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Abstract. This paper is concerned with the existence of solutions for parameters depen-
dent Schrödinger–Kirchhoff system driven by nonlocal integro-differential operators
with singular Trudinger–Moser nonlinearity in the whole Euclidean space RN . These
parameters have a major impact on the produced analysis. It is noted that, we also
study the asymptotic behaviour of solutions depending upon these parameters. The
proofs of the existence results to the aforementioned system rely on the mountain pass
theorem, the Ekeland variational principle, the classical deformation lemma, and the
Krasnoselskii genus theory. The salient feature and novelty of this paper is that it also
covers the so-called degenerate case of the Kirchhoff function, that is, it could vanish at
zero.
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1 Introduction and main results

In this paper, we study the following nonlocal Schrödinger–Kirchhoff type system:
M(∥(u, v)∥p)(Ls

p(u) + V(x)|u|p−2u) =
Fu(x, u, v)

|x|γ + λh(x)|u|q−2u in RN ,

M(∥(u, v)∥p)(Ls
p(v) + V(x)|v|p−2v) =

Fv(x, u, v)
|x|γ + µh(x)|v|q−2v in RN ,

(Sλ,µ)
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where N ≥ 1, 0 < s < 1, sp = N, 1 < q < ∞, γ ∈ [0, N), λ and µ are two positive parameters,
and the norm

∥(u, v)∥ =
(
∥u∥p

Ws,p
K,V

+ ∥v∥p
Ws,p

K,V

) 1
p
,

where for the singular kernel K : RN \ {0} → R+ with R+ = (0, ∞) and w ∈ {u, v}, we define

∥w∥Ws,p
K,V

=

( ∫
RN

∫
RN

|w(x)− w(y)|pK(x − y) dxdy +
∫

RN
V(x)|w|p dx

) 1
p

.

Consequently, M : R+
0 → R+

0 with R+
0 = [0, ∞) is a Kirchhoff function, V : RN → R is a

scalar potential, h : RN → R+ is a measurable function, the functions Fu and Fv are partial
derivatives of a Carathéodory function F, of exponential type and Ls

p is the nonlocal fractional
operator which, up to a normalization constant, is defined by

Ls
pϕ(x) = 2 lim

ϵ→0+

∫
RN\Bϵ(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x − y) dy, ∀ x ∈ RN ,

along any ϕ ∈ C∞
0 (RN), where Bϵ(x) = {y ∈ RN : |x − y| < ϵ}. The singular kernel K :

RN \ {0} → R+ is a measurable function satisfying the following properties for sp = N and
0 < s < 1:

(a) ηK ∈ L1(RN), where η(x) = min{|x|p, 1}.

(b) there exists K0 > 0 such that K(x) ≥ K0|x|−(N+sp) for any x ∈ RN \ {0}.

In addition, we make a note that from here onwards, · stands for the natural inner product in
any Euclidean space Rd for any dimension d ≥ 1 and | · | denotes the corresponding Euclidean
norm.

Throughout the paper, without further mentioning, we have the following assumptions on
the scalar potential V, and the Kirchhoff function M.

(V) The function V : RN → R is assumed to be continuous and to satisfy:

(V1) There exists a constant V0 > 0 such that infRN V ≥ V0.

(V2) There exists h > 0 such that lim|y|→∞ meas
(
{x ∈ Bh(y) : V(x) ≤ c}

)
= 0, ∀ c > 0,

where we denote the Lebesgue measure of any set E ⊂ RN by meas(E).

(M) The function M : R+
0 → R+

0 is assumed to be continuous and to satisfy:

(M1) For any τ > 0, there exists κ = κ(τ) > 0 such that

M(t) ≥ κ, ∀ t ≥ τ.

(M2) There exists θ ≥ 1 such that

tM(t) ≤ θM̂(t), ∀ t ∈ R+
0 ,

where

M̂(t) =
∫ t

0
M(ξ) dξ.

Remark 1.1. The condition (V2) is weaker than the coercivity assumption, that is, V(x) →
∞ as |x| → ∞.
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On concerns about the nonlinearity term F, we have the following assumptions.

(F) The function F : RN × R2 → R is a Carathéodory function and to satisfy:

(F1) F(x, ·, ·) ∈ C1(R2) for a.e. x ∈ RN , F(x, ·, ·) ≥ 0 in R2, F(x, 0, 0) = 0 for a.e. x ∈ RN ,
Fu(x, u, v) = 0 for all u ≤ 0 and v ∈ R, Fv(x, u, v) = 0 for all u ∈ R and v ≤ 0,
Fu(x, u, 0) = 0 for all u ∈ R and Fv(x, 0, v) = 0 for all v ∈ R. Moreover, for all
(u, v) ∈ R+ × R+, the function F(·, u, v) is strictly positive for a.e. x ∈ RN .

(F2) There exists α0 > 0 with the property that for all ε > 0, there exists κε > 0 such that
for a.e. x ∈ RN and all z = (u, v) ∈ R2 with |z| =

√
u2 + v2, ∇F = (Fu, Fv) and

jp = min{j ∈ N : j ≥ p}, we have

|∇F(x, u, v)| ≤ ε|z|θp−1 + κεΦ(α0|z|p
′
),

where

Φ(t) = exp(t)−
jp−2

∑
j=0

tj

j!
and p′ =

N
N − s

.

(F3) There holds

∇F(x, u, v) = o(|z|θp−1) as |z| → 0+ uniformly for x ∈ RN .

(F4) There exists σ > θp such that

0 ≤ σF(x, u, v) ≤ ∇F(x, u, v).(u, v), ∀ (x, u, v) ∈ RN × R2.

In recent years, studying elliptic partial differential equations involving fractional Lapla-
cian or more general nonlocal integro-differential operators has become a very interesting
area of nonlinear analysis. Such types of operators occur naturally in several real-world ap-
plications, such as finance, optimization, game theory, image processing, multiple scattering,
phase transition phenomena, population dynamics, continuum mechanics, ultra-relativistic
limits of quantum mechanics, soft thin films, minimal surfaces, and the stochastic stability
of Lévy processes. In this regard, we refer the readers to study [6, 12–14, 29, 31] and related
references. Indeed, the literature on nonlocal fractional operators and their applications is
somewhat vast, as shown by the new monographs [2, 34], the comprehensive work [19] and
the references included therein.

In the context of fractional order Sobolev space, the Sobolev embedding states that for
sp < N with s ∈ (0, 1), the continuous embedding Ws,p(RN) ↪→ Lr(RN) holds for any
r ∈ [p, p∗s ], where p∗s = Np

N−sp is called the critical Sobolev exponent. In conclusion, to study
the variational problems with subcritical and critical growth, the nonlinearity cannot exceed
the polynomial of degree p∗s . Despite this, in the Sobolev limiting case ( commonly known as
the Trudinger–Moser case), that is, sp = N, the continuous embedding Ws,p(RN) ↪→ Lq(RN)

holds for any q ∈ [p, ∞) but we cannot assume q = ∞ for such an embedding. Further, in this
case, every polynomial growth is allowed. In this scenario, to deal with variational problems,
many authors proved separately that the maximal growth of the nonlinearity is of exponential
type, for a detailed study, we refer to [28,36,45]. The Trudinger–Moser inequalities have many
applications, including extremal problems for determinants and zeta functions under confor-
mal deformation of metric. For instance, on the four-dimensional sphere, the determinant of
the conformal Laplacian is extremized under conformal deformation with fixed area by the
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standard metric. The most important aspect of the Moser–Trudinger inequality has been its
connection to the Polyakov–Onofri log determinant variation formula, as well as its later de-
velopment in conformal geometry and geometric analysis of conformally invariant operators
on higher-dimensional manifolds. In this regard, we refer to see [8, 16]. It is worth noting
that there has been significant progress in the Trudinger–Moser inequalities to analyse the
existence, nonexistence, and multiplicity of solutions to nonlinear PDEs in the context of the
factional Sobolev space in RN . For a detailed study, one may go through [10,46,47,50–52] and
references therein.

During the last few decades, there has been a tremendous amount of attention focused
by many authors towards the study of Kirchhoff-type problems driven by nonlocal fractional
Laplacian operators due to their applicability in various models of physical and biological
systems. A typical model of Kirchhoff function M can be considered by M(t) = a + bθtθ−1 for
all t ≥ 0, where a, b ≥ 0, a + b > 0 and θ > 1. We say that M is of degenerate type if a = 0,
while it is called non-degenerate type if a > 0. Obviously, one can easily notice that assump-
tions (M1)–(M2) in this paper also cover the degenerate case that corresponds to M(0) = 0.
In addition, we make a note that in the study of Kirchhoff-type problems, many authors often
used M as a nondecreasing function on R+

0 , for instance, see [24, 37]. But however, in view
of the assumption (M1), one can consider that M is not monotone in nature as M can be
chosen M(t) = (1 + t)k + (1 + t)−1 for t ≥ 0 with 0 < k < 1. Moreover, it is worth mention-
ing that the degenerate case in Kirchhoff’s theory is more interesting and significant than the
non-degenerate case. From a physical point of view, M measures the change of the tension
on the string generated by the change of its length during the vibration, while M(0) = 0 indi-
cates that the base tension of the string is zero. The presence of the nonlinear coefficient M is
crucial to be considered when the changes in tension during the motion cannot be neglected.
The existence of solutions for non-degenerate fractional Kirchhoff stationary problems are
discussed in [3–5, 24, 26, 30], whereas degenerate problems are addressed in [22, 40, 48] and
the relevant references. To the best of our knowledge, most of the works on Kirchhoff-type
problems are driven by nonlocal fractional Laplacian or more general integro-differential op-
erators involve the nonlinear terms satisfying some polynomial growth, but there are only a
few papers dealing with nonlinear terms satisfying exponential type of growth, this is one of
the key motivation towards the study of this paper. In this context, we recommend the readers
to study [9, 32, 33, 43, 49].

Nowadays, the study of elliptic systems involving fractional Laplacian or more general
nonlocal integro-differential operators has gained much attention due to a wide range of
applications in applied sciences. Indeed, if w = (u, v)T denotes a vector of concentration
variable, H = ( f (x, u, v), g(x, u, v))T describes a local reaction term related to source and loss
process, then for M ≡ 1, K(x) = |x|−(N+sp) and s = 1, the system (Sλ,µ) derive from the
following p-Laplacian reaction-diffusion elliptic system

zt = div(|∇z|p−2∇z) + H(x, z)

with

div(|∇z|p−2∇z) =

div(|∇u|p−2∇u)

div(|∇v|p−2∇v)

 .

Such equations can be frequently seen in physics, plasma physics, biophysics, chemical re-
action design, etc. In many situations, H = ( f (x, u, v), g(x, u, v))T has both components
of polynomial type with variable coefficients, but for the Liouville–Bratu–Gelfand and the
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Frank–Kamenetsky models H has exponential growth at infinity. We refer to [15,17] for other
physical examples of such problems. On concerning nonlocal elliptic systems with critical
and subcritical growth one can see to [23, 30, 38] and references therein. However, concern-
ing about nonlocal elliptic systems with exponential growth the literature is very limited (see
[18, 20, 35]). This is another key motivation towards the study of this paper.

Motivated by the above-cited works, especially by [35, 45, 49], we study for the first time
in the literature to solve a coupled Schrödinger–Kirchhoff elliptic system with singular expo-
nential growth driven by the nonlocal integro-differential operator in RN .

To establish our main results, we first define the weak solution of the system (Sλ,µ).

Definition 1.2. We say that (u, v) ∈ X (see (2.1) for its definition) is a (weak) solution for the
system (Sλ,µ), if for all (φ, ψ) ∈ X, we have

M(∥(u, v)∥p)
(〈

u, φ
〉

Kp,V +
〈
v, ψ

〉
Kp,V

)
=
∫

RN

∇F(x, u, v).(φ, ψ)

|x|γ dx + λ
∫

RN
h(x)|u|q−2uφ dx

+ µ
∫

RN
h(x)|v|q−2vψ dx,

where for any w1 and w2, we define

〈
w1, w2

〉
Kp,V =

∫
RN

∫
RN

|w1(x)− w1(y)|p−2(w1(x)− w1(y))(w2(x)− w2(y))K(x − y) dxdy

+
∫

RN
V(x)|w1|p−2w1w2 dx.

Our main results for this paper are listed below.

Theorem 1.3. Suppose V satisfies (V1)− (V2), M satisfies (M1)− (M2) and (F) fulfills (F1)− (F4).
If 1 < q < p and h ∈ Lη(RN) with η = N

N−sq , then there exists λ̃ > 0 such that for all (λ, µ) ∈
(0, λ̃)× (0, λ̃), the system (Sλ,µ) admits at least one nontrivial nonnegative solution (uλ,µ, vλ,µ) in X.
In addition, there holds

lim
(λ,µ)→(0+,0+)

∥(uλ,µ, vλ,µ)∥ = 0.

Theorem 1.4. Suppose V satisfies (V1)–(V2), M satisfies (M1)–(M2) and (F) fulfills (F1)–(F4). If
q > θp and h ∈ L∞(RN), then there exists λ̂ > 0 such that for all (λ, µ) ∈ (λ̂, ∞)× (λ̂, ∞), the
system (Sλ,µ) admits at least one nontrivial nonnegative solution (uλ,µ, vλ,µ) in X. Further, there holds

lim
(λ,µ)→(∞,∞)

∥(uλ,µ, vλ,µ)∥ = 0.

