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Abstract. This study is devoted to the stability issue of a time-varying delayed Nichol-
son’s blowflies equation of neutral type. By the aid of the Lyapunov stability theory
and novel analysis techniques, two sharp conditions ensuring separately the global
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1 Introduction

The following Nicholson’s blowflies equation

w′(t) = −δw(t) + βw(t − τ)e−aw(t−τ), (1.1)

was proposed by Gurney et al. in [6] to describe the dynamics of the Australian sheep-blowfly.
Here w(t) labels the size of blowflies population at time t, δ, β, a, τ are positive constants with
distinct biological significance, that is, δ signifies the average daily mortality rate among adult
blowflies, β quantifies the maximal mean rate of oviposition per day, 1

a means the size at which
the blowflies population reproduces at its maximum rate, and τ stands for the maturation
delay. In the past four decades, extensive research has elucidated the qualitative dynamics
and stability characteristics of Eq. (1.1) and its generalized forms (see [1, 8, 9, 11, 14] and the
references therein). In particular, if the biological parameters satisfy β

δ ≤ 1 and 1 < β
δ ≤ e2,

the global asymptotic stability has been respectively proven for the trivial equilibrium and
positive equilibrium to Eq. (1.1) in [1, 8, 9, 11, 14]. Furthermore, Ref. [17] revealed that the
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positive equilibrium of Eq. (1.1) admits global attractivity if β
δ > 1 and the delay τ is small.

Meanwhile, the authors in [19] and [5] established the global asymptotical stability for the
positive equilibrium of Eq. (1.1) if 1 < β

δ ≤ e2. It is noteworthy that Yang and So in [18]
showed that the positive equilibrium is unstable and Hopf bifurcation appears when β

δ > e2

and the delay τ is large. It is demonstrated from aforementioned findings that β
δ ≤ 1 and

1 < β
δ ≤ e2 are two sharp conditions which respectively assure the global asymptotic stability

of trivial equilibrium and positive equilibrium of Eq. (1.1).
In the realistic world, biological populations have complex dynamic characteristics, and

the existing population models cannot accurately describe the properties of a population evo-
lution process. Consequently, it is both natural and interesting that biological models should
incorporate some information about the derivative of past states to better depict and model
the dynamics of such complex population evolution processes. This has drawn extensive at-
tention to neutral type delayed population dynamic models [3, 7, 15, 21]. In particular, due
to the effect of the population age distribution, Eq. (1.1) can be commonly generalized to the
following neutral functional differential equation (NFDE),

(w(t)− cw(t − α))′ = −δw(t) + cδw(t − α) + βw(t − τ)e−aw(t−τ), t ∈ [0, +∞), (1.2)

where a, δ, β, α, τ ∈ (0, +∞), c ∈ [0, 1). For more details on the biological ecology background
and the derivation of Eq. (1.2), one can refer to [2, 12]. It should be pointed out that, if
the population function w(t) is continuously differentiable, Eq. (1.2) can be rewritten as the
following special case,

w′(t)− cw′(t − α) = −δw(t) + cδw(t − α) + βw(t − τ)e−aw(t−τ), t ∈ [0, +∞). (1.3)

Recently, the dynamics including Hopf bifurcation, the stability of (almost) periodic solu-
tions of Eq. (1.3) and its generalizations have been extensively studied in [10, 12, 13, 15, 20, 22].
Meanwhile, delays in population and ecology models may depend on the time-varying envi-
ronmental conditions and climate, and hence the neutral delayed Nicholson’s blowflies equa-
tion (1.2) can be naturally extrapolated to the following non-autonomous form:

(w(t)− cw(t − τ1(t)))′ = −δw(t) + cδw(t − τ1(t)) + βw(t − τ2(t))e−aw(t−τ2(t)), (1.4)

where c ∈ [0, 1), t ≥ t0 ∈ R, the delay functions τi(t) (i = 1, 2) possess continuity and
boundedness. In addition, according to the definition of initial set [23], we always assume
that there exists ri ∈ (0,+∞) satisfying

