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Abstract. We prove the existence of at least one positive periodic solution for a second-
order damped nonlinear differential equation with an indefinite singularity by assum-
ing the corresponding linear equation have a positive Green’s function. Our results are
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the Leray–Schauder alternative principle.
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1 Introduction

The main purpose of this paper is to investigate the existence of a positive periodic solution
for the following damped indefinite singular equation

x′′ + p(t)x′ + q(t)x =
b(t)
xρ

+ e(t), (1.1)

where ρ is a real constant and ρ > 0, q and e ∈ C(R/ωZ) are positive, p ∈ C(R/ωR), b ∈
C1(R/ωZ), the weight term b may have zero, even it may change sign. Moreover, note that
when p(t) ≡ 0, equation (1.1) reduces to

x′′ + q(t)x =
b(t)
xρ

+ e(t). (1.2)

According to the relevant literature [21], the singular term b(t)
xρ represents a singularity of

repulsive type in the case that b(t) > 0 for all t ∈ [0, ω], and a singularity of attractive type in
the case that b(t) < 0 for all t ∈ [0, ω]. Additionally, equation (1.1) is said to satisfy the strong
force condition if ρ ≥ 1 and the weak force condition if 0 < ρ < 1.
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In recent years, Schauder’s fixed point theorem [10, 23, 26], the method of lower and up-
per solutions [15,17,27,28], the Leray–Schauder alternative principle [9,20,22], Krasnoselskii’s
fixed point theorem in cones [29, 30], and coincidence degree theory [5, 7, 32] have been em-
ployed to investigate the existence of positive periodic solutions for equations (1.1) and (1.2)
with the weight term b(t) > 0 or b(t) < 0 for all t ∈ [0, ω](i.e. singularity of repulsive or
attractive type).

Recently, several intriguing results have been obtained on differential equations with an
indefinite singularity [1, 8, 13, 18, 24], which are significant both in theory and in practice. In
this paper, we aim to establish the existence of a positive periodic solution for equation (1.1)
by applying the Leray–Schauder alternative principle.

Depending on the sign of the weight term b, equation (1.1) may exhibit both attractive and
repulsive singularities depending on the variable t, even the singularity can vanish in certain
subintervals where the weight term b equals zero. Since the weight term b of the above papers
[7–10, 20, 22, 23, 26, 27, 29, 30, 32] does not change sign, the methods employed in these works
are no longer applicable to proving the existence of a positive periodic solution for equation
(1.1) with an indefinite singularity. Thus, an alternative approach is required to overcome
these difficulties. To address the issue of an indefinite singularity (i.e., the singular term that
may change sign), we introduce the change of variable x = uα with α = 1

ρ+1 and α < 1. This
transformation simplifies equation (1.1) into a more easily treatable singular equation

u′′ + p(t)u′ +
1
α

q(t)u =
e(t)

α
u1−α + (1 − α)

u′2

u
+

b(t)
α

. (1.3)

It is readily seen that the existence of a positive periodic solution to equation (1.1) reduces to
proving the existence of a positive periodic solution for equation (1.3). A similar transforma-
tion method has also appeared in the literature [12].

Our purpose is to show that the Leray–Schauder alternative principle can be applied to
indefinite singular equation (1.1). The rest of this paper is organized as follows. In section 2,
Green’s function is provided, and its positivity is obtained. In section 3, in order to facilitate
the study of equation (1.3), we first study the following damped singular differential equation

u′′ + p(t)u′ + ℓ(t)u = f (t, u, u′) + m(t), (1.4)

where ℓ(t) := 1
α q(t), m(t) := b(t)

α , f ∈ C(R × (0,+∞) × R, R) is ω-periodic with respect
to t and exhibits a singularity of repulsive type at u = 0. By applying the Leray–Schauder
alternative principle, we prove that equation (1.4) has at least one positive periodic solution.
Afterwards, we obtain the existence of a positive periodic solution for equation (1.1), and the
results are applicable to both strong and weak singularities.

2 Positivity of Green’s function

We consider the following nonhomogeneous linear differential equation{
u′′ + p(t)u′ + ℓ(t)u = h(t),

u(0) = u(ω), u′(0) = u′(ω),
(2.1)

where h ∈ C(R/ωZ). Equation (2.1) has a unique ω-periodic solution which can be written
as

u(t) =
∫ ω

0
G(t, s)h(s)ds,



Positive periodic solutions 3

where G(t, s) is the Green’s function of equation (2.1). Throughout this paper, we assume that

(A) The Green’s function G(t, s) of equation (2.1) is positive for all (t, s) ∈ [0, ω]× [0, ω].

The rest part of this section is to make a brief on some known sufficient conditions to
guarantee condition (A) is satisfied. We will discuss the following three cases.

