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Abstract. In this work, we investigate a class of reaction-diffusion system in which
both species are influenced by self-diffusion. By introducing two particular functions,
we provide a complete characterization of the parameter ranges such that coexisting
steady-state solutions of the system do not exist under three boundary conditions. Then
based on the maximum principle, a sufficient condition for the existence of constant
coexisting solutions of the system under Neumann boundary conditions was derived.

Keywords: reaction-diffusion system, steady-state, existence, boundary condition.

2020 Mathematics Subject Classification: 35B50, 35J57.

1 Introduction

In [14], Shigesada, Kawasaki and Teramoto introduced the following system with cross-
diffusions and self-diffusions, when they took a nonlinear dispersive force and an environ-
mental potential function into consideration,

∂u
∂t

= ∆[(d1 + a11u + a12v)u] + u(1 − u − a1v), x ∈ Ω, t > 0,

∂v
∂t

= ∆[(d2 + a21u + a22v)v] + v(1 − a2u − v), x ∈ Ω, t > 0,

α1u + β1
∂u
∂ν

= α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, and satisfies the interior
ball condition at any x ∈ ∂Ω, ν is the outward unit normal vector on ∂Ω. u and v are
the densities of two competing species, αi, βi and aij (i, j = 1, 2) are nonnegative constants,
αi + βi > 0 (i = 1, 2), ai and di (i = 1, 2) are all positive constants, a11 and a22 stand for the
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self-diffusion pressures, while a12 and a21 are the cross-diffusion pressures, a1, a2 describe the
inter-specific competitions, and d1, d2 are their diffusion rates [19].

In order to analyze and describe the above reaction-diffusion model, it is necessary to
clarify the boundary conditions of the region. When αi = 0 (i = 1, 2), we have ∂u

∂ν = ∂v
∂ν =

0, which is called Neumann boundary condition. At this point, individuals who reach the
boundary will be reflected back into the region without leaving, meaning that the species is
in an isolated environment. When βi = 0 (i = 1, 2), we have u = v = 0. These indicate
that individuals who encounter the boundary cross it immediately and thereby maintain the
density on the boundary at zero [1]. This means that the boundary ∂Ω can effectively absorb
all individuals encountering it. Therefore, this boundary is called absorbed, also known as
Dirichlet boundary condition. When αi, βi > 0 (i = 1, 2), it is called Robin boundary condition
in the mathematical literature.

Since the model, which was abbreviated as SKT model, was proposed, numerous experts
and scholars have conducted extensive and in-depth research on it. These results mainly
include the existence, boundedness and global convergence of classical solutions, the local
and global existence of weak solutions, the existence, nonexistence and stability of steady-
state solutions, the existence of traveling wave solutions, and so on.

In fact, the study of standard SKT models is quite difficult. More experts and scholars
are turning to the study of certain special forms of SKT model; see [2, 4–8, 12, 15, 16]. Among
them, when the spatial dimension is 1 and d1 = d2, [6] proved the global existence of smooth
solutions. Under the same conditions, [15] obtained the uniform boundedness and conver-
gence of smooth solutions. In 2015, Lou and Winkler [12] used the comparison principle and
Sobolev regularity theory to obtain the global existence and uniform boundedness of smooth
solutions on bounded convex domain when the spatial dimension is less than 3 and d1 = d2.
Taking self-diffusion into consideration, [5] proved the global existence of the unique smooth
solution in any spatial dimension; and [8] obtained the global existence of the unique classical
solution by using Sobolev embedding theory under the condition d1 = d2.

For research on steady-state solutions, one can refer to [9–11]. In 1996, Lou and Ni [9] used
the maximum principle and Lyapunov functional theory to prove that in the weak competition
case, if self-diffusion and/or cross-diffusion are relatively weaker than diffusion, then there
is still no nonconstant steady-state solution. At the same time, they proved that in the weak
competition case, with one of the cross-diffusion pressures arbitrarily given but fixed, it is
expect to find non-constant steady-state solutions if the other cross-diffusion pressure is large
enough [9]. Without considering the influence of self-diffusion, [10] obtained a sufficient
condition such that the SKT model has no nonconstant steady-state solutions. When a21 =

a22 = 0, Lou et al. [11] provided the parameter ranges such that the system has no nonconstant
positive solutions for a11 = 0 and a11 ̸= 0, respectively.

