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Abstract. In this paper, we consider the existence and nonexistence of solutions for
a class of modified Schrödinger–Poisson system with Kirchhoff-type perturbation by
use of variational methods. When nonlinear term h(u) = |u|p−2u, 1 ≤ p < ∞, the
nonexistence of nontrivial solutions of system is demonstrated through Pohožaev iden-
tity. When nonlinear term h(u) satisfies appropriate assumptions, taking advantage of
critical point theorem, we obtain a positive radial solution and a nontrivial one of sys-
tem when g(u) satisfies different conditions. Moreover, some convergence properties
are established as the parameter b → 0. What is more, the nonexistence of nontrivial
solutions in critical case is also proved by use of Pohožaev identity.
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1 Introduction

In this paper, we studied the following generalized quasilinear Schrödinger–Poisson system
with a Kirchhoff-type perturbation, which is an innovative research topic.

(
1 + b

∫
R3 g2(u)|∇u|2dx

)
[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]

+V(x)u + ϕu = h(u), x ∈ R3,

−∆ϕ = u2, x ∈ R3,

(1.1)

where b ≥ 0, V : R3 → R and h : R → R are continuous functions, g ∈ C1(R, R+) satisfies
the following assumption:
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(g1) g is even with g′(t) ≤ 0 for all t ≥ 0 and g(0) = 1, limt→+∞ g(t) = a, a ∈ (0, 1).

When ϕ = 0, the system (1.1) has become the following Kirchhoff–Schrödinger equation:(
1 + b

∫
R3

g2(u)|∇u|2dx
)
[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]

+ V(x)u = h(x, u), x ∈ RN . (1.2)

Problem (1.2) is related to the stationary analogue of the Kirchhoff–Schrödinger type equa-
tion, which was proposed by Kirchhoff as an extension of classical D’Alembert’s wave equa-
tion for free vibrations of elastic strings [13, 18]. Since the Kirchhoff-type problems arise in
various models of physical and biological systems, numerous scholars have conducted re-
search on problem (1.2). References [3] and [20] considered the existence and nonexistence
of solutions for problem (1.2). For h(x, u) = λ f (u) + g(u)G5(u) as considered in [3], where
G(u) =

∫ u
0 g(t)dt. Under some suitable assumptions on f (u), problem (1.2) admits at least

one positive ground state solution for λ > λ∗ > 0. If λ = 0, the corresponding equation
had no nontrivial solution. For h(x, u) = f (u) and f (u) satisfied appropriate conditions,
then problem (1.2) had at least one radial ground state solution. In [20], when h(x, u) sat-
isfied critical or supercritical growth at infinity, the nonexistence result for (1.2) was proved
via Pohožaev identity. If h(x, u) showed asymptotically cubic growth at infinity, the existence
of positive radial solutions for (1.2) was obtained by use of variational methods. Moreover,
some properties were established as the parameter b → 0. Both of the existence of ground
state and sign-changing ground state solutions about (1.2) were testified in [23]. Chen et al.
[6] applied some new analytical techniques and non-Nehari manifold method to obtain one
ground state sign-changing solution vb = G−1(ub). Moreover, they illustrated that the energy
of vb = G−1(ub) is strictly larger than twice of the Nehari type ground state solution. They
also established the convergence properties of vb = G−1(ub) as the parameter b → 0.

For g(u) = 1, problem (1.2) transforms to the following classical Kirchhoff equation:

−
(

1 + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = h(x, u), x ∈ R3,

which takes into account the changes in length of the string produced by transverse vibrations,
hence the nonlocal term appeared. If b = 0, problem (1.2) takes the following form:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(x, u), x ∈ R3. (1.3)

This equation is related to the existence of solitary wave solutions for quasilinear Schrödinger
equations:

i∂tz = −∆z + W(x)z − k(x, |z|)− ∆l(|z|2)l′(|z|2)z, (1.4)

where z : R × RN → C, W : RN → R is a given potential, l : R → R and k : RN × R →
R are suitable functions. Equation (1.4) appeared in plasma physics and fluid mechanics
[25], dissipative quantum mechanics [12] and condensed matter theory [24]. The existing
results for equation (1.3) such as nontrivial solutions [15], ground state solutions [4, 31, 33],
positive solutions [9,10,29], nonexistence of solutions [14], high-energy solutions [22], multiple
solutions [21] and infinitely many solutions [30] were obtained respectively.

System (1.1) is the so called quasilinear Kirchhoff–Schrödinger–Poisson system. If b = 0,
(1.1) reduces to the following quasilinear Schrödinger–Poisson system:{

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u + ϕu = h(u), x ∈ R3,

−∆ϕ = u2, x ∈ R3.
(1.5)
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In [27], the authors proved the following problem admits at least a ground state solution{
−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u + ϕG(u)g(u) = h(x, u), x ∈ R3,

−∆ϕ = G2(u), x ∈ R3,

for h(x, u) = b(x)|G(u)|p−2G(u)g(u)− c(x)|G(u)|q−2G(u)g(u), 2 < q < 4 < p < 6. Recently,
Zhang and Liu obtained a nontrivial ground state solution for h(x, u) = λ f (u) + g(u)G5(u)
in reference [38]. By setting g2(u) = 1 + 2u2 in (1.5), we get the following quasilinear
Schrödinger–Poisson system:{

−∆u + V(x)u + ϕu − ku∆(u2) = h(u), in R3,

−∆ϕ = u2, in R3.
(1.6)

There are a variety of excellent results for system (1.6). References [11, 34, 35] studied the
existence of nontrivial solutions respectively for k = 1

2 or k = 1. The authors in [32] obtained
the existence of ground state solution and infinitely many geometrically distinct solutions.
The sign-changing solutions can be referred to the references [2, 37].

By setting g2(u) = 1 + 2u2 in (1.1), we get the following modified quasilinear Kirchhoff–
Schrödinger–Poisson system:{

−(1 + b
∫

R3 |∇u|2dx)∆u + V(x)u − 1
2 u∆(u2) + ϕu = h(u), x ∈ R3,

−∆ϕ = u2, x ∈ R3.
(1.7)

System (1.7) was introduced in [1] very recently, the authors proved that problem (1.7) has at
least three solutions: one is positive, one is negative, and one changes its sign. Furthermore,
if h is odd with respect to u, they also obtained unbounded sequence of sign-changing solu-
tions. Under appropriate conditions, the authors in [5] discussed the existence of nontrivial
nonpositive and nonnegative solutions, a sequence of high-energy solutions via perturbation
method. Combining perturbation method with discontinuous finite element method, a se-
ries of weak solutions of system (1.7) were gained in [7] for h(x, u) = K(x)up−2u, where

K(x) ∈ L
2

2−p (R3), 1 < p < 2 and K(x) > 0 for x ∈ R3. When system (1.7) involving a nonlocal
term and an integral constraint, infinitely many sign-changing solutions were obtained in [8]
according to the method of invariant sets of the descending flow combined with the genus
theory. The authors in [36] proved that the system (1.7) has a sign-changing solution u0, which
has precisely two nodal domains. The same conclusion was gained in [17] as in [36] for critical
case that h(u) = λ|u|q−2u ln |u|2 + |u|4u.

