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Abstract. This paper deals with the chemotaxis system with singular sensitivity and
nonlocal logistic sourceut = uxx −

(u
v

vx

)
x
+ uα

(
γ − µ

∫
Ω

uβ
)

, x ∈ Ω, t > 0,

vt = vxx − uv, x ∈ Ω, t > 0,

under Neumann boundary conditions in a bounded open interval Ω ⊂ R, where
α, β, γ, µ are positive constants. It is shown that for any β > 1 + (α−3)+

2 and α ≥ 1,
the system possesses a global and bounded classical solution. Moreover, we establish
uniform-in-time boundedness of vx

v .

Keywords: chemotaxis, nonlocal source, boundedness, singular sensitivity.

2020 Mathematics Subject Classification: Primary: 35B65; Secondary: 35J25, 35J60,
35D40.

1 Introduction

In this paper, we consider the one-dimensional chemotaxis model with singular sensitivity
and nonlocal term

ut = uxx −
(u

v
vx

)
x
+ uα

(
γ − µ

∫
Ω

uβ
)

, x ∈ Ω, t > 0,

vt = vxx − uv, x ∈ Ω, t > 0,

ux = vx = 0, x ∈ ∂Ω, t > 0,

(u, v)(x, 0) =
(
u0(x), v0(x)

)
, x ∈ Ω,

(1.1)

in a bounded open interval Ω ⊆ R, where α, β, γ, µ are positive constants and where u =

u(x, t) denotes the cell density and where v = v(x, t) represents the oxygen concentration.
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The initial data in (1.1) satisfy{
u0 ∈ C0 (Ω̄) , u0 ≥ 0 and u0 ̸≡ 0, x ∈ Ω̄,

v0 ∈ W1,q (Ω) (q > 2), v0 > 0 in Ω̄ and (v0)x = 0 , x ∈ ∂Ω.
(1.2)

Chemotaxis processes are known to play an important role in various biological contexts.
There are also many works on various central aspects like global existence, lager time behav-
iors, finite time blow-up, and so on (see [4, 6, 7, 11, 28, 32] and the references therein). When
placed at one end of a capillary tube that contains oxygen and an energy source, bacteria of
the species E. coli that have a gradient of nutrient concentration form bands that are visible
to the unaided eye. They migrate at a constant speed due to a chemotactic mechanism [1]. In
order to describe the consumption of the critical substrate and the change in bacterial density
by random motion and chemotaxis, Keller and Segel proposed a phenomenological model of
wave-like solution behavior without any type of cell kinetics [20], a prototypical version of
which is given by: ut = ∆u − χ∇ ·

(u
v
∇v
)

, x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,
(1.3)

where the second equation models consumption of the signal upon contact with cells, and
where in the first equation it is assumed that the chemotactic stimulus is perceived following
the Weber–Fechner law, thus requiring the chemotactic sensitivity χ u

v to be chosen propor-
tional to the reciprocal signal density. When n = 2, there exists a global generalized solution
to (1.3) with v → 0 in Lp(Ω) as t → ∞ [33], and the solution becomes eventually smooth
and converges to the homogeneous steady state if the initial mass

∫
Ω u0 is small [35]. In par-

ticular, under an explicit smallness condition on u0 ln u0 ∈ L1(Ω) and v−1
0 ∇v0 ∈ L2(Ω), the

system (1.3) possesses a global classical solution [35]. Moreover, when n ≥ 3, for all suit-
ably regular and radially symmetric initial data (u0, v0), the existence of a globally defined
pair (u, v) of radially symmetric functions in an appropriate generalized sense was estab-
lished in [36]. When uv in (1.3) is replaced by f (u)v, f ∈ C1(R) essentially behaving like
uβ, β ∈ (0, 1), χ ∈ (0, 1), Lankeit and Viglialoro [25] showed that system has a global clas-
sical solution with any sufficiently regular initial data. Moreover, if additionally

∫
Ω u(x, 0)

is sufficiently small, then also their boundedness is achieved. Replacing the first equation in
(1.3) by ut = ∆u − χ∇

( u
v∇v

)
+ γu − µuk, the authors in [23] showed that system (1.3) has

a generalized global solution for any χ, γ, µ > 0 in the case k = 2. It is proved that as 1
v is

replaced by ϕ(v) ∈ C1(0, ∞) satisfying ϕ(v) → ∞ as v → 0, this system possesses a global
classical solution if k > 1 for n = 1 or k > 1 + n/2 for n ≥ 2 [45]. The asymptotic behavior
of solutions with n = 2 is determined [45]. For the local reaction term, a sequence of recent
results on the existence of global-in-time solution, long-time behavior, vanishing coefficient
limit and optimal time decay rates of the solution in the case n = 1 were obtained by Zeng
and Zhao [41,42]. Recently, many variants of (1.3) have been proposed for applications under
different frameworks, see for instance [2].

