplicity (1,1), we arrive at Config. P.86 if D < 0, and Config. P.87 if D > 0.

Now assume that for systems (3.70), the condition D = 48(F])2F, = 0 holds, where, from
(3.3), we have:

F{ = —(2m+n)?, F, = —2m+108m>+ 36mn — n* + 16n°.

Since F| # 0 (due to (s # 0), we conclude that the condition D = 0 is equivalent to F; = 0.

Introducing a new parameter v, as in the generic case (see page 29), we obtain n = (1 —
v?)/12, m = (14 v)?(2v — 1)/216, and we arrive at the following one-parameter family of
systems:

2 _ 2 _
x:(l—kv) (2v 1)_v 1x—1y+xy,

216 12 2 (3.72)
,_(1+v)2(2v—1)x_v2—1 PP ’

which is a subfamily of (3.8) defined by g = 0.
The systems (3.5) possess three finite singularities given in (3.7), and M; is a multiple
singularity (of multiplicity at least two). We observe that for ¢ = 0, the singular point M3
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has gone to infinity and, according to Remark 3.12, this singularity coalesced with the infinite
singularity N[1: 0 : 0], producing an infinite singularity of multiplicity (1,1).

Thus, the systems (3.72) possess at most two different finite singularities M; (%1, 71) (mul-
tiple) and Mx(%2, 2), where, from (3.7), we have:

1+0v _ (1+v)2_ . 1-20

B : (1—20)2
6 ' n = 36 ' 2 6 ' e

36

Vo=

X =

We observe that M, coalesces with the double point M; if and only if v = 0.

Considering that By # 0 (i.e., systems (3.72) do not possess any invariant line), we conclude
that the configuration is Config. P.88 if v # 0, and Config. P.89 if v = 0.

Moreover, for systems (3.72), we compute:

1
209952

(v —2)0(1+07, fo= %(v —2)2(1 + ),

o=

and due to (s # 0, we conclude that the condition v # 0 is equivalent to ¢ # 0. Therefore,
we obtain configuration Config. P.88 if ¢, # 0, and Config. P.89 if ¢, = 0.

The case B; = 0. Considering (3.71) and the condition (¢ # 0 (i.e., 2m + n # 0), we deduce
that the condition B; = 0 is equivalent to m(4m — 1 —2n) = 0.
On the other hand, for systems (3.70), we calculate:

& =9(4m —1—2n)(2m +n)?/4

and, due to s # 0, we conclude that the condition 4m — 1 — 2n = 0 is equivalent to §; = 0.
Thus, we discuss two subcases: ¢; # 0 and ¢; = 0.

1: The subcase §; # 0. In this case, the condition B; = 0 yields m = 0, which leads to the
one-parameter family of systems:

X = %(an —y+2xy), y=y(2n—x+2y), (3.73)

possessing the invariant parabola ®(x,y) = x> —y = 0 and the invariant line y = 0. Calcula-
tions yield:
By = —324n°(1 +2n)y*

and, according to Lemma 2.3, we discuss two possibilities: B, # 0 and B, = 0.

1.1: The possibility B, # 0. We determine that systems (3.73) possess three finite singulari-
ties M;(x;,y;) (i = 1,2,3) with coordinates:
1 1
=0, y=0 xu3= (1i V1 —16n), 2= (1 —8n+1 —16n) . (374
According to Remark 3.12, the fourth finite singularity has coalesced with an infinite one,
resulting in a singular point of multiplicity (1,1).
We observe that M; is the tangency point between y = 0 and the invariant parabola, and
that M, and M3 are either real, complex, or coincident, depending on the value of 1 — 16n.
To determine the relative position of the real singularities M, and M3 with respect to Mj,
we calculate:
(xo—x1)(x3—x1)=mn, (x2—x1)+ (x3—x1)=1/2>0.
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On the other hand, for systems (3.73), we calculate:
D = —48n°(1—16n), R, = 6m,

and therefore, due to R, # 0, we have sign (R2) = sign (n) and sign (D) = —sign (1 — 16n).
Thus, in the case By # 0, we arrive at the following four configurations:
D <0, R, <0 = Config. P.90;
D <0, R, >0 = Config. P.91;
D >0 = Config. P.92;
D=0 = Config. P.93.

1.2: The possibility B, = 0. This implies that (1 +2n)n = 0, and since n # 0 (due to
6 =n/2 #0), we get 1 +2n = 0. Thus, n = —1/2, and we obtain the system:

1
X = E(—3c—y+2xy), y=y(—1—x+2y), (3.75)

possessing two invariant lines: ¥ = 0 and y = x. Considering (3.74), we get three real finite
singularities, leading to configuration Config. P.94.

2: The subcase §; = 0. This implies m = (1 + 2n)/4, and we arrive at the one-parameter family
of systems:

%= }1(1 +2n+4nx — 2y +4xy), §= %(X +2nx + dny — 2xy + 4y°), (3.76)

possessing the invariant parabola ®(x,y) = x> —y = 0 and the invariant line y = x — (2n +
1)/2. Calculations yield:
By = —81(1 +2n)(1+4n)*(x — y)*

and, considering Lemma 2.3, we examine two possibilities: B, # 0 and B, = 0.

2.1: The possibility B, # 0. The above systems possess three finite singularities M;(x;, y;)
(i =1,2,3) with coordinates:

1 1 1 1
M=o =g x2,3:2<1j: —(1+4n)>, y2,3:2(—2ni\/—(1+4n)).

The singularities M, and M3 are the intersection points between the invariant line y = x —
(2n+1)/2 and the invariant parabola, and they are real (respectively, complex or coincident)
if 1 +4n < 0 (respectively, 1 +4n > 0, 1+ 4n = 0).

Again, in the case of real singularities, we calculate:

(xa—x1)(x3—x1) =(5+4n)/4, (xa—x1)+ (x3—x1)=2>0.
Moreover, for systems (3.76), calculations give:
D =3(1+4n)°(5+4n)>/4, & = 8164197(1 +4n)3(5+4n)/2,

and therefore, for D # 0, we have sign (D) = sign (1 + 4n) and sign (¢3) = sign ((1 +4n)(5 +
4n)).
Thus, in the case By # 0 and D # 0, we arrive at the following configurations:
D <0,¢3<0 = Config. P.95;
D <0,¢3>0 = Config. P.96;
D >0 = Config. P.97.
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Now, assume that D = 0. This implies (1 +4n)(5+4n) = 0. Since (s = (1 +4n)/4 # 0,
we get 5+ 4n = 0, meaning that one of the singularities M, or M3 coalesces with M;. Thus,
we arrive at configuration Config. P.98.

2.2: The possibility B, = 0. This implies (14 2n)(1 +4n) = 0, and since 1 + 4n # 0 (due to
C6 #0), we get 1 +2n = 0. Thus, n = —1/2, and we arrive again at system (3.75), possessing
configuration Config. P.94.

Thus, we have proved the following lemma.

Lemma 3.13. Assume that for a quadratic system the conditions (LA%) are satisfied. Then this system
possesses one of the following configurations if and only if the corresponding conditions are satisfied,
respectively:

B #0,D <0 = Config. P.86;
B #0,D>0 = Config. P.87;
Bi1#0,D=0,8#0 = Config. P.88;
Bi1#0,D=0,(=0 = Config. P.89;
By =0, 61 75 0, By ;ﬁ 0,D<0O, Ry <0 = COTlﬁg. P.90;
B1=0,81#0,Bo#0,D<0, R, >0 = Config. P.91;
B1=0,61#0,B,#0,D>0 = Config. P.92;
B1=0,¢1#0,B,#0,D=0 = Config. P.93;
Bi1=0,81#0,B,=0 = Config. P.94;
B1=0,61=0B,#0D<0,63<0 = Config. P.95
B1 =0, (:1 =0, By 7é 0,D <O, 63 >0 = COl’lﬁg. P.96;
By =0, §1 =0, B # 00D>0 = COTlﬁg. P.97;
Bi1=0,¢61=0B,#0D=0 = Config. P.98;
B1 =0, 61 =0, B, = = COYlﬁg. P.o4.

Since all the statements provided by Proposition 2.7* have been considered, this proposi-
tion is proved. O

3.2 Systems in QSP(, () with the condition {1 =0

In what follows, we examine each of the statements (B;) to (B7) given by Proposition 2.8.
According to this proposition, a system satisfying the conditions provided by one of the
statements (B1) to (B7) can be brought to the form:

3
x:m+nx—?y+2x2+xy, = 2mx + 2ny + xy + 2y7, (3.77)

and this system possesses the invariant parabola ®1(x,y) = x> —y = 0.

3.2.1 The statement (18;)
According to this statement, for systems (3.77) we calculate y3 = 0 and

52875
Xa =061875U1 U3, (7 = s U U Uz, Rz = 3850561006875 U Ur U3, (3.78)

where
Uy =1+4m+2n, U, =4m — 147 — 14n,

Us = 18m + 1372m? — 84mn + 27n* + 144n°.
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On the other hand, following Lemma 2.3, we calculate:
By = m(2m —n)(2m +3n +9)(4m — 6n — 9)(1 + 4m + 2n) (3.79)

and, considering Lemma 2.3, we discuss two cases: B; # 0 and B; = 0.

The case B; # 0. We observe that the family of systems (3.77) is a subfamily of (3.1) defined
by the condition ¢ = 2. Therefore, it is clear that systems (3.77) possess four finite singularities
M;(%;, ;) (i =1,2,3,4), where, considering (3.4), we have:

fi:xi‘{gzz}r gi:yi‘{g:z}, i:1,2,3,4:.
On the other hand, for systems (3.77), we have:

D = 481512?2, f1 = F1’{g:2}, ﬁz = FZ‘{gzz}'

where F; and F, are given in (3.3).

As it was proved for the family (3.1), in the case D # 0, these systems possess only two
distinct configurations: Config. P.1 if D < 0, and Config. P.2 if D > 0. We obtain the same
two configurations in the particular case § = 2, because this value of the parameter g is not a
bifurcation value for these two configurations.

Assume now that D = 0. This implies LB = 0, and we have to distinguish which factor
vanishes. We point out that the invariant polynomial ¢;, which governed the condition F; = 0
for systems (3.1) in the generic case (i.e., § # 2), vanishes for ¢ = 2. Therefore, we must use
another invariant polynomial, and for systems (3.77) we calculate:

C1g = 17969284698750 U, Us b.
Therefore, due to the condition {7 # 0, we obtain that the condition Pvl = 0 is equivalent to
¢18 = 0. Thus, we examine two possibilities: 13 7# 0 and &15 = 0.

1: The possibility ¢13 # 0. Then F; # 0 and hence the condition D = 0 implies E =0
Following the investigation of the family of systems (3.1) in the particular case g = 2, we
arrive at the systems (3.5), which for ¢ = 2 become:

x:L(Zv—kl)(v—l)z—l(vz—l)x—3—y+2x2+xy,

216 12 2 (3.80)
oL EPTY I Yo 2 '
y—108(20+1)(v 1)°x 6(v 1y + xy + 2y~

For the above systems, we calculate:

& =27378(v — 4)*(v — 1)*0%(v* — 200 — 8)?,
E18 = 998293594375(v — 10) (v — 4)* (v — 1)*(20 + v)2(4 + 50)(v* — 200 — 8) /3188646,

and we observe that, due to {13 # 0, the condition ¢, = 0 is equivalent to v = 0.