Nevertheless, there are relatively few achievements on the generalized quasilinear
Kirchhoff–Schrödinger–Poisson system (1.1), so the discussion in this paper makes innova-
tions of the pioneering work. Based on the existing results, we extend the results of references
[3] and [20] to the generalized quasilinear Kirchhoff–Schrödinger–Poisson system, then we
obtain the existence and nonexistence of solutions for system (1.1).

We make some assumptions on V(x) and h(u):

(V1) V ∈ C(R3, R), V(x) = V(|x|), 0 < V0 ≤ V(x) ≤ V∞ := lim|x|→∞ V(x) < ∞;

(h1) h ∈ C(R, R), h(t) = 0, ∀t ≤ 0 and limt→0
h(t)

t = 0;

(h2) |h(t)| ≤ C(1 + |t|q−1) for some C > 0 and q ∈ (4, 6);
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(h3) there exists τ > 4 such that

0 < τg(t)H(t) ≤ h(t)G(t), ∀t > 0,

where H(t) =
∫ t

0 h(s)ds, G(t) =
∫ t

0 g(s)ds.

Clearly, (h1) and (h2) show that for any ε > 0, there exists Cε > 0 such that

|h(u)| ≤ ε|u|+ Cε|u|q−1, ∀u ∈ R. (1.8)

Now we state our main results.

Theorem 1.1. For h(u) = |u|p−2u in (1.1), assume that (g1) holds. If V(x) + 2⟨∇V(x), x⟩ ≤ 0,
problem (1.1) has no nontrivial solutions when p ≤ 12a

5 . If 2
5 ≤ a < 1 and V(x) + 2⟨∇V(x), x⟩ ≥ 0,

problem (1.1) has no nontrivial solutions when p ≥ 6.

Theorem 1.2. Assume that (V1), (g1) and (h1)–(h3) are satisfied, then problem (1.1) has a positive
radial solution.

Theorem 1.3. Assume that (V1), (g1) and (h1)–(h3) are satisfied, {ubn} ⊂ H are the positive radial
solutions obtained in Theorem 1.2 for each n ∈ N. Then, ubn → u0 in H as bn → 0, n → ∞, where
u0 is a positive radial solution for problem (1.5).

The following condition of g is necessary to obtain the next two important results.

(g′) g ∈ C1(R, R+) is even with g′(t) ≥ 0 for all t ≥ 0 and g(0) = 1, tg′(t) < g(t) for all
t ∈ R.

Theorem 1.4. Assume that (V1), (g′) and (h1)–(h3) are satisfied, then problem (1.1) has a nontrivial
radial solution.

Theorem 1.5. Assume that (V1), (g′) and (h1)–(h3) are satisfied, {u′
bn
} ⊂ H are the nontrivial

radial solutions obtained in Theorem 1.4 for each n ∈ N. Then, u′
bn

→ u′
0 in H as bn → 0, n → ∞,

where u′
0 is a nontrivial radial solution for problem (1.5).

Finally, we consider the following generalized quasilinear Schrödinger–Poisson system
involving a Kirchhoff-type perturbation and critical Sobolev exponent

(
1 + b

∫
R3 g2(u)|∇u|2

)
[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]

+V(x)u + ϕu = g(u)Gp−1(u), in R3,

−∆ϕ = u2, in R3.

(1.9)

Theorem 1.6. Suppose that (g′) holds. If

2V(x) + ⟨∇V(x), x⟩ ≥ 0, ∀x ∈ R3,

then problem (1.9) has no nontrivial solutions when p ≥ 6.

Remark 1.7. Throughout the paper we denote by C, Ci (i = 1, 2, . . . ) > 0 various positive
constants which may vary from line to line and are not essential to the problem.
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2 Preliminary results

In this section, we introduce the variational framework associated with problem (1.1). Let

Lp(R3) be the usual Lebesgue space with the norm |u|p =
(∫

R3 |u|pdx
) 1

p .
Define the space H given by

H1 := H1(R3) = {u ∈ L2(R3) : ∇u ∈ L2(R3)},

with the norm:

∥u∥ =

( ∫
R3
(|∇u|2 + u2)dx

) 1
2

,

and the corresponding inner is

⟨u, v⟩ =
∫

R3
(∇u · ∇v + uv)dx.

Let
D1, 2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)}.

According to the assumption (V1), we use the space

H :=
{

u ∈ H1(R3) : u(x) = u(|x|),
∫

RN
V(x)u2dx < ∞

}
,

with the norm:

∥u∥H =

( ∫
R3
(|∇u|2 + V(x)u2)dx

) 1
2

,

then the embedding H ↪→ Lp(R3) is compact for 2 < p < 6.
According to [3], the energy functional associated with (1.1) is

Ib(u) =
1
2

∫
R3

g2(u)|∇u|2dx +
1
2

∫
R3

V(x)|u|2dx +
b
4

( ∫
R3

g2(u)|∇u|2dx
)2

+
1
4

∫
R3

ϕ|u|2dx −
∫

R3
H(u)dx,

(2.1)

where H(t) =
∫ t

0 h(s)ds. Since the term
∫

R3 g2(u)|∇u|2dx is not well defined in H, to overcome
this difficulty, a change of variable constructed in [28] is very helpful to us. For any v ∈ H, let

u = G−1(v) and G(u) =
∫ u

0
g(t)dt,

then ∫
R3

g2(u)|∇u|2dx =
∫

R3
g2(G−1(v))|∇G−1(v)|2dx =: |∇v|22 < ∞,

and Ib(u) can be reduced to

Jb(v) =
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1(v)|2dx +
b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx −
∫

R3
H(G−1(v))dx.