In those Keller–Segel models (cf. [21]) where v does not stand for a nutrient to be consumed
but a signaling substance produced by the bacteria themselves, i.e., the second equation of
(1.3) is replaced by τvt = ϵ∆v − v + u. For this system, the global solutions are known to exist
if χ is sufficiently small, where the precise condition depends on the dimension as well as on
τ = 0 [15, 29] or τ = 1 [13, 38, 39]. As to the corresponding case with logistic source γu − µuk,
the global existence of classical solutions and convergence to constant states were established
in [9, 16, 18, 22, 27, 40, 43, 44, 47, 48]. For a generalized solution concept, we refer to [12, 26].
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Nonlocal term in mathematical models can forecast how a disassociated sticky cell popu-
lation will aggregate and react to the adhesive pressures produced by binding during cell-cell
adhesion. See [3,17,30,31] for the reference. Bian et al. were devoted to the analysis of nonneg-
ative solutions for the chemotaxis model with nonlocal nonlinear source in bounded domain
in [5] ut = ∆u − χ∇ · (u∇v) + uα

(
1 −

∫
Ω

uβ
)

, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,
(1.4)

where α ≥ 1, β > 1. They proved that if spatial dimension n ≥ 3, either 2 ≤ α < 1 + 2β
n or

α < 2 and (2+n)(2−α)
n < 1 + 2β

n − α, the model admits a classical solution which is uniformly
bounded. The same conclusion is established for the full-parabolic version in [8]. Recently,
when the second equation of (1.4) is replaced by vt = ϵ∆v− v+ u and −χ∇· (u∇v) is replaced
by −χ∇ · ( u

v∇v), the authors in [10] provide corresponding conditions to ensure the existence
and boundedness of solutions, respectively.

In this paper, we consider the chemotaxis-consumption system with singular sensitivity
and nonlocal logistic source. It is the purpose of this work to investigate the question of global
existence and boundedness to (1.1) when n = 1. We first consider a non-singular chemotaxis
system for (u, w) based on the transformation w = − ln v

∥v0∥L∞(Ω)
(see [33]). We obtain the key

estimate on ∥wx∥L2(Ω) by deriving a subtle estimate for
∫

Ω w2
x +

∫
Ω up with 1 < p < 2. This

is crucial to imply any further useful global regularity information on the quantity u itself.
Before stating our results, we state that x+ = max{x, 0}.

Theorem 1.1. Let Ω ⊆ R be a bounded open interval. Suppose that γ, µ > 0 and that

β > 1 +
(α − 3)+

2
, α ≥ 1. (1.5)

Then for any choice of u0 and v0 complying with (1.2), the problem (1.1) possesses a global bounded
classical solution. Moreover, there exists some M̄ such that∥∥∥vx

v

∥∥∥
L∞(Ω)

≤ M̄, t > 0. (1.6)

This paper is structured as follows. In Section 2, we present some preliminaries. In Sec-
tion 3, we establish the global boundedness for vx

v and u in L∞-norm.

2 Preliminaries

We need the Neumann heat semigroup in {et∆}t≥0 estimates in Ω ⊂ Rn to prove the local
existence and the global existence of solutions. The following lemma below could be found in
the vast existing literature, for instance, [14, 34].

Lemma 2.1 ([14,34]). Let n ≥ 1, {et∆}t≥0 be the Neumann heat semigroup in Ω, and λ1 > 0 denotes
the first nonzero eigenvalue of −∆ in Ω with respect to the Neumann boundary condition. Then there
exist K1, . . . , K4 > 0 depending on Ω only such that the following properties:

(i) If 1 ≤ p2 ≤ p1 ≤ ∞, then

∥et∆z∥Lp1 (Ω) ≤ K1

(
1 + t−

n
2 (

1
p2
− 1

p1
)
)

e−λ1t∥z∥Lp2 (Ω), t ∈ (0, T) (2.1)

for all z ∈ Lp2(Ω) satisfying
∫

Ω z = 0.
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(ii) If 1 ≤ p2 ≤ p1 ≤ ∞, then

∥∇et∆z∥Lp1 (Ω) ≤ K2

(
1 + t−

1
2−

n
2 (

1
p2
− 1

p1
)
)

e−λ1t∥z∥Lp2 (Ω), t ∈ (0, T) (2.2)

for all z ∈ Lp2(Ω).

(iii) If 2 ≤ p2 ≤ p1 ≤ ∞, then

∥∇et∆z∥Lp1 (Ω) ≤ K3

(
1 + t−

n
2 (

1
p2
− 1

p1
)
)

e−λ1t∥∇z∥Lp2 (Ω), t ∈ (0, T) (2.3)

for all z ∈ W1,p2(Ω).

(iv) If 1 < p2 ≤ p1 < ∞ or 1 < p2 < ∞ and p1 = ∞, then

∥et∆∇z∥Lp1 (Ω) ≤ K4

(
1 + t−

1
2−

n
2 (

1
p2
− 1

p1
)
)

e−λ1t∥z∥Lp2 (Ω), t ∈ (0, T) (2.4)

for all z ∈ (Lp2(Ω))n.

Let us state a basic result on local existence and extensibility of classical solutions, which
can be proved by well-established fixed point arguments (see [19, 37, 46]). However, we could
not find a precise reference that covers our model, therefore, we show a short proof here.