Therefore, following the examination of the two-parameter family of systems (3.1), we
conclude that the one-parameter family of systems (3.80), in the case B1{13 # 0, possesses the
configuration Config. P.3 if §» # 0 and Config. P.4 if ¢, = 0.
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2: The possibility ¢;3 = 0. Then we have F, = 0, which implies D = 0. Following the
investigation of the family of systems (3.1) in the particular case g = 2, we arrive at the
systems (3.8), which for ¢ = 2 become:

X :§(u —2)2 - 1(u2 —4)x — 3y +2x% + xy,
g 41 2 (3.81)
y =5 =2 = S — 4y +xy +2y°

For the above systems, we calculate:

X4 = —556875(u —3)°(u —2)2(13 4+ u) /4, & =9(u—23)*(u—2)%Z,/2,
~3 5 =4 ~
63 = 490484322 (121 Zl, Z1 = Zl ‘ {g=2} K = Dél‘{gzz},

where Z; and «; are the polynomials defined for systems (3.8) (see (3.10) and (3.11)).
We observe that, due to the condition )4 # 0, we have:

sign (&) = sign (Z;), sign (&) = sign (Z,a;),

and, following the examination of the two-parameter family of systems (3.8), we conclude
that the one-parameter family of systems (3.81), in the case B; # 0, possesses the following
configurations if and only if the corresponding conditions are satisfied:

¢ <0 & Config. P.5;

¢2>0,83 <0 <& Config. P.6;

¢2>0,83>0 <« Config.P.7;

=0 & Config. P.8.

The case B; = 0. Considering (3.79) and the condition x4 # 0 (i.e., 4m +2n+1 # 0), we
observe that the condition B; = 0 is equivalent to:

m(2m —n)(2m+3n+9)(4m —6n —9) = 0.
For systems (3.77), calculations yield:

&9 = —12870000 m (2m — n) (2m +3n +9),

3.82
520 = —540m (2m — Tl) Z/[] Z/[3, 621 = —1101067)’1“1 MZ Z/l3, ( )

and we consider two subcases: ¢19 # 0 and &9 = 0.

The subcase {9 # 0. Then m(2m —n)(2m +3n+9) # 0, and therefore the condition
By = 0 yields 4m — 6n — 9 = 0. This implies m = 3(3%2"), and we arrive at the one-parameter
family of systems:

X = (94 6n +dnx + 8x* — 6y + 4xy) /4,

_ ) (3.83)
y = (9x + 6nx + 4ny + 2xy + 4y°) /2,
which possesses the invariant line y = x — 34 and four finite singularities M;(x;,y;) (i =
1,2,3,4) with coordinates:
. 3 9. ; _ 3+4n _3+2n
1= 2/ yl - 4/ 2 = 4 7 ]/2 - 4 7

X3,4:;-<1:|: —(5+4n)), y3,4:;<—2—2nj: —(5+4n)>.
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We determine that the singularities M;, M3, and M, lie on the invariant parabola. Moreover,
M3 and My are the points of intersection of the invariant line y = x — (3 4 2n)/2 with the
invariant parabola ®1(x,y) = x* —y = 0. We calculate:

1
D1 (x2,12) = E(M —3)(5+4n),

and we conclude that M lies on the parabola if and only if 4n — 3 = 0, because for systems
(3.83), we have:
X407R3 #0 < (5+4n)(9+4n)(69 +4n) # 0. (3.84)

In order to determine the position of the singularity M; with respect to M3 and M, (when
they are real), we calculate:

(x1 —x3)(x1 —x4) = (21 +4n)/4 = sign ((x1 — x3)(x1 — x4)) = sign (21 + 4n),
(x1 — x3) + (X1 — X4) =—4<0.
Thus, we observe that for the parameter 1, the following possible bifurcation values arise: n
{—21/4,—-5/4,3/4}. Moreover, we point out that due to the condition (3.84), the inequality
5+4n # 0 must hold (i.e., n # —5/4), and hence the singularities M3 and M, cannot coincide.
On the other hand, according to Lemma 2.3, for the existence of an invariant line in a
direction different from y = x, the condition B, = 0 is necessary. For systems (3.83), we
calculate:
By = —729(3 4 2n)(9 +4n)?*(x —y)*, D =243(4n —3)%(5+ 4n)>(21 +4n)?/4,
&o = 16299895407840(9 + 4n)?(21 + 4n),

and in the case D # 0, we have:
sign (D) = sign (5 +4n), sign (o) = sign (21 + 4n).

Considering Lemma 2.3, we examine two possibilities: B, # 0 and B, = 0.
1: The possibility B, # 0. We discuss two cases: D # 0 and D = 0.

1.1: The case D # 0. In this case, all four finite singular points of systems (3.83) are distinct.
Considering the bifurcation values of the parameter n mentioned above, for systems (3.83) we
obtain the following configurations (depending on the parameter n):

D <0,89 <0 (e, n<—21/4) = =~ Config. P.17;
D <0,89 >0 (ie, -21/4<n < —-5/4) = =~ Config. P.19;
D >0 (ie,n> —5/4) = =~ Config. P.20.

1.2: The case D = 0. Then, due to the condition (3.84), we get (4n — 3)(21 4+ 4n) = 0, and we
observe that the condition 21 + 4n = 0 is governed by the invariant polynomial ¢9. Therefore,
we arrive at the configuration Config. P.21 if {9 # 0 and Config. P.25 if {9 = 0.

2: The possibility By = 0. Considering the condition (3.84), we get n = —3/2, which leads to

the system:

1
X = E(—Bx +4x% =3y +2xy), v =y(-3+x+2y),

possessing two invariant lines y = x and y = 0, in addition to the invariant parabola. There-
fore, in this case, we obtain an equivalent configuration to Config. P.52.
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The subcase {19 = 0. Then m(2m —n)(2m +3n+9) = 0, and we examine two possibili-
ties: {0 # 0 and &p = 0.

1: The possibility ¢0 # 0. In this case, considering (3.82), we obtain m(2m —n) # 0, and
therefore 2m + 3n 4+ 9 = 0. This implies m = —3(3 + n) /2, and we arrive at the one-parameter
family of systems:

1
X = E(Zx —3)3+n+2x+y), y=-33+n)x+2ny+xy+2v7 (3.85)

which is a subfamily of (3.14) defined by the condition ¢ = 2. The family (3.14) was inves-
tigated earlier, and considering (3.15), (3.16) and (3.17) for ¢ = 2 (i.e., for systems (3.85)), we
have:
Zy = —4(2+n), ny =214 4n, ‘52 = 33 4 4n,
By = —5832(3 +n)(9 +4n)*(17 + 4n)x*, D = 97274383,

Bz = —9(9 + 4n)x*(12x> + 4nx* — 24xy — 8nxy — 5y°)/2,

& = 1057164750000Z,a3p2, & = 55640250000Z2a283,

$18 = —7277560302993750(6 + 1) (9 + 4n) (57 + 4n)azfy.

We observe that for the parameter 1, the following possible bifurcation values arise: n €
{—33/4,—21/4, —2}. Considering (3.78) for systems (3.85), we obtain:

Xal7R3 #0 < (6+n)(9+4n) (17 + 4n) (57 4 4n) By # 0, (3.86)

and therefore ByB3 # 0. Moreover, from the above condition we deduce that §13 = 0 if and
only if ap = 0.

Thus, in the case B, # 0, and following the investigation of the family (3.14) for g = 2, we
get the following configurations (depending on the parameter n):

D <0,¢;<0(i.e, n< —33/4) = Config. P.9;

D <0,¢7>0,83 <0 (e, =33/4<n < -21/4) = Config. P.11;
D <0,87>0,83s>0(e, —21/4<n<-2) = Config. P.12;
D >0 (ie,n > —2) = Config.P.13;
=
=

D =0, g #0 (e, n = —2) Config. P.14;
D=0, s =0(@G.e,n=-21/4) Config. P.16.
Assuming B, = 0, and considering the condition (3.86), we get n = —3 and arrive at the
system:
1

X = E(Zx—S)(vaLy), y=y(—6+x+2y),

which possesses two invariant lines x = 3/2 and y = 0, in addition to the invariant parabola.
Therefore, for this system, we obtain the configuration Config. P.47.

2: The possibility &y = 0. Then, from (3.82), we obtain m(2m — n) = 0, and we discuss two
cases: (r1 # 0 and ¢ = 0.

2.1: The case 31 # 0. Then m # 0, and we obtain m = n/2. This leads to the following
one-parameter family of systems:

3y

>+ 2x% +xy, y=(n+y)(x+2y), (3.87)

x—ﬁ—i—nx—
2
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which is a subfamily of (3.19) defined by the condition ¢ = 2. The family (3.19) was investi-
gated earlier, and considering (3.21) for ¢ = 2 (i.e., for systems (3.87)), we conclude that these
systems possess four singularities M;(x;,y;) (i = 1,2,3,4) with coordinates:

xi=vV-n  y=-n xw=-V-n p=-n
. 1 1 X _2n n
3 — 2/ y3—4/ 4 — 3/ y4_3

For these systems, we calculate:
0=-32#0, By=—162(1+4n)(9+4n)’y*, x4 = 61875n(1+4n)(9 + 4n)(1 +36n),

and therefore By # 0 due to x4 # 0. Following the examination of the configurations of
systems (3.19) for ¢ = 2, we obtain:

a3 =4n—3, Ps=1+44n, D =768na3B3, & = 3219732426240(9 + 4n)*Bs,
and due to x4 # 0, in the case D # 0, we have:
sign (D) = sign (n), sign (&) = sign (Ba),

and the condition a3 = 0 is equivalent to D = 0.
Thus, we arrive at the following configurations (depending on the parameter n):

D <0,% <0(e,n<—1/4) = Config. P.17;
D <0,89>0(@e, —-1/4<n<0) = Config. P.19;
D >0 (ie.,n>0,n+#3/4) = Config. P.20;
D =0 (i.e, n =3/4) = Config. P.21.
2.2: The case ¢y = 0. Then m = 0, and we obtain the one-parameter family of systems:
X =nx— 37y +2x% +xy, y=y(2n+x+2y), (3.88)

which is a subfamily of (3.25) defined by the condition ¢ = 2. The family (3.25) was investi-
gated earlier, and considering (3.28) for ¢ = 2 (i.e., for systems (3.88)), we have:

Z3=1—16n, By = —1458(3+n)(1+2n)(3+2n)y*, 6= -32+#0,
By = —9n(7 +4n)x*y*/2 —9(3 + n)xy® +9(3 +n)y*/2 £ 0,
D = —38881Z5, o = 1050n, x4 = 556875n2(1 + 21)(3 + 16n).
So, due to the condition x4 # 0, in the case D # 0, we have:
sign (D) = —sign (Z3), sign ({x») = sign (n).

Thus, in the case B, # 0, and following the investigation of the family (3.25) for g = 2, we
get the following configurations (depending on the parameter n):

D <0, &, <0 (e, n<0) = Config. P.32;
D <0,¢»>0(%e,0<n<1/16) = Config. P.31;
D >0 (ie,n>1/16) = Config. P.34;
D =0 (ie, n=1/16) = Config. P.37.
Assume now B = 0. The condition x4 # 0 implies 1+ 2n # 0, and we get (3 +2n)(3 +
n) = 0. Since for systems (3.88) we have {3 = —225(3 + n)/4, we arrive at configuration

Config. P.52 in the case §23 # 0 (i.e,, n = —3/2), and Config. P.47 in the case {3 = 0 (i.e.,
n= —3).
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3.2.2 The statements (B,), (B3), and (Bs)

According to Proposition 2.8, all these three statements share the common condition {7 = 0.
Considering (3.78) and the requirement x4 # 0, we must impose the condition U, = 4m —
147 — 14n = 0, leading to m = 7(21 + 2n) /4. This gives rise to the following one-parameter
family:

X = (147 + 14n + dnx + 8x* — 6y + 4xy) /4, 2,89
¥ = (147x + 14nx + 4ny + 2xy + 4y%) /2, (3.89)

for which we calculate:

X4 = 61875(37 + 41) (69 + 41) (357 + 4n) (301 + 36n),

3.90
Js = 5(21 +4n)?/4, Ry = 19500(33 + 4n). (3.90)

Thus, following Proposition 2.8, we distinguish three possibilities: (gR4 # 0 (statement
(B2)), s = 0 (statement (B3)), and R4 = 0 (statement (By)). We examine each possibility in
turn.