Case I. The general case p ∈ C(R/ωR).
Define functions

ς(p)(t) = exp
(∫ t

0
p(s)ds

)
and

ς1(p)(t) = ς(p)(ω)
∫ t

0
ς(p)(s)ds +

∫ ω

t
ς(p)(s)ds.

Lemma 2.1 (see [16]). Assume that ℓ(t) ≥ 0 and ℓ ̸≡ 0 and the following two inequalities are satisfied∫ ω

0
ℓ(s)ς(p)(s)ς1(−p)(s)ds ≥ 0 (2.2)

and
sup

0≤t≤ω

{∫ t+ω

t
ς(−p)(s)ds,

∫ t+ω

t
ℓ(s)ς(p)(s)ds

}
≤ 4. (2.3)

Then condition (A) holds.

Case II. Special case p̄ := 1
ω

∫ ω
0 p(t)dt > 0.

In 2005, Wang et al. [31, Lemma 2.4] discussed the positivity of Green’s function G(t, s) for
all (t, s) ∈ [0, ω]× [0, ω] if the following conditions are satisfied:

(A1) There are continuous ω-periodic functions a1(t) and a2(t) such that
∫ ω

0 a1(t)dt > 0,∫ ω
0 a2(t)dt > 0 and

a1(t) + a2(t) = p(t), a′1(t) + a1(t)a2(t) = ℓ(t), for t ∈ [0, ω].

(A2) p̄2 ≥ 4ω2 exp
( 1

ω

∫ ω
0 ln ℓ(s)ds

)
.

Obviously, condition (A2) is hard restrictive for the positivity of the Green’s function. After
that, Cheng and Ren [7] in 2018 discussed the positivity of the Green’s function for all (t, s) ∈
[0, ω]× [0, ω] if only condition (A1) is satisfied.

Case III. Special case p̄ = 0.
Define

D(ι) =

{( 2π
ι

)1/2 ( 2
2+ι

)1/2−1/ι Γ(1/ι)
Γ(1/2+1/ι)

, if 1 ≤ ι < ∞,

2, if ι = ∞,

where Γ is the Gamma function with Γ(t) =
∫ +∞

0 xt−1e−xdx.

Lemma 2.2 (see [3, Theorem 5.1]). Assume that p̄ = 0 and
∫ ω

0 ς(p)(t)ℓ(t)dt > 0. Suppose further
that there exists 1 ≤ ξ ≤ ∞ such that

(Υ1(ω))1+1/ι∥Υ2∥ξ < D2(2ι), (2.4)

where Υ1(ω) =
∫ ω

0 ς(−p)(t)dt, Υ2(t) = ℓ+(t)(ς(p)(t))2−1/ξ , ∥Υ2∥ξ =
(∫ ω

0 |Υ2(t)|ξdt
) 1

ξ .
Then condition (A) holds.
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In follows what, we consider the case that p(t) ≡ 0.

Remark 2.3 (see [25, Corollary 2.3]). In the case p(t) ≡ 0, define

D̃(ι̃) =

 2π
ι̃ω1+2/ι̃

( 2
2+ι̃

)1−2/ι̃
(

Γ(1/ι̃)
Γ(1/2+1/ι̃)

)2
, if 1 ≤ ι̃ < ∞,

4
ω , if ι̃ = ∞,

Assume that ℓ ∈ Lζ(0, ω) for 1 ≤ ζ ≤ ∞ and ℓ(t) ≥ 0 for almost every t ∈ [0, ω]. If

∥ℓ∥ζ :=
(∫ ω

0
|ℓ(t)|ζdt

) 1
ζ

< D̃(2ζ∗),

where ζ∗ = ζ
ζ−1 if 1 ≤ ζ < ∞ and ζ∗ = 1 if ζ = +∞, then the Green’s function G(t, s) is

positive for all (t, s) ∈ [0, ω]× [0, ω].

Remark 2.4 (see [19, Lemma 2.5]). In the case p(t) ≡ 0 and ℓ(t) = δ2 with δ > 0 and δ ̸= 2kπ
ω

for any natural k, the Green’s function has the form

G1(t, s) =


cos δ(t − s − ω

2 )

2δ sin δω
2

, 0 ≤ s ≤ t ≤ ω,

cos δ(t − s + ω
2 )

2δ sin δω
2

, 0 ≤ t < s ≤ ω.

If δ < π
ω , then Green’s function G3(t, s) is positive for all (t, s) ∈ [0, ω]× [0, ω].

In this context, the general mechanism for the construction of Green functions in this
context is described in [2, 4].

3 Main results

In this section, we prove the existence of a positive periodic solution for equation (1.1). First,
defined X := {u ∈ C1 : u(t + ω) ≡ u(t), for all t ∈ (R)} with the norm ∥u∥ := maxt∈R |u(t)|,
X is a normed linear space (not complete). Our proof is based on the following Leray–
Schauder alternative principle, which can be found in [14, p. 120-130].