{t − τi(t) : t − τi(t) ≤ t0, t ≥ t0} ∪ {t0} = [t0 − ri, t0], i = 1, 2, (1.5)

and

r = r2 ≥ r1, and σ := min
{

inf
t∈R

τ1(t), inf
t∈R

τ2(t)
}

> 0. (1.6)

Obviously, when τi(t) (i = 1, 2) are constants, Eqs. (1.1)–(1.3) are special cases of Eq. (1.4).
From the basic theory of functional differential equations (FDEs), it is evident that the initial
value conditions for Eqs. (1.2) and (1.4) are fundamentally different, which yields theoretical
difficulties in analyzing the dynamic behavior of Eq. (1.4). In addition, the existence of both
neutral structure and time-varying delays also brings technical challenges to explore the ki-
netic properties of the non-autonomous NFDE. Therefore, a natural question is whether one
could establish the sharp criteria separately ensuring the global asymptotic stability of trivial



On a neutral Nicholson’s blowflies equation with time-varying delays 3

and positive equilibria of neutral time-varying delayed Nicholson’s blowflies equation (1.4),
and such a problem has not been reported up to now.

Inspired by the aforementioned discussions, the primary object of this paper is to establish
sharp global asymptotic stability criteria for Eq. (1.4). Specifically, the main contributions of
this study can be summarized as follows:

1) A kind of neutral Nicholson’s blowflies equation with time-varying delays is proposed,
the well-posedness including existence, uniqueness, boundedness and positiveness of
solutions to the addressed model is first proved.

2) Global asymptotic stability criteria on the trivial and positive equilibria to Eq. (1.4) are
established, respectively, which are sharp and substantially extend the existing stability
results of the corresponding non-neutral ones.

3) A numerical example and some comparative analyses are presented to explicate the
correctness and innovation of the theoretical findings.

The structure of this paper is outlined below. Section 2 introduces some preliminaries.
Sections 3 and 4 establish respectively the global asymptotic stability of zero equilibrium and
positive equilibrium. Section 5 affords a numerical example to exhibit effectiveness of the
theoretical results. At last, the conclusion is conducted in Section 6.

2 Preliminaries

Firstly, we present some notations which are needed later. For convenience, denote the Banach
space supplemented with supremum norm ∥ · ∥ by Γ = C([−r, 0], R). Given that ζ ≥ 0,
t0 ∈ R, and W ∈ C([t0 − r, t0 + ζ], R), then, for any t ∈ [t0, t0 + ζ], Wt ∈ Γ is interpreted by
Wt(ν) = W(t + ν), −r ≤ ν ≤ 0. For t0 ∈ R, denote

Γ+ =
{

φ ∈ Γ
∣∣φ(0)− cφ(−τ1(t0)) ≥ 0, φ(θ) ≥ 0 for all θ ∈ [−r, 0]

}
,

and let wt(t0, φ)(w(t; t0, φ)) be the solution of Eq. (1.4) under the admissible initial conditions

wt0 = φ, φ ∈ Γ+. (2.1)

Clearly, Eq. (1.4) only possesses a trivial equilibrium N0 = 0 when β
δ(1−c) ≤ 1 and a unique

positive equilibrium N∗ =
1
a ln β

δ(1−c) ≤
2
a when 1 < β

δ(1−c) ≤ e2. For simplicity of notation, we
designate

w(t) = w(t; t0, φ), x(t) = w(t)− cw(t − τ1(t)),

and
y(t) = x(t)− (1 − c)N∗ = (w(t)− N∗)− c(w(t − τ1(t))− N∗).

Moreover, for φ ∈ Γ+, we extend the initial value function as follows:

φ(θ − τ1(θ)) = φ(−r) for all θ ∈ [−r, 0] and θ − τ1(θ) < −r. (2.2)

Now, we investigate some basic properties of the solutions for Eq. (1.4).