Lemma 2.2. Let α, β ≥ 1 and γ, µ > 0. Suppose that u0 and v0 satisfy (1.2). Then there exist a
maximal T ∈ (0, ∞] and a nonnegative classical solution (u, v) of functions

u ∈ C0
(

Ω̄ × [0, T)
)
∩ C2,1

(
Ω̄ × (0, T)

)
,

v ∈ C0
(

Ω̄ × [0, T)
)
∩ C2,1

(
Ω̄ × (0, T)

)
∩ L∞

loc

(
[0, T), W1,q(Ω)

)
satisfying (1.1) in the classical sense in Ω × (0, T). Moreover, we have the following alternative:

Either T = ∞, or ∥u∥L∞(Ω) + ∥v∥W1,q(Ω) → ∞ as t → T.

Proof. We first fix

K > 3 max{∥u0∥L∞(Ω), ∥v0∥Lq(Ω), 6K3∥v′0∥Lq(Ω)}, (2.5)

where K3 is as in (2.3). For small T∗ ∈ (0, 1) to be specified below, in the Banach space

X =: C0([0, T∗]; C0(Ω̄))× C0([0, T∗]; W1,q(Ω))

we consider the closed set

S := {(u, v) ∈ X | ∥u∥L∞((0,T∗);L∞(Ω)) ≤ K, ∥v∥L∞((0,T∗);W1,q(Ω)) ≤ K,

inf
x∈Ω

v(·, t) ≥ 1
e

inf
x∈Ω

v0(x), f or a.e. t ∈ (0, T∗)}. (2.6)

For (u, v) ∈ S and t ∈ (0, T∗), we let

Φ(u, v)(t) :=
(

ϕ1(u, v)(t)
ϕ2(u, v)(t)

)
:=
(et∆u0 −

∫ t
0 e(t−s)∆( u

v vx)x + γ
∫ t

0 e(t−s)∆uα − µ
∫

0
te(t−s)∆ (uα

∫
Ω uβ

)
et∆v0 −

∫ t
0 e(t−s)∆uv

)
.
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On dropping a nonpositive term, we use (2.4) and (2.6) to estimate

∥ϕ1(u, v)(t)∥L∞(Ω) ≤ ∥u0∥L∞(Ω) +
K4e

inf
x∈Ω

v0(x)

∫ t

0
(t − s)−

1
2−

1
2q e−λ1(t−s)∥u∥L∞(Ω)∥vx∥Lq(Ω)

+ γ
∫ t

0
sup

t∈(0,T)
∥u∥α

L∞(Ω)

≤ K
3
+ CT

1
2−

1
2q

∗ + γKαT∗, t ∈ (0, T∗),

(2.7)

where we use C to denote a generic positive constant independent of T∗ here and below. Here
when we deal with the first and third term we have used that ∥eσ∆z∥Lr3 (Ω) ≤ ∥z∥Lr3 (Ω), for all
z ∈ Lr3(Ω) with 1 ≤ r3 ≤ ∞.

We next derive the W1,q-estimate on ϕ2(u, v). On the one hand, we drop a nonpositive
term to get

∥ϕ2(u, v)(t)∥Lq(Ω) =

∥∥∥∥et∆v0 −
∫ t

0
e(t−s)∆uv

∥∥∥∥
Lq(Ω)

≤ ∥v0∥Lq(Ω) ≤
K
3 (2.8)

for all t ∈ (0, T∗). On the other hand, it follows from (2.2), (2.3), (2.5) and (2.6) that

∥(ϕ2(u, v)(t))x∥Lq(Ω) =

∥∥∥∥(et∆v0)x −
∫ t

0
(e(t−s)∆uv)x

∥∥∥∥
Lq(Ω)

≤ 2K3 ∥(v0)x∥Lq(Ω) + K2

∫ t

0
(t − s)−

1
2 e−λ1(t−s)∥uv∥Lq(Ω)

≤ K
3
+ CT

1
2∗ , t ∈ (0, T∗).

(2.9)

A combination of (2.8) and (2.9) entails

∥ϕ2(u, v)(t)∥W1,q(Ω) ≤
2K
3

+ CT
1
2∗ , t ∈ (0, T∗). (2.10)

The comparison principle to the second equation of (1.1) leads to ∥v∥L∞(Ω) ≤ ∥v0∥L∞(Ω) for all
t ∈ (0, T∗). By the order preserving of the Neumann heat semigroup, we find

ϕ2(u, v)(t) ≥ et∆v0 −
∫ t

0
e(t−s)∆uv ≥ inf

x∈Ω
v0(x)−

∫ t

0
∥e(t−s)∆uv∥L∞(Ω)

≥ inf
x∈Ω

v0(x)− K∥v0∥L∞(Ω)T∗, t ∈ (0, T∗).
(2.11)

If we take T∗ small enough, then it follows from (2.7), (2.10) and (2.11) that ΦS ⊆ S.
Moreover, with T∗ still at our disposal, we proceed to check that for all (u1, v1), (u2, v2)

belonging to S,

∥ϕ1(u1, v1)(t)− ϕ1(u2, v2)(t)∥L∞(Ω) ≤
∫ t

0

∥∥∥∥e(t−s)∆
(

u1(v1)x

v1
− u2v′2

v2

)
x

∥∥∥∥
L∞(Ω)