Theorem 1.5. Suppose V satisfies (V1)–(V2) and (F) fulfills (F2)–(F4). In addition, we assume that
F and M satisfy the following conditions:

(F′
1) F(x, ·, ·) ∈ C1(R2) for a.e. x ∈ RN , F(x, ·, ·) ≥ 0 in R2 and F(x, 0, 0) = 0 for a.e. x ∈ RN .

Consequently, we assume that F(x, u, v) = F(x,−u,−v) for all (x, u, v) ∈ RN × R2.

(M′) the Kirchhoff function is of type M(t) = a + bθtθ−1 for all t ≥ 0, where a, b ≥ 0, a + b > 0 and
θ > 1.

Then for 1 < q < p and h ∈ Lη(RN) with η = N
N−sq , there exists λ̄ > 0 such that for all (λ, µ) ∈

(0, λ̄)× (0, λ̄), the system (Sλ,µ) has infinitely many solutions in X.
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The rest of the paper is organized as follows: In Section 2, we discuss some preliminary
results useful for the next main sections and the variational structure of the system (Sλ,µ).
Section 3 is devoted to proving Theorem 1.3 via the Ekeland variational principle and using
the standard topological tools. In Section 4, we prove Theorem 1.4 with the help of the
mountain pass theorem. Finally, in Section 5, by introducing a truncated functional and using
the deformation lemma along with the Krasnoselskii genus theory, we prove Theorems 1.5.

Notations. From now on in this paper, we have the following notations:

• For any Banach space (X, ∥ · ∥X), we denote its continuous dual by (X∗, ∥ · ∥X∗).

• on(1) denotes the real sequence such that on(1) → 0 as n → ∞.

• ⇀ means weak convergence and → means strong convergence.

• u+ = max {u, 0} and u− = max {−u, 0}.

2 Preliminary results

In this section, we shall discuss about some basic properties of fractional Sobolev spaces and
related lemmas, which are used in the sequel of this paper. Note that throughout this paper,
we use N ≥ 1, s ∈ (0, 1) and sp = N.

Let r ∈ (1, ∞) and Lr(RN) denotes the standard Lebesgue space with the norm ∥ · ∥r.
Moreover, for nonnegative measurable function V : RN → R, the space Lr

V(R
N), consisting of

all real-valued measurable functions, with V(x)|u|r ∈ L1(RN), equipped with the seminorm

∥u∥r,V =

( ∫
RN

V(x)|u|r dx
) 1

r

,

which is a norm, thanks to (V1). The space
(

Lr
V(R

N), ∥ · ∥r,V
)

is a uniform convex Banach
space (see [39]), thanks to (V1). Consequently, under the assumption of (V1), the embedding
Lr

V(R
N) ↪→ Lr(RN) is continuous.

For γ ∈ [0, N), we define the space Lr(RN , |x|−γdx), consisting of all real-valued measur-
able functions, with |u|r|x|−γ ∈ L1(RN), equipped with the norm

∥u∥r,γ =

( ∫
RN

|u|r|x|−γ dx
) 1

r

.

Define the fractional Sobolev space Ws,p(RN) by

Ws,p(RN) = {u ∈ Lp(RN) : [u]s,p < ∞},

where [u]s,p denotes the Gagliardo seminorm, defined by

[u]s,p =

( ∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+sp dxdy

) 1
p

.

Under the following norm

∥u∥Ws,p = (∥u∥p
p + [u]ps,p)

1
p ,
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the space
(
Ws,p(RN), ∥ · ∥Ws,p

)
is a uniformly convex Banach space and hence a reflexive Ba-

nach space (see [39]).
Due to (V1), the weighted fractional Sobolev space Ws,p

V (RN) makes sense and defined by

Ws,p
V (RN) = {u ∈ Ws,p(RN) : u ∈ Lp

V(R
N)},

endowed with the norm
∥u∥Ws,p

V
=
(
∥u∥p

p,V + [u]ps,p
) 1

p .

It is well-known that the space
(
Ws,p

V (RN), ∥ · ∥Ws,p
V

)
is a uniformly convex Banach space and

C∞
0 (RN) is dense in Ws,p

V (RN). Consequently, in virtue of (V1), the embedding Ws,p
V (RN) ↪→

Ws,p(RN) is continuous and there holds min{1, V0}∥u∥p
Ws,p ≤ ∥u∥p

Ws,p
V

for all u ∈ Ws,p
V (RN)

(see [39]).
Let K : RN \ {0} → R+ be the singular kernel, which is stated in the introductory part of

this paper. Now we define the generalized fractional Sobolev space Ws,p
K (RN) by

Ws,p
K (RN) = {u ∈ Lp(RN) : [u]s,Kp < ∞},

equipped with the following norm

∥u∥Ws,p
K

=
(
∥u∥p

p + [u]ps,Kp

) 1
p ,

where

[u]s,Kp =

( ∫
RN

∫
RN

|u(x)− u(y)|pK(x − y) dxdy
) 1

p

.

The space
(
Ws,p

K (RN), ∥ · ∥Ws,p
)

is a uniformly convex Banach space and hence a reflexive
Banach space (see [45]).

Under the assumption (V1), the weighted fractional generalized Sobolev space Ws,p
V,K(R

N)

makes sense and defined by

Ws,p
K,V(R

N) = {u ∈ Ws,p
K (RN) : u ∈ Lp

V(R
N)},

endowed with the norm
∥u∥Ws,p

K,V
=
(
∥u∥p

p,V + [u]ps,Kp

) 1
p .

It is easy to see that the space
(
Ws,p

K,V(R
N), ∥ · ∥Ws,p

K,V

)
is a uniformly convex Banach space and

hence reflexive (see [45]).
The natural function space to study the system (Sλ,µ) is the generalized vectorial fractional

Sobolev space X, defined by

X = Ws,p
V,K(R

N)× Ws,p
V,K(R

N), (2.1)

endowed with the norm

∥(u, v)∥ =
(
[(u, v)]ps,Kp

+ ∥(u, v)∥p
p,V)

1
p ,

where

[(u, v)]s,Kp =
(
[u]ps,Kp

+ [v]ps,Kp

) 1
p and ∥(u, v)∥p,V =

(
∥u∥p

p,V + ∥v∥p
p,V
) 1

p .

Consequently, we note that the space
(
X, ∥(·, ·)∥

)
is a uniform convex Banach space, and thus

it is reflexive. Similarly, we can define the norm of the Banach space Ws,p(RN)× Ws,p(RN).
Now we list some technical lemmas that will be used later in this paper. The following first
three lemmas are direct consequences of [45, Lemma 2, 4 and 6].
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Lemma 2.1. Under the assumption of (V1), the following chain of embeddings

X ↪→ Ws,p(RN)× Ws,p(RN) ↪→ Lν(RN)× Lν(RN)

are continuous for all ν ∈ [p, ∞) and there holds min{V0, K0}∥(u, v)∥p
Ws,p×Ws,p ≤ ∥(u, v)∥p for all

(u, v) ∈ X. Moreover, if ν ∈ [1, ∞), then the embeddings X ↪→ Lν(BR)× Lν(BR) is compact for any
R > 0.

Lemma 2.2. Suppose (V1) and (V2) holds. Then the embedding X ↪→ Lν(RN)× Lν(RN) is compact
for all ν ∈ [p, ∞). Consequently, there holds ∥(u, v)∥Lν(RN)×Lν(RN) ≤ A−1

ν ∥(u, v)∥ for all (u, v) ∈ X,
where Aν is the best constant in the embedding X ↪→ Lν(RN)× Lν(RN) and defined by

Aν = inf
(u,v)∈X\{(0,0)}

∥(u, v)∥
∥(u, v)∥Lν(RN)×Lν(RN)

with ∥(u, v)∥Lν(RN)×Lν(RN) =
(
∥u∥ν

ν + ∥v∥ν
ν

) 1
ν .

Lemma 2.3. For any ν ∈ [p, ∞) and γ ∈ [0, N), the embedding X ↪→ Lν(RN , |x|−γ dx) ×
Lν(RN , |x|−γ dx) is compact. In addition, there holds

∥(u, v)∥Lν(RN ,|x|−γ dx)×Lν(RN ,|x|−γ dx) ≤ B−1
ν,γ∥(u, v)∥, ∀ (u, v) ∈ X,

where Bν,γ is the best constant in the embedding X ↪→ Lν(RN , |x|−γ dx)× Lν(RN , |x|−γ dx), which
is defined by

Bν,γ = inf
(u,v)∈X\{(0,0)}

∥(u, v)∥
∥(u, v)∥Lν(RN ,|x|−γ dx)×Lν(RN ,|x|−γ dx)

with
∥(u, v)∥Lν(RN ,|x|−γ dx)×Lν(RN ,|x|−γ dx) =

(
∥u∥ν

ν,γ + ∥v∥ν
ν,γ
) 1

ν .

Lemma 2.4. Let 1 < q < p and h ∈ Lη(RN) with η = N
N−sq , then the embedding Lp(RN) ↪→

Lq
h(R

N) is continuous and there holds

∥u∥q,h ≤ ∥h∥
1
q
η ∥u∥p, ∀ u ∈ Lp(RN) with ∥u∥q

q,h =
∫

RN
h(x)|u|q dx.

Further, the embedding Ws,p(RN) ↪→ Lq
h(R

N) is compact. In addition, due to [45, Lemma 4], the
embedding Ws,p

K,V(R
N) ↪→ Lq

h(R
N) is compact.

Proof. Let q ∈ (1, p) and h ∈ Lη(RN) with η = N
N−sq . Observe that 1

η + q
p = 1. Consequently,

by the Hölder’s inequality, we have

∥u∥q,h ≤ ∥h∥
1
q
η ∥u∥p, ∀ u ∈ Lp(RN).

It follows that the embedding Lp(RN) ↪→ Lq
h(R

N) is continuous. To complete the proof, we
only have to show that if un ⇀ u in Ws,p(RN) as n → ∞, then un → u in Lq

h(R
N) as n → ∞. For

this, first we assume that un ⇀ u in Ws,p(RN) as n → ∞. Due to [45, Lemma 4], the sequence
{un − u}n is bounded in Lp(RN) and thus there exists m > 0 such that ∥un − u∥p ≤ m for all
n ∈ N. Further, since h ∈ Lη(RN) and using the fact that every integrable function is tight,
we can assume that for every ϵ > 0, there exists Rϵ > 0 large enough such that

∫
RN\BRϵ

|h(x)|η dx <

(
ϵ

2mq

)η

.
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This together with the Hölder’s inequality implies at once that

∫
RN\BRϵ

h(x)|un − u|q dx ≤
( ∫

RN\BRϵ

|h(x)|η dx
) 1

η

∥un − u∥q
p <

ϵ

2
.

In virtue of [45, Lemma 4], we also have un → u in Lp(BRϵ). Therefore, using the the Hölder’s
inequality, we get

∫
BRϵ

h(x)|un − u|q dx ≤ ∥h∥η

( ∫
BRϵ

|un − u|p dx
) 1

p

= on(1) as n → ∞.

In conclusion, there exists n0 ∈ N and ϵ > 0 such that
∫

BRϵ
h(x)|un − u|q dx < ϵ

2 for all n ≥ n0.
Now gathering all the above information, we obtain for all n ≥ n0 that

∥un − u∥q
q,h =

∫
RN\BRϵ

h(x)|un − u|q dx +
∫

BRϵ

h(x)|un − u|q dx < ϵ,

and thus we conclude the proof.

An immediate byproduct of the above lemma, we have the following result.

Lemma 2.5. Let 1 < q < p and h ∈ Lη(RN) with η = N
N−sq , then the embedding

Lp(RN)× Lp(RN) ↪→ Lq
h(R

N)× Lq
h(R

N)

is continuous. In addition, the embedding Ws,p(RN)× Ws,p(RN) ↪→ Lq
h(R

N)× Lq
h(R

N) is compact.
Further, due to Lemma 2.1, the embedding X ↪→ Lq

h(R
N) × Lq

h(R
N) is compact and there holds

∥(u, v)∥Lq
h(R

N)×Lq
h(R

N) ≤ S−1
q,h ∥(u, v)∥ for all (u, v) ∈ X, where Sq,h is the best constant in the

embedding X ↪→ Lq
h(R

N)× Lq
h(R

N), which is defined by

Sq,h = inf
(u,v)∈X\{(0,0)}

∥(u, v)∥
∥(u, v)∥Lq

h(R
N)×Lq

h(R
N)

with ∥(u, v)∥Lq
h(R

N)×Lq
h(R

N) =
(
∥u∥q

q,h + ∥v∥q
q,h

) 1
q .

Lemma 2.6 (cf. [11,35]). The function Φ(t) = exp(t)− ∑
jp−2
j=0

tj

j! is increasing and convex in [0, ∞).
Moreover, for any α > 0 and r > 1, there exists a constant C = C(r) such that for jp = min{j ∈
N : j ≥ p}, we have(

exp(α|s|p′)−
jp−2

∑
j=0

αj|s|jp′

j!

)r

≤ C
(

exp(αr|s|p′)−
jp−2

∑
j=0

αjrj|s|jp′

j!

)
, ∀ s ∈ R.

The following theorem was proved by Nguyen in [45], which is called singular Trudinger–
Moser inequality in the fractional Sobolev space Ws,p(RN). It can be read as follows:

Theorem 2.7 (Singular Trudinger–Moser inequality in RN). For any α > 0, γ ∈ [0, N) and
u ∈ Ws,p(RN) with s ∈ (0, 1) and sp = N, there holds

Φ(α|u|p′)
|x|γ ∈ L1(RN),

where Φ is defined as in (F2). Moreover, there exists β∗ > 0 such that for any 0 ≤ α ≤ β∗ < α∗ with
α∗ ≤ α∗

s,N , the following inequality holds true:

sup
u∈Ws,p(RN),∥u∥Ws,p≤1

∫
RN

Φ
(
α|u|p′

)
|x|γ dx < +∞,
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where

α∗
s,N = N

(
2(NωN)

2Γ(p + 1)
N!