Lemma 2.1. Let φ ∈ Γ+. Then Eq. (1.4) has a unique, non-negative, ultimately bounded solution
wt(t0, φ) on [t0, +∞). Meanwhile, for φ ∈ Γ+ \ {0}, wt(t0, φ) is ultimately positive.
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Proof. For any t ∈ [t0, t0 + σ], multiplying both sides of Eq. (1.4) by eδt and integrating from t0

to t, together with (2.1), gives us

x(t) = (φ(0)− cφ(−τ1(t0)))e−δ(t−t0) + βe−δt
∫ t

t0

φ(s − τ2(s)− t0)e−aφ(s−τ2(s)−t0)eδsds ≥ 0

and
w(t) = x(t) + cφ(t − τ1(t)− t0) ≥ 0.

Similarly, applying the step-by-step method, the case x(t) ≥ 0 and w(t) ≥ 0 on [t0 + σ, t0 + 2σ]

holding as follows. Therefore, x(t) ≥ 0 and w(t) ≥ 0 for all t ≥ t0. Consequently, wt(t0, φ)

exists and is unique on [t0, +∞). In addition, wt(t0, φ) ≥ 0 for all t ∈ [t0, +∞).
On the other hand, the fact supu≥0 ue−u = 1

e leads to

x(t) = (φ(0)− cφ(−τ1(t0)))e−δ(t−t0)

+ e−δt
∫ t

t0

βw(s − τ2(s))e−aw(s−τ2(s))eδsds

≤(φ(0)− cφ(−τ1(t0)))e−δ(t−t0) +
β

ae
e−δt

∫ t

t0

eδsds

= (φ(0)− cφ(−τ1(t0)))e−δ(t−t0) +
β

δae

[
1 − e−δ(t−t0)

]
for all t ∈ [t0, +∞),

and hence

lim sup
t→+∞

x(t) ≤ β

δae
,

which, together with the following fact

lim sup
t→+∞

w(t) = lim sup
t→+∞

[x(t) + cw(t − τ1(t))] ≤ lim sup
t→+∞

x(t) + c lim sup
t→+∞

w(t),

gives us

lim sup
t→+∞

w(t) ≤ 1
1 − c

lim sup
t→+∞

x(t) ≤ 1
1 − c

β

δae
.

This implies that w(t) is ultimately uniformly bounded.
Now, let φ ∈ Γ+ \ {0}. We state that there is a t1 ∈ [t0, +∞) satisfying x(t1) > 0.

Otherwise, x(t) ≡ 0 on [t0, +∞). Consequently, φ ̸≡ 0, this allows one can choose t∗ ∈
[t0 − r, t0) satisfying w(t∗) = φ(t∗ − t0) > 0. This, together with (1.5) and (1.6), shows that
there is ξ∗∗ ∈ (t0, +∞) such that

t∗ = ξ∗∗ − τ2(ξ
∗∗) and w(ξ∗∗ − τ2(ξ

∗∗)) = w(t∗) = φ(t∗ − t0) > 0,

which yields

0 = x′(ξ∗∗)

= − δx(ξ∗∗) + βw(ξ∗∗ − τ2(ξ
∗∗))e−aw(ξ∗∗−τ2(ξ

∗∗))

= βw(ξ∗∗ − τ2(ξ
∗∗))e−aw(ξ∗∗−τ2(ξ

∗∗))

> 0.
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This is a contradiction, and hence

w(t) ≥ x(t)

= x(t1)e−δ(t−t1) + e−δt
∫ t

t1

βw(s − τ2(s))e−aw(s−τ2(s))eδsds

> 0 for all t ∈ [t1, +∞).

In other words, x(t) and w(t) are ultimately positive.

To establish the next main theorems, we make use of the following results.

Lemma 2.2. If W ∈ C([t0, +∞), [0, +∞)) is bounded, and there exist constants p, q ∈ R satisfying
that 0 ≤ q < 1 and

lim
t→+∞

[
W(t)− qW(t − τ1(t))

]
= p,

then
lim

t→+∞
W(t) =

p
1 − q

.