+ γ
∫ t

0
∥e(t−s)∆(uα

1 − uα
2)∥L∞(Ω)

+ µ
∫ t

0

∥∥∥∥e(t−s)∆uα
2

∫
Ω
(uβ

2 − uβ
1 )

∥∥∥∥
L∞(Ω)

+ µ
∫ t

0

∥∥∥∥e(t−s)∆(uα
2 − uα

1)
∫

Ω
uβ

1

∥∥∥∥
L∞(Ω)

(2.12)
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for all t ∈ (0, T∗). For the first term of the right-hand side of (2.12), in accordance with (2.6)
and (2.4), we can estimate∫ t

0

∥∥∥∥e(t−s)∆
(

u1(v1)x

v1
− u2(v2)x

v2

)
x

∥∥∥∥
L∞(Ω)

≤ K2

∫ t

0
(t − s)−

1
2−

1
2q e−λ1(t−s)

∥∥∥∥u1(v1)x

v1
− u2(v2)x

v2

∥∥∥∥
Lq(Ω)

≤ K2T
1
2−

1
2q

∗ ∥(u1, v1)− (u2, v2)∥X.

(2.13)

Since α, β ≥ 1, from the mean value theorem and (2.6), we know

∥uα
2 − uα

1∥L∞(Ω) ≤ αKα−1∥u2 − u1∥L∞(Ω), ∥uβ
2 − uβ

1∥L∞(Ω) ≤ βKβ−1∥u2 − u1∥L∞(Ω).

We thus gain that

γ
∫ t

0
∥e(t−s)∆(uα

1 − uα
2)∥L∞(Ω) + µ

∫ t

0

∥∥∥∥e(t−s)∆uα
2

∫
Ω
(uβ

2 − uβ
1 )

∥∥∥∥
L∞(Ω)

+ µ
∫ t

0

∥∥∥∥e(t−s)∆(uα
2 − uα

1)
∫

Ω
uβ

1

∥∥∥∥
L∞(Ω)

≤ CT∗∥u1 − u2∥L∞(Ω), t ∈ (0, T∗).

(2.14)

Thus (2.12), (2.13), (2.14) provide

∥ϕ1(u1, v1)(t)− ϕ1(u2, v2)(t)∥L∞(Ω) ≤ CT
1
2−

1
2q

∗ ∥(u1, v1)− (u2, v2)∥X, t ∈ (0, T∗). (2.15)

Similar process to (2.8)-(2.10), we can conclude that

∥ϕ2(u1, v1)(t)− ϕ2(u2, v2)(t)∥W1,q(Ω)

≤
∫ t

0
∥e(t−s)∆u1(v1 − v2)∥W1,q(Ω) +

∫ t

0
∥e(t−s)∆v2(u1 − u2)∥W1,q(Ω)

≤ CT
1
2∗ ∥(u1, v1)− (u2, v2)∥X, t ∈ (0, T∗),

(2.16)

so that Φ is shown to be a contraction if T∗ is sufficiently small. Accordingly, the Banach fixed
point theorem asserts the existence of some (u, v) ∈ S such that Φ(u, v) = (u, v). Relying on
straightforward regularity arguments including standard semigroup techniques, it can easily
be checked that in fact (u, v) lies in the asserted regularity class and is a classical solution of
(1.1) in Ω × (0, T∗).

Finally, the nonnegative of (u, v) can be obtained by the strong maximum principle, which
can be derived as that in [24]. It is sufficient to justify the conditions of Theorem B.1 in [24] in
the following. Firstly, the equation

vt = vxx − uv, x ∈ Ω, t ∈ (0, T)

is considered. We interpret u as given function from above, i.e. u ∈ C0(Ω̄× [0, T∗)
)
∩C2,1(Ω̄×

(0, T∗)
)
. For given T1 < T∗ one can fine C > 0 such that

u ≤ C, Ω̄ × [0, T1]. (2.17)
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With b ≡ 0 ∈ C1(Ω̄ × (0, T1), R) ∩ L∞
loc(Ω × [0, T1), R) fulfilling bx = 0 on ∂Ω × (0, T1) and

f (x, t, u) := −u(x, t)v ∈ C0(Ω × [0, T1)× R) satisfying

| f (x, t, v1)− f (x, t, v2)| = |u(v1 − v2)| ≤ C|v1 − v2|, x ∈ Ω̄, t ∈ [0, T), v1, v2 ∈ K

with compact K. Define v = infx∈Ω v0(x)e−Ct. A direct calculation shows that
vt = −Cv = vxx − Cv ≤ vxx − uv, x ∈ Ω, t ∈ (0, T1),

vx = 0, x ∈ ∂Ω, t ∈ (0, T1),

v(·, 0) ≤ v0(x), x ∈ Ω.

which by comparison implies

v(x, t) ≥ inf
x∈Ω

v0(x)e−Ct > 0 on Ω × (0, T1). (2.18)

For given function v ∈ C0(Ω̄ × [0, T∗)
)
∩ C2,1(Ω̄ × (0, T∗)

)
satisfying (2.18), we can study

the first equation of (1.1)

ut = uxx −
(u

v
vx

)
x
+ uα

(
γ − µ

∫
Ω

uβ
)

.