Lemma 3.1. Assume that Ω is an open subset of a convex set K in a normed linear space X and β ∈ Ω.
Let T : Ω̄ → K be a compact map. Then one of the following two conclusions holds:

(I) T has at least one fixed point in Ω̄.

(II) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λTu + (1 − λ)β.

From condition (A), we denote

A := min
0≤s,t≤ω

G(t, s), B := max
0≤s,t≤ω

G(t, s), σ :=
A
B , ι :=

max
0≤s,t≤ω

∣∣∣ ∂G(t,s)
∂t

∣∣∣
A . (3.1)

It is clear that 0 < A ≤ B and 0 < σ ≤ 1.
Define the function γ : R → R by

γ(t) :=
∫ ω

0
G(t, s)m(s)ds,



Positive periodic solutions 5

which is the unique ω-periodic solution of the following equation

u′′(t) + p(t)u′(t) + ℓ(t)u(t) = m(t).

Denote
γ∗ := min

t∈R
γ(t) and γ∗ := max

t∈R
γ(t).

3.1 The case γ∗ ≥ 0

Theorem 3.2. Assume that condition (A) and 0 ≤ p̄ω < 1 hold. Furthermore, assume that the
following conditions are satisfied:

(H1) For each constant L > 0, there exists a continuous function ϕL ≻ 0 such that f (t, u, y) ≥ ϕL(t)
for all (t, u, y) ∈ [0, ω]× (0, L]× R, where ϕL(t) ≻ 0 represents ϕL(t) ≥ 0 for almost every
t ∈ [0, ω].

(H2) There exist continuous non-negative functions k, φ, ϱ and continuous positive function g such
that

0 ≤ f (t, u, y) ≤ g(u)ϱ(|y|) + k(t)φ(u) for all (t, u, y) ∈ [0, ω]× (0, ∞)× R,

and g(u) is non-increasing, φ(u)/g(u) is non-decreasing and ϱ(·) is non-decreasing in (0,+∞).

(H3) There exists a positive real constant r such that

r

g(σr + γ∗)
(

ϱ
(∣∣∣ rℓ̄ω

1− p̄ω + γ′∗
∣∣∣)+ ∥k∥φ(r+γ∗)

g(r+γ∗)

) > Λ∗,

where Λ(t) :=
∫ ω

0 G(t, s)ds and ∥k∥ = max
t∈[0,ω]

k(t).

If γ∗ ≥ 0, then equation (1.4) has at least one positive ω-periodic solution u with u(t) > γ(t) for all
t ∈ [0, ω] and 0 < ∥u − γ∥ < r.

Proof. Consider equation

u′′(t) + p(t)u′(t) + ℓ(t)u(t) = f (t, u(t) + γ(t), u′(t) + γ′(t)). (3.2)

It is easy to see that if equation (3.2) has a positive ω-periodic solution u satisfying u(t) +
γ(t) > 0 for t ∈ [0, ω] and 0 < ∥u∥ < r, then v(t) := u(t) + γ(t) is a positive ω-periodic
solution of equation (1.4) with 0 < ∥v − γ∥ < r. So we just need to consider equation (3.2).

Since condition (H3) holds, we choose n0 ∈ {1, 2, . . .} such that 1
n0

< σr + γ∗ and

Λ∗g(σr + γ∗)

(
ϱ

(∣∣∣∣ rℓ̄ω

1 − p̄ω
+ γ′∗

∣∣∣∣)+
∥k∥φ(r + γ∗)

g(r + γ∗)

)
+

1
n0

< r.

Let N0 = {n0, n0 + 1, . . .}. Consider the family of equations

u′′ + p(t)u′ + ℓ(t)u = λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +
ℓ(t)

n
, (3.3)

where λ ∈ [0, 1], and

fn(t, u, y) =

{
f (t, u, y) if u ≥ 1

n ,

f (t, 1
n , y) if u < 1

n .
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An ω-periodic solution of equation (3.3) is just a fixed point of operator equation

u = λTnu + (1 − λ)β, (3.4)

where β := 1
n and Tn is a continuous operator defined by

(Tnu)(t) :=
∫ ω

0
G(t, s) fn(s, u(s) + γ(s), u′(s) + γ′(s))ds +

1
n

, (3.5)

where we used the fact
∫ ω

0 G(t, s)ℓ(s)ds ≡ 1 from [25, Corollary 2.3] and G(t, s) > 0 for all
(t, s) ∈ [0, ω]× [0, ω] from condition (A).

Define
K := {u ∈ X : u(t) > 0 for all t ∈ R},

and
Br := {u ∈ K : ∥u∥ < r},

where X and r are defined in Section 3 and Theorem 3.2, respectively. Obviously, Br is an
open subset in K. Further, for any u ∈ Br, it follows from (A) and (H1) that

(Tnu)(t) =
∫ ω

0
G(t, s) fn(s, u(s) + γ(s), u′(s) + γ′(s))ds +

1
n
≥ 1

n
> 0,

which implies Tn(Br) ⊂ K. Besides, by using the Arzelà–Ascoli Theorem, it is easy to verify
that Tn : Br → K is completely continuous.