Proof. Let A = lim inft→+∞ W(t) and B = lim supt→+∞ W(t), then 0 ≤ A ≤ B, and there exist
two monotonically increasing sequences {Z1

n}n≥1 and {Z2
n}n≥1 such that

lim
n→+∞

Z1
n = +∞, lim

n→+∞
Z2

n = +∞, lim
n→+∞

W(Z1
n) = A, lim

n→+∞
W(Z2

n) = B,

and
lim

n→+∞
W(Zi

n − τ1(Zi
n)) = Ci ∈ [A, B], i = 1, 2.

Therefore,
p = lim

n→+∞

[
W(Z1

n)− qW(Z1
n − τ1(Z1

n))
]
= A − qC1 ≤ A(1 − q)

and
p = lim

n→+∞
[W(Z2

n)− qW(Z2
n − τ1(Z2

n))] = B − qC2 ≥ B(1 − q),

which assures that limt→+∞ W(t) = A = B = p
1−q .

Lemma 2.3 (see [4, Lemma 2.3]). If r∗ ∈ (0, 2], then∣∣∣µe−µ − r∗e−r∗
∣∣∣ < e−r∗ |µ − r∗| for all µ > 0 and µ ̸= r∗. (2.3)

3 Global asymptotic stability of N0 = 0 when β ≤ δ(1 − c)

In this section, we deduce a new criterion for global asymptotic stability on N0 = 0 of Eq. (1.4),
which extends the previous stability findings in its special cases. This result can be stated in
the following theorem.

Theorem 3.1. If β ≤ δ(1 − c), then the trivial equilibrium N0 of Eq. (1.4) is globally asymptotically
stable. Particularly, when β < δ(1 − c), N0 is globally exponentially stable.
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Proof. First, we demonstrate the stability of N0 = 0. For any ε > 0, denote H = (1 − c)ε and
∥φ∥ < H with φ ∈ Γ+. We shall demonstrate that w(t) < ε for all t ∈ [t0 − r, +∞). Then, by
(2.1), (2.2), and Lemma 2.1, we have

x(t) ≥ 0 for any t ≥ t0,

and

x(t) = w(t)− cw(t − τ1(t)) = φ(t − t0)− cφ(t − τ1(t)− t0) < H for any t ∈ [t0 − r, t0].

Now, we claim that
0 ≤ x(t) < H for any t > t0. (3.1)

Otherwise, there exists G∗ > t0 such that

x(G∗) = H and x(t) < H for any t ∈ [t0 − r, G∗), (3.2)

it follows that

w(θ) = x(θ) + cw(θ − τ1(θ))

≤ x(θ) + c sup
min

s∈[t0−r,θ]
(s−τ1(s))≤u≤θ

w(u − τ1(u))

≤ x(θ) + c sup
t0−r≤u≤t

w(u)

< H + c sup
t0−r≤u≤t

w(u),

for any θ ∈ [t0 − r, t] and t ∈ [t0 − r, G∗). Hence

w(t) ≤ sup
t0−r≤u≤t

w(u) <
H

1 − c
for any t ∈ [t0 − r, G∗). (3.3)

Moreover, it indicates from Eqs. (1.4) and (3.3) that

0 ≤ x′(G∗)

= − δx(G∗) + βw(G∗ − τ2(G∗))e−aw(G∗−τ2(G∗))

≤ − δx(G∗) + βw(G∗ − τ2(G∗))

< H
(
− δ +

β

1 − c

)
≤ 0,

we yield the contradiction and find that assertion (3.1) is true. Utilizing a similar approach as
in the identification of (3.3), we obtain

w(t) ≤ sup
t0−r≤u≤t

w(u) <
H

1 − c
= ε for any t ≥ t0,

which shows that N0 is stable.
Second, we prove the global attractivity of N0. Since

lim sup
t→+∞

w(t) ≤ lim sup
t→+∞

x(t) + c lim sup
t→+∞

w(t − τ1(t)) ≤ lim sup
t→+∞

x(t) + c lim sup
t→+∞

w(t),
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one has

lim sup
t→+∞

w(t) ≤ 1
1 − c

lim sup
t→+∞

x(t). (3.4)

