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Abstract. We investigate the existence of sign-changing solutions for Kirchhoff-type
problems with p-Laplacian involving critical exponent:

−
(

1 + b|∇v|pp
)

∆pv + a(x)|v|p−2v = |v|p∗−2v + λ f (v), x ∈ RN ,

where b and λ are positive parameters, ∆pv = div(|∇v|p−2∇v), p∗ = Np
N−p , 1 < p < N,

and | · |p is the Lebesgue Lp-norm. For sufficiently large λ, employing minimization
techniques, quantitative deformation lemma and the constrained variational method,
we demonstrate the existence of a least-energy sign-changing solution, whose energy
is greater than twice that of the ground state solution. Additionally, we show the
convergence behavior of the solution as the parameter b ↘ 0. Our findings generalize
and extend upon recent results in the literature.

Keywords: sign-changing solution, variational methods, p-Laplacian, Kirchhoff-type
problem.

2020 Mathematics Subject Classification: 35J92, 35J60, 35J20.

1 Introduction and main result

We are interested in the existence of sign-changing solutions to the following class of Kirchhoff-
type problem with the p-Laplacian involving a critical exponent:

−
(
1 + b|∇v|pp

)
∆pv + a(x)|v|p−2v = |v|p∗−2v + λ f (v), x ∈ RN , (QKP)

where b and λ are positive parameters, ∆pv = div(|∇v|p−2∇v) is the p-Laplacian, p∗ = Np
N−p ,

1 < p < N, and f ∈ C1(R, R). The term p-Laplacian has emerged as a crucial concept in
various physics backgrounds and nonlinear analysis. This functional has found applications
in describing the movement of sandpiles [2], modeling Game Theory [11], and is employed in
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image inpainting [6]. A variety of intriguing results have been obtained for problem (QKP)
and similar problems, which has been investigated widely, see [7,8] and the reference therein.

Problem (QKP) is derived from the following Kirchhoff equation{
−
(
a + b

∫
Ω |∇v|2

)
∆v = f (v), x ∈ Ω,

v = 0, x ∈ ∂Ω.
(1.1)

Problem (1.1) corresponds to the following stationary form of a Kirchhoff type equation

vtt −
(

a + b
∫

Ω
|∇v|2dx

)
∆v = f (v), (1.2)

where a and b are positive constants. In one and two dimensions, equation (1.2) has been
employed to model various phenomena in physics, engineering, and other scientific disci-
plines, effectively approximating the nonlinear vibrations of beams or plates. In [13], Kirch-
hoff originally introduced (1.2) as an extension of the classical D’Alembert wave equation,
which models the free vibrations of elastic strings

ρ
∂2v
∂t2 −

(
p0

h
+

E
2L

∫ L

0

∣∣∣∣ ∂v
∂x

∣∣∣∣2 dx

)
∂2v
∂x2 = f (v),

with constants ρ, p0, h, E, and L.
We introduce a mathematical model that characterizes the behavior of a compressible fluid

within a homogeneous, isotropic, rigid porous medium. In this context, a⃗ = a⃗(x, t) represents
the seepage velocity, φ is the volumetric moisture content, and v = v(x, t) is the density. The
continuity equation is given by:

φ
∂v
∂t

+ div(v⃗a) = 0. (1.3)

In the case of laminar flow regime through the porous medium, the relationship between the
pressure π = π(x, t) and the momentum velocity ρ⃗a is described by the following Darcy’s
law:

ρ⃗a = −λ grad π. (1.4)

The flow rate is not the same in turbulent flow regimes, leading various authors to propose
a nonlinear alternative to (1.4). A commonly considered form of the nonlinear Darcy law can
be found in works such as Wu et al. [21]:

ρ⃗a = −λ| grad π|p−2 grad π, (1.5)

where p > 1. While considering the polytropic gas equation of state

π = cv, (1.6)

where c > 0 is a positive constant of proportionality. By (1.3), (1.5) and (1.6), we obtain

φ
∂v
∂t

= cp−1λ div
(
| grad v|p−2 grad v

)
. (1.7)

Following the variable substitution, we obtain

∂v
∂t

= div
(
|∇v|p−2∇v

)
, (1.8)
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with p being a real number greater than 1.

∆pv :=
N

∑
i=1

∂

∂xi

(
|∇v|p−2 ∂v

∂xi

)
= div

(
|∇v|p−2∇v

)
,

and
v 7−→ ∆pv, (1.9)

it is commonly called the p-Laplace operator or the p-Laplacian. In the case of one dimension,
one has

∆pv =
(
|v′|p−2v′

)′
.

Definition 1.1. A solution v is nontrivial provided that v ̸= 0. A nontrivial solution is called a
ground state (or least energy) solution if its energy is the lowest among all nontrivial solutions.
Additionally, if v is a nontrivial solution and both v+ and v− are nonzero, then v is referred
to as sign-changing solution, where v+ := max{v, 0}, v− := min{v, 0}.

Baldelli and Filippucci [4] studied the existence and multiplicity of nontrivial solutions to
the following generalized quasilinear Schrödinger equation:

−∆pv − α

2
∆p (|v|α) |v|α−2v = λV(x)|v|k−2v + βK(x)|v|αp∗−2v in RN ,

where α > 1, β, λ > 0, and α < k < αp∗. The weights are nontrivial and satisfy 0 ⩽ V ∈
Lαp∗/(αp∗−k)(RN) ∩ C(RN), K ∈ L∞(RN) ∩ C(RN). For N ⩾ 3 and 1 < p < N, using the
concentration compactness principle, the symmetric Mountain Pass Theorem, the truncation
of the energy functional, and the theory of Krasnosel’skii genus, they established the existence
of infinitely many nontrivial solutions vn ∈ D1,p(RN) = {u ∈ Lp∗(RN) : ∇u ∈ (Lp(RN))N},
provided that 1 < α < k < p.

Li [15] addressed the existence of solutions for the following equation:

− div
(

gp(v)|∇v|p−2∇v
)
+ gp−1(v)g′(u)|∇v|p + V(x)|v|p−2v

= K(x) f (v) + Q(x)g(v)|G(v)|p∗−2G(v),

where 1 < p ⩽ N, g ∈ C1 (R, R+) , V(x) and K(x) are positive continuous functions, Q(x) is
a bounded continuous function, and G(v) =

∫ v
0 g(t)dt. The author obtained the existence of

positive solutions when N ⩾ 3. Their proof is based on the truncation of the energy functional
and the Mountain Pass Theorem.

In [14], the p-Laplacian Kirchhoff-type equation with logarithmic nonlinearity was inves-
tigated: {

−
(
a + b|∇v|pp

)
∆pv = |v|q−2v ln v2, x ∈ Ω,

v = 0, x ∈ ∂Ω.
(1.10)

Using the constraint variation method, topological degree theory, and the quantitative defor-
mation lemma, the authors established the existence of ground state sign-changing solutions
for problem (1.10). In problem (1.10), they assumed that N > p, a and b are positive, and
4 ⩽ 2p < q < p∗ for some q > p. Chen et al. [10] investigated a modified version of problem
(QKP) with λ = 1, and the nonlinearity f (v) replaced by R(x)g(v) without the critical term.
The modified problem is given by

−
(
1 + b|∇v|pp

)
∆pv + a(x)|v|p−2v = R(x)g(v),
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in which R(x) and a(x) represent continuous functions that are positive and v ∈ D1,p(RN).
The authors establish the existence of a ground state sign-changing solution by employing the
non-Nehari manifold approach (Unlike the Nahari manifold method, the main idea of the non-
Nehari manifold approach lies on finding a minimizing sequence for the energy functional
outside the manifold). Motivated by the studies mentioned above, in this paper, we suppose
that f belongs to C1(R, R) and a belongs to C

(
RN , R

)
fulfills the following assumptions:

(A) infRN a(x) > 0 and there is R, such that

lim
|y|→∞

m
{

x ∈ RN : x ∈ BR(y), a(x) ⩽ A
}
= 0, ∀A > 0,

here m denotes the Lebesgue measure.

(P1) There holds limt→0
f (t)
|t|p−1 = 0;

(P2) There is ϑ ∈ (2p, p∗) such that

lim
s→∞

f (t)
|t|ϑ−1 = 0;

(P3) There holds limt→∞
F(t)
|t|2p = +∞;

(P4) The map t 7→ f (t)
|t|2p−1 is strictly increasing, for all t ∈ R\{0},

From the assumptions (P3) and (P4), one obtains

f (t)t > 0, t ̸= 0; F(t) ⩾ 0, t ∈ R. (1.11)

Furthermore, from the assumptions (P3) and (P4), one gets

f ′(t)t − (2p − 1) f (t) < (>)0, ∀t < (>)0. (1.12)

For simplicity, we will denote distinct positive constants by ci, Ci, and C, and
∫

always stand
for
∫

RN . Define

BC(RN) :=

{
v ∈ C(RN) : |v|∞ := sup

x∈RN
|v(x)| < ∞

}
.

The closure of Cc(RN) in BC(RN) with respect to the uniform norm is the space C0(RN),
where Cc(RN) is space of continuous functions with compact support in RN . The space of
finite measures on RN is referred to as M(RN). A sequence {νn} converges weakly∗ to ν in
M(RN), written

νn ⇀∗ ν,

provided
⟨νn, φ⟩ → ⟨ν, φ⟩,

∀φ ∈ C0(RN). For 1 ⩽ s ⩽ p∗, we introduce the following norms:

∥v∥Ls(RN) = |v|s = |v|Ls(RN) :=
(∫

|v(x)|s dx
) 1

s

.
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In order to state our principal results, let

W =

{
v ∈ W1,p :

∫
a(x)|v|p dx + |∇v|pp < +∞

}
,

endowed with the following norm

∥v∥ =

[∫
a(x)|v|p dx + |∇v|pp

] 1
p

.

It is clear that W is continuously embedded into W1,p(RN) and consequently the embedding
into Ls(RN) is also continuous for s ∈ [p, p∗]. This implies that there is a γs > 0 such that

|v|s ⩽ γs∥v∥, ∀v ∈ W. (1.13)

Lemma 1.2 ([12]). Assuming that (A) holds. For p ⩽ s < p∗, W is compactly embedded into
Ls(RN).