Next, we claim that any fixed point u of equation (3.4) for any λ ∈ (0, 1) must satisfy
∥u∥ ̸= r. Otherwise, assume that u is a fixed point of equation (3.4) for λ ∈ (0, 1) such that
∥u∥ = r. Then, we give

u(t)− 1
n
= λ

∫ ω

0
G(t, s) fn(s, u(s) + γ(s), u′(s) + γ′(s))ds

≥ λA
∫ ω

0
fn(s, u(s) + γ(s), u′(s) + γ′(s))ds

= λσB
∫ ω

0
fn(s, u(s) + γ(s), u′(s) + γ′(s))ds

≥ σ max
t∈R

{
λ
∫ ω

0
G(t, s) fn(s, u(s) + γ(s), u′(s) + γ′(s))ds

}
= σ

∥∥∥∥u − 1
n

∥∥∥∥ .

Therefore, we obtain

u(t) ≥ σ∥u − 1
n
∥+ 1

n
≥ σ

(
∥u∥ − 1

n

)
+

1
n
≥ σr,

and then
u(t) + γ(t) ≥ σr + γ∗ >

1
n

,

since 1
n ≤ 1

n0
< σr + γ∗.

Further, we claim that

∥u′∥ ≤ rℓ̄ω

1 − p̄ω
(3.6)
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for any ω-periodic solution u(t) of equation (3.3). Integrating equation (3.3) over the interval
[0, ω], we see that∫ ω

0
p(t)u′(t)dt +

∫ ω

0
ℓ(t)u(t)dt = λ

∫ ω

0
fn(t, u(t) + γ(t), u′(t) + γ′(t))dt +

∫ ω

0

ℓ(t)
n

dt. (3.7)

Since u(0) = u(ω), we know that there exists a point t1 ∈ (0, ω) such that u′(t1) = 0. There-
fore, we get

∥u′∥ = max
t∈R

∣∣∣∣1
2
(u′(t) + u′(t − ω))

∣∣∣∣
= max

t∈R

1
2

∣∣∣∣∫ t

t1

u′′(s)ds −
∫ t1

t−ω
u′′(s)ds

∣∣∣∣
≤ 1

2

∫ ω

0
|u′′(s)|ds

=
1
2

(∫ ω

0

∣∣∣∣λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +
ℓ(t)

n
− ℓ(t)u(t)− p(t)u′(t)

∣∣∣∣ dt
)

≤ 1
2

∫ ω

0

(
λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +

ℓ(t)
n

+ ℓ(t)u(t)
)

dt +
1
2
∥u′∥ p̄ω

(3.8)

since f (t, u, u′) > 0, ℓ(t) > 0 and p̄ ≥ 0. Applying (3.7) to (3.8), we obtain

∥u′∥ ≤
∫ ω

0
ℓ(t)u(t)dt +

1
2

∫ ω

0
p(t)u′(t)dt +

1
2
∥u′∥

∫ ω

0
p(t)dt

=rℓ̄ω + ∥u′∥ p̄ω.

Since 1 − p̄ω > 0, then we deduce

∥u′∥ ≤ rℓ̄ω

1 − p̄ω
,

which proves that (3.6) holds.
On the other hand, it follows from conditions (H2) and (H3) that

u(t) = λ
∫ ω

0
G(t, s) fn(s, u(s) + γ(s), u′(s) + γ′(s))ds +

1
n

= λ
∫ ω

0
G(t, s) f (s, u(s) + γ(s), u′(s) + γ′(s))ds +

1
n

≤
∫ ω

0
G(t, s)(g(u(s) + γ(s))ϱ(|u′(s) + γ′(s)|) + k(s)φ(u(s) + γ(s)))ds +

1
n

=
∫ ω

0
G(t, s)g(u(s) + γ(s))

(
ϱ(|u′(s) + γ′(s)|) + k(s)φ(u(s) + γ(s))

g(u(s) + γ(s))

)
ds +

1
n

≤ g(σr + γ∗)

(
ϱ

(∣∣∣∣ rℓ̄ω

1 − p̄ω
+ γ′∗

∣∣∣∣)+
∥k∥φ(r + γ∗)

g(r + γ∗)

)
Λ∗ +

1
n0

,

which implies

r = ∥u∥ ≤ g(σr + γ∗)

(
ϱ

(∣∣∣∣ rℓ̄ω

1 − p̄ω
+ γ′∗

∣∣∣∣)+
∥k∥φ(r + γ∗)

g(r + γ∗)

)
Λ∗ +

1
n0

.

