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A bifurcation analysis
on a nonlocal overdetermined problem
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Abstract. In this paper, we study an overdetermined problem with Kirchhoff type
nonlocal terms related to the celebrated work by Serrin. We obtain the precise number
of solutions according to the value of the bifurcation parameter and study asymptotics
of bifurcation curves of solutions when the bifurcation parameter is large in some cases.
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1 Introduction

Let Ω ⊂ RN be a bounded domain with C2 boundary. In this paper, we consider the following
overdetermined elliptic problem with Kirchhoff type nonlocal terms:

−A
(
∥u∥p1 , ∥∇u∥q1

)
∆u = λB

(
∥u∥p2 , ∥∇u∥q2

)
in Ω,

u = 0 on ∂Ω,
∂u
∂ν = c on ∂Ω,

(1.1)

where p1, p2, q1, q2 > 0, λ > 0 are given constants, ∥ · ∥t stands for ∥ · ∥Lt(Ω) for any t > 0,
c is an unknown constant, ν is an outer unit normal to ∂Ω, and A(s, t), B(s, t) are positive
continuous functions in (s, t) ∈ R+ ×R+. The positive constant λ plays a role as a bifurcation
parameter.

In a celebrated paper by Serrin [5], see also Weinberger [10], it is proven that if the overde-
termined elliptic problem 

−∆u = 1 in Ω,

u = 0 on ∂Ω,
∂u
∂ν = c on ∂Ω

(1.2)

BCorresponding author. Email: futoshi@omu.ac.jp

https://doi.org/10.14232/ejqtde.2025.1.42
https://www.math.u-szeged.hu/ejqtde/
https://orcid.org/0009-0003-8297-0675


2 K. Sato and F. Takahashi.

admits a solution u ∈ C2(Ω), then Ω must be a ball and u is radially symmetric. Thus if
Ω = BR(x0), a ball of radius R with center x0, then the unique solution of (1.2) must be of the
form

UR,x0(x) =
R2 − |x − x0|2

2N
. (1.3)

By a simple computation, we have

∥UR,x0∥
p
Lp(BR(x0))

=

(
1

2N

)p (ωN−1

2

)
R2p+N B

(
N
2

, p + 1
)

,

∥∇UR,x0∥
q
Lq(BR(x0))

=

(
1
N

)q (ωN−1

N + q

)
RN+q

for any p, q > 0, where ωN−1 is the area of the unit sphere in RN and B(x, y) =∫ 1
0 tx−1(1 − t)y−1dt denotes the Beta function.

After [5, 10], many researches have been done around this topic and various generaliza-
tions (differential operators, spaces, and so on) have been obtained up to now. We refer to
a survey paper [3] and the references there in. However, to the best of authors’ knowledge,
overdetermined problems with Kirchhoff type nonlocal terms have not been studied so far.
Thus we initiate to study it in this paper.

In this paper, following an argument in [1], we prove

Theorem 1.1. Let A, B ∈ C(R+ × R+; R+). Then if (1.1) admits a solution u ∈ C2(Ω), then Ω
must be a ball and u must be radially symmetric.

On the other hand, consider the system of equations with respect to (s1, s2, t1, t2) ∈ R+ × R+ ×
R+ × R+: 

s1 = λ
B(s2, t2)

A(s1, t1)
∥UR,x0∥Lp1 (BR(x0))

s2 = λ
B(s2, t2)

A(s1, t1)
∥UR,x0∥Lp2 (BR(x0))

t1 = λ
B(s2, t2)

A(s1, t1)
∥∇UR,x0∥Lq1 (BR(x0))

t2 = λ
B(s2, t2)

A(s1, t1)
∥∇UR,x0∥Lq2 (BR(x0))

(1.4)

where UR,x0 defined in (1.3) is the unique solution of (1.2) for Ω = BR(x0). Then for λ > 0, the
problem (1.1) for Ω = BR(x0) has the same number of solutions of the system of equations (1.4). Also
the number of solutions of (1.4) is the same as the number of solutions to the equation

g(s) = λ∥UR,x0∥Lp1 (BR(x0)) (1.5)

with respect to s > 0, where

g(s) =

sA

(
s,
∥∇UR,x0∥Lq1 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s

)

B

(
∥UR,x0∥Lp2 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s,
∥∇UR,x0∥Lq2 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s

) (1.6)

Moreover, any solution uλ of (1.1) is of the form

uλ(x) = s1
UR,x0(x)

∥UR,x0∥Lp1 (BR(x0))
(1.7)
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where s1 is a solution of (1.5).