Let η1 denote the first eigenvalue of −∆pv. Thus, η1 represents the smallest value of η such
that the problem {

−∆pv = η|v|p−2v, in Ω,

v = 0, on ∂Ω,
(1.14)

possesses a nontrivial solution. Let the functional K : W1,p
0 → R be defined as follows:

K(v) =
1
p

∫
Ω
|∇v|p dx − η

p

∫
Ω
|v|p dx.

For problem (QKP), the energy functional Kλ
b : W → R is given by:

Kλ
b =

1
p
∥v∥p +

b
2p

|∇v|2p
p − 1

p∗
|v|p

∗

p∗ dx − λ
∫

F(v) dx, (1.15)

for every v ∈ W. Furthermore, Kλ
b ∈ C1(W, R), and its Fréchet derivative is defined as follows:〈

(Kλ
b )

′(v), φ
〉
=

(
1 + b

∫
|∇v|p dx

)(∫
|∇v|p−2∇v · ∇φ dx

)
+
∫

a(x)|v|p−2vφ dx −
∫

|v|p∗−2vφ dx − λ
∫

f (v)φ dx,
(1.16)

for every v, φ ∈ W. It is widely acknowledged that there exist several intriguing studies
concerning the existence of sign-changing solution to problem (1.14). Nevertheless, the ap-
proaches employed to seek such solutions are greatly reliant on the subsequent decomposi-
tions:

⟨K′(v), v−⟩ = ⟨K′(v−), v−⟩, ⟨K′(v), v+⟩ = ⟨K′ (v+) , v+⟩, K(v) = K(v+) +K(v−). (1.17)

However, when b > 0, the functional Kλ
b lacks the same decompositions as in equation (1.17).

Specifically, if v± ̸= 0, it can be seen that

Kλ
b (v) = Kλ

b (v
+) +Kλ

b (v
−) +

b
p
|∇v+|pp|∇v−|pp > Kλ

b (v
+) +Kλ

b (v
−),

⟨(Kλ
b )

′(v), v+⟩ = ⟨(Kλ
b )

′(v+), v+⟩+ b|∇v+|pp|∇v−|pp > ⟨(Kλ
b )

′(v+), v+⟩,
⟨(Kλ

b )
′(v), v−⟩ = ⟨(Kλ

b )
′(v−), v−⟩+ b|∇v+|pp|∇v−|pp > ⟨(Kλ

b )
′(v−), v−⟩.
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So, the conventional techniques cannot be employed to obtain a sign-changing solutions for
problem (QKP). Rather, we use the strategy proposed in [5], which requires defining a
constrained set as follows:

Mλ
b =

{
v ∈ W : v± ̸= 0 and ⟨(Kλ

b )
′(v), v±⟩ = 0

}
, (1.18)

and investigate the following minimization problem

cλ
b = inf

v∈Mλ
b

Kλ
b (v).

The inclusion of the nonlocal term in problem (QKP) creates numerous obstacles. Specifically,
when compared to the general problem (1.14), in equation (1.17), the decompositions for Kλ

b
are much more intricate, which results in some technical challenges while demonstrating
the nonemptiness of Mλ

b . Furthermore, observe that implicit theorem and the parametric
method cannot be employed to address problem (QKP) because of the complex nature of
the involved nonlocal term. Consequently, our demonstration follows an alternative approach
inspired by [1], specifically by utilizing a modified version of Miranda’s theorem (refer to
[17]). Additionally, by utilizing degree theory and the quantitative deformation lemma, the
minimizer of the constrained problem is shown to be a sign-changing solution.

Now, we proceed to outline our primary results.

Theorem 1.3. Assume that conditions (P1)–(P4) and (A) are satisfied. Then, there is a positive
constant λ⋆ such that for every λ with λ⋆ ⩽ λ < ∞, problem (QKP) possesses a ground state
sign-changing solution vb.

One purpose of this study is to demonstrate the energy doubling property, which ensures
that the energy of any sign-changing solution to problem (QKP) is strictly greater than two
times the ground state energy. Although the result is straightforward for equation (1.14), we
seek to determine whether it also holds for problem (QKP). The theorem presented below
affirms this result for our problem.

Theorem 1.4. Assume that conditions (P1)–(P4) and (A) are satisfied. Then there is λ⋆⋆ > 0 such
that for all λ⋆⋆ ⩽ λ < ∞, the infimum c∗b,λ > 0 is attained and the following inequality holds

Kλ
b (v) > 2c∗b,λ,

where c∗b,λ = infv∈Nλ
Kλ

b (v), N λ
b = {v ∈ W : v ̸= 0 and ⟨(Kλ

b )
′(v), v⟩ = 0}, and v is the solution

obtained in Theorem 1.3.

Finally, we demonstrate the convergence behavior of the solution as b ↘ 0.

Theorem 1.5. Assume that conditions (P1)–(P4) and (A) are satisfied. Then, for any sequence {bn}
satisfies bn ↘ 0, there is a subsequence of {bn}, such that {vbn} converges strongly to v0 in W, where
v0 is a least energy nodal solution for the problem below

−∆pv + a(x)|v|p−2v = |v|p∗−2v + λ f (v), x ∈ RN . (QKP0)

Remark 1.6. We would like to highlight that Theorem 1.3 represents the first result demon-
strating the existence of sign-changing solutions for p-Laplacian Kirchhoff-type problems in-
volving critical exponent in RN .

Remark 1.7. The primary challenges stem from dealing with a degenerate quasi-linear elliptic
operator and the increased intricacy of the calculations involved. To surmount these chal-
lenges, we employ quantitative deformation lemma and degree theory to derive our findings.
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2 Some preliminary results

Let v ∈ W be fixed with v± ̸= 0, let gv : R+ × R+ → R and Gv : R+ × R+ → R2 defined as
follows

gv(α, β) = Kλ
b (αv+ + βv−), (2.1)

Gv(α, β) =
(
⟨(Kλ

b )
′(αv+ + βv−), αv+⟩, ⟨(Kλ

b )
′(αv+ + βv−), βv−⟩

)
. (2.2)

Lemma 2.1. Let f and a satisfy (A) and (P1)–(P4). Suppose that v ∈ W with v± ̸= 0, the following
properties hold:

(A1) αv+ + βv− ∈ Mλ
b if and only if gv has a critical point (α, β) ∈ R+

∗ × R+
∗ ;

(A2) The pair (αv, βv) is the unique critical point of gv on R+
∗ × R+

∗ , as well as it is the unique
maximum of gv on R+ × R+;

(A3) If ⟨(Kλ
b )

′(v), v±⟩ ⩽ 0 then 0 < αv, βv ⩽ 1.

Proof. Proof of (A1): Note that if v± ̸= 0, one has∣∣∇(αv+ + βv−)
∣∣p =

∣∣∇(αv+ + βv−)
∣∣2 ∣∣∇(αv+ + βv−)

∣∣p−2

=
∣∣∇(αv+ + βv−)

∣∣p−2 ∇(αv+ + βv−)∇(αv+)

+
∣∣∇(αv+ + βv−)

∣∣p−2 ∇(αv+ + βv−)∇(βv−)

= |∇(αv+)|p−2∇(αv+)∇(αu+) +
∣∣∇(βv−)

∣∣p−2 ∇(βv−)∇(βu−)

= |α|p
∣∣∇v+

∣∣p + |β|p
∣∣∇v−

∣∣p .

Therefore, a direct computation yields

∇gv(α, β) =

(
∂gv

∂α
(α, β),

∂gv

∂β
(α, β)

)
=
(
⟨(Kλ

b )
′(αv+ + βv−), v+⟩, ⟨(Kλ

b )
′(αv+ + βv−), v−⟩

)
=

(
1
α
⟨(Kλ

b )
′(αv+ + βv−), αv+⟩, 1

β
⟨(Kλ

b )
′(αv+ + βv−), βv−⟩

)
,

(2.3)

where
⟨(Kλ

b )
′(αv+ + βv−), αv+⟩ = bαpβp|∇v+|pp|∇v−|pp − λ

∫
f (αv+)αv+ dx

+ αp∥v+∥p + bα2p|∇v+|2p
p − αp∗ |v+|p

∗

p∗ ,

⟨(Kλ
b )

′(αv+ + βv−), βv−⟩ = bβpαp|∇v−|pp|∇v+|pp − λ
∫

f (βv−)βv− dx

+ βp∥v−∥p + bβ2p|∇v−|2p
p − βp∗ |v−|p

∗

p∗ .

From (2.3) and the definition of Mλ
b , it’s straightforward to show that (A1) is satisfied.

Proof of (A2): From (P1) and (P2), for any ε > 0, there is Cε > 0 such that

| f (t)| ⩽ ε|t|p−1 + Cε|t|ϑ−1, ∀t ∈ R. (2.4)
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From (1.13) and (2.4), we obtain

⟨(Kλ
b )

′(αv+ + βv−), αv+⟩ ⩾ αp∥v+∥p + bα2p|∇v+|2p
p + bαpβp|∇v+|pp|∇v−|pp − αp∗|v+|p

∗

p∗

− λεαp|v+|pp − λCεα
ϑ|v+|ϑϑ

⩾ αp (1 − λεγp
)
∥v+∥p + bα2p|∇v+|2p

p − λCεα
ϑγϑ∥v+∥ϑ

− αp∗γp∗∥v+∥p∗ ,

and

⟨(Kλ
b )

′(αv+ + βv−), βv−⟩ ⩾ βp∥v−∥p + bβ2p|∇v−|2p
p + bβpαp|∇v−|pp|∇v+|pp − βp∗|v−|p

∗

p∗

− λεβp|v−|pp − λCεβϑ|v−|ϑϑ
⩾ βp (1 − λεγp

)
∥v−∥p + bβ2p|∇v−|2p

p − λCεβϑγϑ∥v−∥ϑ

− βp∗γp∗∥v−∥p∗ .