+∞

∑
k=0

(N + k − 1)!
k!

1
(N + 2k)p

) s
N−s

with ωN =
π

N
2

Γ
(N+2

2

) .

In addition, the above inequality is sharp for α > α∗
s,N , that is, the supremum is infinity.

Since we are interested in studying the nonnegative solutions of the system (Sλ,µ), we
define the associated Euler–Lagrange variational functional Jλ,µ : X → R by

Jλ,µ(u, v) =
1
p

M̂(∥(u, v)∥p)−
∫

RN

F(x, u, v)
|x|γ dx − 1

q
(λ∥u+∥q

q,h + µ∥v+∥q
q,h), ∀ (u, v) ∈ X. (2.2)

In virtue of the assumption (F2) and Theorem 2.7, one can easily verify that Jλ,µ is well-defined,
of class C1(X, R) and its Gâteaux derivative is given by

⟨J′λ,µ(u, v), (φ, ψ)⟩ = M(∥(u, v)∥p)
(〈

u, φ
〉

Kp,V +
〈
v, ψ

〉
Kp,V

)
−
∫

RN

∇F(x, u, v).(φ, ψ)

|x|γ dx

−
∫

RN
h(x){λ(u+)q−1φ + µ(v+)q−1ψ} dx, ∀ (φ, ψ) ∈ X, (2.3)

where ⟨·, ·⟩ denotes the duality pairing between X∗ and X. It follows that the critical points of
Jλ,µ are exactly the weak solutions of the system (Sλ,µ).

3 Proof of Theorem 1.3

In this section, for the sake of simplicity, we assume without further mentioning that the
structural assumptions required in Theorem 1.3 hold.

The following lemma shows that every nontrivial (weak) solution of the system (Sλ,µ) is
nonnegative.

Lemma 3.1. For all λ > 0 and µ > 0, any nontrivial solution of the system (Sλ,µ) is nonnegative
in RN .

Proof. Suppose λ > 0 and µ > 0 are fixed and (u, v) ∈ X \ {(0, 0)} is a solution of the system
(Sλ,µ). Notice that u = u+ − u− and v = v+ − v− and thus testing (2.3) by (−u−,−v−), we
have

⟨J′λ,µ(u, v), (−u−,−v−)⟩ = 0.

Due to (F1), we obtain the following estimates

∫
RN

∇F(x, u, v).(u−, v−)
|x|γ dx = 0

and ∫
RN

h(x){λ(u+)q−1u− + µ(v+)q−1v−} dx = 0.

On the other hand, we also have∫
RN

V(x)
(
|u|p−2u(−u−) + |v|p−2v(−v−)

)
dx =

∫
RN

V(x)
(
|u−|p + |v−|p

)
dx.
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Invoking [32, Lemma 2.1], for a.e. x, y ∈ RN and w ∈ {u, v}, we infer that

|w−(x)− w−(y)|p ≤ |w(x)− w(y)|p−2(w(x)− w(y))(−w−(x) + w−(y)).

Gathering all the above information, we obtain from ⟨J′λ,µ(u, v), (−u−,−v−)⟩ = 0 that

M(∥(u, v)∥p)(∥(u−, v−)∥p) ≤ 0.

Hence by using the fact that ∥(u, v)∥ > 0 and (M1), we get u− = v− = 0 a.e. in RN . This
shows that u = u+ and v = v+ a.e. in RN , and we finish the proof.

To apply the minimization argument, we first prove the following geometrical structures
of the functional Jλ,µ.

Lemma 3.2. There exists ρ ∈ (0, 1] and two positive numbers λ∗ and j, depending upon ρ, such
that Jλ,µ(u, v) ≥ j for all (u, v) ∈ X with ∥(u, v)∥ = ρ and for all λ > 0 and µ > 0 such that
max{λ, µ} ≤ λ∗.

Proof. It follows from (M2) that

M̂(t) ≥ M̂(1)tθ , ∀ t ∈ [0, 1].

By using (F3), it follows that for any ε > 0, there exists δ = δ(ε) > 0 such that

|∇F(x, u, v)| ≤ ε|z|θp−1, ∀ x ∈ RN and |z| ≤ δ. (3.1)

Further, by using (F2) and Lemma 2.6, we get for any ϑ > θp that

|∇F(x, u, v)| ≤ κ̃ε|z|ϑ−1Φ(α0|z|p
′
), ∀ x ∈ RN and |z| ≥ δ, (3.2)

where there exists r > 0 such that ϑ = θp + r and κ̃ε =
ε

δrΦ(α0δp′ )
+ κε

δϑ−1 . Combining (3.1) and
(3.2), we obtain

|∇F(x, u, v)| ≤ ε|z|θp−1 + κ̃ε|z|ϑ−1Φ(α0|z|p
′
), ∀ (x, z) ∈ RN × R2 and ϑ > θp. (3.3)

Now we obtain from (3.3) and Lemma 2.6 that

|F(x, u, v)| =
∣∣∣∣ ∫ 1

0

d
dt

F(x, tu, tv) dt
∣∣∣∣ = ∣∣∣∣ ∫ 1

0
∇F(x, tu, tv).(u, v) dt

∣∣∣∣
≤ ε|z|θp

∫ 1

0
tθp−1 dt + κ̃ε|z|ϑ

∫ 1

0
tϑ−1Φ(α0tp′ |z|p′) dt

≤ ε|z|θp + κ̃ε|z|ϑΦ(α0|z|p
′
).

This yields at once that

|F(x, u, v)| ≤ ε|z|θp + κ̃ε|z|ϑΦ(α0|z|p
′
), ∀ (x, z) ∈ RN × R2 and ϑ > θp. (3.4)

Suppose δ̄ ∈ (0, 1] is sufficiently small enough and there holds 0 < ∥(u, v)∥ ≤ δ̄. It is easy to
see that |z| =

√
u2 + v2 ≤ ψ := |u|+ |v| and thus by using Lemma 2.1, we get

∥ψ∥Ws,p ≤ ∥u∥Ws,p + ∥v∥Ws,p ≤ 2
(
∥u∥p

Ws,p + ∥v∥p
Ws,p

) 1
p

= 2∥(u, v)∥Ws,p×Ws,p ≤ 2(min{V0, K0})−
1
p ∥(u, v)∥. (3.5)
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Choose t, t′ > 1 satisfying 1
t +

1
t′ = 1 and ψ̃ = ψ

/
∥ψ∥Ws,p . Due to (3.5) and the fact that

δ̄ ∈ (0, 1] is small enough such that 0 < ∥(u, v)∥ ≤ δ̄, we can assume that α0t′∥ψ∥p′

Ws,p ≤
(2δ̄)p′(min{V0, K0})−

1
p−1 α0t′ ≤ β∗ < α∗ with α∗ ≤ α∗

s,N . Therefore, by applying the Hölder’s
inequality, Lemma 2.3 and Lemma 2.6, we obtain from (3.4) that∫

RN

|F(x, u, v)|
|x|γ dx

≤ ε
∫

RN

|z|θp

|x|γ dx + κ̃ε

∫
RN

|z|ϑΦ(α0|z|p
′
)

|x|γ dx

≤ 2θpB−θp
θp,γε∥(u, v)∥θp + κ̃ε

( ∫
RN

|z|ϑt

|x|γ dx
) 1

t
( ∫

RN

C Φ(α0t′|z|p′)
|x|γ dx

) 1
t′

≤ 2θpB−θp
θp,γε∥(u, v)∥θp + 2ϑC

1
t′ B−ϑ

ϑt,γκ̃ε∥(u, v)∥ϑ

( ∫
RN

Φ(α0t′∥ψ∥p′

Ws,p |ψ̃|p
′
)

|x|γ dx
) 1

t′

≤ 2θpB−θp
θp,γε∥(u, v)∥θp + 2ϑDC

1
t′ B−ϑ

ϑt,γκ̃ε∥(u, v)∥ϑ,

where D > 0 is a constant, thanks to Theorem 2.7. Gathering all the above information and
using Lemma 2.5, we obtain for 0 < ∥(u, v)∥ ≤ δ̄ that

Jλ,µ(u, v) ≥
(

M̂(1)
p

− 2θpB−θp
θp,γε

)
∥(u, v)∥θp − C̃∥(u, v)∥ϑ − 1

q
max{λ, µ}S−q

q,h ∥(u, v)∥q, (3.6)

where C̃ = 2ϑDC
1
t′ B−ϑ

ϑt,γκ̃ε. Take ε = M̂(1)
/

2θp+1 pB−θp
θp,γ, and consider the function g : [0, δ̄] →

R as follows:

g(ℓ) =
M̂(1)

2(p + 1)2 ℓ
θp − C̃ℓϑ, ∀ ℓ ∈ [0, δ̄].

Notice that g admits a positive maximum j in [0, δ̄] at a point ρ ∈ (0, δ̄]. This shows that for
all (u, v) ∈ X with ∥(u, v)∥ = ρ, one has

Jλ,µ(u, v) ≥ M̂(1)
2p

ρθp − C̃ρϑ − 1
q

max{λ, µ}S−q
q,h ρq ≥ g(ρ) = j > 0,

for all λ > 0 and µ > 0 with max{λ, µ} ≤ λ∗, where λ∗ is given as follows

λ∗ =
qM̂(1)

2(p + 1)S−q
q,h

ρθp−q.

This finishes the proof.

Lemma 3.3. For all λ > 0 and µ > 0 with max{λ, µ} ≤ λ∗, there holds

mλ,µ = inf{Jλ,µ(u, v) : (u, v) ∈ Bρ} < 0.

where
Bρ = {(u, v) ∈ X : ∥(u, v)∥ < ρ}.

Finally, there exists a nonnegative sequence {(un, vn)}n and some nonnegative function (uλ,µ, vλ,µ) in
Bρ such that for all n ∈ N, we have

∥(un, vn)∥ < ρ, mλ,µ ≤ Jλ,µ(un, vn) ≤ mλ,µ +
1
n

, (un, vn) ⇀ (uλ,µ, vλ,µ) in X,

(un, vn) → (uλ,µ, vλ,µ) a.e. in RN and J′λ,µ(un, vn) → 0 in X∗ as n → ∞.
(3.7)
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Proof. Fix λ > 0 and µ > 0 with max{λ, µ} ≤ λ∗ and a pair (u, v) ∈ X such that ∥(u, v)∥ ≤ ρ.
Let τ ∈ [0, 1], then by using (F1), we have

Jλ,µ(τu, τv) ≤ 1
p

M̂(∥τ(u, v)∥p)− τq

q
(
λ∥u+∥q

q,h + µ∥v+∥q
q,h

)
≤ τp

(
ρp

p
max

s∈[0,ρp]
M(s)

)
− τq

q
(
λ∥u+∥q

q,h + µ∥v+∥q
q,h

)
.

Since 1 < q < p, it follows that Jλ,µ(τu, τv) < 0 for τ ∈ (0, 1] sufficiently small enough. This
together with (3.6) implies that

−∞ < mλ,µ = inf{Jλ,µ(u, v) : (u, v) ∈ Bρ} < 0. (3.8)

This shows that the functional Jλ,µ is bounded from below and of class C1 on Bρ. In addition,
we also know that Bρ is a complete metric space with the metric defined by the norm of X.
Due to Lemma 3.2, we obtain that

inf
∂Bρ

Jλ,µ(u, v) ≥ j > 0. (3.9)

In virtue of (3.8) and (3.9), for n large enough, we can assume that

1
n
∈
(

0, inf
∂Bρ

Jλ,µ(u, v)− inf
Bρ

Jλ,µ(u, v)
)

. (3.10)

Now applying Ekeland variational principle [21] to the functional Jλ,µ : Bρ → R, we can find
a sequence {(un, vn)}n in Bρ such that

mλ,µ ≤ Jλ,µ(un, vn) ≤ mλ,µ +
1
n

and Jλ,µ(un, vn) ≤ Jλ,µ(u, v) +
1
n
∥(un, vn)− (u, v)∥ (3.11)

for all (u, v) ∈ Bρ satisfying (u, v) ̸= (un, vn) for each n ∈ N. Consequently, we obtain from
(3.10) and (3.11) that

Jλ,µ(un, vn) ≤ mλ,µ +
1
n
= inf

Bρ

Jλ,µ(u, v) +
1
n
< inf

∂Bρ

Jλ,µ(u, v).

It follows that {(un, vn)}n ⊂ Bρ, that is, ∥(un, vn)∥ < ρ for all n ∈ N. Suppose (φ, ψ) ∈ S,
where S = {(φ, ψ) ∈ X : ∥(φ, ψ)∥ = 1}, and t > 0 sufficiently small such that (un + tφ,
vn + tψ) ∈ Bρ for all n ∈ N. By using (3.11), we can notice that

⟨J′λ,µ(un, vn), (φ, ψ)⟩ = lim
t→0+

Jλ,µ(un + tφ, vn + tψ)− Jλ,µ(un, vn)

t
≥ − 1

n
, ∀ (φ, ψ) ∈ S.

The arbitrariness of (φ, ψ) ∈ S infers that

|⟨J′λ,µ(un, vn), (φ, ψ)⟩| ≤ 1
n

, ∀ (φ, ψ) ∈ S.