It is obvious to see that the above studies were conducted under Neumann boundary
conditions, which is also the most extensively studied scenario. In addition, some scholars
have also studied the SKT model under Dirichlet boundary conditions, which can be found
in [3, 13, 17, 20] and references therein. For example, the sufficient conditions for the existence
of positive steady-state solutions of the system are given in [13] using the fixed point theory
in the case of fixed or sufficiently large cross-diffusion coefficients, respectively. The exis-
tence of steady-state solutions for a one-dimensional system was studied using the singular
perturbation method [17].

Based on the previous work [19], where one species has cross-diffusion and another species
has self-diffusion, now we consider the following steady-state model, which indicates that
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there are self-diffusions in both competing species and there is no cross-diffusion in either,
∆[(d1 + a11u)u] + u(1 − u − a1v) = 0, x ∈ Ω,

∆[(d2 + a22v)v] + v(1 − a2u − v) = 0, x ∈ Ω,

α1u + β1
∂u
∂ν

= α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω.

(1.2)

We aim to obtain sufficient conditions such that the system (1.2) has no coexisting solutions
under three different boundary conditions, and establish the parameter ranges for the exis-
tence of constant coexisting solutions under Neumann boundary conditions. Considering that
u and v represent species densities, we focus on the nonnegative classical solution (u, v) of
(1.2), which means that (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, u, v ≥ 0 in Ω, and satisfies (1.2) in the
pointwise sense [19].

The remainder of this work is organized as follows. Section 2 gives some basic preliminar-
ies which imply the strict positivity of the nontrivial solutions of system (1.2). In Section 3,
based on the boundedness of solutions, we obtain two different parameter ranges for nonex-
istence of coexisting solutions under three boundary conditions. In Section 4, we establish
the sufficient conditions for the existence of constant coexisting solutions under Neumann
boundary conditions.

2 Preliminaries

First of all, we can obtain the positivity of the classical solutions of (1.2) in Ω, which is crucial
in subsequent section.

Proposition 2.1. Let (u, v) be a nonnegative classical solution of (1.2). Then if u ̸≡ 0, we have u > 0
in Ω, and if v ̸≡ 0, we have v > 0 in Ω.

Proof. We only prove u > 0 in Ω whenever u ̸≡ 0, since the positivity of v in Ω can be proved
in a similar way. Otherwise, there is x0 ∈ Ω such that u(x0) = minx∈Ω u(x) = 0.

It follows from the first equation of (1.2) that

(d1 + 2a11u)∆u + 2a11|∇u|2 + u(1 − u − a1v) = 0.

Let
Lu = −(d1 + 2a11u)∆u − 2a11|∇u|2 + cu with c = u + a1v.

Then
c ≥ 0 and Lu = u ≥ 0 in Ω.

So, an application of the strong maximum principle shows that u is a constant in Ω, and thus
u = 0, a contradiction to u ̸≡ 0. This completes the proof.

Remark 2.2. In the case of Neumann or Robin boundary conditions, we can get further that
u, v > 0 in Ω by Hopf’s boundary lemma. In fact, for example, considering the case of Robin
boundary conditions, suppose that there is x0 ∈ Ω such that u(x0) = minx∈Ω u(x) = 0. If x0 ∈
Ω, we can directly derive a contradiction by Proposition 2.1. If x0 ∈ ∂Ω, then u(x0) < u(x) for
all x ∈ Ω. Since Lu ≥ 0 in Ω and Ω satisfies the interior ball condition at x0 ∈ ∂Ω, it follows
from Hopf’s boundary lemma that ∂u

∂ν (x0) < 0. Hence

α1u(x0) + β1
∂u
∂ν

(x0) < 0,

a condiction. Therefore, u > 0 in Ω.
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3 Nonexistence of coexisting steady-state solutions

In this section, we will discuss the nonexistence of coexisting solutions for system (1.2) under
three different boundary conditions.