This is a contradiction with the choice of n0 and the claim is proved.
From this claim, Lemma 3.1 guarantees that

u = Tnu
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has a fixed point, denoted by un in Br. Then, we get

u′′ + p(t)u′ + ℓ(t)u = fn(t, u(t) + γ(t), u′(t) + γ′(t)) +
ℓ(t)

n
(3.9)

has an ω-periodic solution un with ∥un∥ ≤ r. Since un(t) + γ(t) ≥ 1
n > 0 for all n > n0, t ∈ R,

un is actually a positive ω-periodic solution of equation (3.9).
From condition (H1), there exists a continuous function ϕr(t) ≥ 0 such that f (t, u, y) ≥

ϕr(t) for all (t, u, y) ∈ [0, ω]× (0, r]× R. Since un(t) + γ(t) ≥ 1
n > 0 for all n > n0, t ∈ R and

γ∗ ≥ 0, we have

un(t) + γ(t) =
∫ ω

0
G(t, s) fn(s, un(s) + γ(s), u′

n(s) + γ′(s))ds + γ(t) +
1
n

=
∫ ω

0
G(t, s) f (s, un(s) + γ(s), u′

n(s) + γ′(s))ds + γ(t) +
1
n

≥
∫ ω

0
G(t, s)ϕr+γ∗ds + γ(t)

≥ Φ∗ + γ∗ =: ϑ,

(3.10)

where Φ(t) =
∫ ω

0 G(t, s)ϕr+γ∗(s)ds. Since G(t, s) is regular and ϕr+γ∗(s) > 0, it follows that
Φ∗ > 0. So we have un(t) + γ(t) ≥ ϑ.

Similar to the proof of equation (3.6), we get

∥u′
n∥ ≤ rℓ̄ω

1 − p̄ω
, for all n ≥ n0. (3.11)

Further, it follows from (3.9) and (3.11) that

∥u′′
n∥ ≤

∣∣∣∣p(t)u′
n(t) + ℓ(t)un(t) + λ fn(t, un(t) + γ(t), u′

n(t) + γ′(t)) +
ℓ(t)

n

∣∣∣∣
≤ r∥p∥ℓ̄ω

1 − p̄ω
+ ∥ℓ∥r + ∥ f ∥+ ∥ℓ∥

n0
:= M1,

where ∥ f ∥ := max
ϑ≤un+γ≤r+γ∗,∥u′

n∥≤ rℓ̄ω
1− p̄ω

| f (t, un(t) + γ(t), u′
n(t) + γ′(t))|.

In consequence, {un}n∈N0 and {u′
n}n∈N0 are bounded and equi-continuous family in C1

ω.
Now the Arzelà–Ascoli theorem guarantees that {un}n∈N0 has a subsequence {unj}j∈N0 , con-
verging uniformly on R to a function u ∈ C1

ω. From the fact ∥un∥ ≤ r and ϑ ≤ un + γ, u
satisfies ϑ ≤ u(t) + γ(t) ≤ r + γ∗ for all t. Moreover, unj satisfies the integral equation

unj(t) =
∫ ω

0
G(t, s) f (s, unj(s) + γ(s), u′

nj
(s) + γ′(s))ds +

1
nj

.

Letting j → ∞, we get

u(t) =
∫ ω

0
G(t, s) f (s, u(s) + γ(s), u′(s) + γ′(s))ds.

Therefore, u is a positive periodic solution of equation (3.2) and satisfies 0 < ∥u∥ ≤ r. Besides,
it is not difficult to show that ∥u∥ < r, by noting that if ∥u∥ = r, the argument similar to the
proof of the first claim will lead to a contradiction.

By Theorem 3.2, we get the following conclusion.
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Corollary 3.3. Assume that condition (A), 0 ≤ p̄ω < 1 and γ∗ ≥ 0 hold. Furthermore, assume that
the nonlinear term f satisfies the following condition:

(F1) There exist positive constants κ, ν, µ, η, ϵ with ϵ ≤ ν + 1 such that

f (t, u, y) = κ
(|y|ϵ + 1)

uν
+ µe(t)uη , for all (t, u, y) ∈ [0, ω]× (0,+∞)× R,

where e(t) ∈ C(R/ωZ) is positive.

(i) If η < 1, then equation (1.4) has at least one positive ω-periodic solution for each µ > 0.

(ii) If η ≥ 1, then equation (1.4) has at least one positive ω-periodic solution for each 0 < µ < µ1,
where µ1 is a positive constant.

Proof. We apply Theorem 3.2. Take

ϕL(t) =
κ

Lν
, g(u) =

1
uν

, φ(u) = uη , k(t) = µe(t), ϱ(|y|) = κ(|y|ϵ + 1).