This together with (3.11) implies at once that

Jλ,µ(un, vn) → mλ,µ and J′λ,µ(un, vn) → 0 in X∗ as n → ∞. (3.12)

On the other hand, it is easy to see that the sequence {(un, vn)}n is bounded, and thus up to
a subsequence still denoted itself and (uλ,µ, vλ,µ) ∈ Bρ such that (un, vn) ⇀ (uλ,µ, vλ,µ) in X as
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n → ∞. In view of Lemma 2.2, we have (un, vn) → (uλ,µ, vλ,µ) in Lν(RN)× Lν(RN) as n → ∞
for all ν ∈ [p, ∞). Further, since the maps u 7→ u± are continuous from Lν(RN) into itself,
therefore we conclude that un → uλ,µ, u±

n → u±
λ,µ, vn → vλ,µ, and v±n → v±λ,µ a.e. in RN as

n → ∞. In addition, from (3.12), we infer that

⟨J′λ,µ(un, vn), (−u−
n ,−v−n )⟩ → 0 as n → ∞.

Now using a similar strategy developed in Lemma 3.1, we obtain

M(∥(un, vn)∥p)(∥(u−
n , v−n )∥p) = on(1) as n → ∞. (3.13)

Hence we have two possibilities, that is, either infn∈N∥(un, vn)∥=d > 0 or infn∈N∥(un, vn)∥=
0.

Case 1. Let infn∈N ∥(un, vn)∥ = d > 0. Denote κ = κ(τ) as the number corresponding to
τ = dp in (M1) such that

M(∥(un, vn)∥p) ≥ κ, ∀ n ∈ N. (3.14)

In virtue of (3.13) and (3.14), we conclude that (u−
n , v−n ) → (0, 0) in X. It follows that u−

λ,µ =

v−λ,µ = 0 a.e. in RN and thus the pair (uλ,µ, vλ,µ) is nonnegative in RN . Consequently, without
loss of generality, we can assume that (un, vn) = (u+

n , v+n ), thanks to (u−
n , v−n ) → (0, 0) in X.

This shows that the sequence {(un, vn)}n is nonnegative.

Case 2. Let infn∈N ∥(un, vn)∥ = 0, then either (0, 0) is an accumulation point of the sequence
{(un, vn)}n or (0, 0) is an isolated point of the sequence {(un, vn)}n. If (0, 0) is an accu-
mulation point of {(un, vn)}n, then up to a subsequence still denoted by itself such that it
strongly converges to (uλ,µ, vλ,µ) = (0, 0). This situation is impossible. Indeed, if not, then
0 = Jλ,µ(0, 0) = mλ,µ < 0, which is a contradiction. On the other hand, if (0, 0) is an iso-
lated point of {(un, vn)}n, then there exists a subsequence still denoted by itself such that
infn∈N ∥(un, vn)∥ > 0. In this situation, we can proceed as in Case 1 to conclude the proof.

From the above discussions, we infer that the sequence {(un, vn)}n and (uλ,µ, uλ,µ) are
nonnegative. This finishes the proof.

Proof of Theorem 1.3. Due to Lemma 3.3, there exists a nonnegative sequence {(un, vn)}n in
Bρ such that (3.7) holds, that is, we have

Jλ,µ(un, vn) → mλ,µ (< 0) and J′λ,µ(un, vn) → 0 in X∗ as n → ∞.

Evidently, we have two situations according to the behaviour of the Kirchhoff function M:
either infn∈N ∥(un, vn)∥ = d > 0 or infn∈N ∥(un, vn)∥ = 0. Hence we divide the proof into two
parts.

Case 1. Let infn∈N ∥(un, vn)∥ = d > 0. Denote κ = κ(τ) as the number corresponding to
τ = dp in (M1) such that

M(∥(un, vn)∥p) ≥ κ, ∀ n ∈ N. (3.15)

Let λ > 0 and µ > 0 be such that max{λ, µ} < λ̃ with λ̃ = min{λ∗, λ0}, where λ∗ as in
Lemma 3.2, while λ0 is defined by

λ0 =
qκ(σ − θp)

(
min{V0, K0}

) p−q
p

2p−q(σ − q)θpS−q
q,h

(
β∗
2α0

) p−q
p′

> 0. (3.16)
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By using (3.7) and Lemma 2.2, Lemma 2.3 and Lemma 2.5, one has

(un, vn) ⇀ (uλ,µ, vλ,µ) in X;

(un, vn) → (uλ,µ, vλ,µ) in Lν(RN)× Lν(RN), ∀ ν ∈ [p, ∞);

(un, vn) → (uλ,µ, vλ,µ) in Lξ(RN , |x|−γ dx)× Lξ(RN , |x|−γ dx), ∀ ξ ∈ [p, ∞);

(un, vn) → (uλ,µ, vλ,µ) in Lq
h(R

N)× Lq
h(R

N);

(un, vn) → (uλ,µ, vλ,µ) a.e. in RN as n → ∞.

(3.17)

For each (u, v) ∈ X, we define the functional L(u, v) : X → R by〈
L(u, v), (φ, ψ)

〉
=
〈
u, φ

〉
Kp,V +

〈
v, ψ

〉
Kp,V , ∀ (φ, ψ) ∈ X.

Recalling the elementary inequality as follows

aαc1−α + bαd1−α ≤ (a + b)α(c + d)1−α, ∀ a, b, c, d ≥ 0 and α ∈ (0, 1). (3.18)

By applying the Hölder’s inequality and (3.18), it is not difficult to show that∣∣〈L(u, v), (φ, ψ)
〉∣∣ ≤ ∥(u, v)∥p−1∥(φ, ψ)∥, ∀ (φ, ψ) ∈ X.

Thus, the definition of L implies that for each (u, v) ∈ X, L(u, v) is a continuous linear func-
tional on X. Consequently, the weak convergence of {(un, vn)}n in X gives that〈

L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)
〉
= on(1) as n → ∞. (3.19)

Furthermore, due to (3.17), there exists lp ≥ 0 such that up to a subsequence still denoted by
same symbol, we have ∥(un, vn)∥ → lp as n → ∞. In virtue of (3.7), we can also deduce that〈

J′λ,µ(un, vn), (un − uλ,µ, vn − vλ,µ)
〉
= on(1) as n → ∞.

On simplifying the above convergence, we have

M(∥(un, vn)∥p)⟨L(un, vn), (un − uλ,µ, vn − vλ,µ)⟩

−
∫

RN

∇F(x, un, vn).(un − uλ,µ, vn − vλ,µ)

|x|γ dx − λ
∫

RN
h(x)uq−1

n (un − uλ,µ) dx

− µ
∫

RN
h(x)vq−1

n (vn − vλ,µ) dx = on(1) as n → ∞. (3.20)

Using the notation of Lemma 2.5, (F4), (M2) and (3.15), we obtain from (3.7) that as n → ∞

0 > mλ,µ = Jλ,µ(un, vn)−
1
σ
⟨J′λ,µ(un, vn), (un, vn)⟩+ on(1)

≥ 1
p

M̂(∥(un, vn)∥p)− 1
σ

M(∥(un, vn)∥p)∥(un, vn)∥p

− max{λ, µ}
(

1
q
− 1

σ

)
S−q

q,h ∥(un, vn)∥q + on(1)

≥
(

1
θp

− 1
σ

)
κ∥(un, vn)∥p − max{λ, µ}

(
1
q
− 1

σ

)
S−q

q,h ∥(un, vn)∥q + on(1).

Define zn = (un, vn) and z = (uλ,µ, vλ,µ). Then it is easy to see that |zn| =
√

u2
n + v2

n ≤ ψn :=
|un|+ |vn|. By direct calculation, one has

∥ψn∥Ws,p ≤ 2(min{V0, K0})−
1
p ∥(un, vn)∥.
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Hence from the above two inequalities and (3.16), we can easily deduce that

lim sup
n→∞

∥ψn∥p′

Ws,p ≤
(

2p−q(σ − q)θpS−q
q,h max{λ, µ}

qκ(σ − θp)
(
min{V0, K0}

) p−q
p

) p′
p−q

<
β∗
2α0

. (3.21)

By using the Hölder’s inequality, (3.17) and (3.18), we have

∣∣∣∣ ∫
RN

h(x){λuq−1
n (un − uλ,µ) + µvq−1

n (vn − vλ,µ)} dx
∣∣∣∣

≤ max{λ, µ}
[
∥un∥q−1

q,h ∥un − uλ,µ∥q,h + ∥vn∥q−1
q,h ∥vn − vλ,µ∥q,h

]
≤ max{λ, µ}∥(un, vn)∥q−1

Lq
h(R

N)×Lq
h(R

N)
∥(un − uλ,µ, vn − vλ,µ)∥Lq

h(R
N)×Lq

h(R
N)

≤ max{λ, µ}S−(q−1)
q,h sup

n∈N

∥(un, vn)∥q−1∥(un − uλ,µ, vn − vλ,µ)∥Lq
h(R

N)×Lq
h(R

N)

→ 0 as n → ∞,

thanks to the boundedness of the sequence {(un, vn)}n in X. It follows at once that

lim
n→∞

∫
RN

h(x){λuq−1
n (un − uλ,µ) + µvq−1

n (vn − vλ,µ)} dx = 0. (3.22)

Set

I1 = ε
∫

RN

|zn|θp−1|zn − z|
|x|γ dx and I2 = κε

∫
RN

Φ(α0|zn|p
′
)|zn − z|

|x|γ dx.

Invoking the Hölder’s inequality, we obtain by using (3.17) and the boundedness of {(un, vn)}n

in X that

I1 ≤ ε

( ∫
RN

|zn|θp

|x|γ dx
) θp−1

θp
( ∫

RN

|zn − z|θp

|x|γ dx
) 1

θp

≤ 2θpε∥(un, vn)∥θp−1
Lθp(RN ,|x|−γ dx)×Lθp(RN ,|x|−γ dx)

× ∥(un − uλ,µ, vn − vλ,µ)∥Lθp(RN ,|x|−γ dx)×Lθp(RN ,|x|−γ dx)

≤ 2θpεB−(θp−1)
θp,γ sup

n∈N

∥(un, vn)∥θp−1

× ∥(un − uλ,µ, vn − vλ,µ)∥Lθp(RN ,|x|−γ dx)×Lθp(RN ,|x|−γ dx)

→ 0 as n → ∞.

Define ψ̃n = ψn
/
∥ψn∥Ws,p . Suppose t ≥ p and t′ = t

t−1 > 1 such that 1
t +

1
t′ = 1. Due to (3.21),

there exist m > 0 and n0 ∈ N such that ∥ψn∥p′

Ws,p < m < β∗/2α0 for all n ≥ n0. Now choose

t′ > 1 close to 1 in such a way that there holds α0t′∥ψn∥p′

Ws,p < t′β∗/2 < α∗ for all n ≥ n0 with
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α∗ ≤ α∗
s,N . Using the Hölder’s inequality, Lemma 2.6 and (3.17), we get

I2 ≤ κε

∥∥∥∥∥Φ
(
α0|zn|p

′)
|x|

γ
t′

∥∥∥∥∥
t′

( ∫
RN

|zn − z|t
|x|γ dx

) 1
t

≤ C
1
t′ κε

( ∫
RN

Φ
(
α0t′|ψn|p

′)
|x|γ dx

) 1
t′( ∫

RN

|zn − z|t
|x|γ dx

) 1
t

≤ 2C
1
t′ κε

( ∫
RN

Φ
(
α0t′∥ψn∥p′

Ws,p |ψ̃n|p
′)

|x|γ dx

) 1
t′

× ∥(un − uλ,µ, vn − vλ,µ)∥Lt(RN ,|x|−γ dx)×Lt(RN ,|x|−γ dx)

≤ Ĉ∥(un − uλ,µ, vn − vλ,µ)∥Lt(RN ,|x|−γ dx)×Lt(RN ,|x|−γ dx) → 0 as n → ∞,

where

Ĉ = 2C
1
t′ κε

(
sup
n≥n0

∫
RN

Φ
(
α0t′∥ψn∥p′

Ws,p |ψ̃n|p
′)

|x|γ dx

) 1
t′

< +∞,

thanks to Theorem 2.7. Consequently, we obtain from (F2) that∣∣∣∣ ∫
RN

∇F(x, un, vn).(un − uλ,µ, vn − vλ,µ)

|x|γ dx
∣∣∣∣ ≤ I1 + I2 → 0 as n → ∞.

It follows that

lim
n→∞

∫
RN

∇F(x, un, vn).(un − uλ,µ, vn − vλ,µ)

|x|γ dx = 0. (3.23)

Passing limit n → ∞ in (3.20) and using (3.22) as well as (3.23), we get

M(∥(un, vn)∥p)⟨L(un, vn), (un − uλ,µ, vn − vλ,µ)⟩ = on(1) as n → ∞.

It follows from infn∈N ∥(un, vn)∥ = d > 0 that lp > 0. This shows that M(∥(un, vn)∥p) →
M(lp

p) > 0 as n → ∞, thanks to the continuity of M. In conclusion, from the above conver-
gence, we deduce that〈

L(un, vn), (un − uλ,µ, vn − vλ,µ)
〉
= on(1) as n → ∞. (3.24)

On combining (3.19) and (3.23), we obtain〈
L(un, vn)− L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)

〉
= on(1) as n → ∞. (3.25)

Recall the well-known Simon inequality [42] as follows:

|ξ − η|p ≤
{

Cp(|ξ|p−2ξ − |η|p−2η).(ξ − η) for p ≥ 2,

C̃p[(|ξ|p−2ξ − |η|p−2η).(ξ − η)]
p
2 (|ξ|p + |η|p)

2−p
2 for 1 < p < 2,

(3.26)

where ξ, η ∈ RN and Cp as well as C̃p are positive constants depending only upon p. In virtue
of the Simon inequality, we distinguish the following two situations :

Situation 1. Let p ≥ 2, then we obtain from (3.25) and (3.26) that

∥(un, vn)− (uλ,µ, vλ,µ)∥p ≤ Cp
〈

L(un, vn)− L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)
〉

→ 0 as n → ∞.
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It follows that (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞ for any p ≥ 2.