Select ε in such a manner that
(
1 − λεγp

)
> 0. Given that ϑ ∈ (2p, p∗), one has

⟨(Kλ
b )

′(αv+ + βv−), αv+⟩ > 0, for α small enough and all β ⩾ 0, (2.5)

and
⟨(Kλ

b )
′(αv+ + βv−), βv−⟩ > 0, for β small enough and all α ⩾ 0. (2.6)

Hence, there is a positive constant τ1 such that

⟨(Kλ
b )

′(τ1v+ + βv−), τ1v+⟩ > 0, ⟨(Kλ
b )

′(αv+ + τ1v−), τ1v−⟩ > 0, (2.7)

for all α, β ⩾ 0. Conversely, choosing α = τ′
2 > τ1. If β ∈ [τ1, τ′

2] and τ′
2 is large enough, using

(1.11), one has that

⟨(Kλ
b )

′(τ′
2v+ + βv−), τ′

2v+⟩ ⩽ (τ′
2)

p∥v+∥p + b(τ′
2)

2p|∇v+|2p
p − (τ′

2)
p∗ |v+|p∗p∗

+ b(τ′
2)

2p|∇v+|pp|∇v−|pp
⩽ 0,

and
⟨(Kλ

b )
′(αv+ + τ′

2v−), τ′
2v−⟩ ⩽ (τ′

2)
p∥v−∥p + b(τ′

2)
2p|∇v−|2p

p − (τ′
2)

p∗ |v−|p∗p∗

+ b(τ′
2)

2p|∇v−|pp|∇v+|pp
⩽ 0.

Let τ2 > τ′
2 be large enough, we get

⟨(Kλ
b )

′(αv+ + τ2v−), τ2v−⟩ < 0, ⟨(Kλ
b )

′(αv+ + τ2v−), τ2v−⟩ < 0, (2.8)

for all α, β ∈ [τ1, τ2]. Combining equations (2.7) and (2.8) with Miranda’s Theorem [17], we
find that there is (αv, βv) ∈ R+

∗ × R+
∗ such that Gv(α, β) = (0, 0), that is, αv+ + βv− ∈ Mλ

b .
Next, we demonstrate the pair (αv, βv) is unique. To finalize the proof, we will investigate

two separate cases.

Case 1) v ∈ Mλ
b .

For any v ∈ Mλ
b , one has that

∥v+∥p + b|∇v+|pp|∇v−|pp + b|∇v+|2p
p = |v+|p

∗

p∗ + λ
∫

f (v+)v+ dx, (2.9)
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and
∥v−∥p + b|∇v−|pp|∇v+|pp + b|∇v−|2p

p = |v−|p
∗

p∗ + λ
∫

f (v−)v− dx. (2.10)

Consider a pair of numbers (α0, β0) satisfying α0v+ + β0v− ∈ Mλ
b and 0 < α0 ⩽ β0. So, we

have that

α
p
0∥v+∥p + bα

p
0 β

p
0 |∇v+|pp|∇v−|pp + bα

2p
0 |∇v+|2p

p = α
p∗
0 |v+|p

∗

p∗ + λ
∫

f (α0v+)α0v+ dx,

and

β
p
0∥v−∥p + bβ

p
0α

p
0 |∇v−|pp|∇v+|pp + bβ

2p
0 |∇v−|2p

p = β
p∗
0 |v−|p

∗

p∗ + λ
∫

f (β0v−)β0v− dx.

Hence, thanks to 0 < α0 ⩽ β0, one has that

1
α

p
0
∥v+∥p + b|∇v+|pp|∇v−|pp + b|∇v+|2p

p ⩽ α
p∗−2p
0 |v+|p

∗

p∗ + λ
∫ f (α0v+)

(α0v+)2p−1 (v
+)2p dx, (2.11)

and

1
β

p
0
∥v−∥p + b|∇v−|pp|∇v+|pp + b|∇v−|2p

p ⩾ β
p∗−2p
0 |v−|p

∗

p + λ
∫ f (β0v−)

(β0v−)2p−1 (v
−)2p dx. (2.12)

Combining (2.10) with (2.12), one has that(
1
β

p
0
− 1

)
∥v−∥p ⩾

(
β

p∗−2p
0 − 1

)
|v−|p

∗

p∗ + λ
∫ [ f (β0v−)

(β0v−)2p−1 − f (v−)
(v−)2p−1

]
(v−)2p dx.

If β0 > 1, the left-hand side of the aforementioned inequality becomes less than zero, thereby
contradicting condition (P4) that guarantees the positivity of the right-hand side. Conse-
quently, if follows that 0 < α0 ⩽ β0 ⩽ 1. Similarly, combining (2.9) with (2.11), thanks to
0 < α0 ⩽ β0, we obtain(

1
α

p
0
− 1

)
∥v+∥p ⩽

(
α

p∗−2p
0 − 1

)
|v+|p

∗

p∗ + λ
∫ [ f (α0v+)

(α0v+)2p−1 − f (v+)
(v+)2p−1

]
(v+)2p dx.

In view of (P4), we have α0 ⩾ 1. Due to this, α0 = β0 = 1. So, we conclude that if v ∈ Mλ
b ,

the unique pair such that αvv+ + βvv− ∈ Mλ
b is (αv, βv) = (1, 1).

Case 2) v /∈ Mλ
b .

Assume the existence of two pairs (α1, β1), (α2, β2), satisfy the following condition

u1 = α1v+ + β1v− ∈ Mλ
b , u2 = α2v+ + β2v− ∈ Mλ

b .

Therefore, one has

u2 =

(
α2

α1

)
α1v+ +

(
β2

β1

)
β1v− =

(
α2

α1

)
u+

1 +

(
β2

β1

)
u−

1 ∈ Mλ
b .

By u1 ∈ Mλ
b , we have that

β2

β1
=

α2

α1
= 1.

Hence, α1 = α2, β1 = β2.
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Lastly, we show that the unique maximum of gv on R+ × R+ is (αv, βv).
Indeed, using (1.11), it can be seen that

gv(α, β) = Kλ
b (αv+ + βv−)

=
1
p
∥αv+ + βv−∥p +

b
2p

|∇αv+ + βv−|2p
p − 1

p∗
|αv+ + βv−|p

∗

p∗

− λ
∫

F(αv+ + βv−) dx

⩽
αp

p
∥v+∥p +

βp

p
∥v−∥p − βp∗

p∗
|v−|p

∗

p∗ −
αp∗

p∗
|v+|p

∗

p∗ +
bα2p

2p
|∇v+|2p

p

+
bβ2p

2p
|∇v−|2p

p +
bαpβp

p
|∇v+|pp|∇v−|pp.

(2.13)

Thus, for any v ∈ W with v± ̸= 0, in light of equation (2.13) and the condition p∗ > 2p, one
has

lim
|(α,β)|→∞

gv(α, β) = −∞.

Thus, (αv, βv) represents the unique critical point of gv within the domain R+ × R+. Hence,
our task is to establish that it is impossible to reach a maximum point on the boundary (0, β0)

and (α0, 0). For the sake of contradiction, let us assume that (0, β0) is a maximum of gv with
β0 ⩾ 0. Consequently, it follows that

gv(α, β0) =
αp

p
∥v+∥p +

β
p
0

p
∥v−∥p −

β
p∗
0

p∗
|v−|p

∗

p∗ −
αp∗

p∗
|v+|p

∗

p∗ +
bβ

2p
0

2p
|∇v−|2p

p

+
bα2p

2p
|∇v+|2p

p +
bαpβ

p
0

p
|∇v+|pp|∇v−|pp − λ

∫
F(αv+)− λ

∫
F(β0v−).

Thus, it can be seen that

∂gv

∂α
(α, β0) = αp−1∥v+∥p − αp∗−1|v+|p

∗

p∗ + bα2p−1|∇v+|2p
p + bαp−1β

p
0 |∇v+|pp|∇v−|pp

− λ
∫

f (αv+)v+ dx

>0,

if α is sufficiently small. This implies that gv is increasing with respect to α if α is sufficiently
small. This leads to a contradiction. Likewise, gv can not attain its global maximum on (α0, 0)
with α0 ⩾ 0.

Proof of (A3): Suppose αv ⩾ βv > 0. By αvv+ + βvv− ∈ Mλ
b , we have that

α
p
v∥v+∥p + bα

2p
v |∇v+|2p

p + bα
2p
v |∇v+|pp|∇v−|pp ⩾ λ

∫
f (αvv+)αvv+ dx + α

p∗
v |v+|p

∗

p∗ . (2.14)

Conversely, from the inequality ⟨(Kλ
b )

′(v), v+⟩ ⩽ 0, we deduce that

λ
∫

f (v+)v+ dx + |v+|p
∗

p∗ ⩾ ∥v+∥p + b|∇v+|pp|∇v−|pp + b|∇v+|2p
p . (2.15)

Combining (2.14) and (2.15), we obtain(
1
α

p
v
− 1
)
∥v+∥p ⩾

(
α

p∗−2p
v − 1

)
|v+|p

∗

p∗ + λ
∫ [ f (αvv+)

(αvv+)2p−1 − f (v+)
(v+)2p−1

]
(v+)2p dx.

Hence, due to condition (P4), we can infer that αv ⩽ 1. Therefore, we establish that 0 <

αv, βv ⩽ 1. Consequently, Lemma 2.1 has been proved.
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The following result plays a crucial role to prove that cλ
b is achieved.

Lemma 2.2. Let cλ
b = infv∈Mλ

b
Kλ

b (v), then we have that

lim
λ→∞

cλ
b = 0.

Proof. For every v ∈ Mλ, it holds that

∥v+∥p + b|∇v+|2p
p + b|∇v+|pp|∇v−|pp = |v+|p

∗

p∗ + λ
∫

f (v+)v+ dx,

and
∥v−∥p + b|∇v+|2p

p + b|∇v−|pp|∇v+|pp = |v−|p
∗

p∗ + λ
∫

f (v−)v− dx.

Then by (1.13) and (2.4), we get(
1 − λεγp

)
∥v+∥p ⩽ λCεγϑ∥v+∥ϑ + γp∗∥v+∥p∗ ,

and (
1 − λεγp

)
∥v−∥p ⩽ λCεγϑ∥v−∥ϑ + γp∗∥v−∥p∗ .

Taking ε < 1
λγp

such that 1 − λεγp > 0. Given that ϑ ∈ (2p, p∗), there is ρ > 0 such that

∥v+∥ ⩾ ρ, ∥v−∥ ⩾ ρ, ∀v ∈ Mλ
b . (2.16)

Conversely, for any v ∈ Mλ
b , it becomes evident that

⟨(Kλ
b )

′(v), v⟩ = ⟨(Kλ
b )

′(v), v+⟩+ ⟨(Kλ
b )

′(v), v−⟩
= 0.