In order to apply Theorem B.1 in [24] to b(x, t) = vx
v , f (x, t, u) = uα

(
γ − µ

∫
Ω uβ

)
, we now

verify the conditions of the comparison theorem. To avoid repetition, we just point out the
differences, which are the local Lipschitz estimation of f (x, t, u). For every compact K,

| f (x, t, u1)− f (x, t, u2)| =
∣∣∣∣uα

1

(
γ − µ

∫
Ω

uβ
1

)
− uα

2

(
γ − µ

∫
Ω

uβ
2

)∣∣∣∣
≤ γ|uα

1 − uα
2 |+ µ

∣∣∣∣uα
2

∫
Ω
(uβ

2 − uβ
1 )

∣∣∣∣+ µ

∣∣∣∣(uα
2 − uα

1)
∫

Ω
uβ

1

∣∣∣∣
≤ L(K, α, β)|u1 − u2|, x ∈ Ω̄, t ∈ [0, T1), u1, u2 ∈ K,

where L(K, α, β) is a positive constant. Therefore, the comparision theorem becomes appli-
cable to suitable subsolutions and supersolutions of this equation. Moreover, since 0 is a
subsolution of the equation, we have u ≥ 0.

A first basic property of this solution is immediate.

Lemma 2.3. Let α, β ≥ 1 and γ, µ > 0. Then

∫
Ω

u ≤ M0 := max

{∫
Ω

u0, |Ω|1−
1
β

(
γ

µ

) 1
β

}
, t ∈ (0, T). (2.19)

Proof. Integrating the first equation of (1.1), using the Hölder inequality, we obtain

d
dt

∫
Ω

u ≤
∫

Ω
uα

[
γ − |Ω|1−βµ

(∫
Ω

u
)β
]

, t ∈ (0, T),

which implies (2.19) by a straightforward ODE analysis.
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Now following a standard procedure of changing variables in (1.1) we substitute

w = − ln
v

∥v0∥L∞(Ω)

and thus infer that w ≥ 0 in Ω × (0, T) and

(u, w) ∈
(

C0
(

Ω̄ × [0, T)
)
∩ C2,1

(
Ω̄ × (0, T)

))2

solves 

ut = uxx + (uwx)x + uα
(

γ − µ
∫

Ω
uβ
)

, x ∈ Ω, t ∈ (0, T),

wt = wxx − w2
x + u, x ∈ Ω, t ∈ (0, T),

ux = wx = 0, x ∈ ∂Ω, t ∈ (0, T),

u(x, 0) = u0, w(x, 0) = −ln
v0

∥v0∥L∞(Ω)
, x ∈ Ω.

(2.20)

We now prepare an estimate on
∫

Ω uk for all k > 1.

Lemma 2.4. Let γ, µ > 0. Suppose that u0 and v0 satisfy (1.2). Assume that α, β satisfy (1.5). Then
for all k > 1, there exists M1(k) > 0 such that

d
dt

∫
Ω

uk +
∫

Ω
uk ≤ −2(k − 1)

k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 − k(k − 1)
∫

Ω
uk−1uxwx + M1, t ∈ (0, T). (2.21)

Proof. Testing the first equation of (1.1) by kuk−1 and using Young’s inequality, we obtain

d
dt

∫
Ω

uk +
∫

Ω
uk = − 4(k − 1)

k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 − k(k − 1)
∫

Ω
uk−1uxwx +

∫
Ω

uk

+ kγ
∫

Ω
uk+α−1 − kµ

∫
Ω

uk+α−1
∫

Ω
uβ, t ∈ (0, T).

(2.22)

We apply the Gagliardo–Nirenberg inequality and Young’s inequality to find positive con-
stants C0(Ω), C1(k, Ω) such that

∫
Ω

uk ≤ C0

(∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2) k−1
k+1

∥u∥
2k

k+1
L1(Ω)

+ C0∥u∥k
L1(Ω)

≤ k − 1
k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 + C1∥u∥k
L1(Ω), t ∈ (0, T).

(2.23)

Let us fix β0 satisfying
β0 < β (2.24)

and
α − 1

2
< β0 < k + α − 1, (2.25)

which is possible because β > α−1
2 . By virtue of Hölder’s inequality and (2.24) we see that

−kµ
∫

Ω
uk+α−1

∫
Ω

uβ ≤ −kµ|Ω|1−
β

β0

∫
Ω

uk+α−1
(∫

Ω
uβ0

) β
β0

. (2.26)
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Due to the condition (2.25), we may invoke the Gagliardo–Nirenberg inequality along
with the Young inequality, which says that there exist positive constants C2(α, γ, k, Ω) and
C3(α, β, γ, k, Ω) satisfying

kγ
∫

Ω
uk+α−1dx ≤ C2

(∫
Ω
|(u k

2 )x|2dx
) a(k+α−1)

k

∥u∥(1−a)(k+α−1)