It suffices to verify lim supt→+∞ x(t) = 0. We find from the fluctuation lemma [16, Lemma
A.1.] that there exists a monotonically increasing sequence {Zn}n≥1 agreeing with

lim
n→+∞

Zn = +∞, lim
n→+∞

x′ (Zn) = 0, and lim
n→+∞

x (Zn) = lim sup
t→+∞

x(t),

and limn→+∞ w(Zn − τ2(Zn)) = η holds. Then (3.4) yields

η = lim
n→+∞

w(Zn − τ2(Zn)) ≤ lim sup
t→+∞

w(t) ≤ 1
1 − c

lim sup
t→+∞

x(t). (3.5)

Taking the limit on both sides of the following equation:

x′(Zn) = −δx(Zn) + βw(Zn − τ2(Zn))e−aw(Zn−τ2(Zn))

produces
0 = −δ lim sup

t→+∞
x(t) + βηe−aη . (3.6)

For the sake of contradiction, assume that lim supt→+∞ x(t) > 0, (3.5) and (3.6) give us

0 < η ≤ 1
1 − c

lim sup
t→+∞

x(t),

and the contradiction

0 = −δ lim sup
t→+∞

x(t) + βηe−aη <

(
−δ + β

1
1 − c

)
lim sup

t→+∞
x(t) ≤ 0,

and thus
lim

t→+∞
w(t) = N0 = 0.

Finally, we show the global exponential stability of N0 when β < δ(1 − c), we only need
to prove its globally exponential attractivity. To do this, we pick a sufficiently small λ > 0
obeying

1 − ceλr > 0 and − (δ − λ) +
βeλr

1 − ceλr < 0. (3.7)

Since φ(θ − τ1(θ)) = φ(−r) for all θ ∈ [−r, 0] with θ − τ1(θ) < −r, we can denote

x(t)eλt = x(t0 − r)eλ(t0−r) for any t ∈ (−∞, t0 − r],

z(t) = x(t)eλt for any t ∈ [t0 − r, +∞),

and
Mφ = max

t0−r≤t≤t0
x(t)eλt = max

t0−r≤t≤t0

[
φ(t − t0)− cφ(t − τ1(t)− t0)

]
eλt.

Clearly, z(t) < Mφ + 1 for any t ∈ [t0 − r, t0]. We hence claim

z(t) < Mφ + 1 for all t ≥ t0. (3.8)
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Otherwise, there exists t2 > t0 satisfying

z(t2) = Mφ + 1, 0 ≤ z(t) < Mφ + 1 for all t ∈ [t0 − r, t2). (3.9)

For any θ ∈ [t0 − r, t] and t ∈ [t0 − r, t2), we have

w(θ)eλθ = x(θ)eλθ + cw(θ − τ1(θ))eλ(θ−τ1(θ))eλτ1(θ)

≤ z(θ) + c sup
min

s∈[t0−r,θ]
(s−τ1(s))≤u≤θ

w(u − τ1(u))eλ(u−τ1(u))eλr

≤ z(θ) + c sup
t0−r≤u≤t

w(u)eλueλr

< Mφ + 1 + c sup
t0−r≤u≤t

w(u)eλueλr,

and thus

w(t)eλt ≤ sup
t0−r≤u≤t

w(u)eλu <
Mφ + 1
1 − ceλr for any t ∈ [t0 − r, t2). (3.10)

It follows immediately from (1.4), (3.7), (3.9) and (3.10) that

0 ≤ z′(t2)

= x′(t2)eλt2 + λx(t2)eλt2

= − (δ − λ)x(t2)eλt2 + βw(t2 − τ2(t2))eλ(t2−τ2(t2))eλτ2(t2)e−aw(t2−τ2(t2))

<
[
− (δ − λ) +

βeλr

1 − ceλr

]
(Mφ + 1)

< 0,

which results in a contradiction, and claim (3.8) holds. Furthermore, by the same manner as
those in establishing (3.10), it follows from (3.8) that

w(t) ≤
Mφ + 1
1 − ceλr e−λt for any t ≥ t0,

which confirms the global exponential attractivity of N0. The evidence of Theorem 3.1 is
finished.