Situation 2. Let 1 < p < 2. First, recall the following elementary inequality:

(a + b)
2−p

2 ≤ a
2−p

2 + b
2−p

2 , ∀ a, b ≥ 0 and 1 < p < 2. (3.27)

Using the Hölder’s inequality, (3.25), (3.26) and (3.27), we obtain

∥(un, vn)− (uλ,µ, vλ,µ)∥p

≤ C̃p[⟨L(un, vn)− L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)
〉
]

p
2

×
(
∥(un, vn)∥p + ∥(uλ,µ, vλ,µ)∥p) 2−p

2

≤ C̃p[⟨L(un, vn)− L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)
〉
]

p
2

×
(
∥(un, vn)∥

(2−p)p
2 + ∥(uλ,µ, vλ,µ)∥

(2−p)p
2
)

≤ C[⟨L(un, vn)− L(uλ,µ, vλ,µ), (un − uλ,µ, vn − vλ,µ)
〉
]

p
2 → 0 as n → ∞,

where

C = C̃p

(
sup
n∈N

∥(un, vn)∥
(2−p)p

2 + ∥(uλ,µ, vλ,µ)∥
(2−p)p

2

)
< +∞,

thanks to the uniform boundedness of the sequence{
∥(un, vn)∥

(2−p)p
2 + ∥(uλ,µ, vλ,µ)∥

(2−p)p
2

}
n

in R.

This shows at once that (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞ for any 1 < p < 2.
From the above discussions, we conclude that (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞. Now

we shall discuss about the situation when infn∈N ∥(un, vn)∥ = 0.

Case 2. Let infn∈N ∥(un, vn)∥ = 0. If (0, 0) is an isolated point of the sequence {(un, vn)}n, then
there exists a subsequence still denoted by the same symbol such that

inf
n∈N

∥(un, vn)∥ = d > 0.

In this scenario, we can proceed as before. On the other hand, if (0, 0) is an accumulation point
of {(un, vn)}n, then up to a subsequence still denoted by itself such that it strongly converges
to (uλ,µ, vλ,µ) = (0, 0). This situation is impossible. Indeed, if not, then 0 = Jλ,µ(0, 0) = mλ,µ <

0, which is a contradiction.
By using (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞, we deduce that Jλ,µ(uλ,µ, vλ,µ) = mλ,µ

and J′λ,µ(uλ,µ, vλ,µ) = 0, thanks to Jλ,µ ∈ C1(X, R). This shows that (uλ,µ, vλ,µ) ∈ Bρ and thus
the solution (uλ,µ, vλ,µ) of the system (Sλ,µ) is also a minimizer of the functional Jλ,µ in Bρ.
Consequently, we deduce that

Jλ,µ(uλ,µ, vλ,µ) = mλ,µ < 0 < j ≤ Jλ,µ(u, v), ∀ (u, v) ∈ ∂Bρ,

thanks to Lemma 3.2. It follows that (uλ,µ, vλ,µ) ∈ Bρ and hence (uλ,µ, vλ,µ) is a nontrivial
nonnegative solution of the system (Sλ,µ) for all λ > 0 and µ > 0 such that max{λ, µ} < λ̃.

On the other hand, one can see that {(uλ,µ, vλ,µ)}(λ,µ)∈(0,λ̃)×(0,λ̃) is uniformly bounded in
X, thanks to the fact that ρ > 0, which is independent of λ > 0 and µ > 0, as specified in
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Lemma 3.2. In virtue of (F4), (M2), (3.15) and using (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞, one
has

0 > mλ,µ = lim
n→∞

[
Jλ,µ(un, vn)−

1
σ
⟨J′λ,µ(un, vn), (un, vn)⟩

]
≥ 1

p
M̂(∥(uλ,µ, vλ,µ)∥p)− 1

σ
M(∥(uλ,µ, vλ,µ)∥p)∥(uλ,µ, vλ,µ)∥p

− max{λ, µ}
(

1
q
− 1

σ

)
S−q

q,h ∥(uλ,µ, vλ,µ)∥q

≥
(

1
θp

− 1
σ

)
κ∥(uλ,µ, vλ,µ)∥p − max{λ, µ}Dq,h,

where

Dq,h =

(
1
q
− 1

σ

)
S−q

q,h sup
(λ,µ)∈(0,λ̃)×(0,λ̃)

∥(uλ,µ, vλ,µ)∥q < +∞.

This yields at once that

0 ≥ lim sup
(λ,µ)→(0+,0+)

mλ,µ ≥ lim sup
(λ,µ)→(0+,0+)

(
1

θp
− 1

σ

)
κ∥(uλ,µ, vλ,µ)∥p ≥ 0.

This implies that
lim

(λ,µ)→(0+,0+)
∥(uλ,µ, vλ,µ)∥ = 0,

and thus we conclude the proof.

4 Proof of Theorem 1.4

Throughout this section, we assume without further mentioning that the structural assump-
tions required in Theorem 1.4 hold. To prove Theorem 1.4, we need the mountain pass theo-
rem and some basic definitions, as stated below.

Definition 4.1 (Palais–Smale compactness condition). Let X be a Banach space and I : X →
R be a functional of class C1(X, R). We say that I satisfies the Palais–Smale compactness
condition at a suitable level c ∈ R, if for any sequence {un}n ⊂ X such that

I(un) → c and sup
∥φ∥X=1

|⟨I ′(un), φ⟩| → 0 as n → ∞ (4.1)

has a strongly convergent subsequence in X. Note that if this strongly convergent subsequence
exists only for some values of c, we say that I satisfies a local Palais–Smale condition. We also
remark that the sequence {un}n ⊂ X satisfying (4.1) is known as a Palais–Smale sequence at
level c ∈ R [(PS)c sequence in short].

Theorem 4.2 (The mountain pass theorem, cf. [41, 44]). Let X be a real Banach space and I ∈
C1(X, R). Suppose I(0) = 0 and

(a) there exist two constants α, ρ > 0 such that I(u) ≥ α for all u ∈ X with ∥u∥ = ρ;

(b) there exists e ∈ X satisfying ∥e∥ > ρ such that I(e) < 0.
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Define
Γ = {γ∗ ∈ C1([0, 1], X) : γ∗(0) = 1, γ∗(1) = e}.

Then
c = inf

γ∗∈Γ
max
t∈[0,1]

I(γ∗(t)) ≥ α

and there exists a (PS)c sequence {un}n for I in X. Consequently, if I satisfies the Palais–Smale
condition, then I possesses a critical value c ≥ α.

Now we shall verify the validity of the mountain pass geometrical structure of the func-
tional Jλ,µ.

Lemma 4.3 (Mountain Pass Geometry-I). For all λ > 0 and µ > 0, there exist numbers j0 > 0 and
ρ0 ∈ (0, 1] very small enough such that Jλ,µ(u, v) ≥ j0 for all (u, v) ∈ X with ∥(u, v)∥ = ρ0 .

Proof. The assumption (M2) gives that

M̂(t) ≥ M̂(1)tθ , ∀ t ∈ [0, 1].

Suppose δ̄ ∈ (0, 1] small enough and there holds 0 < ∥(u, v)∥ ≤ δ̄. Then by using the notation
of Lemma 3.2, we can easily deduce that∫

RN

|F(x, u, v)|
|x|γ dx ≤ 2θpB−θp

θp,γε∥(u, v)∥θp + 2ϑDC
1
t′ B−ϑ

ϑt,γκ̃ε∥(u, v)∥ϑ

for any 0 < ∥(u, v)∥ ≤ δ̄. Consequently, from the above information, we obtain for any
0 < ∥(u, v)∥ ≤ δ̄ that

Jλ,µ(u, v) ≥ A∥(u, v)∥θp − B∥(u, v)∥ϑ − C∥(u, v)∥q, (4.2)

where

A =
M̂(1)

p
− 2θpB−θp

θp,γε, B = 2ϑDC
1
t′ B−ϑ

ϑt,γκ̃ε and C =
1
q

max{λ, µ}A−q
q ∥h∥∞.

Choose ε > 0 sufficiently small such that A > 0. Suppose ξ = min{ϑ, q}, then using the fact
that 0 < ∥(u, v)∥ ≤ δ̄ ≤ 1, we obtain from (4.2) that

Jλ,µ(u, v) ≥ A∥(u, v)∥θp − (B + C)∥(u, v)∥ξ , ∀ (u, v) ∈ X with 0 < ∥(u, v)∥ ≤ δ̄. (4.3)

Define the function
f (ℓ) = Aℓθp − (B + C)ℓξ , ∀ ℓ ∈ [0, δ̄].

Observe that f admits a positive maximum j0 in [0, δ̄] at a point ρ0 ∈ (0, δ̄]. This shows that
for all (u, v) ∈ X with ∥(u, v)∥ = ρ0, we obtain from (4.3) that

Jλ,µ(u, v) ≥ Aρ
θp
0 − (B + C)ρξ

0 = f (ρ0) = j0 > 0.

This completes the proof.

Lemma 4.4 (Mountain Pass Geometry-II). For all λ > 0 and µ > 0, there exist a nonnegative non-
trivial couple (e1, e2) ∈ C∞

0 (RN)× C∞
0 (RN) with both components nontrivial, and also independent

of λ and µ such that Jλ,µ(e1, e2) < 0 for all ∥(e1, e2)∥ > ρ0, where ρ0 is stated as in Lemma 4.3.
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Proof. Due to the assumption (M2), we obtain

M̂(t) ≤ M̂(1)tθ , ∀ t ∈ [1, ∞).

Let (u, v) ∈ C∞
0 (RN) × C∞

0 (RN) be a nonnegative nontrivial couple with both components
nontrivial such that ∥(u, v)∥ = 1 and there holds

∫
RN

F(x,u,v)
|x|γ dx > 0, thanks to (F1).

Define the map
ζ : [1, ∞) → R

by
ζ(t) = t−σF(x, tu, tv)− F(x, u, v), ∀ t ≥ 1 and u, v ∈ R+.

By direct computation, we have

ζ ′(t) = t−σFu(x, tu, tv)u + t−σFv(x, tu, tv)v − σt−σ−1F(x, tu, tv)

= t−σ−1[Fu(x, tu, tv)tu + Fv(x, tu, tv)tv − σF(x, tu, tv)]

= t−σ−1[∇F(x, tu, tv).(tu, tv)− σF(x, tu, tv)].

This together with (F4) implies at once that ζ ′(t) ≥ 0 for all t ≥ 1 and u, v ∈ R+. It follows
that the map [1, ∞) ∋ t 7→ ζ(t) is monotonically increasing. In conclusion, we have

F(x, tu, tv) ≥ tσF(x, u, v), ∀ t ≥ 1 and u, v ∈ R+.

Choosing t > ρ0 sufficiently large enough, we get by using the above information that

Jλ,µ(tu, tv) ≤ M̂(1)
p

tθp∥(u, v)∥θp −
∫

RN

F(x, tu, tv)
|x|γ dx

≤ M̂(1)
p

tθp − tσ
∫

RN

F(x, u, v)
|x|γ dx → −∞ as t → ∞,

thanks to σ > θp. Hence by taking (e1, e2) = (tu, tv) with t > ρ0 sufficiently large enough, we
get Jλ,µ(e1, e2) < 0 for all ∥(e1, e2)∥ > ρ0 and we conclude the proof.

In view of Lemma 4.3 and Lemma 4.4, we notice that the functional Jλ,µ satisfies the
geometrical assumptions required in Theorem 4.2. Hence we infer that there exists a (PS)cλ,µ

sequence {(un, vn)}n ⊂ X such that

Jλ,µ(un, vn) → cλ,µ and J′λ,µ(un, vn) → 0 in X∗ as n → ∞,

where
cλ,µ = inf

γ∗∈Γ
max
t∈[0,1]

I(γ∗(t)) ≥ j0

with
Γ = {γ∗ ∈ C1([0, 1], X) : γ∗(0) = (0, 0), γ∗(1) = (e1, e2)}.

It is obvious that cλ,µ > 0, thanks to Lemma 4.3. Now we will discuss about the asymptotic
behaviour of the mountain pass level cλ,µ.

Lemma 4.5. There holds
lim

(λ,µ)→(∞,∞)
cλ,µ = 0.
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Proof. Let (e1, e2) be a couple as in Lemma 4.4 and thus Jλ,µ(te1, te2) → −∞ as t → ∞. So,
there exists tλ,µ > 0 such that

Jλ,µ(tλ,µe1, tλ,µe2) = max
t≥0

Jλ,µ(te1, te2).

Consequently, we have 〈
J′λ,µ(tλ,µe1, tλ,µe2), (e1, e2)

〉
= 0.