(2.2)
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Then v ∈ H is a solution of (1.1) if

⟨J′b(v), η⟩ =
∫

R3
∇v · ∇ηdx +

∫
R3

V(x)
G−1(v)

g(G−1(v))
ηdx + b

∫
R3

|∇v|2dx
∫

R3
∇v · ∇ηdx

+
∫

R3
ϕG−1(v)

G−1(v)
g(G−1(v))

ηdx −
∫

R3

h(G−1(v))
g(G−1(v))

ηdx = 0,

for all η ∈ H1(R3).
We observe that by the Lax–Milgram theorem, for given u ∈ H1(R3), there exists a unique

solution ϕ = ϕu ∈ D1, 2(R3) satisfying −∆ϕu = u2 in a weak sense. The function ϕu is
represented by

ϕu(x) =
1

4π

∫
R3

u2(y)
|x − y|dy,

and it has the following properties.

Lemma 2.1 ([11, 26]). The following properties hold:

(i) there exists C > 0 such that for any u ∈ H1(R3),

∥ϕu∥D1, 2 ≤ C|u|212
5

,
∫

R3
|∇ϕu|2dx =

∫
R3

ϕuu2dx ≤ C∥u∥4
H;

(ii) ϕu ≥ 0 for all u ∈ H1(R3);

(iii) ϕtu = t2ϕu for all t > 0 and u ∈ H1(R3);

(iv) if uj ⇀ u weakly in H1(R3), then, up to a subsequence, ϕuj → ϕu in D1, 2(R3) and∫
R3

ϕuj u
2
j dx →

∫
R3

ϕuu2dx.

Lemma 2.2 ([19, 22]). For the function g, G, and G−1, the following properties hold under the condi-
tion (g1):

(1) t
g(t) g′(t) ≤ 0 for all t ≥ 0;

(2) |t| ≤ |G−1(t)| ≤ |t|
a for all t ∈ R;

(3) t2 ≤ t
g(t)G(t) ≤ t2

a for all t ∈ R.

Under condition (g′), the following properties hold:

(4) |G−1(t)| ≤ 1
g(0) |t| = |t| for all t ∈ R;

(5) G−1(t)t
g(G−1(t)) ≤ |G−1(t)|2 for all t ∈ R;

(6) lim
|t|→0

G−1(t)
t = 1

g(0) = 1 and

lim
|t|→∞

G−1(t)
t

=

{
1

g(∞)
, if g is bounded,

0, if g is unbounded.
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3 Proof of the main results

3.1 Proof of Theorem 1.1

In this section, we will prove the nonexistence of nontrivial solutions for the following system:
(

1 + b
∫

R3 g2(u)|∇u|2dx
)
[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]

+V(x)u + ϕu = |u|p−2u, x ∈ R3,

−∆ϕ = u2, x ∈ R3.

(3.1)

By a standard argument in [20, 35], we can obtain the following Pohožaev identity.

Lemma 3.1 (Pohožaev identity). If v ∈ H is a weak solution of (3.1), then v satisfies

1
2

∫
R3

|∇v|2dx +
3
2

∫
R3

V(x)|G−1(v)|2dx +
1
2

∫
R3
⟨∇V(x), x⟩|G−1(v)|2dx

+
b
2

(∫
R3

|∇v|2dx
)2

+
5
4

∫
R3

ϕG−1(v)|G−1(v)|2dx =
3
p

∫
R3

|G−1(v)|pdx.
(3.2)

Proof of Theorem 1.1. Indeed, because (v, ϕG−1(v)) ∈ H × D1, 2(R3) is a solution of (3.1), we
have the following equation:

∫
R3

|∇v|2dx +
∫

R3
V(x)

G−1(v)
g(G−1(v))

vdx + b
(∫

R3
|∇v|2dx

)2

+
∫

R3
ϕG−1(v)

G−1(v)
g(G−1(v))

vdx =
∫

R3

|G−1(v)|p−2G−1(v)
g(G−1(v))

vdx.

(3.3)

Multiply the equation of the (3.3) by 5
4 and combined with (3.2), we have

3
4

∫
R3

|∇v|2dx +
∫

R3
V(x)

(
5
4

G−1(v)v
g(G−1(v))

− 3
2
|G−1(v)|2

)
dx +

3
4

b
(∫

R3
|∇v|2dx

)2

− 1
2

∫
R3
⟨∇V(x), x⟩|G−1(v)|2dx +

5
4

∫
R3

ϕG−1(v)

(
G−1(v)v

g(G−1(v))
− |G−1(v)|2

)
dx

=
∫

R3
|G−1(v)|p−2

(
5
4

G−1(v)v
g(G−1(v))

− 3
p
|G−1(v)|2

)
dx.

(3.4)

If V(x) + 2⟨∇V(x), x⟩ ≤ 0, then by Lemma 2.2-(3) that the left hand of (3.4) is nonnegative,
so that the equation (3.4) has no nontrivial solutions when p ≤ 12a

5 .
Combining (3.2) and (3.3), it can be concluded that

1
2

∫
R3

V(x)
(

G−1(v)v
g(G−1(v))

− 3|G−1(v)|2
)

dx − 1
2

∫
R3
⟨∇V(x), x⟩|G−1(v)|2dx

+
1
2

∫
R3

ϕG−1(v)

(
G−1(v)v

g(G−1(v))
− 5

2
|G−1(v)|2

)
dx

=
∫

R3
|G−1(v)|p−2

(
G−1(v)v

2g(G−1(v))
− 3

p
|G−1(v)|2

)
dx.

(3.5)

Under conditions 2
5 ≤ a < 1, Lemma 2.2-(3) and V(x) + 2⟨∇V(x), x⟩ ≥ 0, for p ≥ 6, the

equation (3.5) has no nontrivial solutions.
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3.2 Proof of Theorem 1.2

This section provides the proof of Theorem 1.2. Clearly, as mentioned previously, we will
devote to studying the functional Jb. It is hard to prove the boundedness of the (PS) sequence
of Jb, so that finding a special bounded (PS) sequence of Jb, µ may provides great help,

Jb, µ(v) :=
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1(v)|2dx +
b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx − µ
∫

R3
H(G−1(v))dx,

(3.6)

where µ ∈ [1, 2].
Next, we list a useful critical point theorem proposed by Jeanjean [3, 16], which is crucial

to obtain our main result.