From (1.12), we can deduce that
f (t)t − 2pF(t) ⩾ 0, (2.17)

is increasing when t > 0 and decreasing when t < 0. Thus, we get

Kλ
b (v) = Kλ

b (v)−
1

2p
⟨(Kλ

b )
′(v), v⟩

=
(p − 1)

2p
∥v∥p +

p∗ − 2p
2pp∗

|v|p
∗

p∗ +
λ

2p

∫
[ f (v)v − 2pF(v)] dx

⩾
(p − 1)

2p
∥v∥p

>
(p − 1)

2p
ρp.

Therefore, Kλ
b is bounded below on Mλ

b . Hence, cλ
b = infv∈Mλ

b
Kλ

b (v) is well defined.
Fix v ∈ W with v± ̸= 0. Lemma 2.1 guarantees that for every λ > 0, there is αλ, βλ > 0

such that αλv+ + βλv− ∈ Mλ
b . From Lemma 2.1, one has

0 ⩽ cλ
b ⩽ Kλ

b (αλv+ + βλv−)

⩽
1
p
∥αλv+ + βλv−∥p +

b
2p

|∇(αλv+ + βλv−)|2p
p

= α
p
λ

1
p
∥v+∥p + β

p
λ

1
p
∥v−∥p + α

2p
λ

b
2p

|∇v+|2p
p + β

2p
λ

b
2p

|∇v−|2p
p

+ α
p
λβ

p
λ

b
p
|∇v+|pp|∇v−|pp.
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We need only verify that αλ → 0 and βλ → 0, as λ → ∞.
Define

Gv =
{
(αλ, βλ) ∈ R+ × R+ : Gv (αλ, βλ) = (0, 0), λ > 0

}
,

In light of (2.4), we have that

α
p∗

λ |v+|p
∗

p∗ + β
p∗

λ |v−|p
∗

p∗ ⩽ λ
∫

f (αλv+)αλv+ dx + λ
∫

f (βλv−)βλv− dx

+ α
p∗

λ |v+|p
∗

p∗ + β
p∗

λ |v−|p
∗

p∗

= ∥αλv+ + βλv−∥p + b|∇(αλv+ + βλv−)|2p
p .

Therefore, Gv is bounded, since p∗ > 2p. Assume that {λn} is a sequence in (0, ∞) with
λn → ∞, as n tends to infinity. Then there is α0 and β0 such that (αλn , βλn) → (α0, β0), as
n → ∞. We assert that α0 = β0 = 0. Suppose, the contrary α0 > 0 or β0 > 0. Given that
αλn v+ + βλn v− ∈ Mλn

b , then for any n ∈ N, we have that

∥αλn v+ + βλn v−∥p + b|∇(αλn v+ + βλn v−)|2p
p

= λn

∫
f (αλn v+ + βλn v−)(αλn v+ + βλn v−) dx + |αλn v+ + βλn v−|p

∗

p∗ .
(2.18)

Then, invoking αλn v+ → α0v+, βλn v− → β0v−in W along with the Lebesgue dominated con-
vergence theorem, we obtain that∫

f (αλn v+ + βλn v−)(αλn v+ + βλn v−) →
∫

f (α0v+ + β0v−)(α0v+ + β0v−) > 0,

as n → ∞. This leads to a contradiction with equation (2.18), because λn → ∞, as n → ∞ and
and the sequence {αλn v+ + βλn v−} is bounded in W. Hence, we conclude that α0 = β0 = 0,
from which we infer that limλ→∞ cλ

b = 0.

Let ϕ be a standard cut off function, namely ϕ belongs to the space C∞
c
(
RN), satisfying

0 ⩽ ϕ ⩽ 1, ϕ being equal to 1 on B1/2(0) and supp ϕ ⊂ B1(0). For any ϵ > 0, let ϕϵ(x) = ϕ
( x

ϵ

)
.

Lemma 2.3. Let 1 < p < N, for every xi ∈ RN and for u ∈ Lp(RN), we have

|v(x)∇ϕϵ (x − xi)|
p
Lp(RN)

⩽ |∇ϕ|p
L

p∗ p
p∗−p (RN)

|v|p
Lp∗ (Bϵ(xi))

.

Proof. Using the Hölder inequality, one has

∣∣v(x)∇ϕϵ (x − xi)
∣∣p

Lp(RN)
⩽
∫

ϵ−p
∣∣∣∣∇ϕ

(
x − xi

ϵ

)∣∣∣∣p |v(x)|p dx

⩽ ϵ−p

 ∫
Bϵ(xi)

∣∣∣∣∇ϕ

(
x − xi

ϵ

)∣∣∣∣
p∗ p

p∗−p

dx


p∗−p

p∗

|v|p
Lp∗ (Bϵ(xi))

⩽ ϵ−pϵ
N
(

p∗−p
p∗
)
|∇ϕ|p

L
p∗ p

p∗−p (RN)

|v|p
Lp∗ (Bϵ(xi))

.

The result follows by noting that p =
( p∗−p

p∗
)

N.

With the above results, we will now undertake a three-step process to obtain that cλ
b =

infv∈Mλ
b
Kλ

b (v) is achieved.



Sign-changing solutions for Kirchhoff-type p-Laplacian problems 13

Lemma 2.4. There is λ⋆ > 0 such that for all λ ∈ [λ⋆, ∞), the infimum cλ
b is attained.

Proof. As defined by cλ
b , there is a sequence {vn} ⊂ Mλ

b satisfies

lim
n→∞

Kλ
b (vn) = cλ

b .

On the other hand, by using (2.17) and
〈
(Kλ

b )
′(vn), vn

〉
= 0, we get

cλ
b + o(1) = Kλ

b (vn)−
1

2p
⟨(Kλ

b )
′(vn), un⟩

=
(p − 1)

2p
∥v∥p +

p∗ − 2p
2pp∗

|v|p
∗

p∗ +
λ

2p

∫
[ f (v)v − 2pF(v)]

⩾
(p − 1)

2p
∥v∥p.

(2.19)

Therefore, {vn} is bounded in W, i.e., there is a constant M > 0 such that

∥vn∥ ⩽ M, ∀n ∈ N. (2.20)

From (2.16), (2.19), and Ekeland’s variational principle [20], {vn} represents a (PS)cλ
b

sequence

for Kλ
b |Mλ

b
, i.e.

Kλ
b (vn) → cλ

b , (Kλ
b )

′ (vn) → 0. (2.21)

Since vn is bounded in W, there existence a v ∈ W and a subsequence {vn} where

vn ⇀ v in W,

vn → v in Ls for p ⩽ s < p∗,

vn → v a.e. in RN ,

vn ⇀ v in Lp∗ ,

f (vn) ⇀ f (v) in (Lp∗)′,

|vn|p
∗−2vn ⇀ |v|p∗−2v in (Lp∗)′.

(2.22)

We migh suppose that
|∇vn|p ⇀∗ µ in M(RN),

|vn|p
∗
⇀∗ ν in M(RN).

(2.23)

for some measures µ and ν. Then, according to Concentration-Compactness principle [16],
there exists an at most countable set J and {xi}i∈J ⊂ RN , {µi}i∈J ⊂ (0,+∞), {νi}i∈J ⊂ (0,+∞)

such that
ν = ∑

i∈J
νiδxi + |v|p∗ ,

µ ⩾ ∑
i∈J

µiδxi + |∇v|p,
(2.24)

with Sν
p

p∗

i ⩽ µi, where

S := inf
v∈W\{0},
|v|p∗=1

∥v∥p

|v|pp∗
.

Our claim is that ∇v±n → ∇v± almost everywhere in RN . Following the approach in [3,9],
we will carry out the proof in two steps.
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Step a) The set J is either finite or empty. Let’s take a fixed i ∈ J and let ϵ > 0 be chosen
small enough. Utilizing Lemma 2.3, we can conclude that

|vnϕϵ(x − xi)|
p
p ⩽ |vn|pp ,

and

|∇ (vnϕϵ(x − xi))|pp ⩽ 2p−1
∣∣∣∣|∇ϕϵ(x − xi)|p |vn|p

∣∣∣∣
1
+ 2p−1

∣∣∣∣|ϕϵ(x − xi)|p|∇vn|p
∣∣∣∣
1

⩽ 2p−1|vn|pp∗ |∇ϕ|p
L

p∗ p
p∗−p (RN)

+ 2p−1∥vn∥p.

Consequently, a constant C1 exists such that, for any ϵ > 0 and i ∈ J, we have

∥vnϕϵ (x − xi)∥ ⩽ C1.

It is clear that {vnϕϵ (x − xi)}+∞
n=1 ⊂ W. Therefore, {vnϕϵ (x − xi)} is bounded in W. For any

fixed xi ∈ J, from (2.21), we obtain

⟨(Kλ
b )

′ (vn) , vnϕϵ(x − xi)⟩ = o(1).

Thus, one gets

(1 + b∥vn∥p)
∫

|∇vn|p ϕϵ(x − xi) dx + (1 + b∥vn∥p)
∫

|∇vn|p−2 ∇vn · vn∇ϕϵ (x − xi) dx

=
∫

|vn|p
∗

ϕϵ (x − xi) dx + λ
∫

f (vn)vnϕϵ(x − xi) dx + o(1).

(2.25)
By means of the Young inequality, for any δ > 0, there is Cδ such that∣∣∣∣∫ |∇vn|p−2∇vn · vn∇ϕϵ(x − xi) dx

∣∣∣∣ ⩽Cδ|vn∇ϕϵ(x − xi)|
p
p + δ∥vn∥p

p.

Applying the Strauss Lemma [19], we obtain

lim
n→∞

|vn∇ϕϵ(x − xi)|pp = |v∇ϕϵ(x − xi)|pp .