On simplifying, we deduce by using (F4) that

M(∥tλ,µ(e1, e2)∥p)∥tλ,µ(e1, e2)∥p =
∫

RN

∇F(x, tλ,µe1, tλ,µe2).(tλ,µe1, tλ,µe2)

|x|γ dx

+ tq
λ,µ

∫
RN

h(x){λeq
1 + µeq

2} dx

≥ σ
∫

RN

F(x, tλ,µe1, tλ,µe2)

|x|γ dx. (4.4)

From this we conclude that {tλ,µ}(λ,µ) is a bounded sequence of real numbers. Indeed, if
not, let there exists a subsequence of {tλ,µ}(λ,µ) still denoted by itself such that tλ,µ → ∞ as
(λ, µ) → (∞, ∞). Hence without loss of generality, we can assume tλ,µ ≥ 1 for sufficiently
large values of λ and µ. In addition, due to (M2) and using similarly approach as in Lemma
4.4, we can deduce that

M̂(t) ≤ M̂(1)tθ , ∀ t ≥ 1 and F(x, tλ,µe1, tλ,µe2) ≥ tσ
λ,µF(x, e1, e2). (4.5)

In virtue of (M2) and using (4.4) as well as (4.5), we get

θM̂(1)tθ
λ,µ∥(e1, e2)∥p ≥ θM̂(∥tλ,µ(e1, e2)∥p) ≥ M(∥tλ,µ(e1, e2)∥p)∥tλ,µ(e1, e2)∥p

≥ σtσ
λ,µ

∫
RN

F(x, e1, e2)

|x|γ dx.

This yields at once that

1
σ

θM̂(1)tθp−σ
λ,µ ∥(e1, e2)∥p ≥

∫
RN

F(x, e1, e2)

|x|γ dx.

Letting (λ, µ) → (∞, ∞) in the above inequality and using the fact that

σ > θp and
∫

RN

F(x, e1, e2)

|x|γ dx > 0,

we arrive at a contradiction, thanks to (F1). This shows that {tλ,µ}(λ,µ) is a bounded sequence
of real numbers. Now, we fix a sequence {(λn, µn)}n ⊂ R+ × R+ such that (λn, µn) → (∞, ∞)

as n → ∞. From the above arguments, we know that {tλn,µn}n is a bounded sequence of real
numbers. This shows that there exists t0 ≥ 0 and a subsequence of {(λn, µn)}n still denoted
by itself such that tλn,µn → t0 as n → ∞. In conclusion, due to the continuity of M, we infer
that {M(∥tλn,µn(e1, e2)∥p)∥tλn,µn(e1, e2)∥p}n is bounded. So, there exists a constant C > 0 such
that

M(∥tλn,µn(e1, e2)∥p)∥tλn,µn(e1, e2)∥p ≤ C, ∀ n ∈ N.
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We claim that t0 = 0. Indeed, if not, let t0 > 0. Consequently, we obtain from the above
inequality and (4.4) that for all n ∈ N, the following estimate holds∫

RN

∇F(x, tλn,µn e1, tλn,µn e2).(tλn,µn e1, tλn,µn e2)

|x|γ dx + tq
λn,µn

(
λn∥e1∥

q
q,h + µn∥e2∥q

q,h

)
≤ C. (4.6)

Due to (3.3) and Theorem 2.7, we obtain from the Lebesgue dominated convergence theorem
that

lim
n→∞

∫
RN

∇F(x, tλn,µn e1, tλn,µn e2).(tλn,µn e1, tλn,µn e2)

|x|γ dx =
∫

RN

∇F(x, t0e1, t0e2).(t0e1, t0e2)

|x|γ dx.

The above convergence together with ∥ei∥
q
q,h > 0 for i = 1, 2 implies that

lim
n→∞

[ ∫
RN

∇F(x, tλn,µn e1, tλn,µn e2).(tλn,µn e1, tλn,µn e2)

|x|γ dx + tq
λn,µn

(
λn∥e1∥

q
q,h + µn∥e2∥q

q,h

]
= ∞.

In virtue of (4.6), we arrive at a contradiction. It follows that t0 = 0 and tλ,µ → 0 as (λ, µ) →
(∞, ∞), thanks to the arbitrariness of {(λn, µn)}n. Now consider the path ξ(t) = t(e1, e2) with
t ∈ [0, 1], belongs to Γ. Using the continuity of M̂, we get

0 < cλ,µ ≤ max
t≥0

Jλ,µ(ξ(t)) = Jλ,µ(tλ,µe1, tλ,µe2)

≤ 1
p

M̂(∥tλ,µ(e1, e2)∥p) → 0 as (λ, µ) → (∞, ∞),

thanks to the couple (e1, e2), which does not depend on λ and µ. This completes the proof.

Lemma 4.6. There exists λ̂ > 0 such that for all (λ, µ) ∈ (λ̂, ∞)× (λ̂, ∞), the functional Jλ,µ satisfies
the (PS)cλ,µ condition on X.

Proof. Let {(un, vn)}n ⊂ X be a (PS)cλ,µ for Jλ,µ. It follows at once that〈
J′λ,µ(un, vn),

(un, vn)

∥(un, vn)∥

〉
= on(1) and Jλ,µ(un, vn) = cλ,µ + on(1) as n → ∞. (4.7)

Possibly, we have two situations based on the nature of the Kirchhoff function M: either
infn∈N ∥(un, vn)∥ = d > 0 or infn∈N ∥(un, vn)∥ = 0. Hence we have to discuss these situations
separately.

Case 1. Let infn∈N ∥(un, vn)∥ = d > 0. Denote κ = κ(τ) as the number corresponding to
τ = dp in (M1) such that

M(∥(un, vn)∥p) ≥ κ, ∀ n ∈ N. (4.8)

Now we claim to prove {(un, vn)}n is bounded in X. For this, we first consider the case when
θp < σ ≤ q. In this case, we obtain from (4.7), (4.8), (F4) and (M2) that as n → ∞

cλ,µ + on(1) + on(1)∥(un, vn)∥ = Jλ,µ(un, vn)−
1
σ
⟨J′λ,µ(un, vn), (un, vn)⟩

≥ 1
p

M̂(∥(un, vn)∥p)− 1
σ

M(∥(un, vn)∥p)∥(un, vn)∥p

≥
(

1
θp

− 1
σ

)
κ∥(un, vn)∥p.
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Since p > 1, we conclude from the above inequality that {(un, vn)}n is bounded in X and thus
we have

∥(un, vn)∥p′ ≤
(

σθp cλ,µ

(σ − θp)κ
+ on(1)

)p′

. (4.9)

Define zn = (un, vn) and z = (uλ,µ, vλ,µ). Then it is easy to see that |zn| =
√

u2
n + v2

n ≤ ψn :=
|un|+ |vn|. By direct calculation, we can deduce that

∥ψn∥Ws,p ≤ 2(min{V0, K0})−
1
p ∥(un, vn)∥. (4.10)

In virtue of (4.9) and (4.10), we infer that

lim sup
n→∞

∥ψn∥p′

Ws,p ≤
2p′

(min{V0, K0})
1

p−1

[
σθp cλ,µ

(σ − θp)κ

]p′

. (4.11)

Similarly, when σ > q > θp, we obtain from (4.7), (4.8), (F4) and (M2) that as n → ∞

cλ,µ + on(1) + on(1)∥(un, vn)∥ = Jλ,µ(un, vn)−
1
q
⟨J′λ,µ(un, vn), (un, vn)⟩

≥ 1
p

M̂(∥(un, vn)∥p)− 1
q

M(∥(un, vn)∥p)∥(un, vn)∥p

≥
(

1
θp

− 1
q

)
κ∥(un, vn)∥p.

This shows that {(un, vn)}n is bounded in X. Using a similar procedure as discussed above,
we have

lim sup
n→∞

∥ψn∥p′

Ws,p ≤
2p′

(min{V0, K0})
1

p−1

[
qθp cλ,µ

(q − θp)κ

]p′

. (4.12)

On combining (4.11) and (4.12), we get

lim sup
n→∞

∥ψn∥p′

Ws,p ≤
(2cλ,µ)

p′

(min{V0, K0})
1

p−1

([
σθp

(σ − θp)κ

]p′

+

[
qθp

(q − θp)κ

]p′
)

. (4.13)

By using Lemma 4.5, there exists λ̂ > 0 such that for all (λ, µ) ∈ (λ̂, ∞) × (λ̂, ∞), we can
assume

0 < cλ,µ <

[
β∗(min{V0, K0})

1
p−1

2p′+1α0

] 1
p′
([

σθp
(σ − θp)κ

]p′

+

[
qθp

(q − θp)κ

]p′
)− 1

p′

.

From the above inequality and (4.13), we obtain

lim sup
n→∞

∥ψn∥p′

Ws,p <
β∗
2α0

, ∀ (λ, µ) ∈ (λ̂, ∞)× (λ̂, ∞).

Due to the boundedness of {(un, vn)}n in X, there exists (uλ,µ, vλ,µ) ∈ X such that up to a
subsequence still denoted by itself, we can assume that (un, vn) ⇀ (uλ,µ, vλ,µ) in X as n → ∞.
In addition, by using the notations used in the proof of Theorem 1.3, it is easy to see that (3.17)
holds, there exists lλ,µ ≥ 0 such that up to a subsequence, we have ∥(un, vn)∥ → lλ,µ as n → ∞
and also we can easily obtain from (4.7) that〈

J′λ,µ(un, vn), (un − uλ,µ, vn − vλ,µ)
〉
= on(1) as n → ∞,
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thanks to the boundedness of {(un, vn)}n in X. Moreover, by using the Hölder’s inequality,
(3.17) and (3.18), one has∣∣∣∣ ∫

RN
h(x){λ(u+

n )
q−1(un − uλ,µ) + µ(v+n )

q−1(vn − vλ,µ)} dx
∣∣∣∣

≤ max{λ, µ}∥h∥∞

[
∥un∥q−1

q ∥un − uλ,µ∥q + ∥vn∥q−1
q ∥vn − vλ,µ∥q

]
≤ max{λ, µ}∥h∥∞∥(un, vn)∥q−1

Lq(RN)×Lq(RN)
∥(un − uλ,µ, vn − vλ,µ)∥Lq(RN)×Lq(RN)

≤ max{λ, µ}∥h∥∞A−(q−1)
q,h sup

n∈N

∥(un, vn)∥q−1∥(un − uλ,µ, vn − vλ,µ)∥Lq(RN)×Lq(RN)

→ 0 as n → ∞.

It follows at once that

lim
n→∞

∫
RN

h(x){λ(u+
n )

q−1(un − uλ,µ) + µ(v+n )
q−1(vn − vλ,µ)} dx = 0. (4.14)

Using all the above information and proceeding likewise as in the proof of Theorem 1.3, we can
prove that (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞. This together with infn∈N ∥(un, vn)∥ = d > 0
implies that lλ,µ = ∥(uλ,µ, vλ,µ)∥ > 0. This shows that M(∥(un, vn)∥p) → M(lp

λ,µ) > 0 as
n → ∞, thanks to the continuity of M. Next, we claim that

lim
(λ,µ)→(∞,∞)

∥(uλ,µ, vλ,µ)∥ = 0.

Indeed, if not, let there exists a sequence {(λk, µk)}k with (λk, µk) → (∞, ∞) as k → ∞ such
that lλk ,µk → l0 > 0 as k → ∞. It is easy to see that for ϱ ∈ {σ, q} (according to the situations:
either θp < σ ≤ q or θp < q < σ), one has

cλk ,µk = lim
n→∞

[
Jλ,µ(un, vn)−

1
ϱ
⟨J′λ,µ(un, vn), (un, vn)⟩

]
≥
(

1
θp

− 1
ϱ

)
M(lp

λk ,µk
)lp

λk ,µk
.

Letting k → ∞ in the above inequality and using Lemma 4.5, we get

0 ≥
(

1
θp

− 1
ϱ

)
M(lp

0 )l
p
0 > 0,

which is not possible. It follows that

lim
(λ,µ)→(∞,∞)

∥(uλ,µ, vλ,µ)∥ = lim
(λ,µ)→(∞,∞)

lλ,µ = 0.

Now we shall discuss about the situation when infn∈N ∥(un, vn)∥ = 0.

Case 2. Let infn∈N ∥(un, vn)∥ = 0. If (0, 0) is an isolated point of the sequence {(un, vn)}n, then
there exists a subsequence still denoted by the same symbol such that

inf
n∈N

∥(un, vn)∥ = d > 0.

In this situation, we can proceed as in Case 1. Moreover, if (0, 0) is an accumulation point of
{(un, vn)}n, then up to a subsequence still denoted by itself such that it strongly converges to
(uλ,µ, vλ,µ) = (0, 0). This situation is impossible. Indeed, if not, then 0 = Jλ,µ(0, 0) = cλ,µ > 0,
which is a contradiction.

By using (un, vn) → (uλ,µ, vλ,µ) in X as n → ∞ and the fact that Jλ,µ ∈ C1(X, R), we get
Jλ,µ(uλ,µ, vλ,µ) = cλ,µ > 0 and J′λ,µ(uλ,µ, vλ,µ) = 0. It follows from Lemma 3.1 that (uλ,µ, vλ,µ)

is a nontrivial nonnegative solution of the system (Sλ,µ). This completes the proof.
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Proof of Theorem 1.4. Due to Lemma 4.3–4.6, we infer that Jλ,µ enjoys all the assumptions
of Theorem 4.2. In addition, by Lemma 4.6, there exists λ̂ > 0 such that for all (λ, µ) ∈
(λ̂, ∞)× (λ̂, ∞), the functional Jλ,µ admits a nontrivial nonnegative critical point (uλ,µ, vλ,µ) ∈
X, which is a mountain pass solution of the system (Sλ,µ). Consequently, there also holds
∥(uλ,µ, vλ,µ)∥ → 0 as (λ, µ) → (∞, ∞). This finishes the proof.