3.1 Neumann boundary condition

In this subsection, assume that α1 = α2 = 0, that is, we consider the following system,
∆[(d1 + a11u)u] + u(1 − u − a1v) = 0, x ∈ Ω,

∆[(d2 + a22v)v] + v(1 − a2u − v) = 0, x ∈ Ω,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(3.1)

Firstly, we give the following lemma, which indicates that u and v are both bounded.

Lemma 3.1. Suppose that (u, v) is a nonnegative classical solution of (3.1). If u ̸≡ 0, then u ≤ 1 in
Ω. Similarly, if v ̸≡ 0, then v ≤ 1 in Ω.

Proof. We only prove the boundedness of u, while the boundedness of v can be similarly
obtained, leaving it for interested readers. Rewrite the first equation of the system (3.1) as
follows 

(d1 + 2a11u)∆u + 2a11|∇u|2 + u(1 − u − a1v) = 0, x ∈ Ω,
∂u
∂ν

= 0, x ∈ ∂Ω.
(3.2)

Let f (x) = u(x)(1 − u(x) − a1v(x)), x ∈ Ω. Proposition 2.2 in [9] implies that there exist
x1, x2 ∈ Ω such that

u(x1) = max
x∈Ω

u(x) ≜ M, u(x2) = min
x∈Ω

u(x) ≜ m,

and
f (x1) ≥ 0, f (x2) ≤ 0,

that is
M(1 − M − a1v(x1)) ≥ 0, m(1 − m − a1v(x2)) ≤ 0.

We thus have

1 − a1v(x2) ≤ m ≤ u(x) ≤ M ≤ 1 − a1v(x1) for all x ∈ Ω.

Combining this with the nonnegativity of v, we obtain u ≤ 1 in Ω.

Next, we provide a sufficient condition for the nonexistence of coexisting solutions under
Neumann boundary conditions.

Theorem 3.2. Suppose that (u, v) is a nonnegative classical solution of (3.1). If

(i) a1 > 1 > a2, d1 > d2 and d1 ≥ d2 + 2a22

or

(ii) a1 < 1 < a2, d1 < d2 and d2 ≥ d1 + 2a11,
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then system (3.1) has no coexisting solutions, that is, at least one species is extinct.

Proof. (i) We argue by contradiction. Suppose that u ̸≡ 0 and v ̸≡ 0. It follows from Proposi-
tion 2.1 that u, v > 0 in Ω, which allows us to rewrite system (3.1) as follows,

∆[(d1 + a11u)u]
u

= −1 + u + a1v, x ∈ Ω,

∆[(d2 + a22v)v]
v

= −1 + a2u + v, x ∈ Ω,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(3.3)

Let

w1 = d1 + a11u and w2 = d2 + a22v. (3.4)

Since a1 > 1 > a2, we can obtain that ∆(w1u)
u > ∆(w2v)

v , that is,

u∆w1 + 2∇u · ∇w1 + w1∆u
u

>
v∆w2 + 2∇v · ∇w2 + w2∆v

v
in Ω. (3.5)

We procedure the following calculation based on the inequality above,

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

u
v

]
=

(
uv∆w1 + v∇u · ∇w1 + u∇v · ∇w1 − uv∆w2 − v∇u · ∇w2 − u∇v · ∇w2

+ vw1∆u + v∇u · ∇w1 + w1∇u · ∇v − uw2∆v − u∇v · ∇w2 − w2∇u · ∇v
)u

v

+
(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)
·
(1

v
∇u − u

v2∇v
)

>
(
u∇v · ∇w1 − v∇u · ∇w2 + w1∇u · ∇v − w2∇u · ∇v

)u
v

+
(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)
·
(1

v
∇u − u

v2∇v
)

= |∇u|2
(
a11u + w1

)
+ |∇v|2

(
a22v + w2

)u2

v2

+∇u · ∇v
[
(a11u + w1)

u
v
+ (−a22v − w2)

u
v
+ (−a11u − w1 − a22v − w2)

u
v

]
= |∇u|2

(
d1 + 2a11u

)
+ |∇v|2

(
d2 + 2a22v

)u2

v2 − 2(d2 + 2a22v)
u
v
∇u · ∇v

= |∇u|2
(
d1 + 2a11u − d2 − 2a22v

)
+

(√
d2 + 2a22v∇u − u

v

√
d2 + 2a22v∇v

)2
.