Therefore, utilizing Lemma 2.3, we derive

lim sup
n→∞

∣∣∣∣ ∫ |∇vn|p−2∇vn · vn∇ϕϵ(x − xi) dx
∣∣∣∣ ⩽ Cδ|v∇ϕϵ(x − xi)|

p
p + δ lim sup

n→∞
∥vn∥p

⩽ δC2 + CδC3|v|pLp∗ (Bϵ(xi))
,

(2.26)

where C3 = |∇ϕ|pp∗ p
p∗−p

is constant and independent of ϵ and δ. Using (2.4) along with the

Strauss Lemma [19] and (2.22), we deduce

lim
n→∞

∫
f (vn)vnϕϵ(x − xi) dx =

∫
f (v)vϕϵ(x − xi) dx. (2.27)

Combining (2.25)–(2.27) and using (2.20), we obtain

lim
n→∞

∫
|∇vn|p ϕϵ(x − xi) dx ⩽ λ

∫
f (v)vϕϵ(x − xi) dx + lim

n→∞

∫
|vn|p

∗
ϕϵ(x − xi) dx

+ δ(1 + bMp) lim sup
n→∞

∥vn∥p + CδC3(1 + bMp)|v|p
Lp∗ (Bϵ(xi))

.
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Therefore, since {vn} is bounded in W and by (2.23), we can conclude that∫
ϕϵ(x − xi) dµ ⩽ λ

∫
f (v)vϕϵ(x − xi) dx +

∫
ϕϵ(x − xi) dν

+ δC4 + CδC5|v|pLp∗ (Bϵ(xi))
,

where C4 and C5 are independent of ϵ and δ. Thus, by the conditions 0 ⩽ ϕ ⩽ 1 and ϕ ≡ 1 on
B1/2(0), one gets

µ (Bϵ/2(xi)) ⩽
∫

ϕϵ(x − xi) dν

⩽ ν (Bϵ(xi)) + λ
∫

Bϵ(xi)

f (v)v dx + δC4 + CδC5|v|pLp∗ (Bϵ(xi))
.

(2.28)

From (2.24), we have that

ν
p

p∗

i S ⩽ µi

⩽ µ (Bϵ/2(xi)) ,

and
lim

ϵ→0+
ν (Bϵ(xi)) = νi.

Taking the limit as ϵ → 0+ in (2.28) yields

aν
p

p∗

i S ⩽ νi + δC4.

As δ > 0 is arbitrary, we conclude that

aν
p

p∗

i S ⩽ νi,

i.e.,

νi ⩾ (aS)
p∗

p∗−p > 0.

Since ν is a bounded positive measure, it follows that J must be either a empty set or finite.
The proof of step a is now finished.

Step b) The convergence ∇vn → ∇v holds a.e. in RN . First, let’s assume that J is a finite
nonempty set, namely J = {1, 2, . . . , m}. For any ϵ > 0, we define an open set Ωϵ ⊂ RN as
follows

Ωϵ = B1/2ϵ(0) \
m⋃

i=1

Bϵ(xi).

There is ϵ0 > 0 such that
Bϵ0(xi1) ∩ Bϵ0(xi2) = ∅,

for any i1, i2 ∈ J with i1 ̸= i2, which are possible since J is a finite set. Now, let 0 < ζ < ϵ0.
Our claim is ∫

Ωζ

(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇(vn − v) dx → 0. (2.29)

Indeed, Define, for x ∈ RN with 0 < ϵ < ζ,

ψϵ(x) = ϕ1/ϵ(x)−
m

∑
i=1

ϕϵ (x − xi) ,



16 Y. Chahma and Y. Han

where ϕ was given in Lemma (2.3). Therefore, we have

ψϵ(x) ∈ C∞
c

(
RN
)

,

ψϵ(x) = 0 on
m⋃

i=1

Bϵ/2(xi),

ψϵ(x) = 1 on B1/2ϵ(0) \
m⋃

i=1

Bϵ(xi).

From Lemma 2.3 and the fact that {vn} is bounded in W for all n ∈ N, It is straightforward
to verify that {ψϵvn} is bounded in W for all n. Using (2.21), we deduce that as n → ∞, the
following holds

(1 + b∥vn∥p)

( ∫
|∇vn|pψϵ dx +

∫
|∇vn|p−2∇vn · vn∇ψϵ dx

)
= λ

∫
f (vn)vnψϵ dx +

∫
|vn|p

∗
ψϵ dx + o(1).

As in step a, we conclude that

lim
n→∞

(1 + b∥vn∥p)
∫

|∇vn|p ψϵ dx = lim
n→∞

(
−(1 + b∥vn∥p)

∫
|∇vn|p−2∇vn · vn∇ψϵ dx

)
+ lim

n→∞

∫
|vn|p

∗
ψϵ dx + λ

∫
f (v)vψϵ dx.

Given that ψϵ ≡ 0 on
⋃m

i=1 Bϵ/2(xi) and ν = |v|p∗ + ∑m
i=1 νiδxi , we obtain

lim
n→∞

∫
|vn|p

∗
ψϵ dx =

∫
ψϵ dν

=
∫

|v|p∗ψϵ dx.

Thus, one has

lim
n→∞

(1 + b∥vn∥p)
∫

|∇vn|p ψϵ dx = lim
n→∞

(
−(1 + b∥vn∥p)

∫
|∇vn|p−2∇vn · un∇ψϵ dx

)
+ λ

∫
f (v)vψϵ dx +

∫
|v|p∗ψϵ dx.

(2.30)
Similarly, in light of (2.21), we conclude that as n → ∞, the following holds

(1 + b∥vn∥p)
∫

|∇vn|p−2 ∇vn · ψϵ∇v dx = − (1 + b∥vn∥p)
∫

|∇vn|p−2∇vn · v∇ψϵ dx

+
∫

|vn|p
∗−2vnvψϵ dx + λ

∫
f (vn)vψϵ dx + o(1).

(2.31)
From Lemma 2.3 and the Young inequality, one has

lim sup
n→∞

∣∣∣∣ ∫ |∇vn|p−2∇vn · v∇ψϵ dx
∣∣∣∣ ⩽ δ lim sup

n→∞
∥vn∥p + Cδ|v∇ψϵ|pp

⩽ δC2 + CδC3|v|pLp∗ (Bϵ(xi))
.

(2.32)
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Utilizing the fact that h : RN → R defined by h(x) = |x|p is strictly convex, one has

0 ⩽
(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇ (vn − v) , (2.33)

On the other hand, since ∇vn ⇀ ∇v in Lp(RN), one has∫
ψϵ|∇v|p−2∇v · (∇vn −∇v) dx → 0. (2.34)

Then, taking into account that ψϵ ≡ 1 on Ωϵ, and combining (2.16), (2.22), (2.30)-(2.31), (2.33)-
(2.34), along with the boundedness of {vn}, it follows that as n tends to infinity, we deduce
that ∫

Ωζ

(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇(vn − v) dx

⩽ (1 + b∥vn∥p)
∫

ψϵ

(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇(vn − v) dx

= (1 + b∥vn∥p)
∫ (

ψϵ |∇vn|p−2 ∇vn · ∇vn − ψϵ |∇vn|p−2 ∇vn · ∇v

− ψϵ|∇v|p−2∇v · ∇vn + ψϵ|∇v|p−2∇v · ∇v
)

dx

= lim
n→∞

(1 + b∥vn∥p)
∫

|∇vn|p−2 ∇vn · v∇ψϵ dx

− lim
n→∞

(1 + b∥vn∥p)
∫

|∇vn|p−2 ∇vn · vn∇ψϵ dx + o(1).

Given that 0 ⩽ ψε ⩽ 1, and ψϵ = 1 on Ωϵ for 0 < ϵ < ϵ0, by (2.26) and (2.32), as n tends to
infinity, we conclude that∫

Ωζ

(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇(vn − v) dx ⩽ 2(1 + bMp)CδC3|v|pLp∗ (Bϵ(xi))

+ 2(1 + bMp)δC2 + o(1),

(2.35)

where constants C2, C3 are independent of δ and ϵ. Therefore, in (2.35), first let n → ∞, then
let ϵ → 0+, and finally let δ → 0+, yielding

lim
n→∞

∫
Ωζ

(
|∇vn|p−2 ∇vn − |∇v|p−2∇v

)
· ∇(vn − v) dx = 0. (2.36)

Using an elementary inequality (see [18])

(
a − b, |a|p−2a − |b|p−2b

)
⩾

{
Cp|a − b|p if p ⩾ 2,

Cp
|a−b|2

(|a|+|b|)2−p if 1 < p < 2,

where a, b ∈ RN . If p ⩾ 2, the convergence of (2.36) to zero as n → ∞ implies that

lim
n→∞

Cp

∫
Ωζ

|∇vn −∇v|p dx = 0. (2.37)

Moreover, when 1 < p < 2, one has

lim
n→∞

Cp

∫
Ωζ

|∇vn −∇v|2

(|∇v|+ |∇vn|)2−p dx = 0.
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Therefore, applying the Hölder inequality, one gets∫
Ωζ

|∇ (vn − v)|p dx =
∫

Ωζ

|∇ (vn − v)|p (|∇vn|+ |∇v|)p(p−2)/2

(|∇vn|+ |∇v|)p(p−2)/2
dx

⩽

∫
Ωζ

|∇ (vn − v)|2

(|∇vn|+ |∇v|)2−p dx


p/2

×

∫
Ωζ

(|∇vn|+ |∇v|)p dx


(2−p)/2

.

(2.38)

Hence, from (2.37) and (2.38), one can conclude

∇vn → ∇v a.e. in Ωζ .

Because ζ is arbitrary, by the Cantor diagonal argument, a subsequence {vn} can be chosen
such that

∇vn → ∇v a.e. on RN , (2.39)

as n → ∞. If J is empty, then vn → v in Lp∗ , it is easy to see that (2.36) is true for RN in place
of Ωζ . Hence (2.39) holds. From the convergences in (2.22) and (2.39), we have

v±n ⇀ v± in W,

v±n → v± in Ls for p ⩽ s < p∗),

v±n → v± a.e. in RN ,

∇v±n → ∇v± a.e. in RN .