5 Proof of Theorem 1.5

In this section, we shall prove Theorem 1.5 using the Krasnoselskii genus theory. For the sake
of simplicity, we assume that the structural assumptions required in Theorem 1.5 hold. For
the convenience of the readers, we first summarize some basic properties and definition of the
genus.

Let X be a Banach space and A be a subset of X. A is said to be symmetric w.r.t. the origin
if u ∈ A implies −u ∈ A. Define

Σ = {A ⊂ X \ {0} : A closed and symmetric w.r.t. the origin}.

For A ∈ Σ, we denote the genus of A by γ(A), which is defined by

γ(A) = min{k ∈ N : ∃ φ ∈ C(A, Rk \ {0}), φ(x) = −φ(−x)}.

Moreover, we define γ(∅) = 0. In addition, if such k does not exist, we set γ(A) = ∞. The
following properties of the genus can be found in [7, 25, 27, 41, 49].

Proposition 5.1. Let A, B ∈ Σ. Then the following results hold:

(a) If there exists an odd map f ∈ C(A, B), then γ(A) = γ(B);

(b) If A ⊂ B, then γ(A) ≤ γ(B);

(c) If there exists an odd homeomorphism from A onto B, then γ(A) = γ(B);

(d) If γ(A) ≥ 2, then A has infinitely many points;

(e) If S is a sphere centered at the origin in Rk, then γ(S) = k;

(f) γ(A ∪ B) ≤ γ(A) + γ(B);

(g) If γ(B) < ∞, then γ(A\B ≥ γ(A)− γ(B);

(h) If A is compact, then γ(A) < ∞, and ∃ δ > 0 such that Nδ(A) ∈ Σ and γ(A) = γ(Nδ(A)),
where

Nδ(A) = {x ∈ X : d(x, A) ≤ δ} and d(x, A) = inf{∥x − u∥ : u ∈ A};

(i) If X0 is a subspace of X with codimension k, and γ(A) > k, then A ∩ X0 ̸= ∅.

Next, we recall the classical deformation lemma, established by A. Ambrosetti and P. H.
Rabinowitz in [1]. It can be read as follows:
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Proposition 5.2. Let X be a Banach space and I ∈ C1(X, R) satisfying the (PS) condition. If c ∈ R

and N is any neighbourhood of

Kc = {u ∈ X : I(u) = c, I′(u) = 0},

then there exist η(t, u) = ηt(u) ∈ C([0, 1]× X, X) and constants ϵ̄ > ϵ > 0 such that

(a) η0(u) = u for all u ∈ X;

(b) ηt(u) = u for all u /∈ I−1[c − ϵ̄, c + ϵ̄] and all t ∈ [0, 1];

(c) ηt is a homeomorphism of X onto X for all t ∈ [0, 1];

(d) I(ηt(u)) ≤ I(u) for all u ∈ X and all t ∈ [0, 1];

(e) η1(Ic+ϵ\N) ⊂ Ic−ϵ, where Ic = {u ∈ X : I(u) ≤ c} for all c ∈ R;

(f) If Kc = ∅, then there holds η1(Ic+ϵ) ⊂ Ic−ϵ;

(g) If I is even, then ηt is odd in u.

Remark 5.3. We note that Proposition 5.2 is also valid if I satisfies the (PS)c condition for
c < c0 for some c0 ∈ R.

To study the infinitely many solutions of the system (Sλ,µ), we define the functional J :
X → R by

J(u, v) =
1
p

M̂(∥(u, v)∥p)−
∫

RN

F(x, u, v)
|x|γ dx − 1

q
(λ∥u∥q

q,h + µ∥v∥q
q,h), ∀ (u, v) ∈ X. (5.1)

By using (F2) and Theorem 2.7, it follows that J is well-defined, of class C1(X, R) and the
critical points are weak solutions of the system (Sλ,µ).

Note that by arguing similar arguments as in Lemma 4.4, we can prove that J is not
bounded from below. Hence we have some mathematical difficulty in studying the multiplic-
ity of critical points of the functional J. To avoid this difficulty, we use the technique used in
[25]. For this, we shall construct the truncated functional I corresponding to the functional J
and study the behaviour of solutions to the system (Sλ,µ).

Suppose that ∥(u, v)∥ ≤ 1. Observe that for ℓ ∈ [0, 1], we obtain from the definition of M̂
that

M̂(ℓ) ≥ M̂(1)ℓθ = (a + b)ℓθ .

Using the notations as stated in Lemma 3.2, for ∥(u, v)∥ ≤ δ̄ with δ̄ ∈ (0, 1], we have

J(u, v) ≥
(

a + b
p

− 2θpB−θp
θp,γε

)
∥(u, v)∥θp − C̃∥(u, v)∥ϑ − 1

q
max{λ, µ}S−q

q,h ∥(u, v)∥q,

where C̃ = 2ϑDC
1
t′ B−ϑ

ϑt,γκ̃ε. Choosing ε = a + b
/

2θp+1 pB−θp
θp,γ, we obtain from the above inequal-

ity that

J(u, v) ≥
(

a + b
2p

)
∥(u, v)∥θp − C̃∥(u, v)∥ϑ − 1

q
max{λ, µ}S−q

q,h ∥(u, v)∥q (5.2)

for all (u, v) ∈ X with ∥(u, v)∥ ≤ 1. Define the map Hλ,µ : [0, ∞) → R as follows

Hλ,µ(ℓ) =

(
a + b

2p

)
ℓθp − C̃ℓϑ − 1

q
max{λ, µ}S−q

q,h ℓ
q, ∀ ℓ ∈ [0, ∞)
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and write
Hλ,µ(ℓ) = ℓqH̃λ,µ(ℓ),

where

H̃λ,µ(ℓ) =

(
a + b

2p

)
ℓθp−q − C̃ℓϑ−q − 1

q
max{λ, µ}S−q

q,h .

Hence one can easily notice that J(u, v) ≥ Hλ,µ(∥(u, v)∥) for all (u, v) ∈ X with ∥(u, v)∥ ≤ 1.
In addition, we have

H̃λ,µ(0) < 0 and H̃λ,µ(ℓ) → −∞ as ℓ → ∞. (5.3)

By direct calculation, one has

H̃′
λ,µ(ℓ) = 0 =⇒ ℓ =

[
(a + b)(θp − q)

2pC̃(ϑ − q)

] 1
ϑ−θp

=: T.

Further, it is easy to see that H̃′
λ,µ(ℓ) > 0 for all ℓ ∈ (0, T) and H̃′

λ,µ(ℓ) < 0 for all ℓ ∈ (T, ∞).

This shows that the map ℓ 7→ H̃λ,µ(ℓ) is strictly increasing on (0, T) and strictly decreasing on
(T, ∞). In virtue of (5.3), we deduce that, if H̃λ,µ(T) > 0, then

H̃λ,µ(0)H̃λ,µ(T) < 0 and H̃λ,µ(T)H̃λ,µ(ℓ) < 0 for ℓ large enough.

Consequently, by the intermediate value theorem, there exists at least one root of H̃λ,µ in
between 0 and T. Since the map ℓ 7→ H̃λ,µ(ℓ) is strictly increasing on (0, T), we infer that
there exists a unique root T0(λ, µ) in between 0 and T for H̃λ,µ. Similarly, we can prove that
there exists a unique root T1(λ, µ) in between T and ∞ for H̃λ,µ. In conclusion, we can say, if
H̃λ,µ(T) > 0, then there exist two unique real numbers T0(λ, µ) and T1(λ, µ) with

0 < T0(λ, µ) < T < T1(λ, µ) < ∞ such that H̃λ,µ(T0(λ, µ)) = H̃λ,µ(T1(λ, µ)) = 0.

Define

λ1 =
q(ϑ − θp)

S−q
q,h

(
a + b

2p(ϑ − q)

) ϑ−q
ϑ−θp
(

θp − q
C̃

) θp−q
ϑ−θp

,

then if max{λ, µ} < λ1, there holds

H̃λ,µ(T) = (ϑ − θp)
(

a + b
2p(ϑ − q)

) ϑ−q
ϑ−θp
(

θp − q
C̃

) θp−q
ϑ−θp

− 1
q

max{λ, µ}S−q
q,h > 0,

so that, since we have Hλ,µ(T0(λ, µ)) = Hλ,µ(T1(λ, µ)) = 0, thanks to Hλ,µ(ℓ) = ℓqH̃λ,µ(ℓ). In
addition, there holds

Hλ,µ(ℓ) > 0, ∀ ℓ ∈
(
T0(λ, µ), T1(λ, µ)

)
and

Hλ,µ(ℓ) ≤ 0, ∀ ℓ ∈
[
0, T0(λ, µ)

]
∪
[
T1(λ, µ), ∞

)
.

(5.4)

Corollary 5.4. The following holds

lim
(λ,µ)→(0+,0+)

T0(λ, µ) = 0.
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Proof. It follows from Hλ,µ(T0(λ, µ)) = 0 and H′
λ,µ(T0(λ, µ)) > 0 that(

a + b
2p

)
(T0(λ, µ))θp = C̃(T0(λ, µ))ϑ +

1
q

max{λ, µ}S−q
q,h (T0(λ, µ))q (5.5)

and (
a + b

2p

)
θp(T0(λ, µ))θp−1 > C̃ϑ(T0(λ, µ))ϑ−1 + max{λ, µ}S−q

q,h (T0(λ, µ))q−1. (5.6)

On solving (5.5) and (5.6), we obtain

T0(λ, µ) <

[
(a + b)(θp − q)

2pC̃(ϑ − q)

] 1
ϑ−θp

.

This shows that T0(λ, µ) is uniformly bounded w.r.t. λ and µ. Let us choose a sequence
{(λn, µn)}n with (λn, µn) → (0+, 0+) as n → ∞. Using the fact that {T0(λn, µn)}n is uniformly
bounded, therefore up to a subsequence still denoted by itself such that

T0(λn, µn) → T0 (≥ 0) (say) as n → ∞.

Consequently, by replacing λn in place of λ and µn in place of µ in (5.5) and (5.6), respectively
and letting n → ∞, we have(

a + b
2p

)
Tθp

0 = C̃Tϑ
0 and

(
a + b

2p

)
θpTθp−1

0 ≥ C̃ϑTϑ−1
0 .

This directly implies at once that

C̃(ϑ − θp)Tϑ−1
0 ≤ 0.

Hence we deduce that T0 = 0. Due to the arbitrariness of {(λn, µn)}n, we conclude that
T0(λ, µ) → 0 as (λ, µ) → (0+, 0+) and thus we conclude the proof.

By Corollary 5.4, we can find λ2 > 0 small enough such that there holds T0(λ, µ) < 1 for all
(λ, µ) ∈ (0, λ2)× (0, λ2). It follows that T0(λ, µ) < min{T1(λ, µ), 1} for all (λ, µ) ∈ (0, λ2)×
(0, λ2). Suppose that (λ, µ) ∈ (0, min{λ1, λ2}) × (0, min{λ1, λ2}) and take a nonincreasing
cut-off function Ψ ∈ C∞

0 ([0, ∞), [0, 1]), which is defined by

Ψ(ℓ) =

{
1 if ℓ ∈ [0, T0(λ, µ)],

0 if ℓ ∈ [min{T1(λ, µ), 1}, ∞).

Define the truncated energy functional I : X → R by

I(u, v) =
1
p

M̂(∥(u, v)∥p)− Ψ(∥(u, v)∥)
∫

RN

F(x, u, v)
|x|γ dx − 1

q
(λ∥u∥q

q,h + µ∥v∥q
q,h), ∀ (u, v) ∈ X.

By the regularity of Ψ and J, we conclude that I ∈ C1(X, R). In addition, one can notice that I
is coercive and bounded from below on X. We also mention that the following results hold:

J(u, v) = I(u, v), ∀ (u, v) ∈ X with ∥(u, v)∥ ≤ T0(λ, µ) < min{T1(λ, µ), 1}

and
J(u, v) ≥ Gλ,µ(∥(u, v)∥), ∀ (u, v) ∈ X with ∥(u, v)∥ ≤ 1,

where

Gλ,µ(ℓ) =

(
a + b

2p

)
ℓθp − C̃Ψ(ℓ)ℓϑ − 1

q
max{λ, µ}S−q

q,h ℓ
q.
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Lemma 5.5. There exists λ̄ > 0 such that for all (λ, µ) ∈ (0, λ̄)× (0, λ̄), we have

(a) If I(u, v) < 0, then ∥(u, v)∥ < T0(λ, µ) and I(φ, ψ) = J(φ, ψ) for all (φ, ψ) in a small
neighbourhood of (u, v);

(b) For all c < 0, the functional I satisfies a local (PS)c condition.

Proof. Suppose that ∥(u, v)∥ ≥ 1, then we have Ψ(∥(u, v)∥) = 0. In addition, we obtain

I(u, v) =
1
p

M̂(∥(u, v)∥p)− 1
q
(λ∥u∥q

q,h + µ∥v∥q
q,h) ≥

(
a + b

p

)
∥(u, v)∥p

− 1
q

max{λ, µ}S−q
q,h ∥(u, v)∥q

=: g̃λ,µ(∥(u, v)∥)

for all ∥(u, v)∥ ≥ 1, where g̃λ,µ : [0, ∞) → R is given by

g̃λ,µ(ℓ) =

(
a + b

p

)
ℓp − 1

q
max{λ, µ}S−q

q,h ℓ
q.