Then conditions (H1) and (H2) are satisfied and the existence condition (H3) becomes

µ <
r(σr + γ∗)ν − Λ∗κ

(∣∣∣ rℓ̄ω
1− p̄ω + γ′∗

∣∣∣ϵ
+ 1

)
Λ∗∥e∥(r + γ∗)η+ν

for r > 0. Therefore, equation (1.4) has at least one positive periodic solution for

0 < µ < µ1 := sup
r>0

r(σr + γ∗)ν − Λ∗κ
(∣∣∣ rℓ̄ω

1− p̄ω + γ′∗
∣∣∣ϵ
+ 1

)
Λ∗∥e∥(r + γ∗)η+ν

.

Note that µ1 = ∞ if η < 1 and µ1 < ∞ if η ≥ 1, we have (i) and (ii).

Theorem 3.4. Assume that p̄ = 0,
∫ ω

0 ς(p)(t)ℓ(t)dt > 0, inequality (2.4) and conditions (H1), (H2)

hold. Furthermore, assume that the following condition is satisfied:

(H4) There exists a positive real constant r such that

r

g(σr + γ∗)
(

ϱ(|Qr + γ′∗|) + ∥k∥φ(r+γ∗)
g(r+γ∗)

) > Λ∗,

where Q :=
∫ ω

0 ς(p)(t)ℓ(t)dt
min
t∈R

ς(p)(t) .

If γ∗ ≥ 0, then equation (1.4) has at least one positive ω-periodic solution u with u(t) > γ(t) for all
t ∈ [0, ω] and 0 < ∥u − γ∥ < r.

Proof. We follow the same strategy and notations as in the proof of Theorem 3.2. Next, we
claim

∥u′∥ ≤ Qr (3.12)

for any ω-periodic solution u of equation (3.3). Multiplying both sides of equation (3.3) by
ς(p)(t), we get

(ς(p)(t)u′(t))′ + ς(p)(t)ℓ(t)u(t) = ς(p)(t)
(

λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +
ℓ(t)

n

)
. (3.13)
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Integrating equation (3.13) over the interval [0, ω], we obtain∫ ω

0
ς(p)(t)ℓ(t)u(t)dt =

∫ ω

0
ς(p)(t)

(
λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +

ℓ(t)
n

)
dt

since p̄ = 0. Because u(0) = u(ω), we know that there exists a point t2 ∈ (0, ω) such that
u′(t2) = 0. Therefore, it is clear that

|ς(p)(t)u′(t)|

= max
t∈R

∣∣∣∣1
2
(ς(p)(t)u′(t) + ς(p)(t)u′(t − ω))

∣∣∣∣
= max

t∈R

1
2

∣∣∣∣∫ t

t2

(ς(p)(s)u′(s))′ds −
∫ t2

t−ω
(ς(p)(s)u′(s))′ds

∣∣∣∣
≤ 1

2

∫ ω

0
|(ς(p)(t)u′(t))′|dt

≤ 1
2

(∫ ω

0

∣∣∣∣ς(p)(t)
(

λ fn(t, u(t) + γ(t), u′(t) + γ′(t)) +
ℓ(t)

n

)
− ς(p)(t)ℓ(t)u(t)

∣∣∣∣ dt
)

=
1
2

∫ ω

0
ς(p)(t)

(
λ f (t, u(t) + γ(t), u′(t) + γ′(t)) +

ℓ(t)
n

+ ℓ(t)u(t)
)

dt

=
∫ ω

0
ς(p)(t)ℓ(t)u(t)dt

= r
∫ ω

0
ς(p)(t)ℓ(t)dt,

where we used the assumption ∫ ω

0
ς(p)(t)ℓ(t)dt > 0.

Therefore, we obtain

min
t∈R

ς(p)(t)u′(t) ≤ r
∫ ω

0
ς(p)(t)ℓ(t)dt,

which implies (3.12) holds.
The remaining part of the proof the same as in Theorem 3.2.

By Theorem 3.2 and Corollary 3.3, we obtain the following conclusion.

Corollary 3.5. Assume that p̄ = 0,
∫ ω

0 ς(p)(t)ℓ(t)dt > 0, inequality (2.4), condition (F1) and
γ∗ ≥ 0 hold.

(i) If η < 1, then equation (1.4) has at least one positive ω-periodic solution for each µ > 0.

(ii) If η ≥ 1, then equation (1.4) has at least one positive ω-periodic solution for each 0 < µ < µ1,
where µ1 is a positive constant.

Remark 3.6. If the nonlinear term in equation (1.3) is

f (t, u, y) = (1 − α)
y2

u
+

e(t)
α

u1−α.