As d1 > d2, d1 ≥ d2 + 2a22 and v ≤ 1, we have

d1 + 2a11u − d2 − 2a22v ≥ d1 + 2a11u − d2 − 2a22 ≥ 0 in Ω.

Thus,

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

u
v

]
> 0. (3.6)
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On the other hand, we can see from Neumann boundary conditions that∫
Ω

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
)u

v

]
dx

=
∫

∂Ω

(
uv

∂w1

∂ν
− uv

∂w2

∂ν
+ vw1

∂u
∂ν

− uw2
∂v
∂ν

)
u
v

dS

=
∫

∂Ω

(
a11uv

∂u
∂ν

− a22uv
∂v
∂ν

+ vw1
∂u
∂ν

− uw2
∂v
∂ν

)
u
v

dS

= 0,

which is contradict to (3.6). Therefore, u ≡ 0 or v ≡ 0.
(ii) In this case, due to a1 < 1 < a2, we can see that ∆(w1u)

u < ∆(w2v)
v , which can be expanded

into the following form

u∆w1 + 2∇u · ∇w1 + w1∆u
u

<
v∆w2 + 2∇v · ∇w2 + w2∆v

v
in Ω, (3.7)

where w1, w2 are defined in (3.4). Similar to the calculations of (i), we consider the process as
follows

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

v
u

]
<

(
u∇v · ∇w1 − v∇u · ∇w2 + w1∇u · ∇v − w2∇u · ∇v

) v
u

+
(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)
·
(
− v

u2∇u +
1
u
∇v

)
= |∇u|2

(
− a11u − w1

) v2

u2 + |∇v|2
(
− a22v − w2

)
+∇u · ∇v

[
(a11u + w1)

v
u
+ (−a22v − w2)

v
u
+ (a11u + w1 + a22v + w2)

v
u

]
= − |∇u|2

(
d1 + 2a11u

) v2

u2 − |∇v|2
(
d2 + 2a22v

)
+ 2(d1 + 2a11u)

v
u
∇u · ∇v

= |∇v|2
(
− d2 − 2a22v + d1 + 2a11u

)
−

( v
u

√
d1 + 2a11u∇u −

√
d1 + 2a11u∇v

)2
.

Since d1 < d2, d2 ≥ d1 + 2a11 and u ≤ 1, we see

−d2 − 2a22v + d1 + 2a11u ≤ −d2 − 2a22v + d1 + 2a11 ≤ 0 in Ω.

It is shown that

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

v
u

]
< 0. (3.8)

Now, based on the boundary conditions, we can still obtain the following result∫
Ω

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
) v

u

]
dx = 0,

which leads to a contradiction. This completes the proof.

Remark 3.3. Based on Proposition 2.1, we constructed two subtle auxiliary functions and
proved the conclusion by contradiction. From the conclusion, it can be seen that the theorem
provides a specific characterization that when the inter-specific competition rate and diffusion
rate of some species are relatively high, it will lead to some species extinction.
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Furthermore, under the conditions (i) and (ii) of Theorem 3.2, we selected two sets of
values and conducted numerical simulations for the following system respectively,

∂u
∂t

= ∆[(d1 + a11u)u] + u(1 − u − a1v), x ∈ (0, 1), t > 0,

∂v
∂t

= ∆[(d2 + a22v)v] + v(1 − a2u − v), x ∈ (0, 1), t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x = 0, 1, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, 1),

(3.9)

as shown in Figure 3.1 and 3.2. The simulation results show that, species u becomes extinct
under condition (i) while species v becomes extinct under condition (ii). Therefore, it is nature
to ask whether species u necessarily extinct under condition (i) and species v necessarily
extinct under condition (ii). Our results have not provided an answer, and this is our future
work.

Figure 3.1: Numerical simulations for system (3.9) with u0(x) = 2e−x, v0(x) =
e−x, d1 = 0.7, d2 = 0.2, a11 = 0.1, a22 = 0.2, a1 = 1.8 and a2 = 0.5.