As a result of Theorem 1.1, many bifurcation diagrams can be obtained for specific A and
B in (1.1). Next are typical examples of the result.

Corollary 1.2. Let Ω = BR(x0) and let A(s, t) = (s − a)2 + b, B(s, t) = s in (1.1) for a, b > 0. Then

(i) if 0 < λ < b
∥UR,x0∥Lp2 (BR(x0))

, there is no solution to (1.1),

(ii) if λ = b
∥UR,x0∥Lp2 (BR(x0))

, there is a unique solution to (1.1),

(iii) if b
∥UR,x0∥Lp2 (BR(x0))

< λ < (a2+b)
∥UR,x0∥Lp2 (BR(x0))

, there are just two solutions to (1.1),

(iv) if λ ≥ (a2+b)
∥UR,x0∥Lp2 (BR(x0))

, there is a unique solution to (1.1).

Also any solution uλ is of the form

uλ(x) = sλ
UR,x0(x)

∥UR,x0∥Lp1 (BR(x0))
, x ∈ BR(x0)

where sλ is a positive solution of the quadratic equation

(s − a)2 + b = λ∥UR,x0∥Lp2 (BR(x0)).

Corollary 1.3. Let Ω = BR(x0) and let A(s, t) = es, B(s, t) = tr in (1.1) where r > 1. Then

(i) if 0 < λ∥UR,x0∥Lp1 (BR(x0)) <
( e

r−1

)r−1
( ∥UR,x0∥Lp1 (BR(x0))

∥∇UR,x0∥Lq2 (BR(x0))

)r
, there is no solution to (1.1),

(ii) if λ∥UR,x0∥Lp1 (BR(x0)) =
( e

r−1

)r−1
( ∥UR,x0∥Lp1 (BR(x0))

∥∇UR,x0∥Lq2 (BR(x0))

)r
, there is a unique solution to (1.1),

(iii) if λ∥UR,x0∥Lp1 (BR(x0)) >
( e

r−1

)r−1
( ∥UR,x0∥Lp1 (BR(x0))

∥∇UR,x0∥Lq2 (BR(x0))

)r
, there are just two solutions u1,λ, u2,λ to

(1.1).

Also we have

u1,λ(x) =
λ− 1

r−1

∥∇UR,x0∥
r

r−1
Lq2 (BR(x0))

1 +
1

r − 1
(1 + o(1))λ− 1

r−1
∥UR,x0∥Lp1 (BR(x0))

∥∇UR,x0∥
r

r−1
Lq2 (BR(x0))

UR,x0(x)

for x ∈ BR(x0) as λ → ∞, and

u2,λ(x) = {log λ + (r − 1)(log log λ)(1 + o(1))} UR,x0(x)
∥UR,x0∥Lp1 (BR(x0))

for x ∈ BR(x0) as λ → ∞.
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Here we mention some related works. Let I = (−1, 1) ⊂ R be an interval. T. Shibata
performed a bifurcation analysis on the one-dimensional Dirichlet problems with Kirchhoff
type nonlocal terms of the form

−A
(
∥u∥q1 , ∥u′∥r1

)
u′′(x) = λB

(
∥u∥q2 , ∥u′∥r2

)
up(x), x ∈ I,

u(x) > 0, x ∈ I,

u(±1) = 0,

where p > 1 and λ > 0, and ∥ · ∥t stands for ∥ · ∥Lt(I) for any t > 0. We refer the readers
to a series of works by T. Shibata [6–9]. Also, in the same spirit, we performed a bifurcation
analysis on the nonlocal boundary blowup problem in one space dimension

A
(
∥u∥q1 , ∥u′∥r1

)
u′′(x) = λB

(
∥u∥q2 , ∥u′∥r2

)
up(x), x ∈ I,

u(x) > 0, x ∈ I,

limx→±1 u(x) = +∞,

where p > 1, λ > 0, q1, q2 ∈
(
0, p−1

2

)
, and r1, r2 ∈

(
0, p−1

p+1

)
, see [2, 4]. We consider the problem

(1.1) is a higher dimensional analogue of the problems above.