From Corollary 3.3, it is easy to verify that there is no continuous function ϕL(t) such that
f (t, u, y) ≥ ϕL(t), for all (t, u, y) ∈ [0, ω] × R+ × R. Hence, condition (H1) is not satisfied.
In order to get around condition (H1), we have to study the case γ∗ > 0 by applications of
Theorem 3.2.
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Remark 3.7. It is worth mentioning that, Cheng and Ren [6] investigated the following
damped equation:

x′′ + p(t)x′ + q(t)x = f (t, x) + e(t), (3.14)

where f has a repulsive singularity at the origin. In this paper, the singular term of equation
(1.1) is sign-changing, which exhibits an indefinite singularity. This makes its study more
complex compared to equation (3.14). Therefore, the results of this paper can be regarded as
a generalization and refinement of those in [6].

3.2 The case γ∗ > 0

Theorem 3.8. Assume that conditions (A), (H2), (H3) and 0 ≤ p̄ω < 1 hold. If γ∗ > 0, then
equation (1.4) has at least one positive ω-periodic solution u with u(t) > γ(t) for all t ∈ [0, ω] and
0 < ∥u − γ∥ < r.

Proof. We follow the same strategy and notations as in the proof of Theorem 3.2. Next, we
consider that un(t) + γ(t) have a uniform positive lower bound, i.e., there exists a constant
ϑ1 > 0, independent of n ∈ N0, such that

min
t∈[0,ω]

{un(t) + γ(t)} ≥ ϑ1,

for all n ∈ N0.
Because un(t) + γ(t) ≥ 1

n > 0 for all n > n0, t ∈ R, it follows from (H2) and (3.10) that

un(t) + γ(t) =
∫ ω

0
G(t, s) fn(s, un(s) + γ(s), u′

n(s) + γ′(s))ds + γ(t) +
1
n

≥
∫ ω

0
G(t, s) f (s, un(s) + γ(s), u′

n(s) + γ′(s))ds + γ(t)

≥ γ∗ := ϑ1,

since γ∗ > 0. So we have un(t) + γ(t) ≥ ϑ1. The proof left is the same as Theorem 3.2.

By Theorem 3.8, we get the following conclusion.

Corollary 3.9. Assume that condition (A), 0 ≤ p̄ω < 1 and γ∗ > 0 hold. Furthermore, assume that
the nonlinear term f satisfies the following condition:

(F2) There exist positive constants κ, ν, µ′, η, ϵ with ϵ ≤ ν + 1 such that

f (t, u, y) = κ
|y|ϵ
uν

+ µ′e(t)uη , for all (t, u, y) ∈ [0, ω]× (0,+∞)× R.

(i) If η < 1, then equation (1.4) has at least one positive ω-periodic solution for each µ′ > 0.

(ii) If η ≥ 1, then equation (1.4) has at least one positive ω-periodic solution for each 0 < µ′ < µ′
1,

where µ′
1 is a positive constant.

Proof. We apply Theorem 3.8, and follow the same strategy and notations as in the proof of
Corollary 3.3. Take

g(u) =
1
uν

, φ(u) = uη , k(t) = µ′e(t), ϱ(|y|) = κ|y|ϵ.
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Then condition (H2) is satisfied and the existence condition (H3) becomes

µ′ <
r(σr + γ∗)ν − Λ∗κ

∣∣∣ rℓ̄ω
1− p̄ω + γ′∗

∣∣∣ϵ

Λ∗∥e∥(r + γ∗)η+ν

for r > 0. Therefore, equation (1.4) has at least one positive ω-periodic solution for

0 < µ′ < µ′
1 := sup

r>0

r(σr + γ∗)ν − Λ∗κ
∣∣∣ rℓ̄ω

1− p̄ω + γ′∗
∣∣∣ϵ

Λ∗∥e∥(r + γ∗)η+ν
.

Similar to the proof of Theorem 3.8, we get the following conclusions.

Theorem 3.10. Assume that p̄ = 0,
∫ ω

0 ς(p)(t)ℓ(t)dt > 0, inequality (2.4), conditions (H2), (H4)

hold. If γ∗ > 0, then equation (1.4) has at least one positive ω-periodic solution u with u(t) > γ(t)
for all t ∈ [0, ω] and 0 < ∥u − γ∥ < r.

By Corollary 3.9 and Theorem 3.10, we obtain the following conclusion.

Corollary 3.11. Assume that p̄ = 0,
∫ ω

0 ς(p)(t)ℓ(t)dt > 0, inequality (2.4), condition (F2) and
γ∗ > 0 hold.

(i) If η < 1, then equation (1.4) has at least one positive ω-periodic solution for each µ′ > 0.

(ii) If η ≥ 1, then equation (1.4) has at least one positive ω-periodic solution for each 0 < µ′ < µ′
1,

where µ′
1 is a positive constant.