Figure 3.2: Numerical simulations for system (3.9) with u0(x) = 2e−x, v0(x) =
e−x, d1 = 0.1, d2 = 0.4, a11 = 0.1, a22 = 0.2, a1 = 0.8 and a2 = 1.5.
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3.2 Dirichlet boundary condition

In this subsection, we consider the case of β1 = β2 = 0, which leads to the following system,
∆[(d1 + a11u)u] + u(1 − u − a1v) = 0, x ∈ Ω,

∆[(d2 + a22v)v] + v(1 − a2u − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(3.10)

Now, we can also deduce that u and v are both bounded.

Lemma 3.4. Suppose that (u, v) is a nonnegative classical solution of (3.10). If u ̸≡ 0, then u ≤ 1 in
Ω. Similarly, if v ̸≡ 0, then v ≤ 1 in Ω.

Proof. We only need to prove the boundedness of v. Proposition 2.1 implies that v > 0 in Ω if
v ̸≡ 0. The second equation of system (3.10) can be transformed into the following form,{

(d2 + 2a22v)∆v + 2a22|∇v|2 + v(1 − a2u − v) = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.
(3.11)

Suppose on the contrary that there exists a point x0 such that v(x0) = maxΩ v(x) > 1. Obvi-
ously, x0 ∈ Ω. So we have

∆v(x0) ≤ 0, ∇v(x0) = 0 and v(x0)(1 − a2u(x0)− v(x0)) ≥ 0.

Since v > 0 in Ω, we obtain that 1 − a2u(x0) − v(x0) ≥ 0, that is, 1 ≥ a2u(x0) + v(x0), a
contradiction.

If we restrict attention to the Dirichlet boundary conditions, we can establish the parameter
ranges such that the system (3.10) has no coexisting solutions.

Theorem 3.5. Suppose that (u, v) is a nonnegative classical solution of (3.10). If

(i) a1 > 1 > a2, d1 > d2 and d1 ≥ d2 + 2a22

or

(ii) a1 < 1 < a2, d1 < d2 and d2 ≥ d1 + 2a11,

then system (3.10) has no coexisting solutions.

Proof. (i) According to the proof of Theorem 3.2-(i), the following inequality still holds

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

u
v

]
> 0,

where w1 = d1 + a11u and w2 = d2 + a22v.
Now, we consider the following integral∫

Ω
div

[(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)u
v

]
dx

=
∫

∂Ω

(
uv

∂w1

∂ν
− uv

∂w2

∂ν
+ vw1

∂u
∂ν

− uw2
∂v
∂ν

)
u
v

dS

=
∫

∂Ω

(
a11u2 ∂u

∂ν
− a22u2 ∂v

∂ν
+ uw1

∂u
∂ν

−
(

d2
u2

v
+ a22u2

)
∂v
∂ν

)
dS.
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It is easy to see that the function u2

v in the last term of the integrand does not make sense on
∂Ω. So in such a case we cannot make calculations directly. Let

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} for any small ε > 0.

Since (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, we observe that(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)u
v
∈ C1(Ωε).

Then divergence theorem implies that∫
Ω

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
)u

v

]
dx

= lim
ε→0

∫
Ωε

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
)u

v

]
dx

= lim
ε→0

∫
∂Ωε

(
a11u2 ∂u

∂ν
− a22u2 ∂v

∂ν
+ uw1

∂u
∂ν

−
(

d2
u2

v
+ a22u2

)
∂v
∂ν

)
dS.

Let

I1(ε) =
∫

∂Ωε

(
a11u2 ∂u

∂ν
− a22u2 ∂v

∂ν
+ uw1

∂u
∂ν

− a22u2 ∂v
∂ν

)
dS,

I2(ε) =
∫

∂Ωε

d2
u2

v
∂v
∂ν

dS.

Obviously, I1(ε) approaches zero as ε → 0 in terms of Dirichlet boundary conditions. In order
to deal with the term I2(ε), we write

V =

{
φ(x) ∈ C1(Ω) | φ(x) > 0, x ∈ Ω; φ|∂Ω = 0;

∂φ

∂ν

∣∣∣
∂Ω

< 0
}

.