Theorem 3.2. Let (X, ∥ · ∥) be a Banach space and I ⊂ R+ an interval. Consider the following family
of C1-functionals on X:

Jb, µ(v) = A(v)− µB(v), ∀µ ∈ I,

where B(v) ≥ 0, ∀v ∈ X, and either A(v) → +∞ or B(v) → +∞ as ∥v∥ → ∞. Assume that there
are two points v1, v2 in X, such that

cµ := inf
γ∈Γµ

max
t∈[0, 1]

Jb, µ(γ(t)) > max{Jb, µ(v1), Jb, µ(v2)}, ∀µ ∈ I,

where
Γµ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every µ ∈ I, there is a sequence {vn} ⊂ X, such that

(i) {vn} is bounded;

(ii) Jb, µ(vn) → cµ;

(iii) J′b, µ(vn) → 0 in the dual X−1 of X.

Moreover, the map µ 7→ cµ is continuous from the left.

Lemma 3.3. Assume that (V1), (g1), (h1)–(h3) are satisfied, then

(i) for µ ∈ [1, 2], there exists v ∈ H\{0} such that Jb, µ(v) < 0;

(ii) there exists ρ, α > 0 such that Jb, µ(v) ≥ α for ∥v∥H = ρ.

Proof. (i) According to (h1) and (h3), there exists constant C > 0 such that

H(G−1(v)) ≥ C|v|τ for all v ≥ 0 and H(G−1(v)) ≡ 0 for all v ≤ 0,

where τ is defined in (h3).
For any fixed ψ ∈ H with ψ > 0, by Lemma 2.2-(2), we have for τ > 4

Jb, µ(tψ) =
1
2

∫
R3

(
|∇tψ|2 + V(x)|G−1(tψ)|2

)
dx +

b
4

(∫
R3

|∇tψ|2dx
)2

+
1
4

∫
R3

ϕG−1(tψ)|G−1(tψ)|2dx − µ
∫

R3
H(G−1(tψ))dx

≤ Ct2∥ψ∥2
H +

bt4

4

(∫
R3

|∇ψ|2dx
)2

+
t4

4
C∥ψ∥4

H − µCtτ
∫

R3
|ψ|τdx

→ − ∞,
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as t → ∞, which implies that (i) holds if we take v = tψ with t sufficiently large.
(ii) Let ε ∈

(
0, a2V0

2µ

)
, by Lemma 2.2-(2) and (1.8), we obtain

Jb, µ(v) =
1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)|G−1(v)|2dx +
b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx − µ
∫

R3
H(G−1(v))dx

≥ 1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

(
V0 −

µε

a2

)
|v|2dx − Cεµ

qaq

∫
R3

|v|qdx.

≥ C1∥v∥2
H − C2∥v∥q

H.

Hence, for q > 4 we can choose ∥v∥H = ρ > 0 small enough such that Jb, µ(v) ≥ α > 0.

Define

A(v) :=
1
2

∫
R3

[
|∇v|2 + V(x)|G−1(v)|2

]
dx +

b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx,

B(v) :=
∫

R3
H(G−1(v))dx.

It is deduced from (V1) and Lemma 2.2-(2) that

A(v) >
1
2
∥v∥2

H → +∞, as ∥v∥H → +∞.

Moreover, from (h1), it can be observed that B(v) =
∫

R3 H(G−1(v))dx ≥ 0, ∀v ∈ H.
Based on the above facts and Lemma 3.3, the conclusion of Theorem 3.2 holds. It shows

that for a.e. µ ∈ [1, 2], there is a bounded (PS)cµ sequence {vn} ⊂ H, satisfying Jb, µ(vn) → cµ

and J′b, µ(vn) → 0, where cµ is the mountain pass level.

Lemma 3.4. Suppose (V1), (g1), (h1)–(h3) hold, {vn} is the sequence obtained above, going if neces-
sary to a subsequence, vn → v in H.

Proof. Since {vn} ⊂ H is bounded, up to a subsequence, there exists v ∈ H such that

vn ⇀ v in H,

vn → v in Lr(R3), 2 < r < 6,

vn(x) → v(x) a.e. on x ∈ R3.

Define φ : R → R by φ(t) = G−1(t)
g(G−1(t)) . According to (g1), then a < g(t) ≤ 1 for t ∈ R,

jointly with Lemma 2.2-(1), we have

φ′(t) =
1

g2(G−1(t))

[
1 − G−1(t)g′(G−1(t))

g(G−1(t))

]
≥ 1

g2(G−1(t))
≥ 1.

According to the mean value theorem, for any x ∈ R3, there exists a function ξ(x) between
v(x) and vn(x) such that∫

R3
V(x)

[
G−1(vn)

g(G−1(vn))
− G−1(v)

g(G−1(v))

]
(vn − v)dx

=
∫

R3
V(x)φ′(ξ)|vn − v|2dx

≥
∫

R3
V(x)|vn − v|2dx,
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and with the help of Lemma 2.1, we have∫
R3

[
ϕG−1(vn)

G−1(vn)

g(G−1(vn))
− ϕG−1(v)

G−1(v)
g(G−1(v))

]
(vn − v)dx

=
∫

R3
ϕG−1(vn)

[
G−1(vn)

g(G−1(vn))
− G−1(v)

g(G−1(v))

]
(vn − v)dx

+
∫

R3

(
ϕG−1(vn) − ϕG−1(v)

)
G−1(v)

g(G−1(v))
(vn − v)dx

≥
∫

R3
ϕG−1(vn)φ′(ξ)|vn − v|2dx

≥
∫

R3
ϕG−1(vn)|vn − v|2dx

→ 0.

Choose An =
∫

R3 |∇vn|2dx and A =
∫

R3 |∇v|2dx. By vn ⇀ v in H, thus {An − A} is bounded.
By the weak convergence of vn in H, we get b(An − A)

∫
R3 ∇v∇(vn − v)dx = on(1). So that

b
∫

R3
|∇vn|2dx

∫
R3

∇vn∇(vn − v)dx − b
∫

R3
|∇v|2dx

∫
R3

∇v∇(vn − v)dx

≥ b(An − A)
∫

R3
∇v∇(vn − v)dx

→ 0,

as n → ∞. Noting that a < g(t) ≤ 1, then by Lemma 2.2-(2), (1.8) and Hölder inequality,
vn → v in Lr(R3), 2 < r < 6, we obtain∣∣∣∣ ∫

R3

[
h(G−1(vn))

g(G−1(vn))
− h(G−1(v))

g(G−1(v))

]
(vn − v)dx

∣∣∣∣
≤ C

∫
R3

[
ε(|vn|+ |v|) + Cε(|vn|q−1 + |v|q−1)