4 Global asymptotic stability of N∗=
1
a ln β

δ(1−c) when 1< β
δ(1−c)≤ e2

We are now ready to derive the conditions under which the positive equilibrium N∗ of Eq. (1.4)
has global asymptotic stability.

Theorem 4.1. If 1 < β
δ(1−c) ≤ e2, then Eq. (1.4) admits a unique positive equilibrium N∗ =

1
a ln β

δ(1−c) , which possesses global asymptotic stability.

Proof. Clearly, Eq. (1.4) admits a unique positive equilibrium N∗ = 1
a ln β

δ(1−c) ≤ 2
a . Now, we

reveal the stability of N∗. For any ε > 0, let H̄ = (1−c)
1+c ε and ∥φ − N∗∥ < H̄ with φ ∈ Γ+, it

suffices to check that
|w(t)− N∗| < ε for all t ∈ [t0 − r, +∞).
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In fact, one finds from (2.1) and (2.2) that

|y(t)| = |x(t)− (1 − c)N∗|
= |w(t)− N∗ − c(w(t − τ1(t))− N∗)|
= |φ(t − t0)− N∗ − c(φ(t − τ1(t)− t0)− N∗)|
< (1 + c)H̄ for all t ∈ [t0 − r, t0],

which allows us to assert that

|y(t)| < (1 + c)H̄ for any t > t0. (4.1)

Otherwise, there exists S2 > t0 satisfying

|y(S2)| = (1 + c)H̄ and |y(t)| < (1 + c)H̄ for any t ∈ [t0 − r, S2), (4.2)

which gives us

|w(θ)− N∗| = |y(θ) + c(w(θ − τ1(θ))− N∗)|
≤ |y(θ)|+ c sup

min
s∈[t0−r,θ]

(s−τ1(s))≤u≤θ

|w(u − τ1(u))− N∗|

≤ |y(θ)|+ c sup
t0−r≤u≤t

|w(u)− N∗|

< (1 + c)H̄ + c sup
t0−r≤u≤t

|w(u)− N∗|, (4.3)

for any θ ∈ [t0 − r, t] and t ∈ [t0 − r, S2). A simple calculation yields

|w(t)− N∗| ≤ sup
t0−r≤u≤t

|w(u)− N∗| <
(1 + c)H̄

1 − c
for any t ∈ [t0 − r, S2). (4.4)

In view of Eq. (1.4), y(t) satisfies

y′(t) = −δy(t) + β
[
w(t − τ2(t))e−aw(t−τ2(t)) − N∗e−aN∗

]
, t ≥ t0 ∈ R. (4.5)

By calculating the Dini derivative of |y(t)|, (4.2), (4.4) and (4.5) and Lemma 2.3 imply that

0 ≤ D−|y(t)|
∣∣
t=S2

≤− δ|y(S2)|+ β|w(S2 − τ2(S2))e−aw(S2−τ2(S2)) − N∗e−aN∗ |
≤ − δ|y(S2)|+ βe−aN∗ |w(S2 − τ2(S2))− N∗|

<
[
− δ + βe−aN∗ 1

1 − c

]
(1 + c)H̄

= 0,

it follows a contradiction and implies that (4.1) is true. One can follow a similar argument as
above to deduce that (4.4) holds, we obtain

|w(t)− N∗| ≤ sup
t0−r≤u≤t

|w(u)− N∗| <
(1 + c)H̄

1 − c
= ε for any t ≥ t0.