The possibility (gR4 # 0. Then 33 4 4n # 0, and systems (3.89) possess the following two
invariant parabolas:

O (x,y)=x>—y=0, @ox,y)=—(2142n)(21+4n) +6(21 +4n)x +24x> —2(3344n)y = 0.

We observe that systems (3.89) form a subfamily of (3.37) defined by the condition g = 2.
The family (3.37) was investigated earlier, and considering (3.40) and (3.43) for ¢ = 2 (i.e., for
systems (3.89)), we have:

Zy=—(33+4n), way=133+4n, P, =861+100n, 6= —32#0,
D = —3(21 4 4n)?Z4a3B35/4, (p=24>0, &4 =1235a4B4/2,
By = 105(21 + 21) (33 4 4n) (37 + 4n) (49 + 4n) (69 + 4n) /2.

We observe that due to {gR4 # 0, we have Z4(21 + 4n) # 0, and, in the case D # 0, we obtain:

sign (D) = —sign (Z4), sign(¢14) = sign (a4fBs).

Moreover, the direction of the invariant parabola ®;(x,y) = 0 depends on sign (33 + 4n).
According to Lemma 2.3, the existence of an invariant line in systems (3.89) requires B; =
0. Thus, we consider two cases: B; # 0 and B; = 0.

The case B; # 0. Then no invariant line exists. For the parameter 1, we have three
possible bifurcation values: n € {—133/4, —861/100, —33/4}. However, due to R4 # 0, we
must have Z; # 0, i.e.,, n # —33/4.

Considering these possible bifurcation values, in the case B; # 0, systems (3.89) lead to
the following configurations (depending on the parameter n):

D <0, ¢4 <0 (e, —133/4 <n < —861/100) = Config. P.58;
D <0,¢14>0,B4<0(ie, n<—133/4) = Config. P.59;
D <0,¢14 >0, Bs >0 (e, —861/100 < n < —33/4) = Config. P.59;
D >0 (i.e, n > —33/4) = Config.P.61;
D=0, s #0 (ie, n=—133/4) = Config. P.64;
D=0, B4 =0 (ie, n = —861/100) = Config. P.64.
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We may summarize the above as:

D <0,814 <0 = Config.P.58;
D <0,¢14 >0 = Config. P.59;
D>0 = Config. P.61;
D=0 = Config. P.64.

The case By = 0. Considering (3.90) and the condition x4(sR4 # 0, the condition B; =0
is equivalent to 49 4-4n = 0, i.e., n = —49/4. The corresponding system (3.89) possesses the
invariant line y = 49/4, leading to a configuration equivalent to Config. P.69.

The possibility g = 0. From (3.90), this condition implies n = —21/4, and we arrive at the
system:
=(147 — 42x — 12y + 16x° + 8xy) /8,

. (3.91)
y =(147x — 42y + 4dxy + 8y°) /4. '

For n = —21/4, we find:

P (x,y) = ¥ — y=0, Ox,y) = 24(x* — y) =0,
i.e.,, the system has a double invariant parabola. Moreover, in this case, there is one real
singular point M (x1,11) and two complex singularities M 3(x23,2,3), with:

7 49

3 3
= —— = — = — :l': ] — — :t ] .
X1 y = X3=g iV3, 3 1 3iV/3

We point out that M, is a double singularity of system (3.91), located on the double invariant
parabola @ (x,y) = x> — y = 0. Therefore, we arrive at configuration Config. P.79.

The possibility R4 = 0. From (3.90), this condition implies n = —33/4, and we obtain the
system:
X = (2x —3)(—21+8x+4y)/8, y = (63x — 66y + 4xy + 8y*) /4.

For n = —33/4, the second invariant parabola becomes the reducible conic ®;(x,y) = 6(2x —
3)2 = 0. Thus, the system possesses the invariant line x = 3/2 and the invariant parabola
®;(x,y) = x> —y = 0, yielding a configuration equivalent to Config. P.83.

3.2.3 The statement (B;5)

According to Proposition 2.8, we must have the condition x4 = 0 and (509 # 0. Thus, for
systems (3.77) we compute:

X4 = 61875(1+4m +2n)V, &y = 140625(4m — 14n — 147)V /16,
05 = 25(196m — 461 — 3)(4m — 14n — 147) /16, (3.92)
{o = —2970000(4m — 14n — 147)WV,

where
V = 18m + 1372m* — 84mn + 27n% + 144n3, W = 10m + 196m> — 88mn + 15n>.

We consider two cases: ¢4 # 0 and ¢4 = 0.
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The case o4 # 0. Then V # 0 and the condition 1 4 4m + 2n = 0 implies m = —(1 4 2n) /4.
This leads to the one-parameter family of systems

1 3 1
X = —i(2n+1) +nx — ?y +2xt+xy, y= —§(2n+1)x+2ny+xy+2y2, (3.93)

which possess the invariant line y = x — 1 and two invariant parabolas:
O (x,y)=x2—y=0, Po(x,y) =—1—-2n+2(1+4n)x —2(—1+4n)y —8y* = 0.
For these systems, we have

05 = 25(37 +4n) (13 +36n), & = —140625(5 + 4n)2(37 + 4n) (13 + 361) /16,
Jo = 11-30*(1+4n)(37 +4n)(13+36n), By =0, 6= —32+#0, (3.94)
By = —81(1+2n)(1+4n)(17 +4n)(x —y)*, D =3(1+4n)(5+4n)°/4.

Following Lemma 2.3, we consider two subcases: B, # 0 and B, = 0.

1: The subcase B, # 0. Then, by Lemmas 2.3 and 2.4 (since 8 # 0), we conclude that sys-
tems (3.93) can have only one invariant line (namely, y = x —1/4).
Systems (3.93) have four finite singularities M;(x;,y;), i = 1,...,4, with coordinates

_1‘ N _1—4n __1+2n‘
’ y1_4/ 2 — 12 ;Y2 = 6 ’

Xa4 = _% (1£v-T-an), yaa= % (~2n% V-1 4n).

N —

X1 =

Note that the invariant parabolas intersect at three points: M;, M3, and My. The singularities
M3 and M, may be real or complex depending on 1+ 4n # 0 (due to {9 # 0). Moreover, the
direction of the parabola ®,(x,y) = 0 also depends on 1 + 4n.

It is easy to verify that the invariant line y = x — 1/4 is tangent to both invariant parabolas
at M;. The singularity M, lies on this invariant line, and

1 1
P1(x2,12) = 755 +4n)? £0, Pa(x,y2) = 150 +4n)* # 0,

due to &4 # 0. Considering (3.94), D # 0 since (94 # 0 and sign (D) = sign (5 + 4n).
To understand the position of M, relative to M;, we compute

1—471_1 _5+4n

12 2 12

X2 — X1 =

= sign(x; — x1) = —sign (5 + 4n).

Hence, all finite singularities except M, are fixed as intersection points of the invariant
curves, and their positions depend on n. In the case B, # 0, the possible bifurcation values
for n are —5/4 and —1/4.

Thus, for B, # 0 in systems (3.93) we have the following configurations:

D<0andn < -5/4 = Config. P.99;

D <0Oandn > —-5/4 = ~ Config. P.99;

D >0 (ie, n > —1/4) = Config. P.100.
So, Config. P.99 occurs if D < 0, and Config. P.100 if D > 0.

2: The subcase By = 0. From (9 # 0, we get (1 + 2n)(17 4 4n) = 0.
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If 1+2n =0, then n = —1/2, yielding the system
¥ = (—x+4x* =3y +2xy)/2, y=y(-1+x+2y),

which has four invariant curves (two parabolas and two lines):

O (x,y)=22—y=0, Py(x,y)=x—3y+4>=0, y=x—1/4, y=0.
y y y Y+ 4y y y

This corresponds to configuration Config. P.101.
If n = —17/4, we get

%= (=3+42x)(—5+8x+4y)/8, v = (15x — 34y + 4xy + 8y%) /4,

which has invariant lines y = x —1/4 and x = 3/2, and invariant parabolas

(v, y) =x>—y=0, Dy(x,y) =15— 64x + 72y — 16y> = 0.
y y y Y Y

The line x = 3/2 is tangent to ®p(x,y) = 0 at M4(3/2,9/4). Thus, in this case, we get a

configuration equivalent to Config. P.101.

The case {4 = 0. This implies V = 0 and we calculate
Discrim [V, m] = 36(1 — 28n)(3 4 281)> = v(n).

Since m, n € R, the condition 7 (n) > 0 is necessary.

We claim that {5 # 0 implies 3 + 28n # 0. Indeed, setting n = —3/28 we get

2744 27)2 27
2744m +27)° o . _

V= 5488 - T o744’

which implies {5 = 0. Thus, the claim is proved.

Therefore, the condition 1 —28n > 0 is necessary for V to have real roots. Setting a new

parameter u as 1 — 281 = u? > 0, we have n = (1 — u?)/28 and

V= 2188

By symmetry (u — —u), we may assume the second factor vanishes, yielding
m = —3(u—1)*(5+2u)/2744.
This leads to the one-parameter family of systems

_3(u— 1)2(5+2u) w* -1

x—§y+2x2+xy,

2744 28
. 3u—=12*5+4+2u)  ur-1 )
y=- 1372 e VI A

which possess two invariant parabolas:

15 + 2744m + 24u + 3u® — 6u>) (15 + 2744m — 24u + 3u® + 6u>) = 0.

(3.95)

Pi(x,y)=x>—y=0, DPo(x,y) =31u—1*+112(u —1)%x + 1176(u — 1)%y — 38416y = 0.
y y y y Y
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For these systems,

75 = 25(u — 50) (u — 22) (u* — 4)(3u — 10) (3u + 46) /38416,
o = 2227500(u — 50) (1 — 22) (u® — 4) (u — 1)*(3u — 10) (3u + 46) /823543,
T10 = —15(354160 + 48u — 1336u° + 64u° + 27u* — 19u° + 3u®) /38416,
D= -378u—1)°6+u)®(34 4+ u)*(2 +5u)>

(3.96)

Also, for (3.95) we have

By = —3%277 " (u —22)(u—8)%(u —1)3(6 + u)>(13 + u) (20 + u) (5 + 2u) (3u — 10) (4 + 3u).
(3.97)
Following Lemma 2.3, we consider two subcases: B; # 0 and B; = 0.

1: The subcase By # 0. Then, by Lemma 2.3, systems (3.95) cannot possess any invariant line.
The systems (3.95) have four finite singularities M;(x;,y;), i = 1,2,3,4, with coordinates

o 5t2u ~ (5+2u)* o (u—1)(22 + 26u + u?) ~ (u=1)2(5+2u)
=77 T e 0 27 1372 » V2= 1372 ’
1-u C(1—u)? ~ 3(u—1) _9(u—1)?