]
|vn − v|dx

≤ Cε(|vn|2 + |v|2)|vn − v|2 + CCε(|vn|q−1
q + |v|q−1

q )|vn − v|q
→ 0,

as n → ∞. Then

on(1) = ⟨J′b, µ(vn)− J′b, µ(v), vn − v⟩

=
∫

R3
|∇(vn − v)|2dx +

∫
R3

V(x)
[

G−1(vn)

g(G−1(vn))
− G−1(v)

g(G−1(v))

]
(vn − v)dx

+ b
[ ∫

R3
|∇vn|2dx

∫
R3

∇vn · ∇(vn − v)dx −
∫

R3
|∇v|2dx

∫
R3

∇v · ∇(vn − v)dx
]

+
∫

R3

[
ϕG−1(vn)

G−1(vn)

g(G−1(vn))
− ϕG−1(v)

G−1(v)
g(G−1(v))

]
(vn − v)dx

− µ
∫

R3

[
h(G−1(vn))

g(G−1(vn))
− h(G−1(v))

g(G−1(v))

]
(vn − v)dx

≥
∫

R3
|∇(vn − v)|2dx +

∫
R3

V(x)|vn − v|2dx

= ∥vn − v∥2
H.

Therefore, vn → v in H.
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According to Theorem 3.2, there is a bounded sequence {vn} ⊂ H satisfying Jb, µ(vn) → cµ

and J′b, µ(vn) → 0. From Lemma 3.4, for every µ ∈ [1, 2], we get that Jb, µ has a nontrivial
critical point v satisfying Jb, µ(v) = cµ and J′b, µ(v) = 0. Therefore, there exists {µn} ⊂ [1, 2]
such that limn→∞ µn = 1, {vµn} ⊂ H such that Jb, µn(vµn) = cµn > 0 and J′b, µn

(vµn) = 0.

Lemma 3.5. Suppose that (g1), (h1) and (h3) are satisfied, then sequence {vµn} is bounded in H.

Proof. Since sequence {vµn} ⊂ H satisfies

Jb, µn(vµn) = cµn and J′b, µn
(vµn) = 0.

Then we have

Jb, µn(vµn) =
1
2

∫
R3

|∇vµn |2dx +
1
2

∫
R3

V(x)|G−1(vµn)|2dx +
b
4

(∫
R3

|∇vµn |2dx
)2

+
1
4

∫
R3

ϕG−1(vµn )
|G−1(vµn)|2dx − µn

∫
R3

H(G−1(vµn))dx

= cµn > 0.

(3.7)

We also deduce that

⟨J′b, µn
(vµn), vµn⟩ =

∫
R3

|∇vµn |2dx +
∫

R3
V(x)

G−1(vµn)

g(G−1(vµn))
vµn dx

+ b
(∫

R3
|∇vµn |2dx

)2

+
∫

R3
ϕG−1(vµn )

G−1(vµn)

g(G−1(vµn))
vµn dx

− µn

∫
R3

h(G−1(vµn))

g(G−1(vµn))
vµn dx

= o(1)∥vµn∥,

(3.8)

as n → ∞. It follows from (3.7), (3.8), (h3) and Lemma 2.2-(2), (3) that

cµn + 1 + ∥vµn∥

≥ Jb, µn(vµn)−
a
4
⟨J′b, µn

(vµn), vµn⟩

≥
(

1
2
− a

4

) ∫
R3

|∇vµn |2dx +
∫

R3
V(x)G−1(vµn)

[
1
2

G−1(vµn)−
avµn

4g(G−1(vµn))

]
dx

+

(
1
4
− a

4

)
b
(∫

R3
|∇vµn |2dx

)2

+
∫

R3
ϕG−1(vµn )

G−1(vµn)

[
1
4

G−1(vµn)−
avµn

4g(G−1(vµn))

]
dx

− µn

∫
R3

[
H(G−1(vµn))−

a
4

h(G−1(vµn))

g(G−1(vµn))
vµn

]
dx

≥
(

1
2
− a

4

) ∫
R3

|∇vµn |2dx +
1
4

∫
R3

V(x)|G−1(vµn)|2dx

≥ 1
4
∥vµn∥2

H,

which means that {vµn} is bounded in H.

Proof of Theorem 1.2. Taking a subsequence of {vµn} still represented by {vµn}, because {vµn} is
bounded in H, similar to the proof of Lemma 3.4, we obtain vµn → vµ in H. From Theorem 3.2,



12 Y. Wang and J. Zhang

we know that µ 7→ cµ is continuous from the left. So

lim
n→∞

Jb(vµn) = lim
n→∞

[
Jb, µn(vµn) + (µn − 1)

∫
R3

H(G−1(vµn))dx
]

= lim
n→∞

cµn = c̃.

In addition,

lim
n→∞

⟨J′b(vµn), η⟩ = lim
n→∞

[
⟨J′b, µn

(vµn), η⟩+ (µn − 1)
∫

R3

h(G−1(vµn))

g(G−1(vµn))
ηdx

]
= 0,

for any η ∈ C∞
0 (R3), which means that J′b(v) = 0 satisfies Jb(v) = c̃ > 0.

Let v− = min{v, 0}. Using Lemma 2.2-(2), (3) and with help of the assumption (h1) and
Lemma 2.1, we have

0 = ⟨J′b(v), v−⟩

=
∫

R3

(
|∇v−|2 + V(x)

G−1(v−)
g(G−1(v−))

v−
)

dx

≥
∫

R3
|∇v−|2 + V(x)|v−|2dx

≥ ∥v−∥2
H.

It shows that v− ≡ 0. Applying the strong maximum principle, we obtain v > 0.

4 Asymptotic properties

Now, we are in a situation to give the proof of convergence properties.

Proof of Theorem 1.3. If vbn is a critical point of Jbn , which is obtained in Theorem 1.2 for each
n ∈ N. Similar to the proof of Lemma 3.3, for bn → 0, n → ∞, {vbn} is a (PS) sequence, which
is bounded in H. There exists a subsequence of {bn}, still denoted by {bn}, such that vbn ⇀ v0

in H. It is easy to obtain

∥vbn − v0∥2
H ≤ ⟨J′bn

(vbn)− J′0(v0), vbn − v0⟩ − bn

∫
R3

|∇vbn |2dx
∫

R3
∇vbn∇(vbn − v0)dx

+
∫

R3

[
ϕG−1(v0)

G−1(v0)

g(G−1(v0))
− ϕG−1(vbn )

G−1(vbn)

g(G−1(vbn))

]
(vbn − v0)dx

+
∫

R3

[
h(G−1(vbn))

g(G−1(vbn))
− h(G−1(v0))

g(G−1(v0))

]
(vbn − v0)dx

= on(1).