By direct computation, one can notice that g̃λ,µ has a global minimum point at

ℓ0 =

(
max{λ, µ}S−q

q,h

a + b

) 1
p−q

and

g̃λ,µ(ℓ0) =

(
max{λ, µ}S−q

q,h

a + b

) q
p−q

max{λ, µ}S−q
q,h

(
1
p
− 1

q

)
< 0,

thanks to 1 < q < p. Further, it is easy to see that

g̃λ,µ(ℓ) ≥ 0 ⇐⇒ ℓ ≥
(

max{λ, µ}pS−q
q,h

q(a + b)

) 1
p−q

=: ℓ1.

This shows that
I(u, v) ≥ g̃λ,µ(∥(u, v)∥) ≥ 0, ∀ ∥(u, v)∥ ≥ 1

with ℓ1 < 1, that is, we have

max{λ, µ} <
q(a + b)

pS−q
q,h

=: λ3.

Next, we define a positive constant λ4 as follows

λ4 =
qb(σ − θp)

(
min{V0, K0}

) θp−q
p

2θp−q(σ − q)pS−q
q,h

(
β∗
2α0

) θp−q
p′

. (5.7)

Pick λ̄ = min{λ1, λ2, λ3, λ4}, then we conclude that for all (λ, µ) ∈ (0, λ̄) × (0, λ̄), we have
I(u, v) ≥ 0 for any ∥(u, v)∥ ≥ 1. This implies at once that if

I(u, v) < 0, then ∥(u, v)∥ < 1, ∀ (λ, µ) ∈ (0, λ̄)× (0, λ̄). (5.8)
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Consequently, from the definitions of Hλ,µ, Gλ,µ and Ψ, we get for all (λ, µ) ∈ (0, λ̄)× (0, λ̄)

with I(u, v) < 0 that

Hλ,µ(∥(u, v)∥ ≤ Gλ,µ(∥(u, v)∥) ≤ I(u, v) < 0.

This together with (5.4) implies that for all (λ, µ) ∈ (0, λ̄)× (0, λ̄) with I(u, v) < 0, we have

∥(u, v)∥ ∈ (0, 1) ∩ [(0, T0(λ, µ)) ∪ (T1(λ, µ), ∞)]. (5.9)

Now we have following possibilities according to the nature of T0(λ, µ) and T1(λ, µ).

Situation 1. Let either 0 < T0(λ, µ) < 1 < T1(λ, µ) or 0 < T0(λ, µ) < T1(λ, µ) = 1. In
both cases, for all (λ, µ) ∈ (0, λ̄)× (0, λ̄) with I(u, v) < 0, it follows directly from (5.9) that
∥(u, v)∥ ∈ (0, T0(λ, µ)) and we are done.

Situation 2. Let 0 < T0(λ, µ) < T1(λ, µ) < 1. Then for all (λ, µ) ∈ (0, λ̄) × (0, λ̄) with
I(u, v) < 0, we deduce from (5.9) that ∥(u, v)∥ ∈ (0, T0(λ, µ)) ∪ (T1(λ, µ), 1). Next, we claim
that ∥(u, v)∥ /∈ (T1(λ, µ), 1). Indeed, if not, let T1(λ, µ) < ∥(u, v)∥ < 1. By the definition of Ψ,
we have Ψ(∥(u, v)∥) = 0. Consequently, one has

I(u, v) =
1
p

M̂(∥(u, v)∥p)− 1
q
(λ∥u∥q

q,h + µ∥v∥q
q,h)

≥
(

a + b
p

)
∥(u, v)∥θp − 1

q
max{λ, µ}S−q

q,h ∥(u, v)∥q

=: hλ,µ(∥(u, v)∥)

for all T1(λ, µ) < ∥(u, v)∥ < 1, where hλ,µ : [0, ∞) → R is given by

hλ,µ(ℓ) =

(
a + b

p

)
ℓθp − 1

q
max{λ, µ}S−q

q,h ℓ
q.

By simple computation, we can deduce that hλ,µ has a global minimum point at

ℓ̂ =

(
max{λ, µ}S−q

q,h

(a + b)θ

) 1
θp−q

and

hλ,µ(ℓ̂) =

(
max{λ, µ}S−q

q,h

(a + b)θ

) q
θp−q

max{λ, µ}S−q
q,h

(
1

θp
− 1

q

)
< 0,

we thank to 1 < q < θp. In addition, one sees that

hλ,µ(ℓ) ≥ 0 ⇐⇒ ℓ ≥
(

max{λ, µ}pS−q
q,h

q(a + b)

) 1
θp−q

=: ℓ2.

Consequently, we infer that

I(u, v) ≥ hλ,µ(∥(u, v)∥) ≥ 0, ∀ ∥(u, v)∥ ∈ (T1(λ, µ), 1)

with ℓ2 < T1(λ, µ), that is, we conclude that max{λ, µ} < λ3, which is a contradiction. This
completes the proof of the claim. Hence in this case, we also have ∥(u, v)∥ ∈ (0, T0(λ, µ)).
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From the above discussions, we deduce that ∥(u, v)∥ < T0(λ, µ) and thus I(u, v) = J(u, v).
In addition, it follows that I(φ, ψ) = J(φ, ψ) for all (φ, ψ) with ∥(φ, ψ)− (u, v)∥ < T0(λ, µ)−
∥(u, v)∥. This shows that I(φ, ψ) = J(φ, ψ) for all (φ, ψ) in a small neighbourhood of (u, v)
and thus we finish the proof of part (a). Now our aim is to prove part (b). For this, first
we take c < 0 and a (PS)c sequence {(un, vn)}n ⊂ X for the functional I. Therefore, we can
assume that I(un, vn) < 0 and I′(un, vn) = on(1) as n → ∞ and thus by part (a), for any
(λ, µ) ∈ (0, λ̄)× (0, λ̄), there holds

I(un, vn) = J(un, vn), I′(un, vn) = J′(un, vn) and ∥(un, vn)∥ < T0(λ, µ).

In addition, since I is coercive on X, we deduce that the (PS)c sequence {(un, vn)}n ⊂ X is
bounded. Hence up to a subsequence still denoted by itself such that (un, vn) ⇀ (u, v) in X as
n → ∞ for some couple (u, v) ∈ X. Further, by using (F4), we can notice that the following
estimates hold as n → ∞

0 > c = J(un, vn)−
1
σ
⟨J′(un, vn), (un, vn)⟩+ on(1)

≥ 1
p

M̂(∥(un, vn)∥p)− 1
σ

M(∥(un, vn)∥p)∥(un, vn)∥p

− max{λ, µ}
(

1
q
− 1

σ

)
S−q

q,h ∥(un, vn)∥q + on(1)

≥
(

1
p
− θ

σ

)
b∥(un, vn)∥θp − max{λ, µ}

(
1
q
− 1

σ

)
S−q

q,h ∥(un, vn)∥q + on(1).

Define zn = (un, vn), then we can see that |zn| =
√

u2
n + v2

n ≤ ψn := |un| + |vn|. By direct
calculation, we have

∥ψn∥Ws,p ≤ 2(min{V0, K0})−
1
p ∥(un, vn)∥.

It follows from the above two inequalities and (5.7) that

lim sup
n→∞

∥ψn∥p′

Ws,p ≤

 2θp−q(σ − q)pS−q
q,h max{λ, µ}

qb(σ − θp)
(
min{V0, K0}

) θp−q
p


p′

θp−q

<
β∗
2α0

,

thanks to the fact that max{λ, µ} < λ̄ ≤ λ4, since we have

(λ, µ) ∈ (0, λ̄)× (0, λ̄) and λ̄ = min{λ1, λ2, λ3, λ4}.

Using all of the above information, and arguing similarly as in the proof of Theorem 1.3, we
can easily deduce that (un, vn) → (u, v) in X as n → ∞. This completes the proof of part (b).
Hence the lemma is well established.

It follows immediately from the above lemma that the following result holds.

Corollary 5.6. For all (λ, µ) ∈ (0, λ̄)× (0, λ̄), the set Kc, which is given by

Kc = {(u, v) ∈ X : I(u, v) = c < 0, I′(u, v) = 0}, is compact.

For ϵ > 0, we define
I−ϵ = {(u, v) ∈ X : I(u, v) ≤ −ϵ}.

Lemma 5.7. For any k ∈ N, there exists ϵk > 0 such that there holds γ(I−ϵk) ≥ k.
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Proof. Suppose that Xk be a k-dimensional subspace of X. For any (u, v) ∈ Xk \ {(0, 0)},
we define (u, v) = rk(φ, ψ) with (φ, ψ) ∈ Xk, ∥(φ, ψ)∥ = 1 and rk = ∥(u, v)∥. Under the
assumption of h, we known that ∥(φ, ψ)∥Lq

h(R
N)×Lq

h(R
N) is a norm of Xk for all (φ, ψ) ∈ Xk.

Since all the norms are equivalent in a finite-dimensional Banach space, therefore we infer
that for each (φ, ψ) ∈ Xk, there exists dk > 0 such that

∥(φ, ψ)∥q
Lq

h(R
N)×Lq

h(R
N)

≥ dk.

Consequently, for rk ∈ (0, T0(λ, µ)), we can easily deduce that

I(u, v) = J(u, v) ≤
(

a + b
p

)
rp

k −
1
q

min{λ, µ}dkrq
k .

In virtue of q < p, without loss of generality, we can choose rk ∈ (0, T0(λ, µ)) sufficiently
small enough such that I(u, v) ≤ −ϵk < 0. Define Srk = {(u, v) ∈ X : ∥(u, v)∥ = rk}, then one
has Srk ∩ Xk ⊂ I−ϵk . Now by using Proposition 5.1, we have γ(I−ϵk) ≥ γ(Srk ∩ Xk) = k. This
finishes the proof.

Define
Σk = {A ∈ Σ : γ(A) ≥ k}

and
ck = inf

A∈Σk

sup
(u,v)∈A

I(u, v).

It is obvious that the sequence {ck}k is monotonically increasing in nature and there holds

−∞ < ck ≤ −ϵk < 0 for each k ∈ N,

thanks to the fact that I is bounded from below and I−ϵk ∈ Σk. Due to Lemma 5.5, the
functional I satisfies the (PS)c condition for c < 0, and we have ck < 0 for each k ∈ N,
therefore by a standard argument, we infer that all ck are critical values of I.

The next lemma shows that the set Kc, defined in Corollary 5.6, contains infinitely many
critical points of I.

Lemma 5.8. Let (λ, µ) ∈ (0, λ̄)× (0, λ̄). Then for c = ck = ck+1 = · · · = ck+m with some m ∈ N,
we have γ(Kc) ≥ m + 1.

Proof. It will be proven by using the method of contradiction. For this, we first claim that
γ(Kc) ≥ m + 1 holds. Indeed, if not, let γ(Kc) ≤ m. In virtue of Corollary 5.6, the set Kc is
compact and Kc ∈ Σ. Consequently, by using Proposition 5.1, one has γ(Kc) < ∞ and there
exists δ > 0 such that Nδ(Kc) ∈ Σ and γ(Kc) = γ(Nδ(Kc)) ≤ m. On the other hand, by using
the assumption (F′

1), we infer that the functional I is even. Thus, due to Proposition 5.2, there
exists an odd homeomorphism η(t, (u, v)) = ηt(u, v) ∈ C([0, 1]× X, X) such that

η1(Ic+ϵ \ Nδ(Kc)) ⊂ Ic−ϵ for some ϵ ∈ (0,−c).

From the hypothesis, we have c = ck+m and hence there exists a set A ∈ Σk+m such that
sup(u,v)∈A I(u, v) < c + ϵ, that is, A ⊂ Ic+ϵ. This shows that η1(A \ Nδ(Kc)) ⊂ η1(Ic+ϵ \
Nδ(Kc)) ⊂ Ic−ϵ. Consequently, we deduce that

sup
(u,v)∈η1(A\Nδ(Kc))

I(u, v) ≤ c − ϵ. (5.10)
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Due to Proposition 5.2, we have

γ(A \ Nδ(Kc)) ≥ γ(A)− γ(Nδ(Kc)) ≥ k and γ(η1(A \ Nδ(Kc))) ≥ k.

It follows that η1(A \ Nδ(Kc)) ∈ Σk and thus we have

sup
(u,v)∈η1(A\Nδ(Kc))

I(u, v) ≥ ck = c,

which contradicts (5.10). This completes the proof of the claim and we finish the proof.

Proof of Theorem 1.5. Let (λ, µ) ∈ (0, λ̄) × (0, λ̄). Notice that if we have −∞ < c1 < c2 <

· · · < ck < · · · < 0, then since ck are critical values of I, we infer that I has infinitely many
critical points. In virtue of Lemma 5.5, we have J ≡ I if I < 0. This shows that the system
(Sλ,µ) has infinitely many weak solutions.

On the other hand, if there exists ck = ck+m for some m ∈ N, then c = ck = ck+1 = · · · =
ck+m. In virtue of Lemma 5.8, we get γ(Kc) ≥ m + 1 ≥ 2 and thus by Proposition 5.1, one can
notice that the set Kc has infinitely many points. In conclusion, we deduce that the system
(Sλ,µ) has infinitely many weak solutions. This finishes the proof.
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[33] X. Mingqi, V. D. Rădulescu, B. Zhan, Nonlocal Kirchhoff problems with singular expo-
nential nonlinearity, Appl. Math. Optim. 84(2021), No. 1, 915–954. https://doi.org/10.
1007/s00245-020-09666-3; MR4283949; Zbl 1470.35404
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