BT BT 9 0 MT T BT T 96

(3.98)

The invariant parabolas intersect at points M3 and Mjy. The singularities M; and M, lie on
®; = 0 and &, = 0, respectively. The direction of &, = 0 depends on u — 1, and since {9 # 0,
we have u # 1.

Because D = 0 indicates a multiple singularity, we consider the possibilities D # 0 and
D =0.

1.1: The possibility D # 0. Then all singularities are distinct. To determine the relative
positions of M; and M with respect to M3 and M, (intersection points of the parabolas), we
compute:

.y _6+u - x _ (w-1)(6+u)(20+u)
3 1 — 14 7 3 2 — 1372 ’

2+ 5u u—8)(u—1)(34+u
r—x = 22 x4_x2:_( )(1372)( )

Moreover, the singular point M, which lies on the parabola ®;(x,y) = 0, can be located either
above or below its axis y = y,, where v, is the ordinate of the vertex of this parabola. For
®,(x,y) = 0, we have y, = 3(u — 1)2/196 and then we calculate

Vo—Yo=—(u—1)2(13+u)/686 = sign(ys —y,) = —sign (13 + u).
Additionally,

(u—1)2(6+u)*(34+u)
1882384 ’

CD](Xz,yz) = <I>2(x1,y1) = —(6+ M)3(2—|—51/l).

Possible bifurcation values for u are {—34, —20, —13, —6, —%, 1,8}. Since {509B1D # 0, we
have:
(u—8)(u—1)(u+20)(u~+13)(u+6)(u+34)(2+ 5u) # 0.

Thus, in the case B; # 0 and D # 0, systems (3.95) yield the following configurations:
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u< —34 = X3 > X4, X1 > X3, X2 < X4, Y2 > Yy = Config. P.102;
=34 <u<-20 = x3>x4 x1>x3, X3 <X2<X¥p > Yy = Config. P.103;
—20<u<—=13 = x3>x4,x1>x3, X3 <x3< X2, Y2> Yo = =~ Config. P.103;
—“1B<u< -6 =x3>x4x1 >x3 %3 <x3<x2,Y2 <Yy = =~ Config. P.103;
—6<u<=2/5 = x3>x4 x4 <X <X3, X4 <X2< X3, Y2 <Yo = = Config.P.103;
=2/5<u<1l = x3>x4, %1 <x3, X4 <X2<x3,Y2 <o = =~ Config. P.102;

1<u<8 = X3 > X4, X1 < X3, X4 < X2 < X3, Y2 < Yo = Config. P.104;

u>8 = X3 > x4, X1 < X3, X4 < X2 < X3, Y2 < Yo = =~ Config. P.104.

We can summarize these as
Config. P.103 < (u+34)5u+2)<0;
Config. P.102 < (u+34)(5u+2)>0andu—1<0;
Config. P.104 < (u+34)(5u+2)>0andu—1>0.
On the other hand, for systems (3.95) we have

&5 = 2737795913 (u — 1)%(6 + u)*(34 4+ u) (2 + 5u),
U500 = 272771395511 (u — 1)%(—=50 + u)?(—22 + u)* (=2 + u)*(2 + u)*(—10 + 3u)* (46 + 3u)?,
and due to D{5(9 # 0 we have

Cos #0, sign(Zps) =sign ((u —1)(34+u)(2+5u)), sign(ls0o) = sign (u—1).
This leads to the following invariant conditions:
G5 <0 & Config. P.102;
&5 > 0,050 <0 <« Config. P.103;
&5 >0,0509 >0 <« Config. P.104.

1.2: The possibility D = 0. Considering the condition B; # 0, this implies (34 + u)(2 + 5u) =
0. Taking into consideration the position of the invariant parabolas and the coordinates (3.98)
of the singularities of systems (3.95), we obtain:

u=—-34 = X3 > X4, X1 > X3, X2 = X4, Y2 > Yo = Config. P.105;
u=—-2/5 =x3>2x4 X1 =2%x4, X4 <x2<x3, Yo <Y, = = Config.P.105.

So, we deduce that in the case By # 0 and D = 0 we get the unique configuration Con-
fig. P.105.

2: The subcase B; = 0. Considering (3.97) and (3.96), we conclude that due to (9 # 0O the
condition B; = 0 is equivalent to

(u—8)(6+u)(134+u)(20+u)(5+2u)(4+ 3u) = 0.
However, we could decrease the number of factors.

Remark 3.14. We remark that in the case u —1 # 0 (i.e., when the second parabola exists),
applying the transformation

343 21 _ 8 W b (u—1)3t
-1 " au—-1 N w1 a1 T 43
we arrive at a family of systems of the same form (3.95):
3 —1)*(542u1) u —1 3y

. — 2 2 ,
*1 2744 2 M1 Ty TAM TN

o B(uy — 1)2(5+2u1)x -1
= 1372 1Ty
with the new parameter u; = (48 +u)/(u — 1) (then u = (48 + u1)/(u; — 1)).

X1 =

y1 + x1y1 + 23,
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Considering Remark 3.14 and the relation u = (48 + u;)/(u; — 1), we calculate

7(5 + 21/{1)

7(3uy +4)
Ui — 1 '

13 =
U+ 1

, u-+20=

So, to determine the configurations given by the condition By = 0, it is sufficient to consider
the conditions provided by the equality

(u—8)(6+u)(5+2u)(4+3u)=0.

2.1: The possibility u = —4/3. This leads to the system
¥ = (—1—2x+144x*> — 108y +72xy) /72, v = (x +2y)(—1+36y)/36,
possessing the invariant line y = 1/36 and two invariant parabolas:
Oi(x,y) =x>—y =0, Px,y)=1-—16x+ 72y — 432¢°.
We determine that the configuration of the above system corresponds to Config. P.106.
2.2: The possibility u = 8. This leads to the system
Xx=(2x—-3)(3+8x+4y)/8, y=(x+2y)(4y—9)/4,

possessing three invariant lines y = 9/4, y = x +3/4 and x = 3/2 and two invariant parabo-
las:
Oy(x,y) =x*—y =0, Do(x,y) =3+ 16x + 24y — 16y°.

We observe that all five invariant curves intersect at the singular point M4(3/2,9/4). So we
get the configuration Config. P.107.

2.3: The possibility u = —5/2. In this case we arrive at the system
X = (—3x +32x* — 24y +16xy) /16, vy =y(—3+8x +16y)/4,
possessing the invariant line y = 0 and two invariant parabolas:
Oi(x,y) =x*—y =0, Dy(x,y) =3—32x + 96y — 2561°.

We observe that the invariant line y = 0 is tangent to the parabola ®(x,y) = 0 at the point
M;(0,0) and intersects the second parabola at M»(3/32,0). In this case, we have the configu-
ration Config. P.108.

2.4: The possibility u = —6. In this case we get the system
¥ = (3—10x + 16x* — 12y +8xy)/8, y = (3x — 10y + 4xy + 8y*) /4,
possessing the invariant line y = x — 1/4 and the invariant parabolas
O1(x,y) =x>—y =0, P(x,y) =3—16x+ 24y — 16y*> = 0.

Considering the coordinates (3.98) of the singularities of systems (3.95), we observe that for
u = —6 the singular points M, M3 and M; coalesce producing a triple singular point. More-
over, this triple singularity is a point of tangency of the invariant line y = x — 1/4 with both
parabolas. As a result, we get the configuration Config. P.109.
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On the other hand, for systems (3.95) we have

2227500 ) ,
(6 = —13%(6 +u)(292 — 52u + 5u%), Discrim [292 — 52u + 5u%] = —3136 < 0,
— 3 2
C26 = gaq705 (4 — 50) (1 — 4) (1 — 1) (3u +46) (6 + u) (13 +u)(5 +2u),
&7 = m(u — 8)(380 + 52u + 9u?), Discrim [380 + 52u + 9u?] = —10976 < 0.

We observe that, due to {9 # 0, the condition ¢ # 0 is equivalent to (6 + u)(13 4+ u)(5 +
2u) # 0. Moreover, considering Remark 3.14, we conclude that for ¢4 = 0 we may assume
(6 4+ u) (54 2u) = 0 because the condition 13 + u = 0 could be brought to 5+ 2u = 0 via an
affine transformation and time rescaling.

Thus, in the case B; = 0, systems (3.95) possess the following configurations if and only if
the corresponding conditions are satisfied:

€6 #0,Co7 #0 (thenu = —4/3) & Config. P.106;
&6 # 0, o7 = 0 (then u = 8) < Config. P.107;
€6 =0,06 #0 (thenu = -5/2) <« Config. P.108;
&6 =0,76 =0 (then u = —6) < Config. P.109.

3.2.4 The statement (Bg)

In this case the condition x4 = {9 = 0 must be fulfilled. Considering (3.92), due to the
condition {5 # 0, we obtain that {9 = 0 is equivalent to W = 0. Straightforward calculations
give us that the systems of equations x4 = 0 and W = 0 could have only the following
solutions §; = (m;,n;) (i=1,2,3,4):

1 1 5 13 27 3
Sl_ (0/0)/ 82_ <_81_4>/ 83_ <_721_36>/ 84_ <_2944/_8>

However, we have

Xa(Si) = 0o(S)) =0, i=1,23,4,
05(S1) #0, 05(82) #0,  5(S3) = {5(S4) =0,

and hence only the solutions &; and S, satisfy the conditions of statement (Bs). Therefore,
we examine only these two solutions.

We observe that each one of them gives us a concrete system (without parameters), and
it remains to construct the corresponding system having a single fixed configuration of the
invariant parabolas and lines.

For systems (3.77), we calculate:

&o = 3°17252510(65536m* — 32m>(6131 + 3252n) — 16m*(—32110 — 7953n + 484n?)
+ 6m(10221 — 532921 + 5540n% 4 4336n°)
—9(—2304 — 7857n — 12140n* + 836n° + 240n*)].

We obtain that &9(S;) = 0 and &9(S7) # 0, and then we examine two cases: {9 # 0 and {9 = 0.
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The case ¢y # 0. Then we consider the solution &7, i.e., m = n = 0. In this case, we arrive at
the system
3y

t=-4 2x2 +xy, v =y(x+2y), (3.99)

possessing the invariant line y = 0 and the invariant parabola ®(x,y) = x> —y = 0.

This system possesses the following two singular points: M;(0,0) and M>(—1/2,1/4). We
observe that the point M; is the point of tangency of the invariant line with the parabola.
Moreover, this point is a triple singularity of system (3.99), because we have

pa=p3=p2=0, p=-3(x+2y) #0,

and, by [1, Lemma 5.2, statement (ii)], the point M; is of multiplicity exactly 3. As a result, we
get the configuration Config. P.40.

The case {9 = 0. In this case we get the solution S, i.e., m = —1/8 and n = —1/4. Then, we
arrive at the system

.1 x 3y 2 1

t=-g-17% +2x°+xy, y= Z(4y 1)(x+2y),

possessing the invariant lines y = 1/4 and y = x — 1/4 and the invariant parabola ®(x,y) =
x> —y =0.
As a result, we get the configuration Config. P.110.

3.2.5 The statement (137)

In this case, the condition x4 = {5 = 0 and (s # 0 must be fulfilled. Straightforward calcula-
tions give us that the systems of equations x4 = 0 and {5 = 0 could have only the following
solutions §; = (m;,n;) (i=1,...,6):

~ 27 3 - 2205 357 ~ 539 301
Sl_<_2744'_28>’ SZ_<_8’_4>' S3_<72’_36>’

~ 35 37 ~ 5 13 ~ 189 69
84— (81_4>/ 55_ (_72/_36>/ 86_ <_81_4)

We split these solutions into two sets:
G =1{51,5,83}, Go={S4,8S5 86}

Lemma 3.15. Assume that the conditions of statement (B7) are satisfied and then the system of
equations x4 = {5 = 0 generates six solutions S; = (m;,n;) (i = 1,...,6) given above. In this case,
the invariant polynomial e distinguishes the set Gy from the set Gs.