Using Fatou’s lemma, the weak lower semicontinuity of norm, and the Brézis–Lieb lemma,
one gets

lim inf
n→∞

Kλ
b (αv+n + βv−n )

⩾
αp

p
lim
n→∞

(
∥v+∥p + ∥v+n − v+∥p)+ βp

p
lim
n→∞

(
∥v−∥p + ∥v−n − v−∥p)

+
bα2p

2p

[
|∇v+|pp + lim

n→∞
|∇v+n −∇v+|pp

]2
+

bβ2p

2p

[
|∇v−|pp + lim

n→∞
|∇v−n −∇v−|pp

]2

+
bαpβp

p
lim inf

n→∞
|∇v+n |

p
p|∇v−n |

p
p − λ

∫
F(αv+) dx − λ

∫
F(βv−) dx

− αp∗

p∗
[
|v+|p

∗

p∗ + lim
n→∞

|v+n − v+|p
∗

p∗

]
− βp∗

p∗
[
|v−|p

∗

p∗ + lim
n→∞

|v−n − v−|p
∗

p∗

]
⩾ Kλ

b (αv+ + βv−) +
αp

p
A1 +

bα2p

2p
A2

3 +
bα2p

p
A3|∇v+|pp −

αp∗

p∗
B1 +

βp

p
A2

+
bβ2p

2p
A2

4 +
bβ2p

p
A4|∇v−|pp −

βp∗

p∗
B2,

where

A1 = lim
n→∞

∥v+n − v+∥p, A2 = lim
n→∞

∥v−n − v−∥p, A3 = lim
n→∞

|∇v+n −∇v+|pp,

A4 = lim
n→∞

|∇v−n −∇v−|pp, B1 = lim
n→∞

|v+n − v+|p
∗

p∗ , B2 = lim
n→∞

|v−n − v−|p
∗

p∗ .
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In view of Lemma 2.1 (A2), one obtains

Kλ
b (vn) ⩾ Kλ

b (αv+n + βv−n ),

for all α, β ⩾ 0. That is,

cλ
b ⩾ Kλ

b (αv+ + βv−) +
αp

p
A1 +

bα2p

2p
A2

3 +
bα2p

p
A3|∇v+|pp −

αp∗

p∗
B1 +

βp

p
A2

+
bβ2p

2p
A2

4 +
bβ2p

p
A4|∇v−|pp −

βp∗

p∗
B2,

(2.40)

for all α, β ⩾ 0.

Step 1: We claim that v± ̸= 0. Suppose, for the sake of contradiction, that v+ = 0. Letting
β = 0 in (2.40), one has

cλ
b ⩾

αp

p
A1 +

bα2p

2p
A2

3 −
αp∗

p∗
B1, (2.41)

for all α ⩾ 0.
Firstly, we consider the case where B1 = 0. If A1 = 0, then v+n → v+ in W. From (2.16), it

follows that ∥v+∥ > 0. This contradicts the fact that we assume v+ = 0. If A1 > 0, one has

cλ
b ⩾

αp

p
A1 > 0,

for all α ⩾ 0, which gives a contradiction with Lemma 2.2.
Finally, we consider the case where B1 > 0. Lemma 2.2 ensures the existence of a λ⋆ > 0

suth that the following inequality holds

cλ
b <

p
N

SN/p2
, ∀λ ⩾ λ⋆. (2.42)

From (1.13) and B1 > 0, we conclude A1 > 0. Using (2.41), one has

p
N

SN/p2
⩽

p
N

[
A1

Bp/p∗
1

]N/p2

⩽ max
α⩾0

{
αp

p
A1 −

αp∗

p∗
B1

}
⩽ max

α⩾0

{
αp

p
A1 +

bα2p

2p
A2

3 −
αp∗

p∗
B1

}
⩽ cλ

b .

Thanks to (2.42), by (2.41), ones has

cλ
b <

p
N

SN/p2

⩽ max
α⩾0

{
αp

p
A1 +

bα2p

2p
A2

3 −
αp∗

p∗
B1

}
⩽ cλ

b ,

which is a contradiction. Consequently, v+ ̸= 0. Likewise, we deduce that v− ̸= 0 in a similar
manner.
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Step 2: We will prove that B1 = B2 = 0. We just prove B1 = 0 (in an analogous manner, we
demonstrate that B2 = 0). Suppose, for the sake of contradiction, that B1 > 0.

First case B2 > 0. As both B1 > 0, and B2 > 0, it follows A1, and A2 > 0. Let α̃ and β̃

satisfy

α̃p

p
A1 +

bα̃2p

2p
A2

3 −
α̃p∗

p∗
B1 = max

α⩾0

{
αp

p
A1 +

bα2p

2p
A2

3 −
αp∗

p∗
B1

}
,

and
β̃p

p
A2 +

bβ̃2p

2p
A2

4 −
β̃p∗

p∗
B2 = max

β⩾0

{
aβp

p
A2 +

bβ2p

2p
A2

4 −
βp∗

p∗
B2

}
.

Due to the compactness of the set [0, α̃]× [0, β̃] is compact and the continuity of gv, there is a
pair(αv, βv) ∈ [0, α̃]× [0, β̃] satisfying

gv(αv, βv) = max
(α,β)∈[0,α̃]×[0,β̃]

gv(α, β).

Therefore, it suffices to verify that a maximum cannot be attained on the boundary, i.e.,
(αv, βv) ∈ (0, α̃)× (0, β̃). Observe that if β is sufficiently small, one has

gv(α, 0) = Kλ
b (αv+)

< Kλ
b (αv+) +Kλ

b (βv−)

⩽ Kλ
b (αv+ + βv−)

= gv(α, β),

for all α ∈ [0, α̃]. Thus, there is β0 ∈ [0, β̃] such that gv(α, 0) ⩽ gv(α, β0), for all α ∈ [0, α̃],
i.e., (αv, βv) /∈ [0, α̃] × {0}. Using a similar approach, we can demonstrate that (αv, βv) /∈
{0} × [0, β̃].

It is straightforward to observe that

αp

p
A1 +

bα2p

2p
A2

3 +
bα2p

p
A3|∇v+|pp −

αp∗

p∗
B1 > 0, α ∈ (0, α̃], (2.43)

and
βp

p
A2 +

bβ2p

2p
A2

4 +
bβ2p

p
A4|∇v−|pp −

βp∗

p∗
B2 > 0, β ∈ (0, β̃]. (2.44)

Therefore, one gets

p
N

SN/p2
⩽

α̃p

p
A1 +

bα̃2p

2p
A2

3 +
bα̃2p

p
A3

∫
|∇v+|p dx − α̃p∗

p∗
B1 +

βp

p
A2

+
bβ2p

2p
A2

4 +
bβ2p

p
A4|∇v−|pp −

βp∗

p∗
B2,

and
p
N

SN/p2
⩽

αp

p
A1 +

bα2p

2p
A2

3 +
bα2p

p
A3|∇v+|pp −

αp∗

p∗
B1 +

β̃p

p
A2

+
bβ̃2p

2p
A2

4 +
bβ̃2p

p
A4|∇v−|pp −

β̃p∗

p∗
B2,
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for all α ∈ [0, α̃], β ∈ [0, β̃]. Combining this with (2.40), one obtains

gv(α, β̃) ⩽ 0, ∀α ∈ [0, α̃],

and, one also has
gv(α̃, β) ⩽ 0, ∀β ∈ [0, β̃].

That is, (αv, βv) /∈ {α̃} × [0, β̃] and (αv, βv) /∈ ×[0, α̃]× {β̃}.
In conclusion, it follows that (αv, βv) ∈ (0, α̃)× (0, β̃). Thus, the pair (αv, βv) is a critical

point of gv. Hence, αvv+ + βvv− ∈ Mλ
b . So, combining (2.40), (2.43) and (2.44), one has that

cλ
b ⩾ Kλ

b (αvv+ + βvv−) +
α

p
v

p
A1 +

bα
2p
v

2p
A2

3 +
bα

2p
v

p
A3|∇v+|pp −

α
p∗
v

p∗
B1 +

β
p
v

p
A2

+
bβ

2p
v

2p
A2

4 +
bβ

2p
v

p
A4|∇v−|pp −

β
p∗
v

p∗
B2

> Kλ
b (αvv+ + βvv−)

⩾ cλ
b .

This leads to a contradiction. Hence B1 = 0.
Second case B2 = 0. In this situation, maximization can be carried out in [0, α̃]× [0, ∞). In

fact, it can be shown that there is β0 ∈ [0, ∞) satisfying

Kλ
b (αv+ + βv−) ⩽ 0,

for all (α, β) ∈ [0, α̃]× [β0, ∞). Hence, there is (αv, βv) ∈ [0, α̃]× [0, ∞) that satisfies

gv(αv, βv) = max
(α,β)∈[0,α̃]×[0,∞)

gv(α, β).

Next, we show that (αv, βv) ∈ (0, α̃)× (0, ∞). One has

gv(α, 0) < gv(α, β), ∀α ∈ [0, α̃] and β sufficiently small,

thus, (αv, βv) /∈ [0, α̃]× {0}. At the same time, one has

gv(0, β) < gv(α, β), ∀β ∈ [0, ∞) and α sufficiently small.

Therefore, we get that (αv, βv) /∈ {0} × [0, ∞).
Conversely, for all β ∈ [0, ∞), we have

p
N

SN/p2
⩽

α̃p

p
A1 +

bα̃2p

2p
A2

3 +
bα̃2p

p
A3|∇v+|pp −

α̃p∗

p∗
B1 +

βp

p
A2

+
bβ2p

2p
A2

4 +
bβ2p

p
A4|∇v−|pp.

Thus, one has
gv(α̃, β) ⩽ 0, ∀β ∈ [0, ∞).

Therefore, (αv, βv) /∈ {α̃} × [0, ∞). Then, (αv, βv) ∈ (0, α̃)× (0, ∞). Hence, (αv, βv) is an inner
maximizer of gv in [0, α̃)× [0, ∞). And so αvv+ + βvv− ∈ Mλ

b .
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Consequently, based on (2.43), we get

cλ
b ⩾ Kλ

b (αvv+ + βvv−) +
α

p
v

p
A1 +

bα
2p
v

2p
A2

3 +
bα

2p
v

p
A3|∇v+|pp −

α
p∗
v

p∗
B1 +

β
p
v

p
A2

+
bβ

2p
v

2p
A2

4 +
bβ

2p
v

p
A4|∇v−|pp

> Kλ
b (αvv+ + βvv−)

⩾ cλ
b ,

which is absurd.
Hence, based on the preceding discussion, it follows that B1 = B2 = 0.

Step 3: Lastly, we establish the attainment of cλ
b . Given v± ̸= 0, according to Lemma 2.1, there

is αv, βv > 0 such that ṽ := αvv+ + βvv− ∈ Mλ
b . Moreover, we have that ⟨(Kλ

b )
′(v), v±⟩ ⩽ 0.

Lemma (2.1) implies that 0 < αv, βv ⩽ 1.
Combining vn ∈ Mλ

b and Lemma 2.1, one gets

Kλ
b (v

+
n + v−n ) = Kλ

b (vn)

⩾ Kλ
b (αvv+n + βvv−n ).