L
Mk
2 (Ω)

+ C2∥u∥k+α−1
L1(Ω)

≤ k − 1
k

∫
Ω
|(u k

2 )x|2 + C3∥u∥
(1−a)k(k+α−1)

k−a(k+α−1)

L
Mk
2 (Ω)

+ C2∥u∥k+α−1
L1(Ω)

,

(2.27)

where

M = 2β0(k + α − 1 + β)k−1(β + β0)
−1

and where

a = βk(k + α − 1 − β0)(k + α − 1)−1[(β + β0)k + (k + α − 1 + β)β0]
−1 ∈ (0, 1),

thanks to (2.25). Moreover, making full use of (2.25) we see that actually

β0 <
Mk
2

< k + α − 1, (2.28)

and that

k(k + α − 1)(1 − a)
[k − a(k + α − 1)](k + α − 1 + β)

< 1. (2.29)

Indeed, (2.29) is possible since the definition of a ensures that

k(k + α − 1)(1 − a)
[k − a(k + α − 1)](k + α − 1 + β)

=
(k + α − 1)[β0k + (k + α − 1 + β)β0] + ββ0k

(k + α − 1)[β0k + (k + α − 1 + β)β0] + ββ0k + β(k + α − 1 + β)[2β0 − (α − 1)]
.

Therefore, in view of (2.28) and (2.29), one further application of Young’s inequality and
the interpolation inequality provides C4(α, β, γ, µ, k, Ω) such that

C3∥u∥
(1−a)k(k+α−1)

k−a(k+α−1)

L
Mk
2 (Ω)

≤ C3

∫
Ω

uk+α−1
(∫

Ω
uβ0

) β
β0


k(k+α−1)(1−a)

[k−a(k+α−1)](k+α−1+β)

≤ kµ|Ω|1−
β

β0

∫
Ω

uk+α−1
(∫

Ω
uβ0

) β
β0
+ C4.

(2.30)

From (2.22), (2.23), (2.26), (2.27) and (2.30), we have

d
dt

∫
Ω

uk +
∫

Ω
uk ≤ − 2(k − 1)

k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 − k(k − 1)
∫

Ω
uk−1uxwx + C1∥u∥k

L1(Ω)

+ C2∥u∥k+α−1
L1(Ω)

+ C4, t ∈ (0, T).
(2.31)

Therefore, (2.21) results from (2.31) by taking M1 = C1Mk
0 + C2Mk+α−1

0 + C4.
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3 Global boundedness of solutions

This section is devoted to the derivation of estimates for w, so as to finally obtain the global
boundedness of solutions. For this purpose, we establish L2 estimate on wx and L4 estimate
on wx for our present setting.

Lemma 3.1. Let γ, µ > 0, and suppose that u0 and v0 satisfy (1.2). Assume that α, β satisfy (1.5).
Then there exists constant M2 > 0 depend on α, β, γ, µ, Ω such that∫

Ω
w2

x ≤ M2, t ∈ (0, T). (3.1)

Proof. Recalling (w0)x = 0 on ∂Ω, we multiply the second equation in (2.20) by −wxx and
integrate by parts to see, using Young’s inequality, that

d
dt

∫
Ω

w2
x = − 2

∫
Ω

w2
xx − 2

∫
Ω

uwxx ≤ −
∫

Ω
w2

xx +
∫

Ω
u2, t ∈ (0, T). (3.2)

For fixed 1 < p < 2, applying k = p to (2.21) takes the form

d
dt

∫
Ω

up +
∫

Ω
up ≤ − 2(p − 1)

p

∫
Ω

∣∣∣(u
p
2

)
x

∣∣∣2 − p(p − 1)
∫

Ω
up−1uxwx + M1

= − 2(p − 1)
p

∫
Ω

∣∣∣(u
p
2

)
x

∣∣∣2 + (p − 1)
∫

Ω
upwxx + M1, t ∈ (0, T),

which along with Young’s inequality derives

d
dt

∫
Ω

up +
∫

Ω
up ≤ − 2(p − 1)

p

∫
Ω
|(u

p
2 )x|2 +

1
2

∫
Ω

w2
xx +

(p − 1)2

2

∫
Ω

u2p + M1 (3.3)

for all t ∈ (0, T). According to Poincaré’s inequality and the fact (w0)x = 0 on ∂Ω, we know
there is constant C5(Ω) such that

−1
2

∫
Ω

w2
xx ≤ − 1

2C5

∫
Ω

w2
x. (3.4)

Recalling p > 1, Young’s inequality provide C7(p, Ω) > 0 such that∫
Ω

u2 ≤
∫

Ω
u2p + C7. (3.5)

Collecting (3.2)–(3.5) we see that

d
dt

(∫
Ω

w2
x +

∫
Ω

up
)
+ C6

(∫
Ω

w2
x +

∫
Ω

up
)

≤ − 2(p − 1)
p

∫
Ω
|(u

p
2 )x|2 +

[
1 +

(p − 1)2

2

] ∫
Ω

u2p + C8, t ∈ (0, T),
(3.6)

where C6 = min{1, 1
2C5

} and C8 = C7 + M1. Here our assumption for 1 < p < 2 warrants that

0 <
2p − 1
p + 1

< 1. (3.7)
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We may once more rely on Young’s inequality together with Gagliardo–Nirenberg inequality
to see that there exist constants C9(p, Ω), C10(p, Ω) > 0 such that[