Proof. To prove this lemma it is sufficient to evaluate ¢¢ for the elements of each one of the
sets. For systems (3.77), we calculate:

&6 = 2°3%2877985m (1 + 4m + 2n) (—147 + 50m + 61n + 8n?),

and we obtain

66(81') #01 i = 1/2/3/ {:-;(6(5;]) :0/ j:4/5/6/

and we complete the proof of the lemma. O

According to the above lemma, we discuss two cases: ¢ # 0 and s = 0.
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The case ¢s # 0. Then we have to examine the elements of the first set G;.
1: The subcase Sy. Then we have m = —27/2744 and n = —3/28, and we get the system

) 3x 3y 27 . 27x 3y
_ 2 | o, O YT e — e 7
Y=y e Ty Ty VTt 2" — 37 (3.100)

possessing the following three invariant parabolas: ®1(x,y) = x? — y =0 and
Dy (x,y) =3+ 112x+ 1176y — 38416y2 =0, D3(x,y) = —243+3024x — 10584y + 38416y2 =0

We observe that the singular point M;(3/14,9/196) is the point of intersection of all three
invariant parabolas. So we get the configuration Config. P.111.

Next, we prove that the systems generated by S, and 83 could be brought to system (3.100)
via an affine transformation and a time rescaling.

Consider first the solution §2, ie,m = —2205/8 and n = —357/4. This leads to the system

. 357x 3y 2205 . 2205x 357y
= 2x? - _==- = xy — 02— 227
S A e T A T A
which via the transformation
3 y 3
M= Tog TRy 1T 196+3 5 h=34%

is brought to the system (3.100). N
Analogously, taking the solution S, i.e.,, m = 539/72 and n = —301/36, we arrive at the
system

gy 0lx By 539 L5895 301y
- W= 36 "2 T YT T g Y T g
which via the transformation
227y _ 27 2« _ 348t
1= 08 343 Y7196 a3 1T T 27

is brought to the system (3.100).

The case g = 0. Then we have to examine the elements of the second set G,.

1: The subcase Sy. Then we have m = 35/8 and n = —37/4, and we get the system

_ 37x 3y . 35x 37y
— 942 _ — 2 _

X =2x"+xy— 1 > —|— 8’ y=xy+ 1 + 2y 5 (3.101)

possessing the invariant line y = x — 1/4 and three invariant parabolas: ®;(x,y) = x> —y =0

and
Oy(x,y) =5—-12x +3x* +y =0, P3(x,y) = —35+ 144x — 152y + 16y* = 0.

We observe that the singular point M;(1/2,1/4) is the point of intersection of all four invariant
curves. So we get the configuration Config. P.112.
Next, we prove that the systems generated by S5 and Sy could be brought to system (3.101)
via an affine transformation and a time rescaling.
Consider first the solution 55, ie., m = —=5/72 and n = —13/36. This leads to the system
13x 3y 5 _ 5x 13y

. 2 e _ _ ot 2
P2 gy Ty VT T3 T g T
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which via the transformation

11 19 t
x1—z—9y, yl—z—%c, h=—y
is brought to the system (3.101).
Analogously, taking the solution Sg, i.e.,, m = —189/8 and n = —69/4, we arrive at the
system
, 69x 3y 189 | 189x 69y
— 742 _ 22227 - iy — 2_ 227
¥ =20+ ay - 5 g V=Xt 5
which via the transformation
X y
=2-_, =7-3, h=-3t
X1 3 Y1 3 1

is brought to the system (3.101).

3.3 Configurations of systems in QSP, )

In what follows, we examine the configurations of the systems in QSP(, . for each of the
cases provided by Proposition 2.9. According to this proposition, we consider the canonical
form (2.5), i.e., the systems

Xx=m+ (2n—1)x/2+gx*> —gy/2 —xy, Y =2mx—x*+2ny+ gxy — 2y, (3.102)

with C; = x(x? + y?), possessing the invariant parabola ®(x,y) = x> —y = 0.

3.3.1 The statement (&)

For systems (3.102), we calculate

Ty = (254 ¢%)(8g +9¢° — 4m — 6gn) /16,

3.103
R1=15(14¢*)(25 + ¢%)(3g +9¢° — 4m — 6gn) /2. (3.103)

The case By # 0. Then, according to Lemma 2.3, systems (3.102) cannot possess any invariant
line.

Let us examine the finite singularities of these systems. Following [1, Proposition 5.1], we
calculate the invariant polynomial D = 12F/*F}, where

F| = —2gm —2¢°m + 4m® — n — ¢*n — dgmn + ¢*n?,

3.104
F) =8 —g* — 72gm + 8¢°m + 432m? — 48n + 4¢g*n + 144gmn + 961> — 4g°n* — 64n°, ( )

and we discuss two subcases: D # 0 and D = 0.
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The subcase D # 0. The systems (3.102) possess four finite singularities M;(x;, y;), (i =
1,2,3,4), with coordinates

gn —2m 2gm—+n . 1
M=t N T T T gV Y -3 22,
1
Y2 = 31/3F,Z +3W?/3 (¢ 4 10gn — 5¢ + 12m
6 (€/W (22 —3g2) +4gW2/3 + W) | ? ( )
+WIZ (22 - 3g%) +3(g (g* +22g%n — 11g> + 84n> — 84n +21) + 36mZ ) + gWH/);
1 . .
5= oyl (F1+1V3) 2+ 2g01° — (1+iV3) (22 - 3¢%) ],
1
Y3 = — 6)2/3(g® +10gn —5¢+12m
—48¢)2/3 4 6 (1 +i\@> VI3 (22 —3¢%) +6 (1 —i\@) y : ( )
+(1+iV3) Y35+ (1+iV3) ¥ (22 - 3¢?)
+(1-iv3) ¥Z + (1-iV3) g (22 - 38" ;
1 . .
= gyl (F1-1V3) P20 — (1-iv3) (22 -3¢7) ],
Ya= ! [— 6?3 (g% +10gn —5¢+12m)

—480)2/3 +6 (1 —~iV3) V13 (22 ~3g%) +6 (1 +iV3)Y
+(1-iv3) ¥+ (1-iV3) ¥1/°2 (22 - 3¢?)
+(1+iv3) ¥Z + (1+iv3) g (22 - 3¢%)° .
In the above expressions for the singularities, we use the following notations:
Y =g>+18gn —9¢+108m +3VX, Z = -3+2¢%+6n,
W = —9¢ + ¢> +108m + 18gn + 3/3E},
where
X =24 —3¢% —216gm + 24¢°m + 1296m* — 144n + 12¢%n + 432gmn + 288n* — 12¢°n* — 192n°.
Calculations yield:
it
(1+g2)*
and therefore the three singularities M, M3, and M, of systems (3.102) lie on the invariant

parabola. Moreover, M; is located outside the parabola and would belong to the parabola if
and only if the condition Fl’ = 0 holds, where Fl’ is given in (3.104). However, we have D =

D(x2,12) = D(x3,y3) = P(xa,ya) =0, D(x1,11) =

12F %Fz’ # 0, and hence there are always exactly three simple singularities on the parabola.

On the other hand, according to [1, Proposition 5.1], if D > 0, systems (3.102) possess two
real and two complex finite singularities. For D < 0, we could have either four real or four
complex finite singularities. However, since M; is a real singular point for these systems, we
conclude that in the case D < 0, we must have four real finite distinct singularities.

Thus, since the real singularity M; is outside the invariant parabola and all three finite
singularities on the parabola (whether real or complex) are distinct, and furthermore we can-
not have any invariant line, we arrive at the configuration Config. P.113 if D < 0, and at
Config. P.114 if D > 0.
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The subcase D = 0. This implies that F{F; = 0, and we calculate:

&1 = —6(4F.

Therefore, we deduce that, due to {4 # 0, the condition F] = 0 is equivalent to ¢; = 0. Thus,
we examine two possibilities: ¢; # 0 and ¢; = 0.

1: The possibility &1 # 0. In this case, the condition D = 0 implies F; = 0. Since this polynomial
is quadratic in the parameter m, we calculate

Discrim [F}, m] = 64(g* +12n — 6)°.

Therefore, as the parameters m, n, and g of systems (3.102) must be real, the condition g2 +
12n — 6 > 0 must hold. Introducing a new parameter v such that g2 +12n—6 = v* > 0, we
get n = (6 — ¢> + v?)/12. Then, we compute
1
E = 108 [216m — (g + 0)%(g — 20)] [216m — (g — 0)%(g + 20)] =0,
and, due to the symmetry under the change v — —v, we may assume the first factor vanishes.
This yields:
m = (g —20)(g+0)*/216.

Considering the expressions for the parameters m and n, we arrive at the following two-
parameter family of systems:

(g—20)(g+0v)? gg—-v* g

o S8k o
e 216 Y tE W (3.105)

_ 2 _ 52 2 .
g= BZ2EEON | OZ8 FT | gry 2y,

possessing the invariant parabola ®(x,y) = x> —y = 0.
We observe that for the above systems, the following conditions on the parameters g and
v hold:

G #0 & (8g—0)*(4g+0) (28° — 8gv — v* +18) (¢* +2gv + 0> +9) # 0;
Bi #0 & (29 —v)(4g +0)(36 + 4¢* — 4gv + v?)(g* + 280 + v* +9) (3.106)
x (g% —4gv +4v* +9) £ 0.

We determine that systems (3.105) possess three finite singularities M;(x;, y;) (i = 1,2,3) with
coordinates:

o — —27¢ +5¢° — 690> — 03 "= 54 — 92 + g* + 90% — 3¢%v* — 240°
54(1+ ¢2) ’ 108(1 + g2) '

_g—2 _(g-20? _gt+o _(g+0)

X2 = 6 Y2 = 36 X3 = 6 ' Y3 = 36

We calculate:

(2¢*> —8gv — v* +18) (g* 4+ 2gv + v* + 9)2
2916(1 + ¢2)2 ’

DP(x2,y2) = P(x3,y3) =0, DP(xq,y1) = —

and conclude that the singular points M, and M3 lie on the invariant parabola, while M; lies
outside the parabola due to the conditions (3.106).
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We claim that M3 is a multiple singularity of systems (3.105). Indeed, applying the corre-
sponding translation, we can place M3 at the origin, arriving at the systems:

1 1
* = 108 +0)(4g +0)x — (4 + o)y +8x" — xy,
y:%(g—kv) (2g2+gv—02—18)x+11—8(vz—2g2—gv+18)y+gxy—x2—2y2,

where M (0,0) corresponds to the singularity M3.
Following [1], we calculate the following invariant polynomials: y4 = p3 = 0, and

o = 5370 (502 +9] [0~ 29)x + 63] [(3— & — go)x + (4g + o)y

By [1, Lemma 5.2, statement (ii)], the point My has multiplicity at least 2. We observe that,
due to the condition B; # 0, we have y, = 0 if and only if v = 0. In this case, we calculate:

1

_ 4 2903
=5 [(5g +27)x —32¢ y] # 0.