Taking into consideration B1 = B2 = 0 and the semicontinuity of the norm, one has

cλ
b ⩽ Kλ

b (ṽ) = Kλ
b (ṽ)−

1
2p

〈
(Kλ

b )
′(ṽ), ṽ

〉
=

(p − 1)
2p

∥ṽ∥p +
p∗ − 2p

2pp∗
|ṽ|p

∗

p∗ +
λ

2p

∫
[ f (ṽ)ṽ − 2pF(ṽ)] dx

=
(p − 1)

2p
(
∥αvv+∥p + ∥βvv−∥p)+ p∗ − 2p

2pp∗
[
|αvv+|p

∗

p∗ + |βvv−|p
∗

p∗

]
+

λ

2p

[∫
f (αvv+)αvv+ − 2pF(αvv+) +

∫
f (βvv−)βvv− − 2pF(βvv−)

]
⩽

(p − 1)
2p

∥v∥p +
p∗ − 2p

2pp∗
|v|p

∗

p∗ +
λ

2p

∫
f (v)v − 2pF(v)

⩽ lim inf
n→∞

[
Kλ

b (vn)−
1

2p

〈
(Kλ

b )
′(vn), vn

〉]
= lim inf

n→∞
Kλ

b (vn)

= cλ
b .

Therefore, it follows that αv = βv = 1, and cλ
b is attained by vb := v+ + v− ∈ Mλ

b .

3 Proof of theorems

We begin by proving Theorem 1.3.

Proof of Theorem 1.3. By applying Lemma 2.4, we can demonstrate that the minimizer vb for cλ
b

is a sign-changing solution to problem (QKP). As vb ∈ Mλ
b , one has

⟨(Kλ
b )

′(vb), v±b ⟩ = 0.
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For (α, β) ∈ (R+ × R+)\(1, 1), using Lemma 2.1 and Lemma 2.4, we can conclude

Kλ
b (αv+b + βv−b ) < Kλ

b (v
+
b + v−b ) = cλ

b . (3.1)

At this point, we aim to demonstrate that (Kλ
b )

′(vb) = 0. Suppose, the contrary (Kλ
b )

′(vb) ̸= 0.
It follows that there is δ > 0 and θ > 0 such that for all ∥u − vb∥ ⩾ 3δ, one has

∥(Kλ
b )

′(u)∥ ⩾ θ.

Select σ ∈
(
0, min

{ 1
2(p−1) ,

δ
2(p−1)/p∥vb∥

})
. Define D := (1 − σ, 1 + σ)× (1 − σ, 1 + σ), and

k(α, β) = αv+b + βv−b , ∀(α, β) ∈ D.

From (3.1), one has that
c̃λ := max

α,β∈∂D
Kλ

b ◦ k < cλ
b .

Let Sδ := Bδ(vb) and ε := min
{ (cλ

b −c̃λ)
2 , θδ

8

}
, it follows from [20, Lemma 2.3] that there is a

deformation η ∈ C([0, 1]× W, W) such that

(a) If u /∈ (Kλ
b )

−1 ([cλ
b − 2ε, cλ

b + 2ε
]
∩ S2δ

)
, then η(1, u) = u,

(b) η
(
1,
(
Kλ

b

)cλ
b +ε ∩ Sδ

)
⊂
(
Kλ

b

)cλ
b −ε,

(c) Kλ
b (η(1, u)) ⩽ Kλ

b (u), ∀u ∈ W.

To begin, we must demonstrate that

max
(α,β)∈D̄

Kλ
b (η(1, k(α, β))) < cλ

b . (3.2)

Indeed, by Lemma 2.1, one has

Kλ
b (k(α, β)) ⩽ cλ

b < cλ
b + ε,

i.e,

k(α, β) ∈
(
Kλ

b

)cλ
b +ε

.

Conversely, one has

∥k(α, β)− vb∥p = ∥(β − 1)v−b + (α − 1)v+b ∥
p

⩽ 2p−1 ((β − 1)p∥v−b ∥
p + (α − 1)p∥v+b ∥

p)
⩽ 2p−1σp∥vb∥p

< δp.

It follows that
k(α, β) ∈ Sδ ∀(α, β) ∈ D̄.

Thus, in light of (b), one gets

Kλ
b (η(1, k(α, β))) < cλ

b − ε.

Hence, we confirm that (3.2) holds.
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Our next step is to show that η(1, k(D)) ∩Mλ
b ̸= ∅, leading to a contradiction with the

definition of cλ
b . Define h(α, β) := η(1, k(α, β)),

Ψ0(α, β) :=
(
⟨(Kλ

b )
′(k(α, β)), v+b ⟩, ⟨(K

λ
b )

′(k(α, β)), v−b ⟩
)

=
(
⟨(Kλ

b )
′(αv+b + βv−b ), v+b ⟩, ⟨(K

λ
b )

′(αv+b + βv−b ), v−b ⟩
)

:=
(

φ1
vb
(α, β), φ2

vb
(α, β)

)
,

and

Ψ1(α, β) :=
(

1
α
⟨(Kλ

b )
′(h(α, β)), (h(α, β))+⟩, 1

β
⟨(Kλ

b )
′(h(α, β)), (h(α, β))−⟩

)
.

A straightforward computation yields

φ1
vb
(α, β)

∂α

∣∣∣∣∣
(1,1)

= (p − 1)∥v+b ∥
p − (p∗ − 1)|v+b |

p∗
p∗ + b(2p − 1)|∇v+b |

2p
p

− λ
∫

∂α f (v+b )(v
+
b )

2 dx + b(p − 1)|∇v+b |
p
p|∇v−b |

p
p,

φ2
vb
(α, β)

∂β

∣∣∣∣∣
(1,1)

= (p − 1)∥v−b ∥
p − (p∗ − 1)|v−b |

p∗
p∗ + b(2p − 1)|∇v−b |

2p
p

− λ
∫

∂α f (v−b )(v
−
b )

2 dx + b(p − 1)|∇v−b |
p
p|∇v+b |

p
p,

φ1
vb
(α, β)

∂β

∣∣∣∣∣
(1,1)

= bp|∇v+b |
p
p|∇v−b |

p
p,

φ2
vb
(α, β)

∂α

∣∣∣∣∣
(1,1)

= bp|∇v−b |
p
p|∇v+b |

p
p.

Let

M =


φ1

vb
(α,β)
∂α

∣∣∣∣
(1,1)

φ2
vb
(α,β)
∂α

∣∣∣∣
(1,1)

φ1
vb
(α,β)
∂β

∣∣∣∣
(1,1)

φ2
vb
(α,β)
∂β

∣∣∣∣
(1,1)

 .

Employing condition (P4) with t ̸= 0, it follows that

∂t f (t)t2 − (2p − 1) f (t)t > 0.

Thus, since vb ∈ Mλ
b , one has

det M =
φ1

vb
(α, β)

∂α

∣∣∣∣∣
(1,1)

×
φ2

vb
(α, β)

∂β

∣∣∣∣∣∣
(1,1)

−
φ1

vb
(α, β)

∂β

∣∣∣∣∣
(1,1)

×
φ2

vb
(α, β)

∂α

∣∣∣∣∣∣
(1,1)

=

[
p∥v+b ∥

p + bp|∇v+b |
p
p|∇v−b |

p
p + (p∗ − 2p)|v+b |

p∗
p∗

+ λ
∫
(∂α f (v+b )(v

+
b )

2 − (2p − 1) f (v+b )(v
+
b ) dx

]
×
[

p∥v−b ∥
p + bp|∇v+b |

p
p|∇v−b |

p
p + (p∗ − 2p)|v−b |

p∗
p∗

+ λ
∫
(∂β f (v−b )(v

−
b )

2 − (2p − 1) f (v−b )(v
−
b ) dx

]
− (bp)2|∇v+b |

2p
p |∇v−b |

2p
p

> 0.
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As (1, 1) is the unique isolated zero of the C1 function Ψ0(α, β), it follows from degree theory
that deg(Ψ0, D, 0) = 1. Consequently, taking both (3.2) and (a) into account, one has

h(α, β) = k(α, β), on ∂D.

Thus, it follows that deg(Ψ1, D, 0) = 1. Hence, Ψ1(α0, β0) = 0 for some (α0, β0) ∈ D so that

η(1, k(α0, β0)) = h(α0, β0) ∈ Mλ
b .

Thereby contradicting (3.2). Thus, (Kλ
b )

′(vb) = 0, which implies vb is a critical point of Kλ
b .

Therefore, we conclude that vb is a sign-changing solution for problem (QKP). To conclude
our proof, we show that v has exactly two nodal domains. We proceed by assuming, for
contradiction, that

v = v1 + v2 + v3, with vi ̸= 0, v1 ⩾ 0, v2 ⩽ 0,

supp (vi) ∩ supp
(
vj
)
= ∅, for i ̸= j, i, j = 1, 2, 3,

and
⟨(Kλ

b )
′(v), vi⟩ = 0, for i = 1, 2, 3.

Let u := v1 + v2, we observe that u+ = v1 and u− = v2. Thus, u± ̸= 0. Therefore, there is a
unique (αu, βu) of positive numbers such that αuv1 + βuv2 ∈ Mλ

b .
Hence,

Kλ
b (αuv1 + βuv2) ⩾ cλ

b .

Additionally, by noting that ⟨(Kλ
b )

′(v), vi⟩ = 0, one gets ⟨(Kλ
b )

′(u), u±⟩ < 0. From Lemma 2.1,
it follows that (αu, βu) ∈ (0, 1]× (0, 1]. Conversely, one has

0 =
1

2p
⟨(Kλ

b )
′(v), v3⟩

=
1

2p
∥v3∥p +

b
2p

|∇v3|2p
p +

b
2p

|∇v3|pp|∇v1|
p
p +

b
2p

|∇v3|pp|∇v2|pp

− λ

2p

∫
f (v3)v3 dx − 1

2p
|v|p

∗

p∗

< Kλ
b (v3) +

b
2p

|∇v3|pp|∇v1|
p
p +

b
2p

|∇v3|pp|∇v2|pp.