Corollary 3.12. Let the nonlinear term in equation (1.3) be

f (t, u, y) = (1 − α)
y2

u
+

e(t)
α

u1−α.

Assume that condition (A), 0 ≤ p̄ω < 1 and γ∗ > 0 hold. Then equation (1.1) has at least one
positive ω-periodic solution.

Proof. We apply Corollary 3.9. Take

κ = 1 − α, ϵ = 2, ν = 1, µ′ =
1
α

, η = 1 − α.

Then condition (F2) is satisfied. Since η = 1 − α < 1, equation (1.1) has at least one positive
ω-periodic solution.

Corollary 3.13. Let the nonlinear term in equation (1.3) be

f (t, u, y) = (1 − α)
y2

u
+

e(t)
α

u1−α.

Assume that p̄ = 0,
∫ ω

0 ς(p)(t)ℓ(t)dt > 0, inequality (2.4) and γ∗ > 0 hold. Then equation (1.1) has
at least one positive ω-periodic solution.
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3.3 The case p(t) ≡ 0

Next, we prove the existence of a positive periodic solution for equation (1.2). We write
equation (1.2) as

u′′ + ℓ(t)u = f (t, u, u′) + m(t). (3.15)

By Theorem 3.2, we obtain the following conclusion.

Theorem 3.14. Assume that inequality (2.4), conditions (H1), (H2) and γ∗ ≥ 0 hold. Furthermore,
assume that the following condition is satisfied:

(H5) there exists a positive number r > 0 such that

r

g(σr + γ∗)
(

ϱ
(∣∣rℓ̄ω + γ′∗

∣∣)+ ∥k∥φ(r+γ∗)
g(r+γ∗)

) > Λ∗.

Then equation (3.15) has at least one positive ω-periodic solution u with u(t) > γ(t) for all t ∈ [0, ω]

and 0 < ∥u − γ∥ < r.

Proof. Consider the following equation

u′′(t) + ℓ(t)u(t) = f (t, u(t) + γ(t), u′(t) + γ′(t)). (3.16)

We follow the same strategy and notations as the proof of Theorems 3.2 and 3.4. Now, we
claim

∥u′∥ ≤ rℓ̄ω. (3.17)

It follows from (3.8) and (3.16) that

∥u′∥ ≤ 1
2

∫ ω

0
|u′′(t)|dt

≤ 1
2

∫ ω

0

(
λ f (t, u(t) + γ(t), u′(t) + γ′(t)) +

ℓ(t)
n

+ ℓ(t)u(t)
)

dt

≤
∫ ω

0
ℓ(t)u(t)dt

≤ rℓ̄ω,

since f (t, u, u′) > 0 and ℓ(t) > 0.
The proof left is the same as Theorem 3.2.

By Theorems 3.8–3.14, Corollaries 3.3–3.13, we get the following conclusions.

Corollary 3.15. Assume that inequality (2.4), condition (F1) and γ∗ ≥ 0 hold.

(i) If η < 1, then equation (3.15) has at least one positive ω-periodic solution for each µ > 0.

(ii) If η ≥ 1, then equation (3.15) has at least one positive ω-periodic solution for each

0 < µ < sup
r>0

r(σr + γ∗)ν − Λ∗κ(|rℓ̄ω + γ′∗|ϵ + 1)
Λ∗∥e∥(r + γ∗)η+ν

.

Theorem 3.16. Assume that inequality (2.4), conditions (H2) and (H5) hold. If γ∗ > 0, then equation
(3.15) has at least one positive ω-periodic solution u with u(t) > γ(t) for all t ∈ [0, ω] and 0 <

∥u − γ∥ < r.
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Corollary 3.17. Assume that inequality (2.4), condition (F2) and γ∗ > 0 hold.

(i) If η < 1, then equation (3.15) has at least one positive ω-periodic solution for each µ′ > 0.

(ii) If η ≥ 1, then equation (3.15) has at least one positive ω-periodic solution for each

0 < µ′ < sup
r>0

r(σr + γ∗)ν − Λ∗κ|rℓ̄ω + γ′∗|ϵ
Λ∗∥e∥(r + γ∗)η+ν

.

Corollary 3.18. Let the nonlinear term in equation (3.15) be

f (t, u, y) = (1 − α)
y2

u
+

e(t)
α

u1−α.

Assume that inequality (2.4) and γ∗ > 0 hold. Then equation (1.2) has at least one positive ω-periodic
solution.

Remark 3.19. It is worth mentioning that when p(t) ≡ 0, Chu et al. [11] studied the following
equation:

x′′ + p(t)x′ = f (t, x) + e(t),

where f has a repulsive singularity at the origin. When p(t) ≡ 0, equation (1.1) exhibits an
indefinite singularity, and it is evident that our results encompass those of Reference [11].
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