U2 = O/
Thus, according to [1, Lemma 5.2, statement (ii)], we have a double point if v # 0 and a triple
point if v = 0.
On the other hand, for systems (3.105), we calculate:

__ 1 5 2 2)2 2 2y2
(;‘2—2099520 (18 4+2¢° —8gv —v”)" (9+ g° +2gv+v*)",
and due to (3.106), we conclude that the condition v = 0 is equivalent to ¢, = 0.

Thus, for systems (3.105), we obtain configuration Config. P.115 if §, # 0 and Config. P.116
if &, = 0.

2: The possibility & = 0. We obtain F{ = 0, and since this polynomial is quadratic in the
parameter m, we calculate:

Discrim [F], m] = 4(1 + g%)*(g? + 4n).

It is clear that for the existence of real solutions of the equation F] = 0, the condition ¢* + 4n >
0 must hold.

Thus, we introduce a new parameter u such that g2 +4n = u? >0, leading to n =
(u? — ¢%)/4. Then, calculations yield:

Fl = 8m — (g —u)(2+g" —gu)] [8m— (g+u)(2+ 8> +gu)] =0,

_E[

and, due to symmetry under u — —u, we may assume the first factor vanishes. This gives:
m=(g—u)(2+g*—gu)/8.

Considering the expressions for m and 1, we arrive at the following two-parameter family of

systems:
%= (g_”)(2+g2_g”)+”2_g2_2x—§y+gx2—xy
2 A2 ' (3107)
g = 8= :g —gu) . 8 ;u Y+ gy — 272,
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possessing the invariant parabola ®(x,y) = x> —y = 0.
The systems (3.107) possess three finite singularities M;(x;,y;) (i = 1,2,3) with coordi-
nates:

_ )2
xlzgzu/ ylz(g4u)/
1 1
xz,3=1<ui\/Y1), yz,azg[u2+2gu—2g2—4j:u\/Y1},

Y, = u? +4gu — 4¢* — 8.

We calculate:
D(x1,y1) = P(xz,12) = P(x3,3) =0,

and therefore all three singularities are located on the invariant parabola.
Moreover, we point out that M is a singularity of systems (3.107) with multiplicity at least
2. Indeed, applying a translation that places M, at the origin, we arrive at the system:

1 1
= (88— gu—T)x+ 5 (u—28)y+8x" — xy,

. 1 2 1 2 2
y=5(g—u)(g" —gu—1)x+5(g—u)(2g —u)y — " +gxy -2y,

where M(0,0) is the singularity corresponding to M;.
Following [1], we calculate the following invariant polynomials: 4 = p3 = 0, and:

fy = %(g2 +1) [(g—u)*+1] [(¢* — gu+1)x* + (u —2g)xy +2y*] .

We observe that > # 0, and by [1, Lemma 5.2, statement (ii)], the point My has multiplicity
exactly 2.

On the other hand, the singularities M, and M3 may be either real or complex, depending
on the value of Yj. To determine the position of the double singularity M; relative to M, and
M3 when they are real (i.e., Y7 > 0), we calculate:

(g—u)+1

0.
> >

(x2 —x1)(x3 —x1) =
Therefore, in the case Y7 > 0, both singularities M, and Mj3 lie on the same side of the double
point M.
It is clear that for Y7 = 0, the points M, and M3 coalesce, and we obtain two double points
located on the invariant parabola.
For systems (3.107), calculations yield:

1 2
o= g(1+g) 1+ (g —uw?'
and hence sign (&») = sign (Y1) whenever ¢, # 0.
Thus, we conclude that systems (3.107) possess configuration Config. P.117 if §, < 0, Con-
fig. P.118 if ¢ > 0, and Config. P.119 if ¢, = 0.

The case By = 0. For systems (3.102), we calculate:

B, = g+ +4m —2gn] [(g—8m)* + (1 —4n)*] ¥ (g, m,n),

_@[
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where
Y(g,m,n) = 16m> +8gm(3 4 2n) + (44 ¢>) (1 + ¢ + 4n + 4n?).

On the other hand, we calculate:

G = 2225+ ¢7) (3g + 9 — 4m — bgn) [(g — 8m)? + (1 — 4n)?]

2
(= (25+ ¢%) (3g +9¢° — 4m — 6gn)
4 16 ’

and, due to {4 # 0, we deduce that &; = 0 is equivalent to (g — 8m)? + (1 — 4n)? = 0.
Thus, we examine two subcases: ¢4 # 0 and &; = 0.

The subcase ¢4 # 0. Then, the condition By = 0 implies either:
g+g+4m—2gn=0, or ¥(g,mmn)=0.
We state the following lemma.

Lemma 3.16. For systems (3.102), if ¢4 # 0, then the condition By = By = 0 is equivalent to
Y(g,m,n) =0.

Proof. Assume first that the condition ¥(g,m,n) = 0 holds. We calculate the discriminant of
Y with respect to m:

Discrim [¥, m] = —64(g* — 4n —2)* < 0.
Thus, for real solutions in m, the necessary condition is g2 —4n — 2 = 0, which gives n =

(g% — 2) /4. Substituting back, we obtain:

Y(g,m)=-(4g+¢° +8m)2, By= (4g+¢° —|—8m)2cp(g,m, X,Y),

ISP

where ¢(g,m,x,y) is a quartic polynomial in x and y. Thus, clearly, ¥(g,m,n) = 0 implies
B, =0.

Conversely, assume now that for systems (3.102), the conditions By = B, = 0 and ¢4 # 0
hold, but suppose (for contradiction) that ¥ (g, m,n) # 0. Then, the condition B; = 0 yields
¢+ g% +4m —2gn = 0, and solving for m, we get m = —g(g> —2n +1)/4.

Next, we calculate:

Y(g,n)=(1+g%) (¢*—4n —2)2,

81
B, = —5(1 +¢°) (¢* —4n— 2)2 [4g4 +¢*(8 —16n) + (1 — 4n)2] x4,

Discrim [4g4 + g8 —16m) + (1— 4n)2,n] = —256¢2 < 0,
where the last inequality holds because {4 = g(g* + 25)(5¢*> — 4n +2)/8 # 0. Therefore, for
B, = 0, it must follow that ¥(g,n) = 0, leading to a contradiction with our assumption that

¥ (g,m,n) # 0. This completes the proof of Lemma 3.16. O

Therefore, in what follows we discuss two possibilities: By # 0 and B, = 0.
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1: The possibility By # 0. Then, by Lemma 3.16, we have ¥(g,m,n) # 0, and the condition
By = 0 implies ¢ + ¢° +4m — 2gn = 0. Solving for m, we obtain m = —g(g*> —2n +1)/4,
leading to the two-parameter family of systems:

X =-— ig(gz—Zn—l—l)—l—%(Zn—l)x— %y—l—ng—xy,
5 (3.108)
y=— Eg(g2 —2n+1)x + 2ny — x% + gxy — 21,

possessing the invariant line Li(x,y) = 2x + g = 0, in addition to the invariant parabola
®(x,y) =x2—y=0.
For these systems, we calculate:
9(g2 +25)(5¢% — 4n +2)
G4 = 3 ,
Since 6 # 0, by Lemma 2.4, systems (3.108) cannot have an invariant line parallel to 2x + g = 0.
Moreover, by Lemma 2.3, there cannot be invariant lines in other directions because B, # 0.
The systems (3.108) possess four finite singularities M;(x;,y;), i = 1,2,3,4, with coordi-
nates:

0 =—8(g*+9).

8 _ &, . _ 8 _2n—g*
5’ y1—4, Xy = '’ Y2 = 5

X34 = % (8i \ﬁz>, Y3 =

We compute:

(Zn—lig\@), Yo =4n — g% — 2.

NI —

D(x1,y1) = D(x3,y3) = P(xg,ya) = Li(x1,y1) = Li(x, 42) =0,
®(x2,2) = (3¢% —4n)/4,
therefore, M; is the intersection point of the invariant line with the invariant parabola. More-
over, M, lies on the invariant line and belongs to the invariant parabola if and only if
3g2 —4n = 0. Finally, M3 and M, may be real, complex, or coinciding, depending on the
value of Y5, and they always lie on the invariant parabola.
To determine the relative positions of the finite singularities, we calculate:

(x3 —x1) (x4 —x1) = (5¢% —4n+2)/4=71/4, yo—y; = (4n —3¢%)/4 =6,/4.

Thus, when Y, > 0, M, and M3 lie on the same side (respectively, on opposite sides) of M if
Y1 > 0 (respectively, v; < 0). Notice that 1 # 0 due to {4 # 0.

Also, y» > y1if 6y > 0, yo» < y1if 6y < 0, and y, = y; if 61 = 0, in which case the
intersection point of the invariant line and the parabola is a double singular point of systems
(3.108).

We compute the invariant polynomial D responsible for the existence of multiple finite
singularities:

D= —3(+1)*V21161/4, Ca=g(25+g)m/8,
&7 = 4698510000 g*(1 + g2)?Yo7182, & = —247290000 ¢*(1 + ¢%)*Y26173.

Thus, since {4 # 0, in the case D # 0 we have:
sign (D) = —sign (Y2), sign(¢{y) =sign (Yay1), sign(fs) = —sign (Y261),
and we examine two cases: D # 0 and D = 0.

1.1: The case D # 0. Then Y, # 0, and systems (3.108) have four distinct finite singularities.
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Remark 3.17. We observe that 1 + 8; = 2(g*> + 1) > 0. Therefore, the conditions 7; < 0 and
01 < 0 are incompatible.

Considering Remark 3.17, in the case D # 0, systems (3.108) exhibit the following config-
urations:

D <0,67<0 = (x3—x1)(xa—x1) <0,y2 >vy1 = Config. P.120;
D<0,&>038<0 = (x3—x1)(xa—x1) >0,y >y1 = Config. P.121;
D<0,57>0,68>0 = (x3—x1)(xg—x1)>0,y2<y1 = Config. P.122;
D>0,0s<0 = <N = Config. P.123;
D>0,0s>0 = Y2>1N = Config. P.124.

1.2: The case D = 0. Since 7y # 0 (due to {4 # 0), this condition implies Y>0; = 0, and we
calculate:
¢1 = —3g(1+¢%)*(25+¢*)1é1/16.
Thus, since ;1 # 0, the condition J; = 0 is equivalent to {; = 0. We consider two subcases:
C:l #Oandél = 0.

1.2.1: The subcase &1 # 0. Then Y, = 0 (i.e., n = (g% +2)/4), so M3 and M, coalesce into a
double singular point on the parabola. Moreover, the position of M, is determined by ;. For
these systems, with n = (g2 +2) /4, we calculate:

Gils = 38" (1+8°)°(25+8%)01/2, Lu=g(25+¢8°)/2.
Since {4 # 0, we have sign (§1{g) = —sign (7). Therefore, in the case D = 0 and ¢; # 0, we
have configuration Config. P.125 if ¢10s < 0, and Config. P.126 if {1{g > 0.

1.2.2: The subcase 1 = 0. This condition implies n = (3¢?)/4, where M; and M; coalesce.
Note that in this case, v; = 2(¢> +1) > 0.
Forn = 3g2/4, we have:

Y2=2(g" 1), &=(s-1)1+g)"

and clearly, ¢, = 0 if and only if Y = 0, which corresponds to M3 and My also coalescing,
yielding two double singularities on the invariant parabola.