2 Proof of Theorem 1.1.

In this section, we prove Theorem 1.1.

Proof. First assume that there exists a solution u ∈ C2(Ω) of (1.1) and put

v = γu

where γ > 0 is chosen so that

γ−1 = λ
B(∥u∥Lp2 (Ω), ∥∇u∥Lq2 (Ω))

A(∥u∥Lp1 (Ω), ∥∇u∥Lq1 (Ω))
.

Then

−∆v(x) = γ(−∆u(x))
(1.2)
= γλ

B(∥u∥Lp2 (Ω), ∥∇u∥Lq2 (Ω))

A(∥u∥Lp1 (Ω), ∥∇u∥Lq1 (Ω))
= 1

in Ω. Also we see v = 0 on ∂Ω and ∂v
∂ν = γc is a constant on ∂Ω. Thus by the result of Serrin,

we see that Ω must be a ball, say Ω = BR(x0) for some R > 0 and x0 ∈ RN and v ≡ UR,x0(x).
This implies that

u(x) = γ−1UR,x0(x), ∇u(x) = γ−1∇UR,x0(x). (2.1)

Define

s1 = ∥u∥Lp1 (BR(x0)), s2 = ∥u∥Lp2 (BR(x0)), t1 = ∥∇u∥Lq1 (BR(x0)), t2 = ∥∇u∥Lq2 (BR(x0)).

Then by (2.1), we have 
s1 = γ−1∥UR,x0∥Lp1 (BR(x0))

s2 = γ−1∥UR,x0∥Lp2 (BR(x0))

t1 = γ−1∥∇UR,x0∥Lq1 (BR(x0))

t2 = γ−1∥∇UR,x0∥Lq2 (BR(x0))
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which is equivalent to (1.4). This shows that

(s1, s2, t1, t2) = (∥u∥Lp1 (BR(x0)), ∥u∥Lp2 (BR(x0)), ∥∇u∥Lq1 (BR(x0)), ∥∇u∥Lq2 (BR(x0)))

is a solution to (1.4) and thus

♯{u : solutions of (1.1)} ≤ ♯{(s1, s2, t1, t2) ∈ (R+)
4 : solutions of (1.4)},

where ♯A denotes the cardinality of the set A.
On the other hand, let Ω = BR(x0) for some R > 0 and x0 ∈ RN and let (s1, s2, t1, t2) ∈

(R+)4 be any solution to (1.4). Note that by (1.4), we see
s1

∥UR,x0∥Lp1 (BR(x0))
=

s2

∥UR,x0∥Lp2 (BR(x0))

=
t1

∥∇UR,x0∥Lq1 (BR(x0))
=

t2

∥∇UR,x0∥Lq2 (BR(x0))
(2.2)

= λ
B(s2, t2)

A(s1, t1)
.

Thus if we define

u(x) = s1
UR,x0(x)

∥UR,x0∥Lp1 (BR(x0))(
= s2

UR,x0(x)
∥UR,x0∥Lp2 (BR(x0))

= t1
UR,x0(x)

∥∇UR,x0∥Lq1 (BR(x0))
= t2

UR,x0(x)
∥∇UR,x0∥Lq2 (BR(x0))

)
,

then we have u(x) > 0, u = 0, ∂u
∂ν = const. on ∂BR(x0) and

s1 = ∥u∥Lp1 (BR(x0)), s2 = ∥u∥Lp2 (BR(x0)), t1 = ∥∇u∥Lq1 (BR(x0)), t2 = ∥∇u∥Lq2 (BR(x0)).

Moreover, by the definition of u, we have

−A
(
∥u∥Lp1 (BR(x0)), ∥∇u∥Lq1 (BR(x0))

)
∆u(x) = −A(s1, t1)∆u(x)

= −A(s1, t1)
s1

∥UR,x0∥Lp1 (BR(x0))
∆UR,x0(x)︸ ︷︷ ︸

=−1

= A(s1, t1)
s1

∥UR,x0∥Lp1 (BR(x0))

(2.2)
= λB(s2, t2).