Hence, by (2.17) we obtain

cλ
b ⩽ Kλ

b (αuv1 + βuv2)

= Kλ
b (αuv1 + βuv2)−

1
2p

⟨(Kλ
b )

′(αuv1 + βuv2), (αuv1 + βuv2)⟩

=
1

2p
(∥αuv1∥p + ∥βuv2∥p) +

λ

2p

∫
[ f (αuv1)(αuv1)− 2pF(αuv1)] dx

+
λ

2p

∫
[ f (βuv2)(βuv2)− 2pF(βuv2)] dx

+
p∗ − 2p

2pp∗
α

p∗
u |v1|

p∗
p∗x +

p∗ − 2p
2pp∗

β
p∗
u |v2|p

∗

p∗

⩽ Kλ
b (v1 + v2)−

1
2p

⟨(Kλ
b )

′(v1 + v2), (v1 + v2)⟩
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= Kλ
b (v1 + v2) +

1
2p

⟨(Kλ
b )

′(v), v3⟩+
b

2p
|∇v3|pp|∇v1|

p
p +

b
2p

|∇v3|pp|∇v2|pp

< Kλ
b (v1) +Kλ

b (v2) +Kλ
b (v3) +

b
2p
(
|∇v3|pp + |∇v2|pp

)
|∇v1|

p
p

+
b

2p
(
|∇v3|pp + |∇v1|

p
p
)
|∇v2|pp +

b
2p
(
|∇v1|

p
p + |∇v2|pp

)
|∇v3|pp

= Kλ
b (v)

= cλ
b ,

this leads to a contradiction, which implies that v3 = 0. Hence, v has precisely two nodal do-
mains. Utilizing Theorem 1.3, we prove the existence of a least energy sign-changing solution
vb to problem (QKP).

Next, we provide a proof for Theorem 1.4, asserting that the energy of vb is strictly greater
than twice the ground state energy.

Proof of Theorem 1.4. Similarly to the proof of Lemma 2.2, there is λ⋆
1 > 0 such that for all

λ ⩾ λ⋆
1 , there is v ∈ N λ

b such that Kλ
b (v) = c∗b,λ > 0. Using standard arguments the critical

points of the functional Kλ
b on N λ

b are critical points of Kλ
b in W. As a result, (Kλ

b )
′(v) = 0,

which implies that v is a ground state solution of problem (QKP). Theorem 1.3 indicates that
for all λ ⩾ λ⋆, there exists a least energy sign-changing solution vb to problem (QKP) that
changes its sign only once. Define λ⋆⋆ = max {λ⋆

1 , λ⋆}. Assume that vb = v+b + v−b . Following
the approach in the proof of Lemma 2.1, there are αv+b

> 0 and βv−b
> 0 such that

αv+b
v+b ∈ N λ

b , βv−b
v−b ∈ N λ

b .

Moreover, according to Lemma 2.1, αv+b
, βv−b

∈ (0, 1). Consequently, by applying Lemma 2.1
again, one obtains

2c∗b,λ ⩽ Kλ
b (αv+b

v+b ) +Kλ
b (βv−b

v−b )

⩽ Kλ
b (αv+b

v+b + βv−b
v−b )

< Kλ
b (v

+
b + v−b )

= cλ
b .

Hence, c∗b,λ > 0 cannot be attained by any sign-changing function.

Lastly, we provide the proof for Theorem 1.5.

Proof of Theorem 1.5. Step 1: We prove that for any sequence {bn}, {vbn} is bounded in W if
bn ↘ 0. Let χ ∈ C∞

0
(
RN) be a nonzero function with fixed χ± ̸= 0. Similar to the argument

presented in Lemma 2.1, for any b ∈ [0, 1], there is (τ1, τ2) that are independent of b, such that

⟨(Kλ
b )

′(τ1χ+ + τ2χ−), τ1χ+⟩ < 0, and ⟨(Kλ
b )

′(τ1χ+ + τ2χ−), τ2χ−⟩ < 0.

As per Lemma 2.1, for any b ∈ [0, 1], there is a unique (αχ(b), βχ(b)) ∈ (0, 1]× (0, 1] such that
χ̄ := αχ(b)τ1χ+ + βχ(b)τ2χ− ∈ Mλ

b .
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Hence, using (2.4), we can deduce that for any b ∈ [0, 1],

Kλ
b (vb) ⩽ Kλ

b (χ̄)

= Kλ
b (χ̄)−

1
2p

⟨(Kλ
b )

′(χ̄), χ̄⟩

=
(p − 1)

2p
∥χ̄∥p +

p∗ − 2p
2pp∗

|χ̄|p
∗

p∗ +
λ

2p

∫
[ f (χ̄)χ̄ − 2pF(χ̄)] dx

⩽
(p − 1)

2p
∥χ̄∥p +

p∗ − 2p
2pp∗

|χ̄|p
∗

p∗ +
λ

2p

(
Cε|χ̄|ϑϑ + ε|χ̄|pp

)
⩽

(p − 1)
2p

(
∥τ1χ+∥p + ∥τ2χ−∥p)+ p∗ − 2p

2pp∗
[
|τ1χ+|p

∗

p∗ + |τ2χ|p
∗

p∗

]
+

λ

2p

[(
ε|τ1χ+|pp + Cε|τ1χ+|ϑϑ

)
+
(

ε|τ2χ−|pp + Cε|τ2χ−|ϑϑ
)]

= Cχ.

Therefore, as n → ∞, one gets

Cχ + 1 ⩾ Kλ
bn
(vbn)

= Kλ
bn
(vbn)−

1
2p

⟨(Kλ
bn
)′(vbn), vbn⟩

⩾
(p − 1)

2p
∥vbn∥p.

Hence, {vbn} is bounded in W.

Step 2: We demonstrate the existence of a nodal solution v0 to problem (QKP). As the
sequence {vbn} is bounded in W, up to a subsequence, there is v0 ∈ W such that

vbn ⇀ v0 in W,

vbn → v0 in Ls(RN), for s ∈ [p, p∗),

vbn → v0 a.e. in RN ,

∇vbn → ∇v0 a.e. in RN .

(3.3)

Since {vbn} is a weak solution of problem (QKP) with b = bn, one obtains∫
(|∇vbn |p−2∇vbn · ∇φ + a(x)|vbn |p−2φ) dx + bn|∇vbn |

p
p

∫
|vbn |p−2∇vbn · ∇φ dx

= λ
∫

f (vbn)φdx +
∫

|vbn |p
∗−2vbn φ dx,

(3.4)

for all φ ∈ C∞
0 (RN). By combining equations (3.3) and (3.4) with Step 1, we can conclude that∫

(|∇v0|p−2∇v0 · ∇φ + a(x)|v0|p−2φ) dx + bn|∇v0|pp
∫

RN
|v0|p−2∇v0 · ∇φ dx

= λ
∫

f (v0)φ dx +
∫

|v0|p
∗−2v0φ dx,

for all φ ∈ C∞
0 (RN). Thus, v0 is a weak solution to problem (QKP0). In a manner akin to

Lemma 2.2, we can infer that v+0 ̸= 0 and v−0 ̸= 0.
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Step 3: Here, we demonstrate that problem (QKP0) has a least energy nodal solution u0, and
that there is a unique pair (αbn , βbn) ∈ R+×R+ satisfying αbn u+

0 + βbn u−
0 ∈ Mλ

bn
. Furthermore,

we show that as n → ∞, (αbn , βbn) converges to (1, 1).

Using an approach similar to the one in the proof of Theorem 1.3, it follows that problem
(QKP0) possesses a nodal solution u0 with least energy, where Kλ

0 (u0) = cλ
0 and (Kλ

0 )
′(u0) =

0. Then, following Lemma 2.1, we can easily obtain the existence and uniqueness of a pair
(αbn , βbn) such that αbn u+

0 + βbn u−
0 ∈ Mλ

bn
, with αbn > 0 and βbn > 0. In order to complete the

proof, it is enough to prove that (αbn , βbn) → (1, 1) as n → ∞. Indeed, as αbn u+
0 + βbn u−

0 ∈ Mλ
bn

,
one has that

α
p
bn
∥u+

0 ∥
p + bnα

2p
bn
|∇u+

0 |
2p
p + bnα

p
bn

βbn |∇u+
0 |

p
p|∇u−

0 |
p
p

= λ
∫

f (αbn u+
0 )αbn u+

0 dx + α
p∗

bn
|u+

0 |
p∗
p∗ ,

(3.5)

and
β

p
bn
∥u−

0 ∥
p + bnβ

2p
bn
|∇u−

0 |
2p
p + bnβ

p
bn

αbn |∇u−
0 |

p
p|∇u+

0 |
p
p

= λ
∫

f (αbn u−
0 )βbn u−

0 dx + β
p∗

bn
|u−

0 |
p∗
p∗ .

(3.6)

using the fact that bn ↘ 0, it follows that {αbn} and {βbn} are bounded. Suppose, up to a
subsequence, αbn → α0 and βbn → β0. Then by (3.5) and (3.6), we have

α
p
0∥u+

0 ∥
p = λ

∫
f (α0u+

0 )α0u+
0 dx + α

p∗
0 |u+

0 |
p∗
p∗ , (3.7)

and
β

p
0∥u−

0 ∥
p = λ

∫
f (β0u−

0 )β0u−
0 dx + β

p∗
0 |u−

0 |
p∗
p∗ . (3.8)

Noticing that v0 is a nodal solution to problem (QKP0), one has

∥u+
0 ∥

p = λ
∫

f (u+
0 )u

+
0 dx + |u+

0 |
p∗
p∗ , (3.9)

and

∥u+
0 ∥

p = λ
∫

f
(
u−

0
)

u−
0 dx + |u−

0 |
p∗
p∗ . (3.10)

Therefore, from (3.7)–(3.10), we can easily obtain that (α0, β0) = (1, 1). We can now com-
plete the proof of Theorem 1.5. We claim that v0 obtained in Step 2 is a least energy solution
to problem (QKP0). In fact, according to Step 3 and Lemma 2.1, we see that

Kλ
0 (u0) ⩽ Kλ

0 (v0) = lim
n→∞

Kλ
bn
(vbn)

⩽ lim
n→∞

Kλ
bn
(αbn u+

0 + βbn u−
0 )

= lim
n→∞

Kλ
0 (u

+
0 + u−

0 )

= Kλ
0 (u0) ,

which completes the proof of Theorem 1.5.
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