Thus, for D = ¢; = 0, we get Config. P.127 if {, # 0, and Config. P.128 if {, = 0.
2: The possibility By = 0. Thus, B; = B, = 0, and by Lemma 3.16, the condition ¥ (g, m,n) = 0
holds. Referring to the proof of Lemma 3.16, we get:

@ —4n—-2=0 = n=(g%-2)/4, 4e+ P +8m=0 = m=—g(g>+4)/8.
This leads to the one-parameter family of systems:

1

(& —Hx =Sy +g —xy,

.1 ., 8

1, 1, , , (3.109)
y== 488 +4)x+5(8" =2y —x"+gxy — 2,
possessing three invariant lines:

Li(x,y) =2x4+g=0, Lys(x,y) =4(y+tix)—g(gF2i)=0,

besides the invariant parabola.
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We find that systems (3.109) possess four finite singularities M;(x;,y;), i = 1,2,3,4, with
coordinates:

X1 = —

N [0Q

2 2
_ 8. __8 __&+2
7 yl_ 4/ Xy = 2/ yZ_ 4 ’

—_

g
. 1 N
X34 = 5 (§£2i), ysza= 1 (g£2i)".
We calculate:

D(x1,y1) = P(x3,y3) = P(xg,y2) =0, @(x2,10) = (2 +1)/2,
Li(x1,y1) = Li(x2,¥2) = La(x1, 1) = La(x3,y3) = La(xa,y4) = 0.

Thus, M; is the intersection point of all three invariant lines with the invariant parabola.
Additionally, M; lies on the invariant line but not on the parabola, since g> + 1 # 0. Moreover,
since yp — y1 = — (g% +1)/2 < 0, M, lies below M; along the vertical line L; = 0.

Hence, systems (3.109) possess the unique configuration Config. P.129.

The subcase & = 0. This condition implies (g — 8m)? + (1 — 4n)? = 0, yielding m = /8
and n = 1/4. Thus, we obtain the following one-parameter family of systems:

(3.110)

+35 X gy 2y,

8
§* Y
4
which, in addition to the invariant parabola ®(x,y) = x> —y = 0, possess two complex
invariant lines given by L1, (x,y) = 4(y £ix) —1=0.

For these systems, we calculate:

0a=g(25+¢°)(1+9¢%)/16, Bz = —3g(1+ ¢*)(x* +*)*/4,

and since {4 # 0 (i.e., g # 0), we have B3 # 0. Thus, according to Lemma 2.3, these systems
cannot have an invariant line in the third (real) direction.
The systems (3.110) possess four finite singularities M;(x;,y;), i = 1,2,3,4, with coordi-

nates:

1

2 .
1 1
x1 =0, 1=y Xy = g

o V2= X34 = :l:il Y34 =7

N [0Q

We compute:
1
D(x2,12) = P(x3,y3) = P(xg,ya) =0, DP(x1,11) = 1
and observe that the real singularity M; is the intersection point of the two complex invariant
lines and lies outside the invariant parabola. The second real singular point M, lies on the
parabola, and its position depends on the real parameter g # 0.

As a result, we arrive at a single configuration: Config. P.130.

3.3.2 The statement (&;)

According to Proposition 2.9, in this case the conditions {4 = 0 and R7(s # 0 must hold.
From (3.103), the condition (4 = 0 implies:

3¢+9¢° —4m—6gn =0 = m=23g(3¢>—2n+1)/4,
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which leads to the following family of systems:

X = Zg(3g2—2n+l) +1(2n—1)x—&+gx2—xy,
3 2 2 (3.111)
y= 5g(3g2—2n+1)x+2ny—x2—i—gxy—2y2,

possessing two invariant parabolas: the canonical one, ®1(x,y) = x> —y = 0, and a second
parabola,

D, (x,y) = (38¢% —4n)(1+3¢> —2n) +29(3¢* — 4n)x — 4(1 + ¢*)x* +2(2 4 5¢° — 4n)y = 0.
For the systems (3.111), we calculate:

05 = 14—9(g2 +25)(3¢> —4n)?, R; = 16120(3¢> +1)(5¢> — 4n +2),
0=—8(3>+9), Bi=—g(g*>+1)(9¢%+1)(5¢% —4n +2)¥,¥;3/32,

(3.112)

where
Yo(g,n) = 81g* + ¢%(28 — 72n) +4(1+2n)?, ¥3(g,n) = 36g* + ¢*(16 — 48n) + (1 — 4n)>.

According to Lemma 2.3, systems (3.111) may possess at least one invariant line only if
B; = 0. Thus, we proceed to examine two possibilities: B; # 0 and B; = 0.

The possibility B; # 0. The systems (3.111) possess four finite singularities M;(x;,y;) (i =
1,2,3,4) with coordinates:

_ % %
X1 = > ;s Y11= 4 s
o g(3+99% —8n) _ 9¢*+g*(B—6n)+2n
2T T o+gy 2T 2(1+ ¢2) / (3.113)

x3,4=%<—8i\/73)/ y3,4=%(2n—1—2g2$g\/73),

Y3 = 4n —5¢% — 2.
We calculate:

D1 (x1,y1) = P1(x3,y3) = P1(xa,y4) =0, Po(x2,y2) = Po(x3,y3) = Pa(x4,y4) =0,

therefore, the singularities M3 and My are the points of intersection of both invariant parabo-
las. Moreover, the point M lies on the parabola ®; = 0, while M, lies on ®; = 0.

To determine the relative positions of M; and M, with respect to M3 and My (when
Y3 > 0), we calculate:

(%3 —x1)(xs —x1) = (2+21g> —4n) /4 = 12/4,

Y 4 no2(s _
(e 218" +28%(5—8n) + 1] =

Y3
4(1+g%)2
ZgY3
1+ ¢%

(x5 —x2) (s — x2) = — 52,

(x3—x1)+ (x4 —x1) = —4¢, (x3—x2) + (x4 —x2) =
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We observe the following sign relations:

sign ((x3 —x1) + (x4 —x1)) = —sign(g), sign ((x3 — x2) + (x4 — x2)) = sign (gY3). (3.114)

Thus, we deduce that the point M; (respectively M) lies on the invariant parabola ®; = 0
(respectively ®, = 0) between M3 and My if and only if 7, < 0 (respectively Yzé, > 0).
From these relations, we state the following remark.

Remark 3.18. Assume that, for the singularities given in (3.113), the following conditions hold:
(x3—x1)(xa —x1) >0, (x3—2x2)(xg—x2) >0.
Then, when Y3 > 0, the condition

[(X3 —x1) + (x4 — xl)} [(x;), —x2) + (x4 — XZ)} >0
is impossible.

This follows directly from the sign relations in (3.114).
For systems (3.111), we also calculate:

D = —3(3¢% — 4n)*Y37365/4, C1a = 1235726,/2, &30 = 1235 [Y36, — (1 + ¢%)*72] /2.
(3.115)
We observe that, when D # 0,

sign (D) = —sign(Y3), sign (14) = sign (7202).
Moreover, in the case where ¢4 < 0 (i.e., 7202, < 0) and D < 0 (i.e., Y3 > 0), we find:
sign (&30) = sign [Y36, — (14 ¢%)*72] = sign (62).

Thus, we proceed to analyze two cases: D # 0 and D = 0.

The case D # 0. We observe that, in the case D > 0, the singular points M3 and M,
are complex, and therefore in this situation it is not necessary to distinguish the signs of the
polynomials 7, and 6.

Thus, taking into account Remark 3.18 and the information discussed above, we detect
that in the case D # 0 the systems admit the following configurations:

D <0, T2 < 0,00 >0 = (X3 — xl)(x4 — xl) <0, (X3 — XQ)(JC4 — xz) <0 = COTlﬁg. P.132;
D<0,72>0,6060<0 = (x3—x1)(xa—x1) >0, (x3—x2)(x4 —x2) >0 = Config. P.131;
D<0,72<0,60<0 = (x3—x1)(xs—x1) <0, (x3—x2)(x4 —x2) >0 = Config. P.133;
D<0,72>0,060>0 = (x3—x1)(xa —x1) >0, (x3—x2)(xa —x2) <0 = ~Config. P.133;
D >0 = = Config. P.134.

Note that in the case 20, > 0, both conditions lead to equivalent configurations to Con-
fig. P.133. Thus, we deduce that for D # 0, the systems (3.111) realize the following configu-
rations if and only if the corresponding invariant conditions hold:

D <0,814<0,830<0 = Config.P.131;
D <0,814<0,80>0 = Config.P.132;
D <0,814>0 = Config. P.133;
D>0 = Config. P.134.

7



92 R. D. S. Oliveira, A. C. Rezende, D. Schlomiuk and N. Vulpe

The case D = 0. Considering the values of the invariant polynomials obtained above
and the conditions {5 # 0 (i.e., 3¢ —4n # 0) and R7 # 0 (i.e., Y3 # 0), we deduce that the
condition D = 0 implies 2d, = 0. From (3.115), this is equivalent to {14 = 0.

We claim that, in the case {14 = 0, the systems (3.111) exhibit configuration Config. P.135 if
€30 < 0, configuration Config. P.136 if {39 > 0, and configuration Config. P.137 if ¢39 = 0.

Indeed, assume 14 = 0, that is, 726, = 0. To prove our claim, we examine both possible
subcases.

1: The subcase 6, = 0. This condition implies:

_ 1+10g* 4 21g* (782 -1)(98* +1)
We determine that, under this condition, the singular point M, coalesces with M. If in
addition v, = 0, then M; coalesces with M3, producing two double singularities on the
parabola.

Thus, for systems (3.111), if o, > 0, they realize Config. P.135, if 7, < 0, they realize
Config. P.136, and if > = 0, they realize Config. P.137.

Considering (3.115), for 6, = 0 we observe that sign (¢3p) = —sign (72), which confirms
the claim for this subcase.

2: The subcase vy, = 0. This implies n = (2 + 21¢?)/4, and under this condition, the singular
point M; coalesces with M3. We calculate:

5 = (1-7¢*)(1+9¢%).

It is straightforward to verify that, in this case, if 6, < 0, the configuration is Config. P.135, if
d2 > 0, the configuration is Config. P.136, and if J, = 0, the configuration is Config. P.137.

Finally, from (3.115), for 7, = 0 we find Y3 = 16¢> > 0, so sign (&30) = sign (6,), which
completes the proof of our claim.

The possibility B; = 0. From (3.112), this condition implies ¢(5¢> — 4n + 2)¥,¥3 = 0. We
claim that, due to the condition Ry # 0, the equality B; = 0 is equivalent to g = 0.
Indeed, assuming g # 0, we compute:

Discrim [¥,, n] = —4096¢> < 0, Discrim [¥3,1] = —2569* < 0,

and hence the equations ¥, = 0 and ¥3 = 0 cannot have real solutions with respect to the
parameter n. This completes the proof of our claim.
Thus, we conclude ¢ = 0 and arrive at the following one-parameter family of systems:

X :%X(Zn—Zy—l), Y= —x*+2ny— 2y (3.116)
which possess the invariant line x = 0 and the invariant parabolas:
O1(x,y)=x>—y=0, P(x,y)=x*+02n—1)y—n(2n—1)=0.
For these systems, we calculate:
05 = 1900n%, Ry = —32240(2n —1), By = —162(2n+1)*(4n —1)%x*

We now discuss two cases: B, # 0 and B, = 0.
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The case B, # 0. By Lemma 2.3, in this case the system cannot possess invariant lines
in any other direction. Considering the condition ¢ = 0 in (3.113), we find that the systems
(3.116) possess four finite singularities M;(x;,y;) (i = 1,2,3,4) with coordinates:

x1=0, y1=0, x=0, yr»=mn;

1
X34 = E( - Yg), ysa==(2n—-1), Y3=22n-1).

We observe that the invariant line x = 0 intersects the invariant parabola ®; = 0 at point M;,
and intersects the parabola ®, = 0 at point M.
For these systems we have:

D= -12#*Y] = sign(D) = —sign(Y3).