This shows that

♯{u : solutions of (1.1)} ≥ ♯{(s1, s2, t1, t2) ∈ (R+)
4 : solutions of (1.4)}.

Thus the number of solutions of (1.1) for Ω = BR(x0) and that of (1.4) are the same.
Also by (2.2), we can rewrite the system of equations (1.4) into a single equation for s = s1

s1 = λ

B

(
∥UR,x0∥Lp2 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s1,

∥∇UR,x0∥Lq2 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s1

)

A

(
s1,

∥∇UR,x0∥Lq1 (BR(x0))

∥UR,x0∥Lp1 (BR(x0))
s1

) ∥UR,x0∥Lp1 (BR(x0))

which is equivalent to (1.5) with g(s) in (1.6). Thus the number of solutions of (1.4) for
Ω = BR(x0) and that of (1.5) are also the same.
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Remark 2.1. Theorem 1.1 can be generalized to the overdetermined problem of the form
−A

(
∥u∥ p⃗, ∥∇u∥q⃗

)
∆u = λB (∥u∥⃗r, ∥∇u∥⃗s) , in Ω,

u = 0, on ∂Ω,
∂u
∂ν = c, on ∂Ω

where

A
(
∥u∥ p⃗, ∥∇u∥q⃗

)
= A

(
∥u∥Lp1 (Ω), . . . , ∥u∥LpI (Ω), ∥∇u∥Lq1 (Ω), . . . , ∥∇u∥LqJ (Ω)

)
,

B (∥u∥⃗r, ∥∇u∥⃗s) = B
(
∥u∥Lr1 (Ω), . . . , ∥u∥LrK (Ω), ∥∇u∥Ls1 (Ω), . . . , ∥∇u∥LsL (Ω)

)
for {pi}I

i=1, {qj}J
j=1, {rk}K

k=1, {sl}L
l=1 ⊂ R+. We treat A, B of the forms in Theorem 1.1 just for a

simple presentation.

3 Proof of corollaries

In this section, we prove corollaries in §1. By Theorem 1.1, the number of solutions of (1.1) is
the same as the number of solutions of (1.5) when Ω = BR(x0), and we have the expression

of solution u(x) = s
UR,x0 (x)

∥UR,x0∥Lp1
to (1.1) where s > 0 is any solution of (1.5). Here and in what

follows, ∥ · ∥p stands for ∥ · ∥Lp(BR(x0)) for any p > 0. Thus we just need to solve the equation
(1.5) with λ > 0 for specific A and B.

Proof of Corollary 1.2. Since A(s, t) = {(s − a)2 + b} and B(s, t) = s, the function g(s) defined
in (1.6) becomes

g(s) =
∥UR,x0∥p1

∥UR,x0∥p2

{
(s − a)2 + b

}
.

Thus g(s) is a quadratic function with respect to s > 0 and

min
s>0

g(s) = g(a) = b
∥UR,x0∥p1

∥UR,x0∥p2

, g(0) = (a2 + b)
∥UR,x0∥p1

∥UR,x0∥p2

.

Now, the equation (1.5) reads

∥UR,x0∥p1

∥UR,x0∥p2

{
(s − a)2 + b

}
= λ∥UR,x0∥p1 .

By a consideration of the graph of g(s), we see that the number of positive solutions s of (1.5)
according to the value of λ > 0 is:

(i) 0, if 0 < λ∥UR,x0∥p1 < g(a) = mins>0 g(s),

(ii) 1, if λ∥UR,x0∥p1 = g(a),

(iii) 2, if g(a) < λ∥UR,x0∥p1 < g(0),

(iv) 1, if λ∥UR,x0∥p1 ≥ g(0).

This completes the proof of Corollary 1.2.
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Proof of Corollary 1.3. Let A(s, t) = es and B(s, t) = tr for r > 1. Then the function g(s) defined
in (1.6) becomes

g(s) =
( ∥UR,x0∥p1

∥∇UR,x0∥q2

)r

ess1−r.