1 +
(p − 1)2

2

] ∫
Ω

u2p =
(p − 1)2

2
∥u

p
2 ∥4

L4(Ω)

≤ C9

(∫
Ω

∣∣∣(u p
2 )x

∣∣∣2) 2p−1
p+1

∥u∥
3p

p+1

L1(Ω)
+ C9∥u∥2p

L1(Ω)

≤ p − 1
p

∫
Ω
|(u

p
2 )x|2 + C10∥u∥

3p
2−p

L1(Ω)
+ C9∥u∥2p

L1(Ω)

(3.8)

for all t ∈ (0, T), which together with (3.6) and (3.8) asserts

d
dt

(∫
Ω

w2
x +

∫
Ω

up
)
+ C6

(∫
Ω

w2
x +

∫
Ω

up
)
≤ C8 + C9∥u∥2p

L1(Ω)
+ C10∥u∥

3p
2−p

L1(Ω)
(3.9)

for all t ∈ (0, T). Thereupon, (3.1) can be derived by (3.9) and (2.19).

Lemma 3.2. Let γ, µ > 0, and suppose that u0 and v0 satisfy (1.2). Assume that α, β satisfy (1.5).
Then there exists M3(α, β, γ, µ, Ω) > 0 such that∫

Ω
w4

x +
∫

Ω
u2 ≤ M3, t ∈ (0, T). (3.10)

Proof. By (2.21) with k = 2, we get

d
dt

∫
Ω

u2 +
∫

Ω
u2 ≤ −

∫
Ω

u2
x − 2

∫
Ω

uuxwx + M1.

Fixing θ > 1, we use Young’s inequality and Hölder’s inequality to obtain

d
dt

∫
Ω

u2 +
∫

Ω
u2 ≤ − 1

2

∫
Ω

u2
x + 2∥u∥2

L2θ(Ω)∥w2
x∥L

θ
θ−1 (Ω)

+ M1, t ∈ (0, T). (3.11)

Now another application of Young’s inequality, followed by Hölder’s inequality, reveals that

d
dt

∫
Ω

w4
x = − 12

∫
Ω

w2
xw2

xx − 12
∫

Ω
w2

xwxxu

≤ −12
∫

Ω
w2

xw2
xx + 8

∫
Ω

w2
xw2

xx +
9
2

∫
Ω

w2
xu2

≤ −
∫

Ω
|(w2

x)x|2 +
9
2
∥u∥2

L2θ(Ω)∥w2
x∥L

θ
θ−1 (Ω)

(3.12)

for all t ∈ (0, T). Adding (3.11) and (3.12), we write

d
dt

(∫
Ω

w4
x +

∫
Ω

u2
)
+

(∫
Ω

w4
x +

∫
Ω

u2
)

≤ −
∫

Ω
|(w2

x)x|2 −
1
2

∫
Ω

u2
x + ∥w2

x∥2
L2(Ω) +

13
2
∥u∥2

L2θ(Ω)∥w2
x∥L

θ
θ−1 (Ω)

+ M1

(3.13)

for all t ∈ (0, T). Using the Gagliardo–Nirenberg inequality, we deduce C11(Ω) > 0 such that

∥u∥2
L2θ(Ω) ≤ 4C2

11

(∫
Ω

u2
x

) 2θ−1
3θ

∥u∥
2(θ+1)

3θ

L1(Ω)
+ 4C2

11∥u∥2
L1(Ω), t ∈ (0, T) (3.14)
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and

∥w2
x∥L

θ
θ−1 (Ω)

≤ C11

(∫
Ω
|(w2

x)x|2
) 1

3θ

∥w2
x∥

3θ−2
3θ

L1(Ω)
+ C11∥w2

x∥L1(Ω), t ∈ (0, T) (3.15)

as well as

∥w2
x∥2

L2(Ω) ≤ 4C2
11

(∫
Ω
|(w2

x)x|2
) 1

3

∥w2
x∥

4
3
L1(Ω)

+ 4C2
11∥w2

x∥2
L1(Ω), t ∈ (0, T). (3.16)

Therefore, in view of 2θ−1
3θ + 1

3θ = 2
3 < 1, we apply Young’s inequality and recall (3.14)–(3.16)

to estimate

∥w2
x∥2

L2(Ω) +
13
2
∥u∥2

L2θ(Ω)∥w2
x∥L

θ
θ−1 (Ω)

≤ 1
2

∫
Ω
|ux|2 +

3
4

∫
Ω
|(w2

x)x|2 + C11∥u∥
2(θ+1)

θ

L1(Ω)
∥w2

x∥
3θ−2

θ

L1(Ω)
+ C11∥u∥2

L1(Ω)∥w2
x∥

3θ
θ+1
L1(Ω)

+ C11∥u∥
6θ

3θ−1
L1(Ω)

∥w2
x∥

3θ−2
3θ−1
L1(Ω)

+ C11∥u∥2
L1(Ω)∥w2

x∥L1(Ω) + C11∥w2
x∥2

L1(Ω)

(3.17)

for all t ∈ (0, T). Here C11 is a constant that depends on Ω. In view of (2.19), (3.1), (3.13) and
(3.17), this immediately leads to (3.10), upon an ODE comparison principle.