Since all singular points are fixed as intersection points of invariant curves, and D # 0 (due
to {5R7 # 0), we conclude that these systems realize configuration Config. P.138 if D < 0, and
configuration Config. P.139 if D > 0.

The case B, = 0. This condition implies (2n+1)(4n —1) = 0.
Assume first 4n — 1 = 0, that is, n = 1/4. Then, we arrive at the system:

(—2x% — 4% +y), (3.117)

N =

1
t=— x4y +1), §=

which possesses three invariant lines: Ly (x,y) = x = 0and Ly3(x,y) = y+ix —1/4 =0, along
with the invariant parabolas ®;(x,y) = x> —y = 0 and ®(x,y) = —4x> +2y —1/2 = 0.

We observe that the point M»(0,1/4) corresponds to the intersection of the above complex
lines. As a result, this system exhibits the configuration Config. P.140.

Now, if 2n +1 =0 (i.e.,, n = —1/2), we arrive at the system:

x=—x(1+y), y=-—x>—y—2v°
which can be transformed into system (3.117) via the affine transformation and time rescaling:
xn=x/2, y1=y/2+1/4, tH =2t

and hence also realizes Config. P.140.

3.3.3 The statement (&3)

According to Proposition 2.9, in this case the conditions {4 = {5 = 0 and R7 # 0 hold.
Considering (3.112), the condition 5 = 0 implies:

32
3¢ —4n=0 = n:%,

and we obtain the following one-parameter family of systems:

3 1
X =38 (3¢ +2) + 1(3g2 —2)x — % +gx*—xy,

; 12 (3.118)
v =38 (38 +2)x+ Ty~ +gxy -2,
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which, according to Proposition 2.9, possess ®(x,y) = x> —y = 0 as a double invariant
parabola.
For these systems we compute:

l4=05=0, Ry=32240(1+¢%)(143¢%) #0,
g§(1+8*)*(1+9¢%)°

0=-8(g*+9)#0, B =— I

According to Lemma 2.3, systems (3.118) can possess at least one invariant line only if
B; = 0. Thus, we discuss two cases: By # 0 and B; = 0.

The case B; # 0. Systems (3.118) possess the following three finite singularities M;(x;, ;)
(i =1,2,3) with coordinates:

(3.119)

1 ) 1 )
Y25 =5 [giz 2(1 +g2)] ;Y=g [—Z—gziZgu/Z(l +g2)] )

It is clear that the real singular point M; is a double point, as it lies on the double invariant
parabola. This fact can be checked directly.

Moreover, the complex singular points M, and M3 also lie on the invariant parabola,
though this is not relevant for the classification of the configuration. We deduce that in the
case By # 0, systems (3.118) realize a single configuration: Config. P.141.

The case By = 0. This condition implies ¢ = 0. Thus, system (3.118) with ¢ = 0 possesses an
additional invariant line: x = 0. Considering the singularities (3.119) evaluated at ¢ = 0, we
arrive at the unique configuration Config. P.142.

3.3.4 The statement (&)

According to Proposition 2.9, in this case the conditions {4 = Ry = 0 and (5 # 0 hold.
Considering (3.112), the condition R7; = 0 implies:

_ 2+5¢°

5¢° —4n+2=0 = n 1

Thus, we arrive at the following one-parameter family of systems:

1
= 2(g+2x) (387 +4gx — 4y),

3¢3x

. (3.120)
y =" 508" +2)y —x" +gxy -2y,

which possess the invariant parabola ®(x,y) = x> — y = 0 and the invariant line 2x + ¢ = 0.
For these systems we calculate:

By = —648(1 4 ¢*)°(1+9¢%)x* £ 0,

and by Lemma 2.3, no additional invariant lines can exist.
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Systems (3.120) have three finite singularities M;(x;,y;) (i = 1,2,3) with coordinates:

2
1
xlz—g, l/lzgz} Xzz—% yz:;(382+2)? X3

_%

_ %
2’ BT

Y3 2

We claim that the singular point M; is a multiple singularity of systems (3.120). Indeed,
applying a suitable translation to place M; at the origin, we arrive at the system:

X =x(gx—y),
y=g(1+8g)x—x*+ (1+¢")y+gxy—2y°

where My(0,0) corresponds to the singularity M.
Following [1], we compute the following invariant polynomials:

ps=p3 =0, pp=2g(1+g)*x(gx—y),
= —(1+g%) (x +5¢°x — 4gy),

and by [1, Lemma 5.2, statement (ii)], the point My has multiplicity at least 2. Notice that
y2 = 0 if and only if ¢ = 0, but in this case y; # 0. Therefore, according to [1, Lemma 5.2,
statement (ii)], M; is a double point if ¢ # 0 and a triple point if ¢ = 0. This classification is
governed by the invariant polynomial {3 = 32¢>.

We also note that the multiple singularity M; is the intersection point between the invariant
line 2x + ¢ = 0 and the invariant parabola. Moreover, the singularity M3 lies on the same
invariant parabola, and M3 coalesces with M; when ¢ = 0, producing a triple finite singularity
in systems (3.120).

On the other hand, the singularity M lies on the invariant line above the point M;, since
y2 —y1 = (§>+1)/2 > 0. Therefore, we conclude that systems (3.120) realize configuration
Config. P.143 if {3 # 0, and Config. P.144 if (3 = 0.

As all the cases have now been examined, we conclude that statement (B) of the Main
Theorem is fully proved.

3.4 Geometric invariants and the proof of the statement (C)

In this subsection, we complete the proof of the Main Theorem by showing that all 144 configu-
rations of invariant parabolas and invariant lines that we have constructed are non-equivalent
according to Definition 1.3. To achieve this, we define the invariants that distinguish the con-
figurations within the family QSP,, o) into 144 distinct cases. We believe that these invariants
are among the most suitable for describing the geometric phenomena specific to this class.

The basic algebraic-geometric notions that we will use here include the concept of an
integer-valued r-cycle and its type:

Definition 3.19. Let V be an irreducible algebraic variety of dimension n over a field K. A
cycle of dimension r, or an r-cycle, on V is a formal sum

Y m(W)W,
W

where each W is a subvariety of V of dimension r that is not contained in the singular locus
of V, m(W) € Z, and only finitely many of the coefficients n(W) are nonzero. The degree of
an r-cycle is the sum Yy m(W). An (n — 1)-cycle is called a divisor.
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Definition 3.20. The type of an r-cycle is the set of all ordered pairs (n1,1,), where n; is a
coefficient appearing in the r-cycle (i.e.,, n; = m(W) for some W), and n, is the number of
subvarieties W in the cycle for which m(W) = n;.

Definition 3.21. We define a set of numerical and geometric invariants that allow us to distin-
guish the obtained configurations:

(a) (Mp,mg) = (total multiplicity of invariant parabolas, total multiplicity of invariant affine
lines);

(b) T7£ = the type of the divisor of the multiplicities of finite singularities of the system located
on the parabolas;

() t{?m ¢ = the type of the divisor of the intersection multiplicities (in the finite plane) between
P and L;

(d) 75° = the type of the divisor of the multiplicities of singularities on the line at infinity;

(e) M} p = the maximum number of real finite intersection points between an invariant line
and a parabola;

(f) M7 = the maximum multiplicity among the invariant parabolas;

(g) Consider the finite segment of a parabola delimited by two singularities s; and s, of
the system, having inside another singularity sp. Let m(syp) denote the multiplicity of s.
We define the invariant I(sp) for this configuration, assigning it the value 1 if sy is an
intersection point between the parabola and a line, and 0 otherwise;

(h) m/ (PN L) = the multiplicity of the intersection point (considered as a singularity of the
system) between the parabola and an affine line;

(i) Consider an invariant line passing through the infinite point of the parabola. This line
has another finite intersection point with the parabola, splitting it into two branches. We
introduce the invariant {n}, n%}, where n}, denotes the number of singularities of the
system located on each open branch of the parabola;

(j) mR(P) = the total multiplicity of real singularities of the system located on the parabola;

(k) n3,(P) = the total number of real singularities located inside the union of all domains

delimited by the parabolas;

(I) If an invariant line intersects a parabola at two distinct real finite points, we obtain a do-
main D{m , bounded by the line segment and the arc of the parabola not passing through
its infinite point. We denote by (D{Jm ) the type of the divisor of the of the multiplicities

of singularities of the system located on the boundary of D{)m W
(m) n! (F): the number of finite singular points of the curve
F:P(XY,Z) - Li(X,Y,Z2) - Lo(X,Y,Z) =0

that have multiplicity at least 2.
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(n) Suppose an affine line intersects the parabola x> —y = 0 at two finite points or has a point
of tangency with it. Let A’ denote the curvilinear triangle on the Poincaré disk, with vertex
at the infinite point of the parabola, bounded by the closed branch of the parabola, the
adjacent segment of the invariant line, and the open arc 4., containing a singular point at
infinity in its interior. We denote by n(A?) (respectively, n(A?)) the number (respectively,
the total multiplicity) of singularities located on A?;

(0) Assume we have a real system possessing two real invariant parabolas. In this case, two
distinct possibilities occur in the real projective plane:

(1) The points at infinity of the two parabolas are distinct,

(2) The points at infinity coincide.

Clearly, the positions of the points at infinity (P;°, P5°) separate these two cases. If P{° #
P3°, we are in case (1). If P° = P;5°, we are in case (2), which further splits into two
subcases on the Poincaré disk (PD):

(i) The two points at infinity coincide on PD,

(ii) The two points are opposite on PD.

We define the invariant J(P;°, P5°) of the group acting on the systems viewed on the
Poincaré disk, assigning the value 0 to case (1), the value 1 to case (2.i), and the value 2 to
case (2.ii);

(p) If two invariant parabolas intersect at two distinct finite points, we obtain a finite do-
main D];?sz delimited by the closed branches of the parabolas. We denote by T(D];’lﬂpz)
the type of the divisor of the multiplicities of singularities of the system located on the
boundary of D{Dl APy

(q) Assume that two real invariant parabolas have two distinct points at infinity, P;° and P5°,
which are not opposite on PD. Let a]° and 45’ denote the open arcs on the circumference
of PD determined by P;* and P5°. Assume that within the interior of arc aj* (respectively,
ay’), there are ny (respectively, ny) singularities at infinity. We define a new invariant:
m(Py°, P3°) = min{ny, ny}.

The set of numerical and geometric invariants introduced in Definition 3.21 provides the
necessary criteria to distinguish all 144 non-equivalent configurations of systems in the family
QSP. Each invariant encodes specific geometric information regarding the arrangement of
invariant parabolas, affine lines, and singularities, both finite and at infinity.

Figures 3.1 and 3.2 illustrate the complete bifurcation diagram associated with the Main
Theorem. The diagrams are organized according to the sign of the parameter 7, with Fig-
ure 3.1 representing the case 7 > 0 and Figure 3.2 corresponding to # < 0.

Each branch in these diagrams reflects a bifurcation step governed by one or more of the
invariants from Definition 3.21, capturing the sequence of geometric changes that distinguish
one configuration from another. Together, the invariants and the diagrams provide a complete
and systematic classification of all phase portraits in the family QSP.
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Diagram 3.1: Non-equivalent configurations of systems in QSP (the case 7 > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the
case 1 > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the

case 1 > 0).
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Diagram 3.1 (continued): Non-equivalent configurations of systems in QSP (the

case 1 > 0).
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