A computation yields that

min
s>0

g(s) = g(r − 1) =
( ∥UR,x0∥p1

∥∇UR,x0∥q2

)r ( e
r − 1

)r−1

and lims→+0 g(s) = lims→∞ g(s) = +∞. Thus the number of solutions to (1.5) is

(i) 0, if 0 < λ∥UR,x0∥p1 <
( ∥UR,x0∥p1
∥∇UR,x0∥q2

)r ( e
r−1

)r−1,

(ii) 1, if λ∥UR,x0∥p1 =
( ∥UR,x0∥p1
∥∇UR,x0∥q2

)r ( e
r−1

)r−1,

(iii) 2, if λ∥UR,x0∥p1 >
( ∥UR,x0∥p1
∥∇UR,x0∥q2

)r ( e
r−1

)r−1.

Let 0 < s1,λ < s2,λ be two solutions of g(s) = λ∥UR,x0∥p1 in the case (iii). Then we see s1,λ → 0
and s2,λ → ∞ as λ → ∞. Since

esi,λ = sr−1
i,λ λK

for i = 1, 2, where

K =
∥∇UR,x0∥r

q2

∥UR,x0∥r−1
p1

,

by taking log of the above equation, we obtain

si,λ = (r − 1) log si,λ + log(λK). (3.1)

Since s1,λ = o(1) as λ → ∞, we have

o(1) = (r − 1) log s1,λ + log(λK)

as λ → ∞. By solving this with respect to s1,λ, we see

s1,λ = (λK)−
1

r−1 eo(1) = (λK)−
1

r−1 (1 + δ) (3.2)

where δ → 0 as λ → ∞. Inserting (3.2) into the both sides of (3.1) and computing, we have

(λK)−
1

r−1 (1 + δ) = (r − 1) log(1 + δ) = (r − 1)δ(1 + o(1)).

From this, we have

(λK)−
1

r−1 = (r − 1)
δ

1 + δ
(1 + o(1)) = (r − 1)δ(1 + o(1)).

Thus

δ =
1

r − 1
(1 + o(1))(λK)−

1
r−1 (λ → ∞).

Inserting this into (3.2), we have

s1,λ = (λK)−
1

r−1

(
1 +

1
r − 1

(1 + o(1))(λK)−
1

r−1

)
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and recalling u1,λ = s1,λ
UR,x0 (x)
∥UR,x0∥p1

, we obtain the formula for u1,λ:

u1,λ(x) = (λK)−
1

r−1

(
1 +

1
r − 1

(1 + o(1))(λK)−
1

r−1

)
UR,x0(x)
∥UR,x0∥p1

=
λ− 1

r−1

∥∇UR,x0∥
r

r−1
q2

1 +
1

r − 1
(1 + o(1))λ− 1

r−1
∥UR,x0∥p1

∥∇UR,x0∥
r

r−1
q2

UR,x0(x)

for x ∈ BR(x0).
Similarly, from (3.1), we have

s2,λ = (r − 1) log s2,λ + log(λK).

Now, since s2,λ → ∞ as λ → ∞, we have

s2,λ

1 − (r − 1)
log s2,λ

s2,λ︸ ︷︷ ︸
=o(1)

 = log(λK) = (log λ)

1 +
log K
log λ︸ ︷︷ ︸
=o(1)


as λ → ∞. From this, we have

s2,λ =
1

1 − o(1)
(log λ)(1 + o(1)) = (1 + ε) log λ (3.3)

as λ → ∞, where ε → 0 as λ → ∞. Again, inserting this into (3.1), we have

(1 + ε) log λ = (r − 1) {log(1 + ε) + log log λ}+ log λ + log K,

which leads to

ε = (r − 1)
log log λ

log λ

1 +
log(1 + ε)

log log λ
+

1
r − 1

log K
log log λ︸ ︷︷ ︸

=o(1)


= (r − 1)

log log λ

log λ
(1 + o(1))

as λ → ∞. Then coming back to (3.3) and recalling that u2,λ = s2,λ
UR,x0 (x)
∥UR,x0∥p1

, we obtain the
asymptotic formula for u2,λ:

s2,λ = (1 + ε) log λ =

(
1 + (r − 1)

log log λ

log λ
(1 + o(1))

)
log λ,

u2,λ(x) = {log λ + (r − 1)(log log λ)(1 + o(1))} UR,x0(x)
∥UR,x0∥p1

as λ → ∞.
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