By Hopf’s Lemma, we have ∂u(x0)
∂ν < 0 and ∂v(x0)

∂ν < 0 for any x0 ∈ ∂Ω, and thus u ∈ V and
v ∈ V. We now define

g(x) :=


u(x)
v(x)

, x ∈ Ω,

∂u(x)
∂ν

/∂v(x)
∂ν

, x ∈ ∂Ω.

Then Lemma 2.4 in [18] shows that g(x) ∈ C
(
Ω, (0,+∞)

)
. Therefore, we conclude that I2(ε)

also approaches zero as ε → 0. These considerations motivate that∫
Ω

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
)u

v

]
dx = 0 (3.12)

thanks to Lebesgue dominated convergence theorem and Dirichlet boundary conditions, a
contradiction.

(ii) On one hand, it is obvious to see from Theorem 3.2-(ii) that

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

v
u

]
< 0, (3.13)

due to d1 < d2, d2 ≥ d1 + 2a11 and Lemma 3.4.
On the other hand, we can deduce from the discussion on boundary integrals similar to

(i) that ∫
Ω

div
[(

uv∇w1 − uv∇w2 + vw1∇u − uw2∇v
) v

u

]
dx = 0. (3.14)

Therefore, a contradiction can also be obtained, and the conclusion is valid.
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Remark 3.6. It is easy to see that the conditions of this theorem are the same as those of
Theorem 3.2. In fact, since the equations in system (3.1) and (3.10) are the same, the conditions
of Theorem 3.2 and 3.5 are given to ensure that the constructed auxiliary function is strictly
positive or strictly negative within the region, which is independent of boundary conditions.

3.3 Robin boundary condition

In this subsection, we consider the following system
∆[(d1 + a11u)u] + u(1 − u − a1v) = 0, x ∈ Ω,

∆[(d2 + a22v)v] + v(1 − a2u − v) = 0, x ∈ Ω,

α1u + β1
∂u
∂ν

= α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω,

(3.15)

where αi > 0, βi > 0, i = 1, 2. Under this boundary conditions, the boundedness of u and v is
also not difficult to obtain.

Lemma 3.7. Suppose that (u, v) is a nonnegative classical solution of (3.15). If u ̸≡ 0, then u ≤ 1 in
Ω. Similarly, if v ̸≡ 0, then v ≤ 1 in Ω.

Proof. We only prove the previous statement. First, we can obtain that
(d1 + 2a11u)∆u + 2a11|∇u|2 + u(1 − u − a1v) = 0, x ∈ Ω,

α1u + β1
∂u
∂ν

= 0, x ∈ ∂Ω.
(3.16)

Suppose that there exists a point x0 ∈ Ω, such that u(x0) = maxx∈Ω u(x) > 1.
(i) If x0 ∈ Ω, we have ∆u(x0) ≤ 0, ∇v(x0) = 0 and u(x0)(1 − u(x0)− a1v(x0)) ≥ 0. Since

u > 0 in Ω, we obtain that 1− u(x0)− a1v(x0) ≥ 0, that is, 1 ≥ u(x0)+ a1v(x0), a contradiction.
(ii) If x0 ∈ ∂Ω, then u(x0) > u(x) for all x ∈ Ω. Thus we can see that ∂u

∂ν (x0) ≥ 0. Since
u > 0 in Ω by Remark 2.2, we have α1u(x0) + β1

∂u
∂ν (x0) > 0, a contradiction.

Theorem 3.8. Suppose that (u, v) is a nonnegative classical solution of (3.15). If

(i) a1 > 1 > a2, d1 > d2, d1 ≥ d2 + 2a22, α1 ≥ β1 and α2 ≤ β2

or

(ii) a1 < 1 < a2, d1 < d2, d2 ≥ d1 + 2a11, α1 ≤ β1 and α2 ≥ β2,

then system (3.15) has no coexisting solutions.

Proof. We only prove the first case. Now, we can still obtain

div
[
(uv∇w1 − uv∇w2 + vw1∇u − uw2∇v)

u
v

]
> 0,

where w1 = d1 + a11u and w2 = d2 + a22v.