Hence, the positive equilibrium N∗ admits stability.



10 C. X. Huang, X. D. Ding and Q. Wang

Next, we prove the global attractivity of N∗. Label

L = lim sup
t→+∞

y(t) and l = lim inf
t→+∞

y(t).

In view of Lemma 2.2, the global attractivity of N∗ is equivalent to discover

max {|L| , |l|} = 0. (4.6)

To prove (4.6), we argue by contradiction. Assume max {|L| , |l|} = L > 0 (the case of
max {|L| , |l|} = −l > 0 is similar). Based on the fluctuation lemma [16, Lemma A.1.], we
know that there exists a sequence {Fk}+∞

k=1 satisfying

lim
k→+∞

Fk = +∞, lim
k→+∞

y(Fk) = L, and lim
k→+∞

y′(Fk) = 0. (4.7)

In general, we may suppose that lim
k→+∞

w(Fk − τ2(Fk)) exists as well.

If limk→+∞ w(Fk − τ2(Fk)) ̸= 0, it follows from (2.3), (4.5) and (4.7) that

0 = lim
k→+∞

y′(Fk)

= − δ lim
k→+∞

y(Fk) + β
[

lim
k→+∞

w(Fk − τ2(Fk))e
−a lim

k→+∞
w(Fk−τ2(Fk)) − N∗e−aN∗

]
≤ − δ lim

k→+∞
y(Fk) +

β

a

∣∣∣a lim
k→+∞

w(Fk − τ2(Fk))e
−a lim

k→+∞
w(Fk−τ2(Fk)) − aN∗e−aN∗

∣∣∣
<− δ lim

k→+∞
y(Fk) + βe−aN∗ lim

k→+∞

∣∣w(Fk − τ2(Fk))− N∗
∣∣

≤ L
[
− δ + β

1
1 − c

e−aN∗
]

= 0.

This is a contradiction.
Likewise, if limk→+∞ w(Fk − τ2(Fk)) = 0, one sees readily the above contradiction. Accord-

ingly
max {|L| , |l|} = 0,

this completes the proof of Theorem 4.1.

Remark 4.2. In references [12, 20], the stability analysis of (1.3) requires the solution w(t) to
be a differentiable function, with its derivative w′(t − α) existing. This imposes restrictions on
the range of admissible initial functions and consequently narrows the scope of potential solu-
tions. Moreover, the methodologies and strategies proposed in the aforementioned literature
cannot be directly applied to analyze the stability and attractiveness of the non-autonomous
neutral delayed Nicholson’s blowflies equation (1.4) under the initial condition (2.1). Addi-
tionally, in contrast to the initial function set Γ in [3], which depends on the coefficient of
the death term, the set Γ+ introduced in this manuscript is independent of this coefficient.
This distinction offers a more comprehensive and versatile framework for understanding the
stability and attractiveness of solutions across different initial value ranges, providing deeper
insights into the problem.

Remark 4.3. Evidently, when c = 0, Eq. (1.4) reduces to the standard Nicholson’s blowflies
equation Eq. (1.1), which has received widespread attention and in-depth research. Especially,
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the sharp criteria β
δ ≤ 1 and 1 < β

δ ≤ e2 for respectively ensuring the global asymptotic
stability of trivial and positive equilibria were rigidly established in [5, 11, 17–19], which are
special cases of the corresponding ones in Theorems 3.1 and 4.1 if c = 0. In this sense, global
asymptotic stability criteria β

δ(1−c) ≤ 1 and 1 < β
δ(1−c) ≤ e2 established are also sharp to time-

varying delayed Nicholson’s blowflies equation of neutral type (1.4). On the other hand, since
the delays are time varying, Eq. (1.4) is non-autonomous, which has brought theoretical and
technical difficulties to the dynamic study of Eq. (1.4), and the stability problem for such a
neutral model has not received attention until now. Hence, the theoretical results established
in this paper are substantially new and enrich the theory of functional differential equations
to some extent.