With the estimate (3.10) at hand, we now turn to establish uniform-in-time boundedness
of u and wx.

Proof of Theorem 1.1. In view of Lemma 2.2, it is routine to check that for any fixed t0 ∈ (0, T),
sup0≤t≤t0

∥u(·, t)∥L∞(Ω), sup0≤t≤t0
∥wx(·, t)∥Lq(Ω) are bounded. It is sufficient to justify it for

t ∈ (t0, T).
Employing the Neumann heat semigroup {e∆t}t≥0, we represent wx according to

wx(t) =
(

et∆w0

)
x
−
∫

0

t (
e(t−s)∆w2

x

)
x
+
∫

0

t (
e(t−s)∆u

)
x

, t ∈ (t0, T),

recalling (2.2), (2.3) and (3.10), we obtain C12(Ω) > 0 such that

∥wx∥L∞(Ω) ≤ C12[1 + t−
1
2q ]e−λ1t∥w′

0∥Lq(Ω) + C12

∫
0

t
[1 + (t − s)−

3
4 ]e−λ1(t−s) sup

t∈(0,T)
∥wx∥2

L4(Ω)

+ C12

∫
0

t
[1 + (t − s)−

3
4 ]e−λ1(t−s) sup

t∈(0,T)
∥u∥L2(Ω)

≤ C13, t ∈ (t0, T),
(3.18)

where C13 = C12[1 + t
− 1

2q
0 ]∥w′

0∥Lq(Ω) + 2C12M
1
2
3

∫ t
0 [1 + (t − s)−

3
4 ]e−λ1(t−s) is a bounded constant

because
∫ t

0 [1+ (t− s)−
3
4 ]e−λ1(t−s) is finite. In consequence, (3.18) and the definition of w hence

establish (1.6). Using (2.21) and Young’s inequality along with (3.18), we obtain

d
dt

∫
Ω

uk +
∫

Ω
uk ≤ − k − 1

k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 − k(k − 1)
4

∫
Ω

uk−2u2
x

− k(k − 1)
∫

Ω
uk−1uxwx + M1

≤ − k − 1
k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 + k(k − 1)C2
13

∫
Ω

uk + M1,

(3.19)



Boundedness in a chemotaxis-consumption model with singular sensitivity 13

for all t ∈ (t0, T) and k > 2. Following procedures analogous to (2.23) we can obtain
C14(k, α, β, γ, µ, Ω) > 0 such that

k(k − 1)C2
13

∫
Ω

uk ≤ (k − 1)
k

∫
Ω

∣∣∣(u
k
2

)
x

∣∣∣2 + C14∥u∥k
L1(Ω), t ∈ (t0, T). (3.20)

A combination of the above estimates (3.19) and (3.20) yields that

d
dt

∫
Ω

uk +
∫

Ω
uk ≤ M1 + C14∥u∥k

L1(Ω), t ∈ (t0, T).

It holds true that for any 2 < k < ∞, there exists C15(k, α, β, γ, µ, Ω) > 0 such that∫
Ω

uk ≤ C15, t ∈ (t0, T), (3.21)

here we use the ordinary differential equations comparison argument together with (2.19). By
the variation-of-constants formula, u can be represented as

u = et∆u0 +
∫ t

0
e(t−s)∆(uwx)x +

∫ t

0
e(t−s)∆

(
γ

|Ω|

∫
Ω

uα

)
+ γ

∫ t

0
e(t−s)∆

(
uα − 1

|Ω|

∫
Ω

uα

)
− µ

∫
0

t
e(t−s)∆

(
uα
∫

Ω
uβ

)
, t ∈ (t0, T).

On dropping a nonpositive term, we have

u ≤ et∆u0 +
∫ t

0
e(t−s)∆(uwx)x +

∫ t

0
e(t−s)∆

(
γ

|Ω|

∫
Ω

uα

)
+ γ

∫ t

0
e(t−s)∆

(
uα − 1

|Ω|

∫
Ω

uα

)
, t ∈ (t0, T).

With this representation and standard smoothing estimates (2.1) and (2.4), we arrive at

∥u∥L∞(Ω) ≤ ∥u0∥L∞(Ω) + C16

∫ t

0
[1 + (t − s)−

3
4 ]e−λ1(t−s) sup

t∈(0,T)
∥u∥L2(Ω)∥wx∥L∞(Ω)

+

[
γ

|Ω| + 2C16γ
∫ t

0
[1 + (t − s)−

1
2 ]e−λ1(t−s)

](
sup

t∈(0,T)
∥u∥Lα(Ω)

)α

, t ∈ (t0, T)

with C16(Ω) > 0, whence observing (3.18) and (3.21), we therefore obtain the desired global
boundedness of u. Consequently, Theorem 1.1 is completed.
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