Coexisting steady-state solutions 11

Notice that ∂u
∂ν = − α1

β1
u, ∂v

∂ν = − α2
β2

v in ∂Ω. It consequently seems advisable to consider the
following integral∫

Ω
div

[(
uv∇w1 − uv∇w2 + vw1∇u − uw2∇v

)u
v

]
dx

=
∫

∂Ω

(
a11uv

∂u
∂ν

− a22uv
∂v
∂ν

+ vw1
∂u
∂ν

− uw2
∂v
∂ν

)
u
v

dS

=
∫

∂Ω

(
−a11

α1

β1
u3 + a22

α2

β2
u2v − α1

β1
u2w1 +

α2

β2
u2w2

)
dS

=
∫

∂Ω
u2

(
−2a11

α1

β1
u + 2a22

α2

β2
v − d1

α1

β1
+ d2

α2

β2

)
dS

≤
∫

∂Ω
u2

(
−2a11

α1

β1
u + 2a22

α2

β2
− d1

α1

β1
+ d2

α2

β2

)
dS

≤
∫

∂Ω
u2

(
−2a11

α1

β1
u + 2a22 − d1 + d2

)
dS

≤ 0,

due to Lemma 3.7, α1 ≥ β1, α2 ≤ β2 and d1 ≥ d2 + 2a22, a contradiction.

4 Existence of coexisting solutions

In this section, we will investigate the existence of coexisting solutions for system (3.1).

Theorem 4.1. Let a1 < 1 and a2 < 1. Suppose that (u, v) is a nonnegative classical solution of (3.1).
If u ̸≡ 0 and v ̸≡ 0, then

u ≡ 1 − a1

1 − a1a2
and v ≡ 1 − a2

1 − a1a2
. (4.1)

Proof. Recall from Lemma 3.1 that there exist x1, x2 ∈ Ω such that

u(x1) = max
x∈Ω

u(x) ≜ M, u(x2) = min
x∈Ω

u(x) ≜ m,

and

1 − a1v(x2) ≤ m ≤ u(x) ≤ M ≤ 1 − a1v(x1) for all x ∈ Ω. (4.2)

Similarly, there exist x3, x4 ∈ Ω such that

v(x3) = max
x∈Ω

v(x) ≜ M′, v(x4) = min
x∈Ω

v(x) ≜ m′,

and

1 − a2u(x4) ≤ m′ ≤ v(x) ≤ M′ ≤ 1 − a2u(x3) for all x ∈ Ω. (4.3)

We first prove u ≡ 1−a1
1−a1a2

. Combining (4.2) with (4.3), we obtain

m ≥ 1 − a1v(x2) ≥ 1 − a1(1 − a2u(x3)) ≥ 1 − a1 + a1a2m, (4.4)
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and

M ≤ 1 − a1v(x1) ≤ 1 − a1(1 − a2u(x4)) ≤ 1 − a1 + a1a2M. (4.5)

Notice that since a1 < 1 and a2 < 1, we have

1 − a1

1 − a1a2
≤ m ≤ u(x) ≤ M ≤ 1 − a1

1 − a1a2
. (4.6)

Hence
u ≡ 1 − a1

1 − a1a2
.

Similarly, it can be proved that

1 − a2

1 − a1a2
≤ m′ ≤ v(x) ≤ M′ ≤ 1 − a2

1 − a1a2
. (4.7)

Consequently,

v ≡ 1 − a2

1 − a1a2
.

This completes the proof.

Remark 4.2. Here we only give sufficient conditions for the existence of nonzero constant
solutions for the system under Neumann boundary conditions. In fact, for systems under the
other two boundary conditions, it is easy to see that if there is a constant solution, it can only
be the zero solution.

In addition, under the conditions of Theorem 4.1, we also selected a set of values and con-
ducted numerical simulations for system (3.9), as shown in Figure 4.1. The simulation results
show that species u and v tend to constant coexisting solutions

( 1−a1
1−a1a2

, 1−a2
1−a1a2

)
≈ (0.33, 0.83).

Figure 4.1: Numerical simulations for system (3.9) with u0(x) = 2e−x, v0(x) =
e−x, d1 = 0.1, d2 = 0.2, a11 = 0.1, a22 = 0.2, a1 = 0.8 and a2 = 0.5.
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