On the one hand, for all η ∈ H\{0}, in view of Lemma 2.2-(2), we can use the Lebesgue
dominated convergence theorem to obtain

lim
n→∞

∫
R3

V(x)
G−1(vbn)η

g(G−1(vbn))
dx =

∫
R3

V(x)
G−1(v0)η

g(G−1(v0))
dx,

lim
n→∞

∫
R3

h(G−1(vbn))η

g(G−1(vbn))
dx =

∫
R3

h(G−1(v0))η

g(G−1(v0))
dx.
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By Lemma 2.1, we can obtain

lim
n→∞

∫
R3

ϕG−1(vbn )
G−1(vbn)η

g(G−1(vbn))
dx =

∫
R3

ϕG−1(v0)
G−1(v0)η

g(G−1(v0))
dx.

On the other hand, we have ⟨J′bn
(vbn), η⟩ = on(1) and ⟨J′0(v0), η⟩ = on(1). Moreover,

lim
n→∞

∫
R3

∇vbn∇ηdx =
∫

R3
∇v0∇ηdx,

lim
n→∞

bn

∫
R3

|∇vbn |2dx
∫

R3
∇vbn∇η = 0.

Thus,∫
R3

∇v0∇ηdx +
∫

R3
V(x)

G−1(v0)

g(G−1(v0)
ηdx +

∫
R3

ϕG−1(v0)
G−1(v0)

g(G−1(v0))
ηdx =

∫
R3

h(G−1(v0))

g(G−1(v0))
ηdx.

It shows that v0 is a positive solution of (1.5).

5 Proof of Theorem 1.4 and Theorem 1.5

In this section, we will prove the existence of nontrivial radial solution for system (1.1) under
the condition (g′).

Lemma 5.1. Assume that (V1), (g′), (h1) and (h3) are satisfied, then

(i) for µ ∈ [1, 2], there exists v ∈ H\{0} such that Jb, µ(v) < 0;

(ii) there exists ρ1, α1 > 0 such that Jb, µ(v) ≥ α1 and ∥v∥H = ρ1.

Proof. (i) According to (h1) and (h3), there exists constant C > 0 such that

H(G−1(v)) ≥ C|v|τ for all v ≥ 0 and H(G−1(v)) ≡ 0 for all v ≤ 0,

where τ is defined in (h3).
For any fixed ψ1 ∈ H with ψ1 > 0, by Lemma 2.2-(4), we have

Jb, µ(tψ1) =
1
2

∫
R3

(
|∇tψ1|2 + V(x)|G−1(tψ1)|2

)
dx +

b
4

(∫
R3

|∇tψ1|2dx
)2

+
1
4

∫
R3

ϕG−1(tψ1)
|G−1(tψ1)|2dx − µ

∫
R3

H(G−1(tψ1))dx

≤ t2

2
∥ψ1∥2

H +
b
4

t4
(∫

R3
|∇ψ1|2dx

)2

+
t4

4
C∥ψ1∥4

H − µCtτ
∫

R3
|ψ1|τdx

→ −∞,

as t → ∞ for τ > 4, which implies that (i) holds if we take v = tψ1 with t sufficiently large.
(ii) It follows from (3.6) that

Jb, µ(v) =
1
2

∫
R3

(
|∇v|2 + V(x)|G−1(v)|2

)
dx +

b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx − µ
∫

R3
H(G−1(v))dx

=
1
2

∫
R3

|∇v|2dx −
∫

R3

(
−1

2
V(x)|G−1(v)|2 + µH(G−1(v))

)
dx

+
b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx.

(5.1)
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Let A(x, s) := − 1
2 V(x)|G−1(s)|2 + µH(G−1(s)), then by Lemma 2.2-(6), we have

lim
s→0

A(x, s)
|s|2 = lim

s→0

[
−1

2
V(x)

∣∣∣∣G−1(s)
s

∣∣∣∣2 + µ
H(G−1(s))

|s|2

]
= −1

2
V(x), (5.2)

and

lim
s→+∞

A(x, s)
|s|6 = lim

s→+∞

[
−1

2
V(x)

∣∣∣∣G−1(s)
s

∣∣∣∣2( 1
|s|4

)
+ µ

H(G−1(s))
|s|6

]
= 0. (5.3)

Thus, by (5.2) and (5.3), for ϵ > 0 sufficiently small, there exists a constant Cϵ > 0 such that

A(x, s) ≤
(
− 1

2
V(x) + ϵ

)
|s|2 + Cϵ|s|6. (5.4)

Then, according to (V1), (5.1), (5.4), Lemma 2.1 and Sobolev embedding theorem, we have

Jb, µ(v) ≥
1
2

∫
R3

|∇v|2dx −
∫

R3

(
−1

2
V(x) + ϵ

)
|v|2dx −

∫
R3

Cϵ|v|6dx

+
b
4

(∫
R3

|∇v|2dx
)2

+
1
4

∫
R3

ϕG−1(v)|G−1(v)|2dx

≥ 1
2

∫
R3

|∇v|2dx +
1
2

∫
R3

V(x)v2dx − ϵ
∫

R3
|v|2dx − Cϵ

∫
R3

|v|6dx

≥ 1
2
∥v∥2

H − ϵC∥v∥2
H − Cϵ∥v∥6

H.

It follows that
Jb, µ(v) ≥ C∥v∥2

H − C∥v∥6
H,

if we choose sufficiently small ρ1 > 0, which implies that

Jb, µ(v) ≥ Cρ2
1 − Cρ6

1 := α1 > 0.

Obviously, as defined in Section 3.2, A(v) and B(v) are the same, we can still obtain that
B(v) ≥ 0 for v ∈ H and A(v) → +∞ as ∥v∥ → ∞. Also by Lemma 5.1 that the conclusion of
Theorem 3.2 holds, then there is a bounded (PS)c′µ sequence {v′n} ⊂ H, satisfying Jb, µ(v′n) → c′µ
and J′b, µ(v

′
n) → 0, where c′µ is the mountain pass level.

Lemma 5.2. Suppose (V1), (g′), (h1)–(h3) hold, {v′n} is the sequence obtained above, going if neces-
sary to a subsequence, v′n → v′ in H.