5 Numerical examples

In this section, numerical examples with simulation are afforded to illustrate the main theo-
retical findings.

Example 5.1. Consider a neutral time-varying delayed Nicholson’s blowflies model with dif-
ferent parameters,[

w(t)− 1
2

w(t − e−| sin 2t|)
]′

= − 4(w(t)− 1
2

w(t − e−| sin 2t|))

+ w(t − 2e−| sin 2t|)e−2w(t−2e−| sin 2t|), t ≥ t0 = 0, (5.1)

[
w(t)− 1

2
w(t − e−| sin 2t|)

]′
= − 2(w(t)− 1

2
w(t − e−| sin 2t|))

+ ew(t − 2e−| sin 2t|)e−2w(t−2e−| sin 2t|), t ≥ t0 = 0, (5.2)

and [
w(t)− 1

2
w(t − e−| sin 2t|)

]′
= − 2(w(t)− 1

2
w(t − e−| sin 2t|))

+ 100w(t − 2e−| sin 2t|)e−2w(t−2e−| sin 2t|), t ≥ t0 = 0. (5.3)

Obviously, τ1(t) = e−| sin 2t|, τ2(t) = 2e−| sin 2t|, 2 = r = r2 > r1 = 1, let

Γ+ =
{

φ ∈ C([−2, 0], R) | φ(0)− cφ(−τ1(0)) ≥ 0, φ(θ) ≥ 0 for all θ ∈ [−2, 0]
}

.

One can easily verify that β
δ(1−c) = 1

4(1− 1
2 )

= 1
2 < 1 and 1 < β

δ(1−c) = e
2×(1− 1

2 )
= e < e2 hold

for Eqs. (5.1) and (5.2), respectively. It is concluded from Theorems 3.1 and 4.1 that the zero
equilibrium of Eq. (5.1) and the positive equilibrium of Eq. (5.2) are all globally asymptotically
stable (see Figs. 5.1 and 5.2). However, the stability criteria β

δ(1−c) ≤ 1 and 1 < β
δ(1−c) ≤ e2

are invalid for Eq. (5.3), which means that the positive equilibrium of Eq. (5.3) is not globally
asymptotically stable, Fig. 5.3 indicates this fact.

Remark 5.2. It is not difficult to check that τ1(t) = e−| sin 2t| and τ2(t) = 2e−| sin 2t| in Eqs. (5.1)–
(5.3) are time dependent, which do not satisfy the basic constraints of the delay terms in
[2, 3, 7, 12, 21]. In addition, the sharp asymptotic stability conditions have not been touched in
[10, 13, 20, 22]. Consequently, the results in above-mentioned literatures and their references
could not directly applied to this example. This shows that the established theoretical results
in this paper extend and improve existing ones.
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Figure 5.1: The state trajectories to Eq. (5.1) with initial values 0.1, 0.5, 1.

Figure 5.2: The state trajectories to Eq. (5.2) with initial values 0.1, 0.7, 1.

Figure 5.3: The state trajectory to Eq. (5.3) with initial value 1.
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6 Conclusion

In this paper, the stability and attraction of the neutral Nicholson’s blowflies equation with
time-varying delays are addressed. By applying the analytical method such as Dini derivative
and differential inequality techniques, sharp sufficient criteria substantially extend the existing
results on global asymptotic stability, comparative analysis and simulations are also given to
support the availability of the theoretical results.

It is also worth noting that the authors in [17] evidenced that the positive equilibrium point
of the classical non-neutral delayed Nicholson’s blowflies model attracts all solutions with
nonnegative initial values under the delay-dependent condition (eδτ − 1) ln P

δ ≤ 1. Whether
or not our methods used in this paper are available to find delay-dependent criterion to ensure
the global attraction of positive equilibrium to Eq. (1.4), it is an interesting problem and we
leave it as an important topic of future researchers.
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