Proof. Since {v′n} ⊂ H is bounded, up to a subsequence, there exists v′ ∈ H such that

v′n ⇀ v′ in H,

v′n → v′ in Lr(R3), for 2 < r < 6,

v′n(x) → v′(x) a.e. on x ∈ R3.

Firstly, we claim that there exists C > 0 such that

∫
R3

[
|∇(v′n − v′)|2 + V(x)

(
G−1(v′n)

g(G−1(v′n))
− G−1(v′)

g(G−1(v′))

)
(v′n − v′)

]
dx ≥ C∥v′n − v′∥2

H. (5.5)
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Indeed, we may assume v′n ̸= v′ (otherwise the conclusion is trivial). Set

ω′
n =

v′n − v′

∥v′n − v′∥

and

ln =
1

v′n − v′

(
G−1(v′n)

g(G−1(v′n))
− G−1(v′)

g(G−1(v′))

)
.

Argue by contradiction and assume that∫
R3
(|∇ω′

n|2 + V(x)ln(x)ω′2
n )dx → 0.

Since
d
ds

(
G−1(s)

g(G−1(s))

)
=

1
g2(G−1(s))

(
1 − G−1(s)g′(G−1(s))

g(G−1(s))

)
> 0,

G−1(s)
g(G−1(s)) is strictly increasing, and for each C > 0 there exists δ′ > 0 such that

d
ds

(
G−1(s)

g(G−1(s))

)
> δ′,

when |s| ≤ C. Hence, we see that ln(x) is positive. Hence∫
R3

|∇ω′
n|2dx → 0,

∫
R3

V(x)ln(x)ω′2
n dx → 0, and

∫
R3

V(x)ω′2
n dx → 1.

Similar to Lemma 2.5 in Reference [30], we assert that for each ε′ > 0, there exists C1 > 0
independent of n such that meas(Ωn) < ε′, where Ωn := {x ∈ R3 : |v′n(x)− v′(x)| ≥ C1}, it
can be inferred that there exists a constant C > 0 such that∫

R3\Ωn

V(x)ω′2
n dx ≤ C

∫
R3\Ωn

V(x)
|G−1(v′n − v′)|2

∥v′n − v′∥2 dx ≤ C
∫

R3
V(x)ln(x)dx → 0. (5.6)

On the other hand, by the integral absolutely continuity, there exists ε′ > 0 such that whenever
Ω ⊂ R3 and meas(Ω) < ε′, ∫

Ω
V(x)ω′2

n dx ≤ 1
2

. (5.7)

Combining (5.6) with (5.7), we have∫
R3

V(x)ω′2
n dx =

∫
R3\Ωn

V(x)ω′2
n dx +

∫
Ωn

V(x)ω′2
n dx ≤ 1

2
+ on(1),

which implies 1 ≤ 1
2 , a contradiction. This implies that (5.5) holds. What’s more, by

Lemma 2.1, we have∫
R3

[
ϕG−1(v′n)

G−1(v′n)
g(G−1(v′n))

− ϕG−1(v′)
G−1(v′)

g(G−1(v′))

]
(v′n − v′)dx

≥
∫

R3
ϕG−1(v′n)

[
G−1(v′n)

g(G−1(v′n))
− G−1(v′)

g(G−1(v′))

]
(v′n − v′)dx

+
∫

R3

(
ϕG−1(v′n) − ϕG−1(v′)

) G−1(v′)
g(G−1(v′))

(v′n − v′)dx

→ 0.

(5.8)
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Similar to Lemma 3.4, we can easily obtain

b
∫

R3
|∇v′n|2dx

∫
R3

∇v′n∇(v′n − v′)dx − b
∫

R3
|∇v′|2dx

∫
R3

∇v′∇(v′n − v′)dx

≥ b
∫

R3

(
|∇v′n|2 − |∇v′|2

)
dx

∫
R3

∇v′∇(v′n − v′)dx

→ 0,

(5.9)

as n → ∞. From (g′), there is g(t) ≥ 1, ∀t ≥ 0. In addition, by Lemma 2.2-(4), (1.8) and
Hölder inequality, vn → v in Lr(R3), 2 < r < 6, we obtain∣∣∣∣ ∫

R3

[
h(G−1(v′n))
g(G−1(v′n))

− h(G−1(v′))
g(G−1(v′))

]
(v′n − v′)dx

∣∣∣∣
≤

∫
R3

[
ε(|v′n|+ |v′|) + Cε(|v′n|q−1 + |v′|q−1)

]
|v′n − v′|dx

≤ ε(|v′n|2 + |v′|2)|v′n − v′|2 + Cε(|v′n|
q−1
q + |v′|q−1

q )|v′n − v′|q
→ 0.

(5.10)

By virtue of (5.5), (5.8)–(5.10), we have

on(1) = ⟨J′b, µ(v
′
n)− J′b, µ(v

′), v′n − v′⟩

=
∫

R3
|∇(v′n − v′)|2dx +

∫
R3

V(x)
[

G−1(v′n)
g(G−1(v′n))

− G−1(v′)
g(G−1(v′))

]
(v′n − v′)dx

+ b
[∫

R3
|∇v′n|2dx

∫
R3

∇v′n · ∇(v′n − v′)dx −
∫

R3
|∇v′|2dx

∫
R3

∇v′ · ∇(v′n − v′)dx
]

+
∫

R3

[
ϕG−1(v′n)

G−1(v′n)
g(G−1(v′n))

− ϕG−1(v′)
G−1(v′)

g(G−1(v′))

]
(v′n − v′)dx

− µ
∫

R3

[
h(G−1(v′n))
g(G−1(v′n))

− h(G−1(v′))
g(G−1(v′))

]
(v′n − v′)dx

≥ C∥v′n − v′∥2
H + on(1),

which implies that v′n → v′ in H.

From Lemma 5.2, for every µ ∈ [1, 2], we get that Jb, µ has a nontrivial critical point v′

satisfying Jb, µ(v′) = c′µ and J′b, µ(v
′) = 0. Therefore, there exists {µn} ⊂ [1, 2] such that

limn→∞ µn = 1, {v′µn
} ⊂ H such that Jb, µn(v

′
µn
) = c′µn

> 0 and J′b, µn
(v′µn

) = 0.

Lemma 5.3. Suppose that (V1), (g′), (h1) and (h3) are satisfied, then any sequence {v′µn
} is bounded

in H.

Proof. Since {v′µn
} ⊂ H satisfies Jb, µn(v

′
µn
) = c′µn

> 0, we have

Jb, µn(v
′
µn
) =

1
2

∫
R3

|∇v′µn
|2dx +

1
2

∫
R3

V(x)|G−1(v′µn
)|2dx +

b
4

(∫
R3

|∇v′µn
|2dx

)2

+
1
4

∫
R3

ϕG−1(v′µn )
|G−1(v′µn

)|2dx − µn

∫
R3

H(G−1(v′µn
))dx

= c′µn
> 0.

(5.11)
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We also deduce that

⟨J′b, µn
(v′µn

), v′µn
⟩ =

∫
R3

|∇v′µn
|2dx +

∫
R3

V(x)
G−1(v′µn

)

g(G−1(v′µn
))

v′µn
dx

+ b
(∫

R3
|∇v′µn

|2dx
)2

+
∫

R3
ϕG−1(v′µn )

G−1(v′µn
)

g(G−1(v′µn
))

v′µn
dx

− µn

∫
R3

h(G−1(v′µn
))

g(G−1(v′µn
))

v′µn
dx.

(5.12)

It follows from (5.11), (5.12), (h3) and Lemma 2.2-(5) that

2c′µn
+ 1 + ∥v′µn

∥

≥ Jb, µn(v
′
µn
)− 1

4
⟨J′b, µn

(v′µn
), v′µn

⟩

=
1
4

∫
R3

|∇v′µn
|2dx +

∫
R3

V(x)G−1(v′µn
)

[
1
2

G−1(v′µn
)−

v′µn

4g(G−1(v′µn
))

]
dx

+
1
4

∫
R3

ϕG−1(v′µn )
G−1(v′µn

)

[
G−1(v′µn

)−
v′µn

g(G−1(v′µn
))

]
dx

− µn

∫
R3

[
H(G−1(v′µn

))− 1
4

h(G−1(v′µn
))

g(G−1(v′µn
))

v′µn

]
dx

≥ 1
4

∫
R3

|∇v′µn
|2dx +

1
4

∫
R3

V(x)|G−1(v′µn
)|2dx.

(5.13)

According to the assumption (h3) and (V1), we have H(s) ≥ CG(s)τ ≥ CG(s)2 for all s ≥ 1.
Then by Lemma 2.2-(4)∫

{x: |G−1(v′µn )|>1}
V(x)v′2µn

dx

≤ C
∫
{x: |G−1(v′µn )|>1}

H(G−1(v′µn
))dx

≤ C
∫

R3
H(G−1(v′µn

))dx +
b
4

(∫
R3

|∇v′µn
|2dx

)2

+ C
∫

R3
ϕG−1(v′µn )

v′2µn
dx

≤ C
[

1
2

∫
R3

|∇v′µn
|2dx +

1
2

∫
R3

V(x)|G−1(v′µn
)|2dx − c1 + on(1)

]
.

(5.14)

On the other hand, for x ∈ {x : |G−1(v′n)| ≤ 1} we know that

1
g2(1)

∫
{x: |G−1(v′µn )|≤1}

V(x)v′2µn
dx ≤ C

∫
{x: |G−1(v′µn )|≤1}

V(x)|G−1(v′µn
)|2dx

≤ C
∫

R3
V(x)|G−1(v′µn

)|2dx.
(5.15)

Since (g′), we know that g(s) is nondecreasing. Combining (5.13) and (5.14) with (5.15), we
deduce that {v′µn

} is bounded in H.

Proof of Theorem 1.4. Similar to the proof of Theorem 1.2, we take a subsequence of {v′µn
}, and

still represented by {v′µn
}, because {v′µn

} is bounded in H, similar to the proof of Lemma 5.2,
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we obtain v′µn
→ v′µ in H. From Theorem 3.2, we known that µ 7→ c′µ is continuous from the

left. So

lim
n→∞

Jb(v′µn
) = lim

n→∞

[
Jb, µn(v

′
µn
) + (µn − 1)

∫
R3

H(G−1(v′µn
))dx

]
= lim

n→∞
c′µn

= c̃′.
(5.16)

In addition,

lim
n→∞

⟨J′b(v
′
µn
), η⟩ = lim

n→∞

[
⟨J′b, µn

(v′µn
), η⟩+ (µn − 1)

∫
R3

h(G−1(v′µn
))

g(G−1(v′µn
))

ηdx
]
= 0, (5.17)

for any η ∈ C∞
0 (R3), which means that J′b(v

′) = 0 satisfies Jb(v′) = c̃′ > 0.

Proof of Theorem 1.5. The proof process is similar to Theorem 1.3, and specific steps are omit-
ted here.

6 Nonexistence in critical case

In this section, we prove the nonexistence of nontrivial solutions for system (1.9) by Pohožaev
identity.

Lemma 6.1. (Pohožaev identity) If v ∈ H is a weak solution of problem (1.9), then we have the
following Pohožaev identity:

1
2

∫
R3

|∇v|2dx +
3
2

∫
R3

V(x)|G−1(v)|2dx +
1
2

∫
R3
⟨∇V(x), x⟩|G−1(v)|2dx

+
b
2

(∫
R3

|∇v|2dx
)2

+
5
4

∫
R3

ϕG−1(v)|G−1(v)|2dx − 3
p

∫
R3

|v|pdx = 0.
(6.1)

Proof of Theorem 1.6. Suppose that v ∈ H is a solution to system (1.9), then v satisfies

∫
R3

|∇v|2dx +
∫

R3
V(x)

G−1(v)
g(G−1(v))

vdx + b
(∫

R3
|∇v|2dx

)2

+
∫

R3
ϕG−1(v)

G−1(v)
g(G−1(v))

vdx −
∫

R3
|v|pdx = 0.

(6.2)

Combining (6.1) and (6.2), we can get

∫
R3

V(x)
(

1
2

G−1(v)v
g(G−1(v))

− 3
2
|G−1(v)|2

)
dx − 1

2

∫
R3
⟨∇V(x), x⟩|G−1(v)|2dx

+
∫

R3
ϕG−1(v)

(
1
2

G−1(v)v
g(G−1(v))

− 5
4
|G−1(v)|2

)
dx =

(
1
2
− 3

p

) ∫
R3

|v|pdx.
(6.3)

Since Lemma 2.2-(5) that G−1(v)
g(G−1(v))v ≤ |G−1(v)|2, if 2V(x) + ⟨∇V(x), x⟩ ≥ 0, then (6.3) implies

that v = 0 for p ≥ 6. So that 0 = u = G−1(v). Then (1.9) has no nontrivial solutions.
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